Answer all the questions.

1 Express in set notation, the set shaded in the following Venn diagram.

Answer

2 (a) Simplify $\quad(3+2 x)(1+x)$.

Answer
(b) Factorise completely $32 a^{2}-18 b^{2}$.

Answer
[2]

3 Factorise completely $12 b x-6 a y+8 b j-9 a x$.

Answer

4 Write as a single fraction in its simplest form $\frac{5}{2+x}+\frac{6 x}{x^{2}-4}$,

5 Show that for all p, where p is a positive integes
$(7 p-3)^{2}-4 p(p-3)+6$ is divisible by 15 .

Answer

Answer
(3) Hence, sketch the graph of $y=5-6 x-x^{2}$ indicating the y-intercept and the coordinates of the tuming point on the grapki.

Answer

7 A bicycie rental shop wes ane formula $C=5.5 \div 3.5 h$ to calculate charges for rental of bicycles, where C is the cost of rental and is the number of hout of rental.
(a) State tue basic charge to be prid regandless of the number of hours offertal.

(b) Mathew and Ethan bofi remted a bicycle each for different number of hours. The difference in the cost of renfal between the two of them is \$1,4, Find the differeace in the nurbor of houns of sental between the two boys.

Answer. \qquad hours [2]

8 The diagran shows an invertad pyramid with a capacity of $800 \mathrm{~cm}^{3}$.

The depth of the liquid in the inverted pyramid, a, is one-third the height, h, cis the pyramid. Calculate the wolume af the liquid.
$\$$

$A B C$ is a triangle, where $A B=17.6 \mathrm{~cm}, B C=24.5 \mathrm{~cm}$ and angle $B A C=35^{\circ}$
Find angle $A B C$.

11 Hector was arranging 315 one-centimetre cubes into a cuboid.
The perimeter of the base of the cuboid is 28 cm .
Each side of the cuboid has a length greater than 3 cm .
Find the height of the cuboid.

12 The bar graph shows the COE price of small cars in Singapore over a period of 6 months.

COE PRICE OF SMALL CARS IN SINGAPORE

State one aspect of the graph that may be misleading and explain how this may lead to a misintetpretation of the graph.

Answer \qquad
\qquad
\qquad

13 The diagram shows an isosceles triangle.
$A C$ is parallel to the x-axis.
Point B has coordinates $(20,25)$ and C has coordinates $(30,5)$

Find the coordinates of A.

$A B C D$ is a semicircle with centre 0 .
$B E D$ and $A E C$ are straight lines.
Angle $C O D=70^{\circ}$ and angle $A E D=110^{\circ}$.
(a) Stating your reasons clearly, calculate
(i) angle $A C D$,

Answer angle $A C D=$
(ii) angle $A D C$,

Answer angle $A D C=$
(iii) angle $A B C$,

Answer angle $A B C=$
(iv) angle $B F C$.

Answer angle $B F C=$
(3) Explain why $B C$ is parallel to $A D$.

Answer: \qquad

15 The diagram shows a circle $A B C D$.
E is the midpoint of the chord $A B$.
$A B C D$ is a rectangle.
$D E=15 \mathrm{~cm}$ and $D C=18 \mathrm{~cm}$.

(a) Calculate the area of triangle $A D E$.

Answer \qquad
(b) Calculate the circumference of the circle.

16 The sketch shows the graph of $y=3^{k} \times x^{-n}$. The graph passes through the point $A(1,9)$.
(a) (i) State a possible value of n.

Answer $n=$
[1]
(ii) Find the value of k.

$$
k=
$$

(b) Given that the cooidinates of B is $(-2,2.25)$, find the length of the line segment $A B$.

> Answer
(a) Express 3780 as the product of its prime factors.

Answer
(b) Using your answei to part (a), explain why 3780 is not multiple of 49. Answer \qquad
(c) c is a composite number and p is a prime number.

Find the values of p and c such that $3780 \times \frac{c}{p}$ is a perfect square and c has the least value.

```
Answer p=
    c}

18 A map of Singapore is such that \(9 \mathrm{~cm}^{2}\) on the map represens the actual area of \(36 \mathrm{~km}^{2}\) on the land.
(a) Express the scale of the map in the form \(1: n\).

Answer 1:
(b) The length of Bukit Timah Expressway on the map is 5 cm .

Calculate the actual distance, in Kilometres, of the Bukit Timah Expressway.

Answer
19 The table shows the prices of one litre of petrol and the discounts offered by leading petrol companies
\begin{tabular}{|c|c|c|} 
Company & Petrol price per litre & Discount \\
\hline\(A\) & \(\$ 1.723\) & \(18 \%\) \\
\hline\(B\) & \(\$ 1.689\) & \(15 \%\) \\
\hline\(C\) & \(\$ 1.702\) & \begin{tabular}{c}
\(12 \%\) discount plus \begin{tabular}{c}
\(\$ 3\) off for every \(\$ 30\) sale \\
after discount
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
\\
\hline
\end{tabular} l \\
\hline
\end{tabular}
(a) Ronn wants to fill up his car with 55 litres of petroll at Company \(C\).

Calculate the total amount Ronn paid for the petrol.

Answer \$
[2]
(b) Comparing Company \(A\) and \(B\), show clearly which company offers a better deal.

> Answer ..

6000 customers partipated in a contest where they have to guess the number of chocolates in a big glass container
The cumulative frequency curve below shows the distribution of their guesses.


The actual number of chocolates is 6000 .
(a) Find the median.

\section*{Answer}
chocolates [1]
(b) Find the interquartile range.

Answer
chocolates [1]
(c) Find the probability that a customer, chosen at random, gave an estimate within \(10 \%\) of the actual number of chocolates.

21 Gate \(B\) and Gate \(C\) are 400 m apart in a park. Gate \(A\) is siech that angle \(A C B=105^{\circ}\) and \(A B=550 \mathrm{~m}\).
(a) Using a scale of 1 cm to 50 m and the tine \(B C\) is drawn for you, complete the scale drawing of triangle \(A B C\).

(b) A pavilion, inside the park, is located equidistant from the three gates. By construction, find and label the position of the pavilion \(P\).
(c) Measure and calculate the actual distance between Gate \(A\) and the pavilion \(P\).

22 The position vectors of \(A\) and \(B\) are \(\binom{3}{4}\) and \(\binom{-3}{4}\) respectively.
(a) Find the length of \(\overrightarrow{O B}\).

\section*{Answer}
(b) \(\quad C\) is the point \((0, p)\) where \(p>0\).
\(\overrightarrow{O C}=4 \overrightarrow{O A}+4 \overrightarrow{O B}\).
Find the value of \(p\).
\[
\text { Answer } p=
\]
(c) What type of quadrilateral is \(O A C B\) ?

> Answer

23 In the diagram, angle \(A O \neq 90^{\circ} ; A C\) is parallel to \(O B\) and \(A C=7.1 \mathrm{~cm}\).
\(A X B\) is an arc of a circle with centre \(O\) and \(C Y B\) is an arc of a circle with centre \(A\). Find the area of the shaded region.


24 In the diagram, \(A B C D\) is a parallelogram, \(\overrightarrow{A D}=\mathrm{p}+2 \mathrm{q}\) and \(\overrightarrow{A B}=5 \mathrm{p}-6 \mathrm{q}\).

(a) Express, as simply as possible, in terms of p and q ,
(i) \(\overrightarrow{C B}\),

> Answer
(ii) \(\overrightarrow{D B}\).

Answer
(b) \(E\) is a point such that \(\overrightarrow{E A}=\mathrm{p}-2 q\).
(i) Explain why \(\overrightarrow{D B}\) is parallel to \(\overrightarrow{E A}\).

Answer \(\qquad\)
(ii) Find the ratio of the area of triangle \(A D E\) to the area of triangle \(D B A\).

\section*{MATHEMATICAL FORMULAE}

Compound Interest
\[
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
\]

Mensuration
\[
\begin{gathered}
\text { Curved surface area of cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta, \text { where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
\end{gathered}
\]

\section*{Trigonometry}
\[
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
\]

Statistics
\[
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
\]

\section*{Answer all stie questions.}

1 (a) (4) Factorise-3x+2\(-2 x+5\).
(ii) Simplify \(\frac{6 x+12}{3 x^{2}-15 x-62}\).
(b) It is gives 赖at \(d=\sqrt{\frac{52-f}{e f}}\).
(i) Find when \(z=4\) and \(f=2\).
(4i) Express \(e\) in ferms sf dand.
(c) Solve the equation \(\frac{3 x+2}{5}-\frac{1}{2} \frac{x}{2}\).
(a) Solve trese simultancous equations.
\[
\begin{gathered}
7 x+4 y=-37 \\
x-5 y=17
\end{gathered}
\]
[3]

2 In one small packet of gummies, there are both gummy bears and gummy snakes in two colours; red and green. In a large packet, there are 10 small packets.

Green Red
The information can be represented by the matrix \(A=\left(\begin{array}{ll}5 & 5 \\ 4 & 6\end{array}\right)\) Snake
(a) Evaluate the matrid \(\boldsymbol{r}_{3}=10 \mathrm{~A}\).
(b) It costs \(\$ 0.10\) and \(\$ 0.12\) to produce 1 green and red gummy respectively.

Represent the cost of each colour of gummy in a \(2 \times 1\) column matrix \(C\) in dollars.
(c) Evaluate the matrix \(\mathrm{D}=\mathrm{BC}\).
(d) State what the elements oxoD apresent.
(e) Another gummy-making company, Company \(Y\), packs 6 green gummy bears, 4 red gummy bears, 7 green gummy snakes and 3 red gummy snakefin one small packet. The costs to produce one green gummy and one red gummy remain the same. One large packet is also made up of 10 small packets.

Calculate the total cost for Company \(Y\) to produce one large packet.

3 (a) The diagram shows a regular hexagon.

(i) Calculate the interior angle of a regular hexagon.
(ii) It is given that \(2 A G=B C\). Find \(\frac{\text { area of triangle } A B F}{\text { area of tiangle } B F C}\).
(b) (i) Simplify \(\frac{\left(m n^{2}\right)^{3}}{p^{5}} \div \frac{n^{5}}{p^{4}}\).
(ii) Given that \(\frac{2^{q+s}}{4^{2 q}}=\frac{1}{16}\), find the value of \(q\).

4 The first five terms in a sequence of numbers are given below.
\[
0,3,8,15,24 \ldots
\]
(a) Find the next two terins.
(b) Find an expression, in terms of \(n\), for the \(n\)th tern, \(T_{n}\), of the above sequence.
(c) \(\quad T_{n}\) and \(T_{n+1}\) are consecutive terms in the sequence.

Find and simplify an expression, in terms of \(n\), for \(T_{n+1}-T_{n}\).
(d) Explain why two consecutive terms of the sequence cannot have a difference of 8 .

5 Answer the whole of this question on a sheet of graph paper.
The variables \(x\) and \(y\) are connected by the equation
\[
y=x^{3}-4 x^{2}+\frac{5}{2}
\]

Some corresponding values of \(x\) and \(y\) are given in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 & 2 \\
\hline\(y\) & -9.875 & -2.5 & 1.375 & 2.5 & \(p\) & -0.5 & -3.125 & -5.5 \\
\hline
\end{tabular}
(a) Find the value of \(p\).
(b) Using a scale of 4 cm to represent I unit, draw a borizontal \(x\)-axis for \(-1.5 \leq x \leq 2\).

Using a scale of 1 cm to represent I unit, draw a ventical \(y\)-axis for \(-12 \leq y \leq 4\).
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find the coordinates of the maximum point of \(y=x^{3}-4 x^{2}+\frac{5}{2}\), in the range of \(-1.5 \leq x \leq 2\).
(d) Use your graph to find the solutions to the equation \(x^{3}-4 x^{2}+6=0\), in the range \(-1.5 \leq x \leq 2\).
(e) By drawing a tangent, find the gradient of the curve at \((-1,-2.5)\).
(f) (i) On the same axes, draw the line \(y=-3 x-4\) for \(-1.5 \leq x \leq 2\).
(ii) Write down the coordinates of the point where this line intersects the curve.
6. The diagram shows a circle, centre \(O\), with radius 15 cm touching another circle, centre \(C\), with radius 9 cm .
\(O C R\) and \(P Q R\) are straight lines and \(P Q R\) is a tangent to both the circles at points \(P\) and \(Q\).

(a) State the value of angle \(C Q R\) and explain your answer.
(b) Show that triangles \(O P R\) and \(C Q R\) are similar.

Give a reason for each statement you make.
(c) Find the value of \(\frac{\text { area of triangle } C Q R}{\text { area of trapezum } O C Q P}\)
(d) Find the difference in the areas of the two circles.

Leave your answer in terms of \(\pi\).

7 A company manufactures and selis posters for \(\mathfrak{q} e c o r a t i o n ~ a n d ~ d i s p l a y . ~\)
(a) The posters manufactured by the company are sold in local shops and department stores. In a particular week, the number of posters available for sale in local shops and department stores are in the ratio \(3: 7\).

Given that 160 more posters are available for sale in department stores, find the total number of posters available for sale in that week.
(b) A shop owner bought \(x\) posters for \(\$ 60\) from the company.
(i) Write down an expression, in tenns of \(x\), for the cost of each poster in dollars.

The shop owner decides to sell the posters at a profit of \(\$ 1\) each.
(ii) Write down an expression, in terms of \(x\), for the selling price of each poster in dollars.

The shop owner managed to sell 10 posters at the selling price in (ii).
He decided to sell the rest of the posters at \(\$ 5\) each.
(iii) Write down an expression, in tenns of \(x\), for the total amount of money in dollars, that he collected from the sale of all posters.
(iv) Given that the shop owner collected a total of \(\$ 130\) from the sale of all posters, write down an equation in \(x\) to represent this information and show that it reduces to
\[
\begin{equation*}
x^{2}-34 x+120=0 \tag{3}
\end{equation*}
\]
(v) Solve the equation \(x^{2}-34 x+120=0\).
(vi) Find the cost price of each poster.

8 The diagram shows a table used by an interior designer.
It is made up of a prism and \(\frac{i}{4}\) table legs for support.
The rectangle \(P Q R S\) lies on a horizontal plane.
\(T\) is vertically above \(X\).
\(P S=120 \mathrm{~cm}, R S=80 \mathrm{~cm}\) and \(W R=50 \mathrm{~cm}\).
Angle \(W / R S=58^{\circ}\).


Calculate
(a) WS
(b) the volume of the prism,
(c) \(T X\),
(d) \(X S\),
(e) the angle of elevation of \(T\) from \(S\).

9 (a) The amount of money, in dollars, spent by a group of 20 students (Group A) in the month of May is shown in the stem-and-leaf diagram below.
\begin{tabular}{c|ccccc}
5 & 2 & .5 & & \\
6 & 2 & 3 & 7 & & \\
7 & 1 & 1 & 5 & 8 & 9 \\
8 & 0 & 4 & 5 & 6 & \\
9 & 2 & 3 & 8 & 9 & \\
10 & 5 & 8 & &
\end{tabular}

Key \(5 / 6\) means \(\$ 56\)
(i) Find the mean amount of money spent by the 20 students.
(ii) Find the standard deviation of the amount of money spent by the 20 students. [1]
(iii) The mean and standard deviation of the amount of money spent by another group of 20 students (Group B) in May were \(\$ 70\) and \(\$ 12\) respectively.
Use the information to comment on two differences between the two distributions.
(b) Jokn plays a game at a carnival. In this game, he has to pick 2 coloured balls from two bags, \(A\) and \(B\). He is only allowed to pick one ball from each bag. He has to pick one ball from Bag \(A\), followed by another ball from Bag \(B\).
Bag \(A\) contains 2 red balls, 3 blue balls and 6 yellow balls.
Bag \(B\) contains 4 red balls, 1 blue ball and 4 yellow balls.
(i).: Draw a rree diagram to show the probabilities of the possible outcomes.
(ii) Join will win a large prize if he picks 2 balls that are blue, a small prize if he picks only one ball that is blue and goes horne empty-handed otherwise.
Find, as a fraction in the simplest form, the probability that
(a) John will win a large prize,
(b) John will win a small prize,
(c) John'will not win anything.

A group of students are tasked to design, print and disuribute brochures containing tips to save water to students in school, as part of the school's effort to raise awareness of the importance of saving water in school.

The students have been allocated a budget of \(\$ 1200\) to complete this task.

The students are required to print and distribute a copy of the brochure to each student and teacher in the school.

Each brochure is printed on both sides of 2 sheets of A4 size paper.
Students will be given brochures printed in black and white and teachers will be given brochures printed in colour. They will have to purchase the sheets of A4 size paper and toner cartridges from \(A B C\) bookstore, which will be delivered to school.

In addition, the students are also tasked to design and print 50 copies of A. size coloured posters containing tips to save water, to be put up in all classrooms and various areas in the school. They have sourced for an extemal supplier, \(X Y Z\) supplier, to print the posters. The posters will be delivered to school as well.

The information that the students require is found in Annex \(A\), on the opposite page.

The students estimates that they have to distribute the brochures to 1360 students and 90 teachers.
(a) How many sheets of A4 size paper will the students require to purchase to print the brochures for all students and teachers?
(b) How many toner cartridges will the students require to purchase to print the brochures for all students and teachers?
(c) Given that one of the students in the group is a member of \(A B C\) bookstore and that the students aim to reduce the cost as far as possibie, determine if the amount of budget allocated is sufficient to cover all costs.
Justify your answer with relevant mathematical working.
1) Cost of purchasing stationaries from \(A B C\) Bookshop:
\begin{tabular}{|l|l|l|}
\hline Item & Description & Unit Cost (excluding GST) \\
\hline A4 Paper & White paper & \\
& I pack of 100 sheets & \(\$ 2.00\) \\
& 1 pack of 500 sheets & \(\$ 5.00\) \\
& \begin{tabular}{l} 
5 packs of 500 sheets each \\
10 packs of 500 sheets each
\end{tabular} & \(\$ 22.50\) \\
\hline Toner Cartridges & \begin{tabular}{l} 
Black printing \\
(each cartridge is able to print \\
1200 pages)
\end{tabular} & \(\$ 136.00\) \\
\hline & \begin{tabular}{l} 
Colour printing \\
(each cartridge is able to print \\
900 pages)
\end{tabular} & \(\$ 140.00\) \\
\hline
\end{tabular}

The above prices are subjected to 7\% Goods and Services Tax (GST).
Member discount: \(10 \%\) off total bill, after 7\% GST
Delivery cost: \(\$ 30\) per trip (not subjected to \(7 \%\) GST)
(Free delivery for minimum purchase of \(\$ 200\) in total bill, inclusive of \(7 \%\) GST and after member discount.)
2) Cost of printing A3 size coloured posters

Supplier: XYZ Prineing
\begin{tabular}{|l|l|l|}
\hline Item & Description & Unit Cost (excluding GST) \\
\hline Black and White Posters & 10 sheets & \(\$ 25.00\) \\
& 50 sheets & \(\$ 120.00\) \\
\hline Coloured Posters & 10 sheets & \(\$ 35.00\) \\
& 50 sheets & \(\$ 170.00\) \\
\hline The above prices are subjected to \(7 \%\) Goods and Services Tax (GST). \\
Deiivery cost: \(\$ 20\) per trip (not subjected to \(7 \%\) GST) \\
(Free delivery for minimum purchase of \(\$ 200\) in total bill, inclusive of 7\% GST.) \\
\hline
\end{tabular}

End of Paper

Pei Hwa Secondary School
Mid Year Examination 2017

\section*{Sec 4E \& 5N Mathematics Paper 1}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Answer Key} \\
\hline 1(a) & \(A \cap B\) \\
\hline 2(a) & \(-2 x^{2}+x+3\) \\
\hline 2(b) & \(2(4 a+3 b)(4 a-3 b)\) \\
\hline 3 & \((4 b-3 a)(3 x+2 y)\) \\
\hline 4 & \[
\frac{11 x-10}{(x+2)(x-2)}
\] \\
\hline 5 & \begin{tabular}{l}
\[
\begin{aligned}
& (7 p-3)^{2}-4 p(p-3)+6 \\
& =49 p^{2}-42 p+9+4 p^{2}+12 p+6 \\
& =45 p^{2}-30 p+15 \\
& =15\left(3 p^{2}-2 p+1\right)
\end{aligned}
\] \\
\(\therefore\) for all \(p,(7 p-3)^{2}-4 p(p-3)+6\) is divisible by 15 . (Shown)
\end{tabular} \\
\hline 6(a) & \(14-(x+3)^{2}\) \\
\hline 6(b) &  \\
\hline 7(a) & \$5.50 \\
\hline \(7(\mathrm{~b})\) & 4 hours ! \\
\hline 8 & \(29.6 \mathrm{~cm}^{3}(3 s . f\). \\
\hline 9 & \(119.0^{\circ}\) (1d.p.) \\
\hline 10 & \begin{tabular}{l}
Amount of money Jane will get in Singapore
\[
\begin{aligned}
& =\frac{1426}{0.71} \\
& =S G D \$ 2008.45
\end{aligned}
\] \\
Amount of money Jane will get in the United Stakes
\[
\begin{aligned}
& =\frac{153}{100} \times 1426 \\
& =S G D \$ 2181.78
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Jane will change her money in the United States as she will get back more Singapore dollars. \\
\hline 11 & 7 cm \\
\hline 12 & In the graph, the data doesn't start at \(\$ 0\), but somewhere around \(\$ 49000\). This makes the differences appear much larger proportionally. \\
\hline 13 & \((10,5)\) \\
\hline 14(a)(i) & \(90^{\circ}\) \\
\hline 14(a)(ii) & \(55^{\circ}\) \\
\hline 14(a)(iii) & \(125^{\circ}\) \\
\hline 14(a)(iv) & \(75^{\circ}\) \\
\hline 14(b) & \begin{tabular}{l}
Angle \(B C E=35^{\circ}\) (Angles in the same segment) \\
Since angle \(B C E=\) angle \(C A O\) (by property of alternate angles), \(B C\) is parallel to \(A D\).
\end{tabular} \\
\hline 15(a) & \(54 \mathrm{~cm}^{2}\) \\
\hline 15(b) & 68.0 cm \\
\hline 16(8)(3) & \(n^{--2}\) \\
\hline 16(a)(ii) & \[
\begin{aligned}
& 9=3^{k} \times(1)^{-2} \\
& k=2
\end{aligned}
\] \\
\hline 16(b) & 7.39 units \\
\hline 17(a) & \(2^{2} \times 3^{3} \times 5 \times 7\) \\
\hline 17(b) & Index of 7 is not at least 2 \\
\hline 17 (c) & \[
\begin{aligned}
& c=15 \\
& p=7
\end{aligned}
\] \\
\hline 18(a) & 1:200000 \\
\hline 18(b) & 10 km \\
\hline 19(a) & \$76.38 \\
\hline 19(b) & Company \(B\) offers a better deal. \\
\hline 20(a) & 6800 \\
\hline 20(b) & 2600 \\
\hline 20(c) & \(\frac{1}{5}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|l|}
\hline \(22(\mathrm{c})\) & Kite \\
\hline 23 & \(12.6 \mathrm{~cm}^{2}\) \\
\hline \(24(a)(\mathrm{i})\) & \(-\mathrm{p}-2 \mathrm{q}\) \\
\hline \(24(\mathrm{a})(\mathrm{ii})\) & \(4 \mathrm{p}-8 \mathrm{q}\) \\
\hline \(24(\mathrm{~b})(\mathrm{i})\) & \begin{tabular}{l}
\(\overrightarrow{D B}\) \\
\(=4(\mathrm{p}-2 q)\) \\
\(=4 \overrightarrow{E A}\)
\end{tabular} \\
\hline \(24(\mathrm{~b})(\mathrm{ii})\) & \(\frac{1}{4}\) \\
\hline
\end{tabular}

PHSS 4E EM MYE Paper 22017 Answer Key
\begin{tabular}{|c|c|}
\hline No. & Answer \\
\hline 1(a)(i) & \(-3 x^{2}-2 x+5=(3 x+5)(1-x)\) \\
\hline 1(a)(ii) & \[
\frac{2}{x-7}
\] \\
\hline 1(b)(i) & \(d=1.5\) or \(d=1 \frac{1}{2}\) \\
\hline 1(b)(ii) & \[
e=\frac{f}{5-d^{2} f}
\] \\
\hline 1(c) & \(x=1\) \\
\hline 1 (d) & \(x=-3, y=-4\) \\
\hline 2(a) & \(B=\left(\begin{array}{ll}50 & 50 \\ 40 & 60\end{array}\right)\) \\
\hline 2(b) & \(\mathbf{C}=\binom{0.10}{0.12}\) \\
\hline 2(c) & \(\mathrm{D}=\binom{11}{11.2}\) \\
\hline 2(d) & The elements of \(D\) represent the cost to produce all the gummy bears and gumny snakes in a large packet respectively. \\
\hline 2(e) & \[
\begin{aligned}
\text { Total cost } & =\$ 1.0 .80+\$ 10.60 \\
& =\$ 21.40
\end{aligned}
\] \\
\hline 3(a)(i) & \(120^{\circ}\) \\
\hline 3(a)(ii) & \(\frac{1}{2}\) \\
\hline 3(b)(i) & \(\frac{m^{3} n}{p}\) \\
\hline 3(b)(ii) & \(q=3\) \\
\hline 4(a) & \[
\begin{aligned}
& T_{6}=35 \\
& T_{7}=48
\end{aligned}
\] \\
\hline 4(b) & \(T_{n}=n^{2}-1\) or \((n+1)(n-1)\) \\
\hline 4(c) & \[
\begin{aligned}
T_{n+1}-T_{n} & =n^{2}+2 n-\left(n^{2}-1\right) \\
& =2 n+1
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline No. & Answer \\
\hline 4(d) & \begin{tabular}{l}
\[
\begin{aligned}
& 2 n+1=8 \\
& n=3.5
\end{aligned}
\] \\
Assuming that the difference between two terns is 8 , the first consecutive term is 3.5 , which does not exist. Therefore, two consecutive terms cannot have a difference of 8 . \\
OR \\
The difference \((2 n+1)\) is an odd number. Therefore, two consecutive terms cannot have a difference of 8 , which is an even number.
\end{tabular} \\
\hline 5(a) & \(p=1.625\) \\
\hline 5(b) & If all 8 points plotted correctly, otherwise, at least 6 points plotted correctly. Smooth curve \\
\hline 5(c) & Maximum point \(=(0,2.5)\) \\
\hline 5(d) & From the graph, \(x=-1.10 \pm 0.10\) and \(x=1.55 \pm 0.10\) \\
\hline 5(e) & Gradient \(=8.67 \pm 3\) \\
\hline 5(f)(i) & Correctly drawn line \\
\hline 5(f)(ii) & (-0.85, -1.4) \\
\hline 6(a) & \begin{tabular}{l}
\[
\angle C Q R=90^{\circ}
\] \\
tangent perpendicular to radius
\end{tabular} \\
\hline 6(b) & \[
\begin{aligned}
& \angle O P R=90^{\circ} \text { (tangent perpendicular to radius) } \\
& \angle O P R=\angle C Q R \\
& \angle P R O=\angle Q R C \text { (common angle) } \\
& \angle P O R=\angle Q C R \text { (corresponding angles, } O P / / C Q \text { ) } \\
& \text { Hence, triangle } O P R \text { is similar to triangle } C Q R \text {. } \\
& \text { (AA Similarity) }
\end{aligned}
\] \\
\hline 6(c) & \[
\frac{9}{16}
\] \\
\hline 6(d) & \(144 \pi \mathrm{~cm}^{2}\) \\
\hline 7 (a) & 400 \\
\hline 7 (b)(i) & \(\$\left(\frac{60}{x}\right)\) \\
\hline 7(b)(ii) & \$ \(\left(\frac{60}{x}+1\right)\) \\
\hline 7(b)(iii) & \(\frac{600}{x}+5 x-40\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 7(b)(iv) & \[
\begin{aligned}
& \frac{600}{x}+10+5 x-50=130 \\
& \frac{600}{x}+5 x-170=0 \\
& 600+5 x^{2}-170 x=0 \\
& 5 x^{2}-170 x+600=0 \\
& x^{2}-34 x+120=0 \text { (shown) }
\end{aligned}
\] \\
\hline 7(b)(v) & \(x=30\) or \(x=4\) \\
\hline 7(b)(vi) & \$2 \\
\hline 8(a) & 68.3 cm \\
\hline 8(b) & \(204000 \mathrm{~cm}^{3}\) \\
\hline 8(c) & \(T X=42.4 \mathrm{~cm}\) \\
\hline 8(d) & \(X S=131 \mathrm{~cm}\) \\
\hline 8(e) & \(\theta=17.9^{\circ}\) \\
\hline 9(a)(i) & \$80.15 \\
\hline 9(a)(ii) & \$15.60 \\
\hline 9(a)(iii) & \begin{tabular}{l}
1. The mean amount of money spent by students in Group \(A\) is higher than that of Group \(B\). On average, students in Group \(A\) spent more money thari students in Group B. \\
2. The standard deviation of the amount of money spent by students in Group \(B\) is lower than that of Group \(A\). There is a smaller spread in the amount of moniey spent by students in Group B./ The amount of money spent by students in Group \(B\) is more consistent.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 9(b)(i) &  \\
\hline 9(b)(ii)(a) & \(\frac{1}{33}\) \\
\hline 9(b)(ii)(b) & \(\frac{32}{99}\) \\
\hline 9(b)(ii)(c) & \[
\frac{64}{99}
\] \\
\hline 10(a) & 2900 \\
\hline 10(b) & 6 \\
\hline 10(c) & \begin{tabular}{l}
Cost of purchase from ABC Bookstore \\
Total cost with delivery cost, after member discount
\[
=\$ 816.1425
\] \\
Cost of purchase from \(X 7 Z\) Printing \\
Total cost with delivery
\[
\begin{aligned}
& =\$ 20+\$ 181.90 \\
& =\$ 201.90
\end{aligned}
\]
\[
\begin{aligned}
& \text { Grand total cost } \\
& =\$ 816.1425+\$ 201.90 \\
& =\$ 1018.04
\end{aligned}
\] \\
The amount of budget of \(\$ 1200\) is sufficient to cover all costs.
\end{tabular} \\
\hline
\end{tabular}

Answer all the questions
Fior
tixaminer s
lise
\(|\)\begin{tabular}{c} 
For \\
\begin{tabular}{c} 
Examiner's \\
Use
\end{tabular} \\
\hline
\end{tabular}

1 Write the following in order of size, smallest first.
\begin{tabular}{llll}
\(\sqrt{0.81}\) & 0.902 & 399 & 42 \\
& & 441 & \(0.86^{3}\)
\end{tabular}

Answer \(\qquad\)
smallest
largest

2 The capacity of a SD card is 256 gigabytes. How many pictures of size 2.5 megabytes each can be stored in this SD card? Give your answer in standard form. ( 1 gigabyte \(=10^{9}\) bytes, 1 megabyte \(=10^{6}\) bytes)

\section*{Answer}

3 Factorise completely \(12 a c-14 b d+28 b c-6 a d\).

4 A sum of moncy was divided equally betwcen Jim. John and Jane. If Jim gives Jane \(\$ 20\), the ratio would then become \(2: 3: 4\)
What was the total sum of money?

5 Simplify \(\underset{(x-5)^{2}}{7 x}+\frac{1}{5-x}\).

Answer

6 Solve the inequalities \(-8 \leq 2-3 x<8\)

712 cooks will take 6 hours to prepare a meal for 130 people.
If 4 of the cooks Icft the team and the number of people dropped to 150 , how many hours would the remaining cooks need to prepare the meal?

Answer ............................................ hours

8 The diagrams show the result of sales of two competing brands over a few years.


State one aspect of the graph which may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer

9 (a) On the Venn diagram, shade the region which represents \(A \cap B^{\prime}\).

(b) \(\xi=\{\) integers \(x: 1 \leq x \leq 12\}\)
\(A=\) \{prime numbers \(\}\)
\(B=\{\) multiples of 3\(\}\)
On the Venn diagram, list down the elements in the appropriate subsets.


10 Simplify \(\left(\frac{x^{6}}{y^{4}}\right)^{-\frac{1}{2}} \div\left(\frac{x^{-5}}{y^{-3}}\right)\), giving your answer in positive index.

11 (a) One day, the rate of exchange between Singapore dollars ( \(S \$\) ) and US dollars (US\$) was US\$1 \(=\) S \(\$ 1.39\).

Anthony wanted to bring along US\$5000 for a trip to the US. Calculate how much Singapore dollars he would need to exchange.

\section*{Answer S\$}
\(\qquad\)
(b) There was change of plans at the last minute and Anthony exchanged the US \(\$ 5000\) back into Singapore dollars, at a different exchange rate. If he received \(\mathrm{S} \$ 6850\), what was the exchange rate?

\section*{Answer US\$}
\(\qquad\) = S\$

12 A supplier sells watches at \(\$ 210\) each. Jimmy buys the watches from the supplier at a discount of \(20 \%\). Jimmy intends to then sell the watches at a profit of \(20 \%\).

As a marketing strategy, Jimmy plans to offer a \(10 \%\) discount on the marked price without affecting his intended \(20 \%\) profit. Calculate the marked price that Jimmy should sell each watch at.


14 The diagram shows two pentagons and one hexagon joined together.

(a) Calculate the sum of the interior angles of the hexagon.

Answer \(\qquad\) \(\therefore \quad[1]\)
(b) Show, by way of calculation, that at least one of the polygons is irregular. Answer
(a) Calculate sum of intiorangles of hexagon.

15 Written as a product of its prime factors
\[
\begin{gathered}
2450=2 \times 5^{2} \times 7^{2} \\
84=2^{2} \times 3 \times 7
\end{gathered}
\]
(a) Write down the highest common factor of 2450 and 84 , giving your answer as the product of its prime factors.

\section*{Answer}
(b) The highest common factor of 2450 and \(21 a\) is 70 .

Find the smallest possible value of \(a\), where \(a\) is an integer.
\[
\text { Answer } a=
\]
(c) The lights on three lighthouses flash at regular intervals. The first light flashes every' 84 seconds, the second every 90 seconds and the third every 2450 seconds. The three lights flash together at 0800 .
At what time do they next flash together?

16 William draws at random 2 cards from a stack of 5 cards labelled 5 to 9 without replacement. The sum of the numbers on the two cards is obtained.
(a) Complete the possibility diagram in the answer space below.
\begin{tabular}{c|c|c|c|c|c}
\hline & 5 & 6 & 7 & 8 & 9 \\
\hline 5 & & 11 & & & \\
\hline 6 & 11 & & & & \\
\hline 7 & & & & & \\
\hline 8 & & & & & \\
\hline 9 & & & & & \\
\hline
\end{tabular}
(b) Calculate the probability that the sum obtained is a multiple of 6 .

\section*{Answer}
(c) A third card ischosen at random from the stack without replacement. Find the probability that the sum of the numbers on the three cards is 24 .

17


The diagram shows a container in the shape of a prism with a triangular crosssection.
The container has a height of 40 cm .
Water is poured into the empty container at a constant rate.
It takes 12 minutes to fill the container.
After \(t\) minutes the depth of the water is \(d \mathrm{~cm}\).
(a) Find the value of \(t\) when \(d=20\).
\(\qquad\) minutes
(b) On the axes in the answer space, sketch the graph showing how the depth varies during the 12 minutes.

Answer


18 The table below shows the number of cars and motorycles passing through an Electronic Road Pricing (ERP) gantry on cenain days of the week from 7.30 am to 7.55 am .
\begin{tabular}{|c|c|c|}
\hline & Cars & Motorcycles \\
\hline Wednesday & 320 & 120 \\
\hline Thursday & 380 & 100 \\
\hline Friday & 410 & 130 \\
\hline Charges per vehicle & \(\$ 2\) & \(\$ 0.50\) \\
\hline
\end{tabular}
(a) Represent the number of vehicles passing through the gantry in a \(3 \times 2\) matrix \(V\).

\section*{Answer}
[1]
(b) \(\mathbf{C}=\binom{2}{0.5}\). Evaluate \(\mathbf{P}=\mathbf{V C}\).

\section*{Answer}
\(\qquad\)
(c) State what the elements of \(P\) represent.

Answer
(d) Write down a matrix D such that \(T=D P\) gives you the wial charges collected for all vehicles on these three days.

19 (a) Express \(x^{2}-\frac{1}{4} x\) in the form \((x-b)^{2}+c\).
(b) Sketch the graph of \(y=\frac{1}{4} x-x^{2}\).

Answer

(c) Find the coordinates of the maximum point of \(y=\frac{1}{4} x-x^{2}\).
\(\qquad\)

Two bottles of Nescafe Gold Blend Instant Coffee are geometrically similar. The smaller bottle contains 50 g of coffee granules.
(a) The larger bottle is approximately \(60 \%\) taller than the smaller botule.

Find, in grams, the amount of coffee granules in the larger bottle.
(b) The smaller bottle sells for \(\$ 5.10\) while the larger bottle sells for \(\$ 13.25\). Which bottle gives the better value for money? You must show your calculations.

Answer

21


Joseph walks from point \(A\) to point \(B\), which are 400 m apart. A vertical tower of \(h\) metres is at point \(D\).
At point \(A\), the angle of elevation to the top of the tower is \(20^{\circ}\).
At point \(B\), the angle of elevation to the top of the tower is \(37^{\circ}\).
(a) Find \(A C\).
\[
\text { Answer } \quad A C=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\]
(b) Find \(h\), the height of the tower.

22 The diagram shows a semi-circle with centre \(O\) and radius \(8 \mathrm{~cm} . O P\) is perpendicular to \(P Q\) and angle \(P Q R=0.7\) radians.

(a) Find the area of the shaded region.
(b) Convert 0.7 radians into degrees.

Answer \(\qquad\) \(\mathrm{cm}^{2}\)
[4]
\(\qquad\) .

23

\(A\) is the point \((0,6)\) and the gradient of line \(A B\) is \(-\frac{1}{4}, C\) is the point
\((6,0)\).
(a) Find the equation of line \(A B\).

Answer
(b) Find the coordinates of \(B\).

Answer (............................)
[2]
(c) Find the length of \(A B\).
(d) Point \(D\) lies on the \(x\)-axis and is such that \(D C=C B\). Write down the equation of the line that passes through \(D\) and is parallel to the \(y\)-axis.

24 The diagram below shows the speed-time graph of an object.

(a) Calculate the speed of the object at 18 seconds. Give your answer in \(\mathrm{km} / \mathrm{h}\).

Answer \(\qquad\) \(\mathrm{km} / \mathrm{h}[2]\)
(b) Calculate the total distance travelled on the journey.

Answer .m
(c) Draw the distance-time graph of the object on the grid given below. You must label the values on the distance-axis clearly.


\section*{End of Paper}


\title{
Anglo-Chinese School (Barker Road)
}

\section*{PRELIMINARY EXAMINATION 2017 \\ SECONDARY FOUR EXPRESS / FIVE NORMAL ACADEMIC}

\section*{MATHEMATICS 4048 PAPER TWO}

\section*{2 HOURS 30 MINS}

\section*{Additional Materials: Answer Paper (7 sheets)}

Graph Paper (1 sheet)

\section*{READ THESE INSTRUCTIONS FIRST}

Do not open this bookiet until you are told to do so.
Write your class and candidate number on the cover sheet.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
sential working will result in loss of marks
uld be used where appropriate.
accuracy is not specified in the question, and if the answer is not exact, give the answer to figures. Give answers in degrees to one decimal place
For \(\pi\), use either the calculator value or 3.142 , unless the question requires the answer in terms of \(\pi\)
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total of the marks for this paper is 100.

1 The first three terms in a sequence of numbers, \(T_{1}, T_{2}, T_{3}, \ldots\) are given below.
\[
\begin{aligned}
& T_{1}=1 \times 2+10=12 \\
& T_{2}=2 \times 3+6=12 \\
& T_{3}=3 \times 4+2=14
\end{aligned}
\]
(a) Find \(T_{4}\).
(b) Show that \(T_{n}=n^{2}-3 n+14\).
(c) Evaluate \(T_{50}\).
(d) Explain why every term in the sequence is even.

2 (a) It is given that \(v^{2}=u^{2}-2 g h\).
(i) Evaluate \(v\) when \(u=30, g=9.8\) and \(h=24\).
(ii) Express \(u\) in terms of \(g, h\) and \(v\).
(b) Factorise \((x+1)^{2}-(y-1)^{2}\).
(c) Simplify \(\frac{x^{2}-1}{8-3 x-5 x^{2}}\).
(d) Solve the simultaneous equations.
\[
\begin{aligned}
1 \frac{1}{2} x-3 y & =12 \\
4 y & =3 x-19
\end{aligned}
\]

3 (a) The scale of a map is 1:7500.
(i) The length of a road on the map is 20.5 cm .

Find the actual length, in kilomerres, of the road.
(ii)


On the map, an area formed by a triangle \(P Q R\) with sides \(5.5 \mathrm{~cm}, 6 \mathrm{~cm}\) and 7 cm , is slated for commercial development.
Calculate, in square metres, the actual area.
(b)


In the diagram, \(A B\) is the shoreline. \(B\) is due east of \(A\). \(A\) buat is at \(C\).
\(C=75^{\circ}\), angle \(A C B=63^{\circ}\) and \(A B=35 \mathrm{~m}\).
\(\cdots \quad\)...d the bearing of \(B\) from \(C\).
(ii) The area of triangle \(A B C\) is \(444 \mathrm{~m}^{2}\). Calculate the shortest distance from the boat to the shore.
(iii) A turte is crawting along the shoreline. An eagle is at a vertical height of 40 m above C . It notices the turtle.
Calculate the greatest angle of depression of the turte as seen from the eagle.

4 In the diagram, \(O\) is the centre of the circle.
\(T A\) and \(T E\) are tangents to the circle. \(O A\) and \(O E\) are radii of the circle. \(C O T\) is a straight line.
\(O A\) intersects \(B F\) at \(G . C T\) is parallel to \(B A\).
Angle \(O T E=32^{\circ}\).

(a) Find
(i) angle \(A O F\),
(ii) angle \(C D E\),
(iii) angle \(O F G\),
(iv) angle \(A G B\).
(b) Explain why points OETA can also be points on the circumference of another circle.



Conical cups of dimeter 6 cm and height 5.3 cm are provided of drink the water from une somemer

(a) Water is lilled to the brim of the dispenser. Find the ameunt of water in the dispenser.
(b) Find the capacity of one conical cup.

Give your answer to the nearest \(\mathrm{cm}^{3}\).
(c) Find the external curved surface area of the cup.
(d) Find the height of the water remaining in the dispenser after 250 cups of water has been dispensed.

6 A container can hold 2400 litres of water.
(a) A. large tap alone can fill the container in \(x\) hours.

Write down an expression, in terms of \(x\), for the amount of water that the large tap can dispense per minute.
(b) A small tap alone will take 1 hour longer than the large tap to fill the container. Write down an expression, in terms of \(x\), for the amount of water that the small tap can dispense per minute.
(c) When both taps are turned on at the same time, they can fill the container in 3 hours.

Form an equation in \(x\) and shows that it reduces to \(x^{2}-5 x-3=0\).
(d) Solve the equation \(x^{2}-5 x-3=0\), giving your solutions correct to 2 decimal places.
(e) Find the rate of water flow, in litres per minute, of the small tap.

7 Answer the whole of this question on a single sheet of graph paper.
A stone is thrown from the top of a cliff next to the sea. The height, \(h\) metres, of the stone above sea level \(t\) seconds after it is released can be modelled by the equation
\[
h=40+8 t-\frac{5}{2} t^{2}
\]

Some corresponding values of \(t\) and \(h\), correct to I decimal place, are given in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(-\frac{1}{h}\) & \(\frac{0}{40}\) & \(\frac{1}{45} 5\) & \(\frac{2}{46}\) & \(\frac{3}{41.5}\) & \(\frac{4}{32}\) & 17.5 & \(\frac{5}{p}\) \\
\hline
\end{tabular}
(a) Calculate the value of \(p\).
(b) Using a scale of 2 cm to represent 1 second, draw a horizontal \(t\)-axis for \(0 \leq t \leq 6\). Using a scale of 1 cm to represent 5 metres, draw a vertical \(h\)-axis for \(-10 \leq h \leq 50\). On your axes, plot the points given in the table and join them with a smooth curve.
raph to estimate
(i) the maximum height of the stone above sea level,
(ii) the length of time that the stone was greater than or equal to 5 m above the top of the cliff,
(iii) the time taken for the stone to hit the water.
(d) By drawing a tangent, find the gradient of the curve at \(t=4\).

8 (a) The marks attained by 40 students in a Mathematics test were recorded. The cumulative frequency curve shows the distribution of the marks.

(i) Use the curve to estimate the
(a) the median mark,
(b) the interquartile range.
(ii) \(12.5 \%\) of students achieved more than \(x\) marks in this test. Estimate the value of \(x\).
(iii) The same group of students sat for a Chemistry test. The maximum mark for the test was also 25 . The box-and-whisker plot of the distribution of the marks is shown below.


The top \(25 \%\) of the students for the Chemistry test scored lower than the top \(25 \%\) in the Mathematics test. Write down the possible range of marks that \(a\) can take.
(iv) Describe how the cumulative frequency curve for the marks attained in the Chemistry test may differ from the curve for the Mathematics test.
(b) The weight of 8 students, in kilograms, are listed below:
\[
25,27,32,28,28,31,26,45
\]
(i) Find the mean weight.
(ii) Explain why the mean may not be an appropriate average to use to summarise the weights of the students.
(iii) Find the standard deviation of the weights.
(iv) Subsequently, it was discovered that the weight of every student was 2 kg less than the actual, due to a faulty weighing scale. Write down the correct mean and standard deviation of the weights.


In the diagram, \(O A\) is parallel to \(D B, A C\) is parallel to \(R D\) and \(O A B C\) is a parallelogram.
\(\overrightarrow{O A}=4\) and \(\overrightarrow{A B}=5 \mathrm{c}\) respectively. It is given that \(O R: R C=2: 3\) and \(\overrightarrow{A Q}=\frac{1}{3} \overrightarrow{Q C}\).
(a) Find, in terms of a and \(\mathbf{c}\), the vectors
(i) \(\overrightarrow{O R}\),
(ii) \(\overrightarrow{A R}\);
(iii) \(\overline{O Q}\).
[2]
(b) \(P\) is a point on \(O Q\) such that \(O P: P Q=8: 3\).
(i) Express \(\overrightarrow{A P}\) in terms of \(a\) and \(c\).
(ii) Hence write down two facts about \(A, P\) and \(R\).
(c) Name a pair of congruent triangles.
(d) Prove that \(\triangle R C D\) is similar to \(\triangle C O A\).
(e) Find
(i) \(\frac{\text { Area of } \triangle R C D}{\text { Area of } \triangle C O A}\),
(ii) \(\frac{\text { Area of } \triangle O Q A}{\text { Area of } \triangle O C A}\).

10 James has gotten a job that pays him a salary of \(\$ 60000\) annually. He plans to purchase a car but calculates that he can only afford to set aside \(30 \%\) of his monthly salary for the expenses incurred in owning the car.
(a) Calculate the sum of money that James can afford to set aside monthly for the expenses incurred in owning the car.

He has set his eyes on two cars. He decides to take a loan from a bank for the purchase. He will repay the loan on a monthly basis. The details are given below:
\begin{tabular}{|l|c|c|}
\hline & Brand A (used car) & Brand B (new car) \\
\hline Engine capacity & 1600 cc & 1400 cc \\
\hline Cost & \(\$ 80000\) & \(\$ 90000\) \\
\hline Intended loan amount & \(50 \%\) of cost price & \(60 \%\) of cost price \\
\hline Intended loan period & 5 years & 5 years \\
\hline Type of interest & \begin{tabular}{c} 
compound interest at \(2.5 \%\) per \\
year, compounded yearly
\end{tabular} & simple interest at 3\% per year \\
\hline
\end{tabular}

The other major expenses in maintaining a car are as follows:
\begin{tabular}{|l|c|c|}
\hline & Brand A (used car) & Brand B (new car) \\
\hline Monthly parking fees & \(\$ 90\) & \(\$ 90\) \\
\hline Monthly petrol expenditure & \(\$ 300\) & \(\$ 250\) \\
\hline Annual road tax & \(\$ 744\) & \(\$ 626\) \\
\hline Annual insurance & \(\$ 800\) & \(\$ 700\) \\
\hline Car servicing (twice a year) & \(\$ 600\) each round & \(\$ 500\) each round \\
\hline
\end{tabular}
(b) Recommend the brand of car that James can purchase, based on the sum of money he can afford to set aside monthly. Justify the decision you make and show your calculations clearly.

\section*{End of Paper}

\section*{Mathematics Paper I Marking Scheme}
Secondry 4 Express \(/ 5\) Normal Acadamic Preliminary Exams 2017
Anth-avers sthooi
(Byrkar Romat





Mathematics Paper 2 Marking Scheme
Secondary 4 Express / 5 Normal Academic
Preliminary Exam 2017




Mathemasics Paper 2 Marking Scheme
Secondary 4 Express / 5 Normal Academic
Prelminary Exam 2017



Wathemalics Paper 2 karking Scheme
Secondary 4 Express / 5 Nonmal Acedemic Prehiminary Exam 2017
(ELaxicer Roxais



Mathematics Paper 2 Marking Scheme
Secondary 4 Express / 5 Normal Academic
Preliminary Exam 2017
(Eanisr Rosd)
(a) \(\overrightarrow{O R}=\frac{2}{5} \overline{O C}\)
\(=2 \mathrm{c}\)
(aii) \(\overrightarrow{A R}=\overrightarrow{O R}-\overrightarrow{O A}\)
\(\begin{aligned} & =2 \mathrm{c}-4 \mathrm{a} \\ \overrightarrow{O Q} & =\overrightarrow{O A}+\overrightarrow{A Q} \\ & =4 \mathrm{a}+\frac{1}{4} \overrightarrow{A C}\end{aligned}\)
(aini)
\(=4 a+\frac{1}{4}(5 c-4 a)\)
\(=3 \varepsilon+\frac{5}{4} c\)
\(\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O P}\)
\(=A O+\frac{8}{11} \overline{O Q}\)
(bi) \(\begin{aligned} & =-4 a+\frac{8}{11}(3 a+ \\ & =-\frac{20}{11} a+\frac{10}{11} 6\end{aligned}\)

(e)
\begin{tabular}{rl} 
& \(=\frac{3}{5}\) \\
& \(=\frac{9}{25}\)
\end{tabular}
(eii)
\(\frac{\text { Aread } 20 \mathrm{~A}}{\text { Area of } \triangle O C A}-\frac{9 A}{4}\)


Name :
\begin{tabular}{|l|l|}
\hline Register No. & Class \\
\hline & \\
\hline
\end{tabular}
 Bendemer Penemer . 3 BENDEMEER SECONDAR XSCHOOL Bendemer Bendemeer Bendenmeer Bendemer Beindemeer Bendencer Bendemeer
 2017 PRELMINARY WO EXAMINATION Sctuol Bemdencor Sccoudan Scluva! demeer Secondary Schoon Bendemeer Secondary School Bendemeer Secondary Schooltiendemeer secondary School Bendemeer Secondany Scivool SECONDARY 4 EXPRESS 5 NORMA Nen Bendemeer

 Bendemear Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendermeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeet Secondary School Bendemeer Secondary School Bendemeer Secondary School
```

DATE : 22 August 2017
DURATION : 2 hours
TOTAL : $\mathbf{8 0}$ Marks

```

\section*{READ THESE INSTRUCTIONS FIRST}

Write your name, class and register number on the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a 2B pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid/tape.
Answer all questions.
Write your answers in the spaces provided on the question paper.
All the diagrams in this paper are not drawn to scale.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For \(\pi\), use either your calculator value or 3.142 , unless the question requires the answer in terms of \(\pi\).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.


This document consists of 19 printed pages including this cover page.

\section*{MATHEMATICAL FORMULAE}

Compound Interest
\[
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
\]

\section*{Mensuration}
\[
\begin{gathered}
\text { Curved surface area of cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
\]
\[
\text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C
\]

Arc length \(-r \theta\), where \(\theta\) is in radians
\[
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
\]

Trigonometry
\[
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
\]

Statistics
\[
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f_{x}^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
\]

I (a) By rounding each number to its nearest ten, calculate \(\frac{216.1+1083.7}{14.99}\).
(b) Write your answer to part (a) correct to 1 significant figure.

> Answer (a)

\section*{(b)}

2 If the length of a rectangle is 340 mm and width is 200 mm , both are corrected to the nearest 10 mm , calculate the
(a) maximum possible area of this rectangle in \(\mathrm{cm}^{2}\),
(b) lowest possible value of the ratio \(\frac{\text { width }}{\text { length }}\).

> Answer (a)

3 James was 82 kg and \(15 \%\) above his ideal weight. He exercised and lost \(6 \%\) of his initial weight. How many percent of his current weight must James lose in order to reach his ideal weight?

\section*{Answer}

4 (a) Solve \(4 a(a-3)=2-(20-6 a)\).
(b) Factorise \(x^{2} y^{2}+36-4 x^{2}-9 y^{2}\) completely.

5 A flight leaving Singapore to London takes about 13 hours and 15 minutes. If the departure time on a Tuesday from Singapore is 1310 hours and Singapore is 7 hours ahead of London, what day and time, in 24 hour format, does the flight reach London?

6 In \(\triangle D E F, D F=10 \mathrm{~cm}, E F=12 \mathrm{~cm}\) and \(\angle E D F=39^{\circ}\).
(a) Find \(\angle D E F\).
(b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.
\(\therefore\),
(b) \(\qquad\)

Bendemeer Secondary School
Preliminary Two Exam 2017/ Sec 4E5N / Elementary Mathematics Paper 1

7 Given that \(\frac{a^{2}}{c^{2}}-\frac{b^{2}}{d^{2}}=1\), make \(b\) the subject.

\section*{Answer}

8 (a) Evaluate \(\left(2^{-1}-5^{-2}\right)\) without using a calculator. Show your working clearly.
(b) Simplify \(\frac{\sqrt[3]{b^{2}} \times b^{6}}{b^{\frac{2}{3}} \times b}\), giving your answer in the form of \(b^{n}\).

> Answer (a)
(b)

9 Siew Teng is x years old and her brother Victor is 2 years older. Their mother is 6 times older than Victor.
(a) Write down the ratio of Siew Teng's age: Victor's age: Mother's age in terms of x .
(b) Ten years from now, their total ages will be 76. How old was Siew Teng's mother five years ago?
(b)

10 In the diagram, given that \(\angle B A C=\angle B D A\) and C lies on a straight line BD . It is given that \(\mathrm{AB}=6 \mathrm{~cm}\) and \(\mathrm{BC}=4 \mathrm{~cm}\).

(a) Show that \(\triangle A B C\) and \(\triangle D B A\) are similar.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) Find BD.
(c) Given the area of \(\triangle A B D\) is \(42 \mathrm{~cm}^{2}\), find the shortest distance from \(D\) to \(A B\).

Answer (b) .\(c m\) [1]
(c) \(\qquad\) . \(\mathrm{cm}^{2}\) [2]

11 The below diagram is part of a regular decagon.


Find
(a) \(\angle R S T\)
(b) \(\angle R T Q\)
(c) \(\angle P Q T\)
(b)
(c)

12 Two fair six-sided dice are thrown.
Find the probability that
(a) both dice show different numbers,
(b) the sum of the two numbers shown is 12,
(c) the sum of the two numbers shown is a prime number.
(b)
(c)

13 The figure below shows the positions of the points \(\mathrm{S}, \mathrm{T}\) and U .

(a) Express \(\overrightarrow{S T}\) as a column vector.
(b) V is a point such that STUV is a parallelogram. Draw the parallelogram on the diagram above.
(c) Find the magnitude of \(|\overrightarrow{S T}|\) and \(|\overrightarrow{T U}|\).
(d) Hence, from your answer in part (c), is \(|\overrightarrow{S T}|=|\overrightarrow{T U}|\) ? What is the specific name of the parallelogram?
\(\qquad\)
(c)
(d) \(\qquad\)

14 (a) Hasan invested part of \(\$ 8000\) at \(2.4 \%\) per annum simple interest and the remaining at \(1.8 \%\) per annum simple interest. He received a total interest of \(\$ 348\) after two years. How much did he invest at \(2.4 \%\) per annum simple interest?
(b) Amin bought a car at \(\$ 70000\) and the car depreciated by \(25 \%\) at end of first year, \(20 \%\) at end of second year and \(15 \%\) at end of third year. What was Amin's car value after 3 years?

15 The diagram shows 2 small semicircles inside a big semicircle. Given that \(A B\) is the diameter of the big semicircle with center \(O\) and area of each small semicircle is \(\frac{9}{2} \pi \mathrm{~cm}^{2}\). Find
(a) the radius of the small semicircle,
(b) the perimeter of the shaded area in terms of \(\pi\),
(c) the area of the shaded region in terms of \(\pi\).

\(\qquad\)
\(\qquad\)
(c) . \(\mathrm{cm}^{2}\) [1]

16 The graph shows the students intake of ABC Secondary school over 4 years.

(a) Express the ratio of the height of the bar representing the students intake in 2012 to that in 2016.
(b) Express the ratio of the student intake in 2012 to the student intake in 2016.
(c) Should both answers you obtain in (a) and (b) be the same?
(d) Explain the similarity or difference in your answers of (a) and (b).
(b)
(c) \(\qquad\)
(d) \(\qquad\)
\(\qquad\)

\section*{Bendemeer Secondary School}

Preliminary Two Exam 2017/ Sec 4E5N / Elementary Mathematics Paper 1

17 Given the equation of line \(\mathrm{L}_{1}\) is \(\frac{1}{2} x-3 y=9\), find
(a) the coordinates when it cuts the \(x\)-axis,
(b) the gradient of the line,
(c) the value of \(k\) if the point \((-6, k)\) lies on the line,
(d) the equation of line \(\mathrm{L}_{2}\) that cuts y -axis at 5 and is parallel to \(\mathrm{L}_{1}\).

Answer (a)
(b)
(c)

18 In the diagram, O is the center of the circle and RT and PT are tangents to the circle at R and \(P\) respectively. Find the angles,
(a) \(\quad x\) and
(b) \(y\).

State your reasons clearly.


Answer (a) \(x=\)
(b) \(y=\)

19 (a) Use set notation to describe the shaded area in the following Venn diagram.

(b) \(\mathcal{E}=\{\) numbers from 1 to 10\(\}\)
\(A=\{\) even numbers \(\}\)
\(B=\{\) prime numbers \(\}\)
\(\mathrm{C}=\{\) multiples of 2 greater than 6\(\}\)
(i) List the elements in \(A \cap B^{\prime}\).
(ii) State the relationship between set A and C .

20 The scale drawing in the answer space below shows the position of towns \(A\) and \(B\). Town \(B\) is 36 km due South of A. The map scale is given as 1:600 000 .

Construct the map of ABCD using the information given below:
(a) Town C which is 54 km from B with a bearing of \(085^{\circ}\) from B .
(b) Town D is located 18 km from C and on the perpendicular bisector of A and B .
(c) Measure the bearing of Town D from Town A.

\author{
A \\ B
}

Answer (a) \(\qquad\) See above

See above

21 (a) Express the function \(y=-x^{2}+8 x-5\) in the form \(y=-(x-h)^{2}+k\).
(b) Sketch the graph of the function \(y=-x^{2}+8 x-5\). Label the \(y\)-intercept and turning point.
(c) Hence, or otherwise, solve the equation \(-x^{2}+8 x-5=-10\)

Answer (a)
(b) \(\qquad\) See above
(c) \(x=\)

Name:
\begin{tabular}{|l|l|} 
Register No. & Class \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
DATE & \(: 23\) August 2017 \\
DURATION & \(\vdots 2\) hours 30 minutes \\
TOTAL & \(: 100\) marks
\end{tabular}

\section*{Additional Materials: Cover page \\ Answer Paper \\ Graph Paper (1 sheet)}

\section*{READ THESE INSTRUCTIONS FIRST}

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a 2B pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid/tape.
Answer all questions.
All the diagrams in this paper are not drawn to scale.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For \(\pi\), use either your calculator value or 3.142 , unless the question requires the answer in terms of \(\pi\).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.


This document consists of 11 printed pages including this cover page.

\section*{MATHEMATICAL FORMULAE}

Compound Interest
\[
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
\]

Mensuration
\[
\begin{aligned}
& \text { Curved surface area of cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C
\end{aligned}
\]

Arc length \(=r \theta\), where \(\theta\) is in radians
Sector area \(=\frac{1}{2} r^{2} \theta\), where \(\theta\) is in radians

Trigonometry
\[
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
\]

Statistics
\[
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
\]

1 (a) Solve the inequality \(\frac{p-2}{4} \leq \frac{1}{2}-\frac{15-2 p}{5}\).
(b) (i) Factorise \(2 q-18 q^{3}\) completely.
(ii) Hence simplify \(\frac{2 q-18 q^{3}}{\left(4 q^{2}-2 q\right)(3 q+1)}\).
(c) (i) In January, Joseph's best time to swim 200 metres was 2 minutes 30 seconds.

Calculate his speed in kilometres per hour.
(ii) In December, Joseph's best time is 10\% less than his best time in January.

Calculate, in minutes and seconds, his best time in December.

2 The first four terms in a sequence of numbers are given below.
\[
\begin{array}{ll}
T_{1}=3+2^{0} & =4 \\
T_{2}=5+2^{1} & =7 \\
T_{3}=7+2^{2} & =11 \\
T_{4}=9+2^{3} & =17
\end{array}
\]
(a) Find \(T_{5}\)
(b) Find the \(n\)th term of the sequence, \(T_{\mathrm{n}}\).
(c) Hence or otherwise, find \(T_{20}\).
(d) Explain why the value of \(T_{\mathrm{n}}\) is always odd for all values of \(n\).
(e) \(T_{\mathrm{m}}\) and \(T_{\mathrm{m}+1}\) are consecutive terms in the sequence.

Show that \(T_{\mathrm{m}+1}-T_{\mathrm{m}}=2+2^{\mathrm{m}-1}\).

3 A factory produces bottles in both the small and the large size.
(a) It is found that \(x\) large bottles can be produced in a minute.

Write down an expression in terms of \(x\), the time taken to produce 1 large bottle,
in seconds.
(b) 4 more small bottles can be produced in a minute, compared to the large bottles. Write down an expression in terms of \(x\), the time taken to produce 1 small bottle, in seconds.
(c) Given that it takes 2.5 seconds longer to produce a large bottle than a small bottle, form an equation in \(x\) and show that it reduces to \(x^{2}+4 x-96=0\).
(d) Solve the equation \(x^{2}+4 x-96=0\).
(e) Hence find the time taken to produce 4000 small bottles, in hours and minutes.
(f) It is known that the factory sells each small bottle at \(\$ 0.30\) and each large bottle at \(\$ 0.50\). Is it more profitable for the factory to produce small or large bottles? Explain your answer.

4 The figure below shows the outline of a spinner toy, which is made up of an equilateral triangle and 3 identical circles with centre \(O_{1}, O_{2}\) and \(O_{3}\) respectively. It is given that the radii of the circles are 6 cm and \(O_{1} M=17 \mathrm{~cm}\), where \(M\) is the midpoint of \(S R\).


Find
(a) \(P Q\),
(b) the perimeter of the shaded region \(P Q R S T U\) and
(c) the area of the shaded region \(P Q R S T U\).

5 (a) The stem and leaf diagram below shows the marks attained by 15 students in a Mathematics test.
\begin{tabular}{l|llllll}
1 & 3 & 7 & & & & \\
2 & 3 & 6 & 6 & & & \\
3 & 0 & 4 & 4 & 5 & 7 & 9 \\
4 & 1 & 2 & 5 & & & \\
5 & 0 & & & & &
\end{tabular}

Key:: \(1 \mid 0\) means 10 marks
(i) Using the data given, find the
(a) median mark,
(b) interquartile range and
(c) standard deviation of the marks.
(ii) It was later found that there was a mistake in the marking for the test. As such, every student should get an additional 2 marks.
Describe how the change in marks will affect the median mark and interquartile range.
(b) It is given that a box contains 15 apples and 9 oranges.

Two fruits are then selected from the box at random. If an apple is selected, it is replaced. If an orange is selected, it is not replaced.
(i) Draw a tree diagram to show the probabilities of the possible outcomes.
(ii) Find, as a fraction in its simplest form, the probability that
(a) both fruits selected are the same,
(b) at least one of the fruit is an apple.

6 In the following diagram, \(A B C D\) is a parallelogram where \(M\) is the midpoint of \(C D\) and \(O D=\frac{1}{3} B D\).


Given that \(\overrightarrow{O A}=\mathbf{a}\) and \(\overrightarrow{O B}=\mathbf{b}\),
(a) express as simply as possible, in terms of a and/or \(\mathbf{b}\),
(i) \(\overrightarrow{B D}\),
(ii) \(\overrightarrow{A B}\),
(iii) \(\overrightarrow{B C}\),
(iv) \(\overrightarrow{O M}\).
(b) Given that \(\overrightarrow{C X}=\mathbf{a}+\frac{3}{4} \mathbf{b}\), prove that \(B, D\) and \(X\) are collinear points.
(c) Find the exact value of
(i) \(\frac{\text { area of } \triangle O D M}{\text { area of } \triangle O A B}\),
(ii) \(\frac{\text { area of } \triangle O D M}{\text { area of } A B C D}\).

7 Petrol stations A and B sell two grades of petrol, R92 and P98.
The matrix \(\mathbf{L}\) shows the average amount of petrol sold at the two stations on a day in Week 1.
\[
\mathbf{L}=\left(\begin{array}{cc}
\text { R92 } & \text { P98 } \\
250 & 180 \\
280 & 180
\end{array}\right) . \begin{aligned}
& \text { Station A } \\
& \text { Station B }
\end{aligned}
\]
(a) Evaluate the matrix \(Q=7 L\).
(b) It is given that the petrol price (per litre) of grade R92 and P98 are \(\$ 2.00\) and \(\$ 2.40\) respectively.

Represent the petrol prices as a column matrix \(\mathbf{P}\).
(c) Evaluate the matrix \(\mathbf{S}=\mathbf{Q P}\).
(d) State what the elements of \(S\) represent.
(e) In Week 2, the average amount of all petrol sold at both petrol stations dropped by \(5 \%\). At the same time, the prices of all grades of petrol increased by \(5 \%\).

Calculate the earnings made by Station A and Station B respectively in Week 2.
(f) Write down a matrix \(\mathbf{X}\) such that the total earnings of both petrol stations in Week 2 can be calculated using matrix multiplication.

Hence find the total earnings of both petrol stations in Week 2.

Figure 1 shows the three-dimensional layout of Roy's living room. The room is shaped like a cuboid with dimensions 4 m by 3.6 m by 3 m , where path \(M N\) lies across the centre of the room.
- A television is fixed on the wall \(Q R V U\) such that \(Y\), the centre of the television, is 1.6 m above \(N\).
- Two speakers are fixed at corners \(P\) and \(T\) respectively.

Figure 1


Roy is deciding on the best position to place his armchair along \(M N\). The best position will allow him to have an optimal view of the television when seated in the armchair.

Figure 2 shows Roy's eye level at \(X\), which is 1.24 m when seated at distance \(d\) from the television. It is given that \(1.8 \mathrm{~m} \leq \boldsymbol{d} \leq 3.8 \mathrm{~m}\) for Roy to have an optimal view of the television.

Figure 2


For this question, the dimensions of the television and speakers are negligible.
(a) If Roy chose to place the armchair at the furthest possible optimal distance, find
(i) \(T X\),
(ii) \(\angle P X T\),
(iii) the angle of elevation of \(Y\) from \(X\).
(b) When the angle of elevation of \(Y\) from \(X\) is \(12^{\circ}\), will Roy still have an optimal view of the television? Justify your answer.

\section*{9 Answer the whole of this question on a sheet of graph paper.}

The variables \(x\) and \(y\) are connected by the equation
\[
y=5+\frac{2}{x}-\frac{1}{4} x^{2}
\]

Some corresponding values of \(x\) and \(y\) are given in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -6 & -5 & -4 & -3 & -2 & -1.5 & -1 & -0.5 & -0.3 \\
\hline\(y\) & -4.33 & -1.65 & \(p\) & 2.08 & 3 & 3.10 & 2.75 & 0.94 & -1.69 \\
\hline
\end{tabular}
(a) Find the value of \(p\).
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal \(x\)-axis for \(-6 \leq x \leq 0\).

Using a scale of 2 cm to represent 1 unit, draw a vertical \(y\)-axis for \(-5 \leq y \leq 4\).
On your axes, plot the points given above and join them with a smooth curve.
(c) By drawing a tangent, find the gradient of the curve at ( \(-1,2.75\) ).
(d) (i) On the same axes, draw the line \(L\) with gradient 0.5 and passes through the point ( \(-4,-3\) ).
(ii) Write down the equation of the line \(L\).
(iii) The \(x\)-coordinate of the point(s) where the line \(L\) intersects the curve are the solution(s) to the equation \(x^{3}+A x^{2}-B x-8=0\).

Find the values of \(A\) and \(B\).
(e) Using the graph, show that \(\frac{2}{x}-\frac{1}{4} x^{2}+1=0\) has no solution for \(x<0\).

10 Mrs Lim is currently staying at a bungalow with her family. After learning about solar energy from the brochure below, she is thinking of installing solar panels at the bungalow to help reduce the family's electricity bills.


\section*{Brochure on Solar Energy}

Information that Mrs Lim needs to consider in order to make a decision on the installation can be found under Annex \(A\) on the next page.
(a) For the first half of 2017,
(i) calculate the average amount of electricity (in kWh ) used by Mrs Lim's family in a month, and
(ii) calculate the average amount (in dollars) paid for electricity usage in a month.
(b) Considering all the information given, should Mrs Lim go ahead with the installation of solar panels for the bungalow?

Justify your answer.

\section*{ANNEX A}

Table 1: Records of electricity usage by Mrs Lim's family
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Electricity Usage for \(2017(\mathrm{in} \mathrm{Wh})\)} & March & April & May & June \\
\hline January & February & M \\
\hline \(\mathbf{1 1 0 7 . 8}\) & \(\mathbf{1 0 6 6 . 3}\) & \(\mathbf{1 1 2 3 . 6}\) & \(\mathbf{1 2 5 9}\) & \(\mathbf{1 2 4 9 . 5}\) & \(\mathbf{1 2 8 1 . 6}\) \\
\hline
\end{tabular}

Table 2: Charges for electricity usage
\begin{tabular}{|l|l|}
\hline Electricity tariff: \(\quad 21.39\) cents per \(\mathbf{k W h}\) \\
(Charges subjected to \(7 \%\) Goods \& Services Tax) \\
\hline
\end{tabular}

Table 3: Details on installing solar panels for Mrs Lim's bungalow
\begin{tabular}{|c|c|}
\hline Dinelisons of root reveat the solar panel installation: & 9 mby 4 m \\
\hline Dimensions of 1 solar panel & 1.65 m by 1 m \\
\hline \begin{tabular}{l}
Costof onstalling every 10 \\

\end{tabular} & \$6,250 \\
\hline
\end{tabular}


Table 4: More about the solar panels

Average amount of electricity produced by 1 solar panel: \(\quad 19 \mathrm{kWh}\) per month

Lifespan of solar panels: \(\quad 20\) years
\(\sim E N D\) OF PAPER~

\section*{Answers:}

1a) \(\quad p \geq 13 \frac{1}{3}\)
1b)(i) \(\quad 2 q(1-3 q)(1+3 q) \quad\) bb)(ii) \(\quad \frac{1-3 q}{2 q-1}\)
1c)(i) \(4.8 \mathrm{~km} / \mathrm{h} \quad\) lc)(ii) \(2 \min 15 \mathrm{sec}\)
2a) 27
2b) \(2 n+1+2^{n-1}\)
2c) 524329
3a) \(\frac{60}{x} \mathrm{~s}\)
3b) \(\frac{60}{x+4} \mathrm{~s}\)
3d) \(x=-12,8\)
3e) \(5 \mathrm{~h} 33 \frac{1}{3} \min \quad\) or 5 h 34 min
3f) It is more profitable for the factory to produce large bottles.
4a) \(\mathrm{PQ}=7.63 \mathrm{~cm}\)
4b) \(\quad\) Perimeter \(=41.7 \mathrm{~cm}\)
4c) Area \(=110 \mathrm{~cm}^{2}\)
5a)(i)(a) Median = 34 marks 5 a )(i)(b) \(\quad \mathrm{IQR}=15\) marks \(\quad\) 5a)(i)(c) \(\mathrm{SD}=9.99\) marks 5a)(ii) The median will increase by 2 and the interquartile range will remain the same.
5b)(i)
Fruit 1 Fruit 2


5b)(ii)(a) \(\quad \mathrm{P}\) (both are the same) \(=\frac{767}{1472} \quad\) 5b)(ii)(b) \(\quad \mathrm{P}(\) at least 1 apple \()=\frac{20}{23}\)
6a)(i) \(\quad \overrightarrow{B D}=-\frac{3}{2} \mathbf{b} \quad\) 6a)(ii) \(\quad \overrightarrow{A B}=-\mathbf{a}+\mathbf{b}\)
6a)(iii) \(\quad \overrightarrow{B C}=-\mathbf{a}-\frac{1}{2} \mathbf{b} \quad\) 6a)(iv) \(\quad \overrightarrow{O M}=-\frac{1}{2} \mathbf{a}\)
Bendemeer Secondary School

6c)(i) \(\quad \frac{\text { area of } \triangle O D M}{\text { area of } \triangle O A B}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \quad\) 6c)(ii) \(\quad \frac{\text { area of } \triangle O D M}{\text { area of } A B C D}=\frac{1}{4} \times \frac{2}{3} \times \frac{1}{2}=\frac{1}{12}\)
7a) \(\mathbf{Q}=\left(\begin{array}{ll}1750 & 1260 \\ 1960 & 1260\end{array}\right)\)
7b) \(\mathbf{P}=\binom{2.00}{2.40}\)
7c) \(S=\binom{6524}{6944}\)
\(7 \mathrm{~d})\) The earnings of Station A \((\$ 6,524)\) and Station B \((\$ 6,944)\) respectively for Week 1.
7e) The earnings of Station \(A(\$ 6,507.69)\) and Station \(B(\$ 6,926.64)\) respectively for Week 2.
7f) \(\quad \mathbf{X}=\left(\begin{array}{ll}1 & 1\end{array}\right)\)
\[
\begin{aligned}
\text { Total earnings } & =\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{6507.69}{6926.64} \\
& =(13434.33)
\end{aligned}
\]

Total earnings of both stations (Week 2) \(=\$ 13,434.33\)
8a)(i) \(\quad \mathrm{TX}=2.53 \mathrm{~m}\)
8a)(ii) \(\quad \angle P X T \approx 90.9^{\circ}\)
8a)(iii) Angle of elevation \(=5.4^{\circ}\)
8b) \(\tan 12^{\circ}=\frac{0.36}{d} \quad \rightarrow d \approx 1.69 \mathrm{~m}\)
Since 1.69 m is less than the minimum optimal distance 1.8 m , Roy will not have an optimal view of the TV in this case.


9c) \(\quad\) Gradient \(=-1.5 \quad( \pm 0.2)\)
9d)(ii) \(\quad y=\frac{1}{2} x-1\)
9d)(iii) \(A=2\) and \(B=24\)
10a)(i) \(\quad 1181.3 \mathrm{kWh}\)
10a)(ii) \(\quad \$ 270.37\)
10b) Since the average amount paid by Mrs Lim per month will be lesser than what she is currently paying for electricity usage, she should go ahead with the installation.

2017 Sec 4E/5NA Preliminary One Mathematics Marking Scheme
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Qn } & \multicolumn{1}{c|}{ Answer } & \multicolumn{1}{c|}{ Marks } \\
\hline 1(a) & 130 & B1 \\
\hline 1(b) & 100 & B1 \\
\hline 2(a) & \begin{tabular}{l}
\(344 \times 204=70176 \mathrm{~mm}^{2}\) \\
\(1 \mathrm{~mm}^{2}=0.1^{2} \mathrm{~cm}^{2}\) \\
\(71196 \mathrm{~mm}^{2}=0.1 \times 0.1 \times 70176 \mathrm{~cm}^{2}\) \\
\(=701.76 \mathrm{~cm}^{2}=702 \mathrm{~cm}\)
\end{tabular} & M1 \\
\hline 2(b) & \begin{tabular}{l}
\(\frac{195}{344}\) \\
\\
\\
\hline Current weight \(=\frac{94}{100} \times 82=77.08 \mathrm{~kg}\) \\
Per cent \(=\frac{77.08-71.30}{77.08} \times 100=7.4987=7.50 \%\) \\
\hline Ideal weight \(=\frac{82}{115} \times 100=71.30 \mathrm{~kg}\) \\
exact value)
\end{tabular} \\
\hline & \begin{tabular}{l}
\(4 a^{2}-12 a=2-20+6 a\) \\
\(4 a^{2}-18 a+18=0\) \\
\(2 a^{2}-9 a+9=0\) \\
\((2 a-3)(a-3)=0\) \\
\(a=\frac{3}{2}, 3\)
\end{tabular} & B1
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 6(a) & \[
\begin{aligned}
\frac{\sin 39}{12} & =\frac{\sin \angle D E F}{10} \\
\angle D E F & =\sin ^{-1} \frac{10 \sin 39}{12} \\
\angle D E F & =31.63,180-31.63 \\
& =31.6,148.4
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1
\end{tabular} \\
\hline 6(b) & \begin{tabular}{l}
Acceptable answer \(=>31.6^{\circ}\). \\
Reject \(148.4^{\circ}\) because \((148.4+39)>180\) which is more than angle sum of a triangle.
\end{tabular} & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] \\
\hline 7 & \[
\begin{aligned}
& a^{2} d^{2}-b^{2} c^{2}=c^{2} d^{2} \\
& b^{2} c^{2}=d^{2}\left(a^{2}-c^{2}\right) \\
& b= \pm \frac{d}{c} \sqrt{\left(a^{2}-c^{2}\right)}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
No mark if no \(\pm\).
\end{tabular} \\
\hline 8(a) & \[
\frac{1}{2}-\frac{1}{5^{2}}=\frac{25-2}{50}=\frac{23}{50}
\] & M1, A1 \\
\hline 8(b) & \[
b^{\frac{2}{3}+6-\frac{2}{3}-1=b^{5}}
\] & M1, A1 \\
\hline 9(a) & \(x: x+2: 6(x+2)\) & B1 \\
\hline 9(b) & \[
\begin{aligned}
& (x+10)+(x+12)+(6 x+22)=76 \\
& x=4 \\
& \text { Mother's age }=6(4+2)-5=31 \text { years old }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1
\end{tabular} \\
\hline 10(a) & \begin{tabular}{l}
In \(\triangle A B C\) and \(\triangle D B A\) \(\angle B A C=\angle B D A\) (given) \\
\(\angle A B C=\angle D B A(\) Common \(\angle)\) \\
\(\triangle A B C\) is similar to \(\triangle D B A\) (AA Simiarlity)
\end{tabular} & \}B1 (order of vertices must be in corresponding order B1 (statement and reason) No reason no mark \\
\hline 10(b) & \[
\begin{aligned}
& \frac{B C}{B A}=\frac{B A}{B D} \\
& \frac{4}{6}=\frac{6}{B D}
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|l|}{\(B D=9\)} & B1 \\
\hline 10(c) & \multicolumn{7}{|l|}{Let shortest distance be s.
\[
\begin{aligned}
& \frac{1}{2} \times 6 \times s=42 \\
& s=14 \mathrm{~cm}
\end{aligned}
\]} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
\] \\
\hline 11(a) & \multicolumn{7}{|l|}{\[
\angle R S T=\frac{(10-2) 180}{10}=144
\]} & B1 \\
\hline 11(b) & \multicolumn{7}{|l|}{\[
\begin{aligned}
& \angle S R T=\frac{180-144}{2}=18^{\circ}(\text { base of issos. } \Delta) \\
& \angle R T Q=18^{\circ}(\text { alt } \angle)
\end{aligned}
\]} & B1 \\
\hline 11(c) & \multicolumn{7}{|l|}{\[
\begin{aligned}
& \angle Q R T=\angle Q R S-\angle S R T=144-18=126^{\circ} \\
& \angle R Q T=180-126-18=36^{\circ}(\angle \text { sum of } \triangle) \\
& \angle P Q T=144-36=108^{\circ}
\end{aligned}
\]} & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
\] \\
\hline 12(a) & \multicolumn{7}{|l|}{\[
\frac{5}{6}
\]} & B1 \\
\hline 12(b) & \multicolumn{7}{|l|}{\[
\frac{1}{36}
\]} & B1 \\
\hline \multirow[t]{9}{*}{12(c)} & \multicolumn{7}{|l|}{} & \multirow[t]{9}{*}{\begin{tabular}{|c} 
M \\
\\
A1
\end{tabular}} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline & 1 & (2) & (3) & 4 & 5 & 6 & (7) & \\
\hline & 2 & (3) & 4 & (5) & 6 & 7 & 8 & \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline & 4 & (5) & 6 & 7. & 8 & 9 & 10 & \\
\hline & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \\
\hline & 6 & 7. & 8 & 9 & 10 & (11) & 12 & \\
\hline & \multicolumn{7}{|l|}{\[
\frac{5}{12}
\]} & \\
\hline 13(a) & \multicolumn{7}{|l|}{\[
\binom{4}{-5}
\]} & B1 \\
\hline 13(b) & & & & & & & & B1 \\
\hline
\end{tabular}


2017 Preliminary Two/Sec 4E5N/Mathematics (Answer scheme)
\begin{tabular}{|c|c|c|}
\hline & axis does not start from zero & \\
\hline & & \\
\hline 17(a) & \((18,0)\) & B1 \\
\hline 17(b) & \[
\frac{1}{6}
\] & B1 \\
\hline 17(c) & \(k=-4\) & B1 \\
\hline 17(d) & \[
y=\frac{1}{6} x+5
\] & B1 \\
\hline 18(a) & \[
\begin{aligned}
& \angle O R S=90-34=56(\text { radius perpendicular to tangent }) \\
& \angle R O S=180-2(56)=68 \text { (angle sum of issos. triangle) } \\
& \angle R O P=2(68)=136 \\
& \angle R O P=2 x \text { (angle at center }=2 \text { angles at circumference) } \\
& x=68^{\circ}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
(If more than 2 reasons not given, deduct 1m overall)
\end{tabular} \\
\hline 18(b) & \(y=180-90-68=22^{\circ}\) (angle sum of triangle) & B1 \\
\hline 19(a) & \(A^{\prime} \cup B\) & B1 \\
\hline 19(b)(i) & \(\{4,6,8,10\}\) & B1 \\
\hline 19(b)(ii) & \(C \subset A\) & B1 \\
\hline \[
\begin{aligned}
& 20(a) / \\
& 20(b)
\end{aligned}
\] &  & \begin{tabular}{l}
C1 - Correct angle measurement C1- Correct scale conversion \\
C1Perpendicular bisector \\
C1 - Label of Town D (accept either \(D_{1}\) or \(D_{2}\) )
\end{tabular} \\
\hline 20(b) & \(104^{\circ} \pm 1^{\circ}, 114^{\circ} \pm 1^{\circ}\) & B1 \\
\hline 21(a) & \[
\begin{aligned}
& y=-\left(x^{2}-8 x+5\right) \\
& \left.y=-\left[(x-4)^{2}+5-4^{2}\right)\right] \\
& y=-(x-4)^{2}+11
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1
\end{tabular} \\
\hline 21(b) & & P1- correct shape P1 - correct intercepts and \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline &  & turning point. \\
\hline 21(c) & 8.58, -0.583 & B2 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|} 
& & Register No. \\
Name: & Class \\
\cline { 2 - 3 } & & \\
\hline
\end{tabular}


\title{
BENDEMEER SECONDARY SCHOOL 2017 PRELIMINARY TWO EXAMINATION SECONDARY 4 EXPRESS 15 NORMAL (ACADEMIC) Elementary Mathematics \(4048 / 02\)
}

DATE : 23 August 2017
DURATION : 2 hours 30 minutes TOTAL : 100 marks

\section*{MARK SCHEME}

MARK SCHEME
\begin{tabular}{|c|c|c|c|}
\hline Qn. & Solutions & \% - & Remarks \\
\hline 1(a) & \[
\begin{aligned}
& \frac{p-2}{4} \leq \frac{1}{2}-\frac{15-2 p}{5} \\
& \frac{p-2}{4} \leq \frac{-25+4 p}{10} \\
& 10(p-2) \leq 4(-25+4 p) \\
& -6 p \leq-80 \\
& \therefore p \geq 13 \frac{1}{3}
\end{aligned}
\] & \begin{tabular}{l}
[B1] \\
[B1] \\
[B1]
\end{tabular} & \\
\hline 1(b) & \begin{tabular}{l}
(i)
\[
\begin{aligned}
2 q-18 q^{3} & =2 q\left(1-9 q^{2}\right) \\
& =2 q(1-3 q)(1+3 q)
\end{aligned}
\] \\
(ii)
\[
\begin{aligned}
\frac{2 q-18 q^{3}}{\left(4 q^{2}-2 q\right)(3 q+1)} & =\frac{2 q(1-3 q)(1+3 q)}{\left(4 q^{2}-2 q\right)(3 q+1)} \\
& =\frac{2 q(1-3 q)}{2 q(2 q-1)} \\
& =\frac{1-3 q}{2 q-1}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
[B1] \\
[B1] \\
[B1] \\
[B1]
\end{tabular} & \\
\hline 1(c) & \begin{tabular}{l}
(i)
\[
\begin{aligned}
& 200 \mathrm{~m}
\end{aligned} \rightarrow 0.2 \mathrm{~km}, \quad 2 \min 30 \mathrm{~s} \rightarrow \frac{1}{24} \mathrm{~h} ~ 子 \begin{aligned}
\text { Speed } & =0.2 / \frac{1}{24} \\
& =4.8 \mathrm{~km} / \mathrm{h}
\end{aligned}
\] \\
(ii)
\[
\begin{aligned}
\text { Best time (Dec) } & =0.9 \times \frac{1}{24} \\
& =\frac{3}{80} \mathrm{~h} \\
& =2 \min 15 \text { seconds }
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
[M1] \\
[A1] \\
[B1] \\
[B1]
\end{tabular} & \\
\hline & & & Total Marks \\
\hline
\end{tabular}

\section*{MARK SCHEME}


\section*{Bendemeer Secondary School}

2017 Preliminary Two Examination / Sec 4E/5N(A) / Elementary Mathematics Paper 2
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
or \begin{tabular}{rl} 
Amount earned in \(1 \min\) (Large) & \(=8(\$ 0.50)\) \\
& \(=\$ 4.00\) \\
Amount earned in 1 min (Small) & \(=12(\$ 0.30)\) \\
& \(=\$ 3.60\)
\end{tabular} \\
\(\therefore\) It is more profitable for the factory to produce large bottles.
\end{tabular} & \begin{tabular}{l}
[B1] \\
[B1] \\
[B1]
\end{tabular} & \\
\hline & & & Total Marks: 12 \\
\hline 4(a) & \begin{tabular}{l}
Since \(M\) is the midpoint, then \(O_{1} M\) is perpendicular to \(O_{2} O_{3}\), \\
So,
\[
\begin{aligned}
& \sin 60^{\circ}=\frac{17}{6+P Q+6} \\
& \begin{aligned}
\therefore P Q=\frac{34}{\sqrt{3}}-12 \quad & \approx 7.629909152 \\
& \approx 7.63 \mathrm{~cm}
\end{aligned}
\end{aligned}
\] \\
or Let \(O_{1} O_{2}\) be \(2 x\).
\[
\begin{aligned}
(2 x)^{2}=x^{2}+17^{2} & \rightarrow \\
& \rightarrow \quad x=\sqrt{9}=17^{2} \\
& \therefore P Q=2 \times \sqrt{96 \frac{1}{3}}-2(6)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
[M1] \\
[A1] \\
[B1] \\
[B1]
\end{tabular} & \\
\hline 4(b) & \begin{tabular}{l}
\[
\begin{aligned}
& \hline \text { Arc length } P U=6\left(\frac{\pi}{3}\right) \text { or } \pi \times 2(6) \times\left(\frac{60^{\circ}}{360^{\circ}}\right) \\
& \approx 6.283185307 \mathrm{~cm} \\
& \text { Perimeter of shaded } \\
& \text { region PQRSTU }=(6.283185307 \times 3)+(7.629909152 \times 3) \\
& \approx 41.7 \mathrm{~cm}
\end{aligned}
\] \\
or Perimeter of shaded region \(P Q R S T U\)
\[
\begin{aligned}
& =7.629909152+\left(3 \times \frac{\pi}{3} \times 6\right) \\
& \approx 41.7 \mathrm{~cm}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
[B1] \\
[B1] \\
[B1] \\
[B2] \\
[B1]
\end{tabular} & \\
\hline
\end{tabular}

\section*{MARK SCHEME}
\begin{tabular}{|c|c|c|c|}
\hline 4(c) & \begin{tabular}{l}
Area of \(\triangle O_{1} O_{2} O_{3}\)
\[
\begin{aligned}
& =\frac{1}{2} \times 17 \times\left(6+6+\frac{34}{\sqrt{3}}-12\right) \\
& \approx 166.8542278 \mathrm{~cm}^{2}
\end{aligned}
\] \\
Area of sector \(O_{1} P U=\frac{1}{2} \times 6^{2} \times \frac{\pi}{3}\) or or \(\pi \times 6^{2} \times\left(\frac{60^{\circ}}{360^{\circ}}\right)\)
\[
\approx 18.84955592 \mathrm{~cm}^{2}
\] \\
Area of shaded region \\
PQRSTU
\[
\begin{aligned}
& =166.8542278-3(18.84955592) \\
& \approx 110 \mathrm{~cm}^{2}
\end{aligned}
\] \\
or Area of shaded region PQRSTU
\[
\begin{aligned}
& =\frac{1}{2} \times 17 \times 2\left(\sqrt{96 \frac{1}{3}}\right)-\frac{1}{2} \pi\left(6^{2}\right) \\
& \approx 110 \mathrm{~cm}^{2}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
[B1] \\
[B1] \\
[B1] \\
[B2] \\
[B1]
\end{tabular} & \\
\hline & & & \\
\hline \multirow[t]{4}{*}{5(a)} & (i)(a) Median \(=34\) marks & [B1] & \multirow[t]{4}{*}{} \\
\hline & (i)(b)
\[
\begin{aligned}
\mathrm{IQR} \quad & =41-26 \\
& =15 \text { marks }
\end{aligned}
\] & \[
\begin{aligned}
& {[\mathrm{M} 1]} \\
& {[\mathrm{A} 1]}
\end{aligned}
\] & \\
\hline & \[
\begin{aligned}
\text { (i)(c) Mean } & =\frac{492}{15}=32.8 \text { marks } \\
\text { S.D. } & =\sqrt{\frac{17636}{15}-32.8^{2}} \\
& \approx 9.99 \text { marks }
\end{aligned}
\] & \begin{tabular}{l}
[M1] \\
[Al]
\end{tabular} & \\
\hline & (ii) The median will increase by 2 and become 36 marks. The interquartile range will remain the same at 15 marks. & \[
\begin{aligned}
& {[\mathrm{B} 1]} \\
& {[\mathrm{B} 1]}
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{MARK SCHEME}
\begin{tabular}{|c|c|c|}
\hline 5(b) & \begin{tabular}{l}
(i) \\
[B1] Correct branches [B1] Correct probabilities \\
(ii)(a)
\[
\begin{aligned}
P(\text { both are the same }) & =\left(\frac{5}{8} \times \frac{5}{8}\right)+\left(\frac{3}{8} \times \frac{8}{23}\right) \\
& =\frac{767}{1472}
\end{aligned}
\] \\
(ii)(b)
\[
\begin{aligned}
\mathrm{P}(\text { at least } 1 \text { apple }) & =1-\left(\frac{3}{8} \times \frac{8}{23}\right) \\
& =\frac{20}{23}
\end{aligned}
\]
\end{tabular} & \\
\hline &  & Total Marks: 13 \\
\hline 6(a) & \begin{tabular}{l}
(i) \(\overrightarrow{B D}=-\frac{3}{2} \mathbf{b}\) \\
(ii) \(\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}=-\mathbf{a}+\mathbf{b}\) \\
[B1] \\
(ii)
\[
\begin{aligned}
\overrightarrow{B C}=\overrightarrow{B D}+\overrightarrow{D C} & =-\frac{3}{2} \mathbf{b}+(-\mathbf{a}+\mathbf{b}) \\
& =-\mathbf{a}-\frac{1}{2} \mathbf{b}
\end{aligned}
\] \\
(iv)
\[
\begin{aligned}
\overrightarrow{O M}=\overrightarrow{O D}+\overrightarrow{D M} & =-\frac{1}{2} \mathbf{b}+\frac{1}{2}(-\mathbf{a}+\mathbf{b}) \\
& =-\frac{1}{2} \mathbf{a}
\end{aligned}
\]
\end{tabular} & \\
\hline 6(b) & \begin{tabular}{l}
\[
\overrightarrow{X B}=\overrightarrow{X C}+\overrightarrow{C B}=-\mathbf{a}-\frac{3}{4} \mathbf{b}+\mathbf{a}+\frac{1}{2} \mathbf{b}=-\frac{1}{4} \mathbf{b}
\] \\
Since \(\overrightarrow{B D}=6 \overrightarrow{X B} \rightarrow B D / / X B\) and \(B\) is a common point, then \(B, D\) and \(X\) must be collinear points.
\end{tabular} & \\
\hline 6 (c) & \begin{tabular}{l}
(i) \(\frac{\text { area of } \triangle O D M}{\text { area of } \triangle O A B}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}\) \\
[B1, B1] \\
(ii) \(\frac{\text { area of } \triangle O D M}{\text { area of } A B C D}=\frac{1}{4} \times \frac{2}{3} \times \frac{1}{2}=\frac{1}{12}\) \\
[B1]
\end{tabular} & \\
\hline
\end{tabular}

\section*{MARK SCHEME}
\begin{tabular}{|c|c|c|}
\hline 7(a) & \(\mathrm{Q}=\left(\begin{array}{ll}1750 & 1260 \\ 1960 & 1260\end{array}\right) \quad[\mathrm{B} 1]\) & \\
\hline 7(b) & \(\mathrm{P}=\binom{2.00}{2.40} \quad[\mathrm{~B} 1]\) & \\
\hline 7(c) & \(S=\left(\begin{array}{ll}1750 & 1260 \\ 1960 & 1260\end{array}\right)\binom{2.00}{2.40}=\binom{6524}{6944} \quad[\mathrm{Bl}]\) & \\
\hline 7(d) & \begin{tabular}{l}
The earnings of Station A \((\$ 6,524)\) and Station B \((\$ 6,944)\) respectively for Week 1. \\
[B1]
\end{tabular} & \\
\hline 7(e) & \begin{tabular}{l}
\[
\begin{align*}
& \text { Amount of petrol sold }(\text { Week 2) }=0.95\left(\begin{array}{l}
17501260 \\
1960 \\
1260
\end{array}\right) \\
&=\left(\begin{array}{cc}
1662.5 & 1197 \\
1862 & 1197
\end{array}\right)  \tag{B1}\\
& \text { Prices of petrol }\left(\text { Week 2) } \quad=1.05\binom{2.00}{2.40}\right. \\
&=\binom{2.10}{2.52}  \tag{B1}\\
& \text { Earnings }(\text { Week } 2)=\binom{6507.69}{6926.64}
\end{align*}
\] \\
The earnings of Station A \((\$ 6,507.69)\) and Station B \((\$ 6,926.64)\) respectively for Week 2.
\end{tabular} & \\
\hline 7(f) & \begin{tabular}{l}
\[
X=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\]
\[
\begin{aligned}
\text { Total earnings } & =\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{6507.69}{6926.64} \\
& =\left(\begin{array}{l}
13434.33
\end{array}\right)
\end{aligned}
\] \\
Total earnings of both stations (Week 2) \(=\$ 13,434.33\)
\end{tabular} & \\
\hline
\end{tabular}

MARK SCHEME
\begin{tabular}{|c|c|c|c|}
\hline 8(a) & \begin{tabular}{l}
(i) At furthest possible optimal distance, \(d=3.8 \mathrm{~m}\), \\
\(\rightarrow M\) to foot of \(X=4-3.8=0.2 \mathrm{~m}\) \\
By Pythagoras' Theorem, \\
\(W\) to foot of \(X=\sqrt{0.2^{2}+(3.6+2)^{2}}=\sqrt{3.28}\) \\
So, \(T X=\sqrt{3.28+(3-1.24)^{2}}=\sqrt{6.3776}\) \(\approx 2.53 \mathrm{~m}\) \\
(ii) By Cosine Rule,
\[
\begin{aligned}
& 3.6^{2}=6.3776+6.3776-2(6.3776) \cos \angle P X T \\
& \angle P X T \approx 90.9^{\circ}
\end{aligned}
\] \\
(iii) Let the angle of elevation here be \(\theta\).
\[
\begin{aligned}
\tan \theta & =\frac{1.6-1.24}{3.8} \\
\theta & \approx 5.4^{\circ}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
[B1] \\
[B1] \\
[B1] \\
[M1] \\
[A1] \\
[M1] \\
[A1]
\end{tabular} & \\
\hline 8(b) & \begin{tabular}{l}
\[
\tan 12^{\circ}=\frac{0.36}{d} \quad \rightarrow d \approx 1.69 \mathrm{~m}
\] \\
Since 1.69 m is less than the minimum optimal distance have an optimal view of the TV in this case.
\end{tabular} & \begin{tabular}{l}
[B1] \\
will n \\
[BI]
\end{tabular} & \\
\hline
\end{tabular}

\section*{MARK SCHEME}


\(\qquad\) ( )

Class: \(\qquad\)


\title{
CHIJ KATONG CONVENT PRELIMINARY EXAMINATION 2017 \\ SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)
}

\section*{MATHEMATICS \\ PAPER 1}

Classes: 401, 402, 403, 404, 405, 406, 501, 502

\section*{READ THESE INSTRUCTIONS FIRST}

Write your name, class and registration number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid/tape.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will resulf in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For \(\pi\), use either your calculator value or 3.142 , unless the question requires the answer in terms of \(\pi\).

At the end of the examination, hand in separately:
1. Section \(A\)
2. Section B
3. Section C

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 80 .
\begin{tabular}{|c|r|}
\hline \multicolumn{2}{|c|}{ FOR EXAMINER'S USE } \\
\hline Total marks & 180 \\
\hline
\end{tabular}

\section*{Mathematical Formulae}

\section*{Compound interest}
\[
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
\]

\section*{Mensuration}
\[
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
\]

\section*{Trigonometry}
\[
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
\]

Statistics
\[
\begin{gathered}
\text { Mean }=\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation }=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{gathered}
\]
\begin{tabular}{l|r} 
CHIJ Katong Cortvent Preliminary Exam 2017 \\
Name: & 4048/01 \\
\hline
\end{tabular}

Answer all the questions.
Section A [22 marks]
1 (a) Simplify \(\frac{x+1}{x^{2}-9}-\frac{2}{3-x}\).

\section*{Answer}
[4]
(b) Simplify \(\frac{\left(a b c^{-2}\right)^{3}}{\left(a^{-4} b^{-1}\right)^{-1}} \times \frac{a^{-6} b^{-7}}{\left(b c^{2}\right)^{-4}}\), leave your answer in positive indices.

\section*{Answer}
[3]

2 Given that \(\frac{\frac{k}{3}}{3}=\sqrt{A-3 b^{2}}\), express \(A\) in terms of \(b, c\) and \(k\).
\[
\text { Answer } k=
\]

3 Factorise the following completely.
(a) \(18 x^{2} y+27 x y-9 x y^{3}\)
Answer .................................. [1]
(b) \(27 a^{2}-12 b^{2}\)

\section*{Answer}
(c) \(3 r s-3 s-r+1\)

4 Given that \(-5 \leq x \leq 2\) and \(-6 \leq y \leq-1\), find
(a) the largest possible value of \(x-y\),

Answer
(b) the smallest possible value of \(y^{2}-x^{2}\),

Answer
[1]
(c) the smallest possible value of \((x-y)^{2}\).

Answer
\(\qquad\)
5 A small bus interchange has 2 feeder buses. Bus number 801 leaves the interchange at 15 -minute intervals while number 802 at 25 -minutes intervals. If both buses leave together on a particular day, how many times will they leave together in the next 5 hours?
\(\qquad\) times

6 A pond with the shape of a pentagon is shown below (measurements are given in metres and not drawn to scale).


180
Lamp posts are to be constructed around the pond with the following requirements:
(I) The lamp posts are to be equally spaced from each other.
(II) One lamp post must be constructed at each vertex of the pentagon.
(III) Minimum number of lamp posts are to be constructed to save cost.

Find
(a) the distance between any two lamp posts.

Answer
(b) the number of lamp posts to be constructed.

> Answer

\section*{Section B [18 marks]}

7 When written as the product of their prime factors,
\[
\begin{aligned}
& A=2^{n+2} \times 3^{n} \\
& B=2^{m} \times 3^{n+3} \times 5, \text { where } m \text { and } n \text { are positive constants. }
\end{aligned}
\]

Find the lowest common multiple of \(A\) and \(B\), giving your answer as a product of its prime factors.

\section*{Answer}

8 Solve the simultaneous equations.
\[
\begin{aligned}
& \frac{1}{2} x+y=1, \\
& \frac{1}{4} x-3 y=11
\end{aligned}
\]
```

Answer x=
y=

Name: \qquad) Class:

9 In the diagram, $B D C E$ is a straight line, $B D=4 \mathrm{~cm}, A C=10 \mathrm{~cm}$ and $A B=A D$. Given that the area of triangle $A B D$ is $16 \mathrm{~cm}^{2}$, calculate

(a) the vertical height of triangle $A B D$.
(b) the value of $\sin \angle A C D$.

$$
\begin{array}{ll}
\text { Answer } & \text { vertical height }=\ldots \ldots \mathrm{cm} \quad[2] \tag{2}\\
& \sin \angle A C D=\ldots
\end{array} \quad[1]
$$

(c) the value of $\cos \angle A C E$.

$$
\text { Answer } \cos \angle A C E=.
$$ - [2]

10 During their quest to reach the South Pole on the first day of the new millennium, the Singapore Antarctica 2000 Expedition team experienced temperatures ranging from $-35^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$ while their family members in singapore experienced temperatures ranging from $a^{\circ} \mathrm{C}$ to $b^{\circ} \mathrm{C}$, where $a<b$.
Find, in terms of a and/or b,
(a) the greatest difference in temperatures between the South Pole and Singapore.

$$
\text { Answer }{ }^{\circ} \mathrm{C}
$$

(b) the smallest difference in temperatures between the South Pole and Singaphore.

Answer.
${ }^{\circ} \mathrm{C}$

11 Two maps of a new town are drawn. On the first map, a school is represented by an, area of $3 \mathrm{~cm}^{2}$.
The school is represented by an area of $12 \mathrm{~cm}^{2}$ on the second map.
Given that the scale of the first map is $1: 80000$, find the scale of the second map in the form of $1: n$.

12 Mrs Ang invested $\$ 36000$ in a bank that pays compound interest of 3.2% per annum, payable every 3 months.
Calculate the amount that Mrs Ang has in the bank after 6 years.

Answer \$ [2]
\qquad () \qquad

Section C [40 marks]

13 Liquid K is poured into three different tanks at a constant rate. The height of each tank is 2 metres.

On each of the grids below, sketch the graphs to show how the height of the water changes with time for each tank.

14 (a) Calculate the sum of the angles $p, q, r, s, h u$ and v shown in the diagram.

Answer

- [2]
(b) A regular polygon has a sides.

Each exterior angle is $\frac{n}{40}$ degrees.
Find the size of each interior angle in this polygon.

15 In the figure the vertices of triangle $A B C$ and triangle $P Q R$ touch the circumference of the circle.

Given that angle $C A B=50^{\circ}$, angle $A B C=70^{\circ}$ and angle $B C A=60^{\circ}$ and $A P, B R$ and $C Q$ are angle bisectors of angle $C A B$, angle $A B C$ and angle $B C A$ respectively, find the values of angles $R P Q, P Q R$ and $P R Q$.

Answer angle $R P Q=$ \qquad - [2]
angle $P Q R=$ \qquad - [1]
angle $P R Q=$ - [1]

16 The probability that Katie takes a bus is 0.6 .
If she takes a bus, the probability that she is late for school is 0.3 .
If she does not take a bus, the probability that she is late for school is 0.2 .
(a) Complete the probability tree given below

Answer

[3]
(b) Calculate the probability that Katie is not late to school.

17 In the diagram, the circle, centre O, passes through D, A and B.
The tangent at A meets $O B$ produced at C and $O D$ produced at E.
The radius of the circie is 4 cm and angle $A O B=$ angle $A O E=45^{\circ}$.

(a) The area of the shaded region can be expressed as $(a-b \pi) \mathrm{cm}^{2}$, where a and b are constants.

Find the values of a and b.

> Answer $a=$
> $b=$
(b) The perimeter of the shaded region can be expressed as $(p \pi+2 \sqrt{q}) \mathrm{cm}$. Find the values of p and q.

$$
\begin{aligned}
& \text { Answer } p= \\
& q=
\end{aligned}
$$

18 Vectors $\overline{O B}$ and $\overline{O A}$ are drawn below.

				B					
	O								
		A							

Given that $\overrightarrow{O P}=\binom{-1}{-2}$.
(a) (i) locate point P on the grid, mark it with a cross X and label it,
(ii) express $\overrightarrow{O P}$ in terms of $\overrightarrow{O B}$ and/or $\overrightarrow{O A}$.

Answer $\overline{O P}=$
(b) $O B Q A$ is a parallelogram.
(i) locate point Q on the grid, mark it with a cross X and label it,
(ii) find the column vector representing $\overline{O Q}$.

$$
\begin{equation*}
\text { Answer } \overline{O Q}= \tag{1}
\end{equation*}
$$

19 The diagram shows the speed-time graphs of two particles P and Q. Both particles
P and Q start from rest. P accelerates uniformly for 3 seconds until it reaches a speed of $12 \mathrm{~m} / \mathrm{s}$. It then continues to travel at this constant speed. Q starts from the same point as P but accelerates from rest at a constant rate of $3 \mathrm{~m} / \mathrm{s}^{2}$.

(a) Write down the value of t_{1}, where the speeds P and Q are the same.

$$
\text { Answer } \quad t_{1}=
$$

(b) Given that Q overtakes $P l_{2}$ seconds after the start of the motion, find the value of t_{2}

$$
\text { Answer } t_{2}=
$$

(c) In the answer space below, sketch the acceleration-time graph of P for $0 \leq t \leq t_{2}$.

20 All the students from 2 schools X and Y took the same examination paper.

The box-and nwhisker diagram below shows the results for the two schools.

(a) State, with a reason, which school achieved a better result.

Answer

\qquad
\qquad
(b) State, with a reason, which school has a more unifonnly-distributed mark.

Answer

\qquad
\qquad
\qquad The numbers in the Number Triangle are consecutive even numbers.
\qquad) Class: \qquad

Row	Number Triangle	Sum of row (R)	No. of even numbers (\bar{C})	Average of Row (A)
1	2	2	1	2
2	46	10	2	5
3	81012	30	3	10
4	14161820	68	4	p
5	2224262830	130	5	26
6	323436384042	q	6	37

(a) Find the values of p and q.

$$
\text { Answer } p=\ldots \ldots, q=
$$

(b) Write down a formula connecting A and E.

Answer

(c) Write down a formula connecting R and E.

Answer
(d) Justify, with reason why the number 6400 could not appear in the column A. Answer \qquad
\qquad

2017 4E/5N P1 E Mathematics Prelim Marking Scheme

Qn	Solution	
7	$\begin{aligned} & A=2^{m} \times 2^{2} \times 3^{n} \\ & B=2^{m} \times 3^{n} \times 3 \times 5 \\ & L C M=2^{m+2} \times 3^{n+1} \times 5 \end{aligned}$	
8	$\begin{aligned} & x=2-2 y \\ & \frac{1}{4}(2-2 y)=11+3 y \\ & y=-3 \\ & x=8 \end{aligned}$	
9	$\begin{aligned} & \begin{array}{l} \text { (a) } \\ \frac{1}{2} \times 4 \times h=16 \\ h=8 \end{array} \\ & \text { (b) } \sin \angle A C D=\frac{8}{10}=\frac{4}{5} \end{aligned}$	
	$\begin{aligned} & \text { (c) } \mathrm{XC}=\sqrt{10^{2}-8^{2}}=6 \\ & \cos \angle A C E=-\frac{6}{10}=-\frac{3}{5} \end{aligned}$	
10	(a) $35+b$ (b) $5+a$	
11	$1 \mathrm{~cm}^{2}: 64 \times 10^{8} \mathrm{~cm}^{2}$ Ma 1 $3 \mathrm{~cm}^{2}: 192 \times 10^{8} \mathrm{~cm}^{2}$ Map 2 $12 \mathrm{~cm}^{2}: 192 \times 10^{8} \mathrm{~cm}^{2}$ $1 \mathrm{~cm}^{2}: 16 \times 10^{8} \mathrm{~cm}^{2}$ $1: 40000$	
12	$\text { Amount }=\$ 36000\left(1+\frac{\frac{3.2}{4}}{100}\right)^{26}=\$ 43586.83$	

2017 4E/5N P1 EMathematics Prelirm Marking Scheme

2017 4E/5N P1 E Mathematics Prelim Marking Scheme

2017 4E/5N PI E Mathematics Prelim Marking Scheme

Answer all the questions.

Section A [30 marks]

1 (a) Expand and simplify $(4 x-1)^{2}-(8 x+1)(2 x-1)$.
(b) Express $\frac{4 x^{2}-9}{x^{2}+x-20} \div \frac{4 x^{2}-6 x}{16-x^{2}}$ as a fraction in its lowest term.
(c) Solve the equation $\frac{x}{3}-\frac{2 x-1}{x-3}=-2$, leaving your answer correct to 3 decimal places.
(d) y is directly proportional to x^{2}.

It is known that $y=144$ for a particular value of x.
[3]
Find the percentage change in y when the value of x decreases by 25%.

2 During a scbool's sports day, the number of first, second and third positions won by the different houses are given in the table below.
The number of points won for individual and group events are also given in the table.

Houses	Individial events			Group events		
	First	Second	Third	First	Second	Third
Blue	7	5	4	3	2	0
Green	5	4	6	1	2	1
Red	4	5	5	1	2	2
Yellow	4	6	5	1	0	3
Points	5	3	1	10	6	2

(a) It is given that $\mathrm{A}=\left(\begin{array}{lll}7 & 5 & 4 \\ 5 & 4 & 6 \\ 4 & 5 & 5 \\ 4 & 6 & 5\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{l}5 \\ 3 \\ 1\end{array}\right)$, evaluate the matrix $\mathrm{P}=\mathrm{AB}$.
(b) Given matrix $\mathbf{C}=\left(\begin{array}{lll}3 & 2 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 0 & 3\end{array}\right)$.
(i) Represent the group event scoring system in a 3×1 matrix \mathbf{D}.
(ii) Evaluate the matrix $\mathbf{Q}=\mathbf{C D}$ and explain what do the elements of \mathbf{Q} represent
(c) The scores of individual events and group events are added for each house.

Using matrix manipulation, determine which house won the overall championship.
$3 A B C D$ is a parallelogram.
N is the midpoint of $D C$ and M is the point on $A B$ such that $2 A M=M B$.

Given that $\overline{A B}=6 a$ and $\overline{A D}=4 b$,
(a) Express as simply as possible, in terms of a and/or \mathbf{b}.
(i) $\overline{A M}$
(ii) $\overrightarrow{M C}$
(iii) $\overline{A N}$
(b) Find the numerical value of
(i) $\frac{\text { area of triangle } A D N}{\text { area of parallelogram } A B C D}$,
(ii) $\frac{\text { area of triangle } A D N}{\text { area of triangle } A M N}$.
[2]

4 The diagram shows a rectangular cuboid $A B C D E F G H$.
$A B=6 \mathrm{~m}, B C=2 \mathrm{~m}$ and $C G=4 \mathrm{~m}$.

(a) Show that angle $H B D=32.3^{\circ}$, correct to 1 decimal place.
(b) Calculate angle $A F C$.
(c) Calculate the greatest angle of elevation of the point H when viewed from the line $A B$.

Section $8[70$ marks]

Please begin Ouestion 5 on a NEW sheet of paper

5 (a) Chloe has a total of 126 marks in x tests.
In the next two tests, she scored 9 marks and 8 marks respectively.
Find, in terms of x, her mean mark for the
(i) firse x tests,
(ii) $(x+2)$ tests.

Her meah mark for the first x tests was one greater than her mean mark for the $(x+2)$ tests.
(iii) write an equation in x to represent this information and show that it reduces to $x^{2}+19 x-252=0$.
(iv) Solve the equation to find the number of tests Chloe took initially.
(b) Amanda has a mean of 13.5 marks for the first $(x+1)$ tests, but her mark on the last test gave her a mean of 14 marks for the $(x+2)$ tests.

Calculate the number of marks Amanda scored in the last test.

6 In the diagram, O is the centre of the circle through A, B, C and D.
$F G$ is the tangent to the circle at A.
$A C$ intersects $B D$ at E.
Angle $A C B=48^{\circ}$ and angle $C A D=32^{\circ}$.

(a) Calculate the following angles, stating your reasons clearly.
(i) Aggle $A B O$
(ii) Angle CDA
(iii) Angle $G A B$
(b) Explain why $B D$ is not parallel to $G F$.

7 (a) The frequency table shows the weekly expenditure on food of n students from School X.

Weekly expenditure (\$x)	Frequency
$30<x \leq 40$	8
$40<x \leq 50$	17
$50<x \leq 60$	34
$60<x \leq 70$	p
$70<x \leq 80$	3

(i) If $\frac{5}{16}$ of the n students have a weekly expenditure of at most $\$ 50$, show that the value of p is 18 .
(ii) Calculate an estimate of
(a) the mean weekly expenditure on food,
(b) the standard deviation.
(iii) The standard deviation of the weekly expenditure on food of sudents from School Y was $\$ 5.62$.
Using this information, comment on one difference between the two distributions.
(b) The diagram shows an inverted cone of height h and radius r. It contains water to a depth of $\frac{1}{2} h$.

(i) Find the ratio of area of surface B to area of surface A.
(ii) Find the volume of the water if the cone can hold $480 \mathrm{~cm}^{3}$ of water when full.
(iii) The cone is now inverted such that the liquid rests on the flat circular base of the cone, as shown in the diagram on the right. Find, in terms of h, an expression for d, the vertical distance of the liquid surface from the tip of the cone.

8 The diagram shows the curve $y=(4-x)(x+k)$, where k is a constant.
The curve cuts the y-axis at the point $A(0,24)$, and the x-axis at B and C.

(a) Show that the value of k is 6 .
(b) Write down the coordinates of B and C.
(c) Find the coordinates of the maximum point on the curve.
(d) $D(1, m)$ is a point on the given curve.

Find the value of m and the equation of the line $O D$.
(e) The line $y=9$ intersects the curve at P and Q. Find the coordinates of P and Q.

9 A student needed to make a circular face mask for a school performing arts event She took a circular sheet of radius 10 cm and removed two circles, each of radius 2.5 cm for two eyes and an isosceles triangle of base 2 cm and equal sides of 3 cm each for a nose, as shown in Diagram I.

The mouth is shown in the Diagram II.
It is formed by an arc, $A X B$, of a circle, centre O and radius 3 cm .
$A Y B$ is the arc of another circle with diameter, $A B, 3 \mathrm{~cm}$.
She painted the remaining area.

Diagram I

Diagram II
(a) Calculate the area removed.
(b) Calculate the area of mask that was painted.

10 Answer the whole of this question on a sheet of graph paper.
The variables x and y are connected by the equation $y=5-\frac{x^{2}}{10}-\frac{4}{x}$. Some corresponding values are given in the following table.

x	0.5	0.7	1	2	3	4	5	6	7	8
y	-3.0	-0.8	0.9	2.6	2.8	k	1.7	0.7	-0.5	-1.9

(a) Calculate the value of k.
(b) Taking 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for $0 \leq x \leq 8$ and a vertical y-axis for $-3 \leq y \leq 3$, draw the graph of $y=5-\frac{x^{2}}{10}-\frac{4}{x}$ for the values of x in the range $0.5 \leq x \leq 8$.
(c) Use your graph to find the greatest value of $5-\frac{x^{2}}{10}-\frac{4}{x}$ in the interval $0.5 \leq x \leq 8$.
(d) By drawing a tangent, find the gradient of the graph at the point where $x=2$.
(e) Use your graph to solve $5-\frac{x^{2}}{10}-\frac{4}{x}=2$ in the range $0.5 \leq x \leq 8$.
(f) By drawing a suitable straight line, find the range of values of x in the interval $0.5 \leq x \leq 8$ for which $5-\frac{x^{2}}{10}-\frac{4}{x} \geq x$

11 Cheryl works at the Singapore Botanic Gardens.
She needs to rush down to meet a client at Raffles Hotel.
The quickest route from Cheryl's location to Raffles Hotel is indicated on the map with black solid lines.
The bar scale on the lower left comer of the map provides the corresponding actual ground distance.

(a) Calculate the actual travelling distance, in kilometres, between Cheryl's location and Raffles Hotel, giving your answer correct to 2 significant figures.
(b) At 6.14 pm , Cheryl decided to call for a ride from Singapore Botanic Gardens to Raffles Hotel.

Information about FastDel Cab and Aber services and other travelling details are on the opposite page.
Along the way, there are two ERP gantries, indicated by A and B with a star each on the map.

Determine which service Cheryl should choose.
Justify your answer with relevant working.

Travelling time

From	To	Duration
Singapore Botanic Gardens	Orchard ERP (A)	6 minutes
Orchard ERP	Handy Road ERP (B)	5 minutes
Handy Road ERP	Raffles Hotel	4 minutes

ERP Charges

Orchard (A)		Handy Road Gantry (B)	
$12.00 \mathrm{pm}-5.29 \mathrm{pm}$	$\$ 0.50$	$12.00 \mathrm{pm}-12.04 \mathrm{pm}$	$\$ 0.50$
$5.30 \mathrm{pm}-5.34 \mathrm{pm}$	$\$ 1.00$	$12.05 \mathrm{pm}-1.59 \mathrm{pm}$	$\$ 1.00$
$5.35 \mathrm{pm}-5.59 \mathrm{pm}$	$\$ 1.50$	$2.00 \mathrm{pm}-2.04 \mathrm{pm}$	$\$ 1.50$
$6.00 \mathrm{pm}-6.54 \mathrm{pm}$	$\$ 2.00$	$2.05 \mathrm{pm}-2.54 \mathrm{pm}$	$\$ 2.00$
$6.55 \mathrm{pm}-6.59 \mathrm{pm}$	$\$ 1.50$	$2.55 \mathrm{pm}-2.59 \mathrm{pm}$	$\$ 1.50$
$7.00 \mathrm{pm}-7.59 \mathrm{pm}$	$\$ 1.00$	$3.00 \mathrm{pm}-5.29 \mathrm{pm}$	$\$ 1.00$
		$5.30 \mathrm{pm}-5.59 \mathrm{pm}$	$\$ 0.50$
		$6.00 \mathrm{pm}-7.54 \mathrm{pm}$	$\$ 1.00$
		$7.55 \mathrm{pm}-7.59 \mathrm{pm}$	$\$ 0.50$

FastDel Cab Service

The first 1 km or less	\$3.20
Every 400 m thereafter or less up to 10 km	\$0.22
Every 350 m thereafter or less after 10 km	\$0.22
Current Booking Peak Period ($\$ 3.30)$ Monday to Friday (Except Public Holidays):	Monday to Sunday $\quad 6.00 \mathrm{pm}-11.59 \mathrm{pm}$ \& Public Holidays:
Peak Period Surcharge (25% of metered fare) Monday to Friday 6.00 am-9.29am (Except Public Holidays):	Monday to Sunday $\quad 6.00 \mathrm{pm}-11.59 \mathrm{pm}$ \& Public Holidays:
ERP Charge Passengers are required to bear the ERP charge Unit. The ERP charge is deducted each time the top of metered fare	own on the upper display of the In-vehicle xi passes under the ERP gantry, payable on

Aber Service

Base Fare	$\$ 3.00$
Travelling time per minute	$\$ 0.20$
Travelling distance per km	$\$ 0.45$
6 pm to 8 pm peak period surge	$2.5 \times$ of normal fare

End of Paper

4E5N Mathematics Preliminary Exam 2017 (Paper 2)

Section A

4(a)	$\begin{aligned} D B^{2} & =6^{2}+2^{1} \\ & =40 \\ D B & =\sqrt{40} \\ & =6.3245 \end{aligned}$ $\begin{aligned} \tan \angle H B D & =\frac{4}{\sqrt{40}} \\ \angle H B D & =\tan ^{-1}\left(\frac{4}{\sqrt{40}}\right) \\ & =32.311^{\circ} \\ & =32.3^{\circ}(1 \mathrm{d.p} .) \end{aligned}$	
4(b)	$\begin{array}{rlrl} A F^{2} & =6^{2}+4^{2} & F C^{2} & =2^{2}+4^{2} \\ & =52 & =20 \\ A F & =\sqrt{52} & F C & =\sqrt{20} \\ & =7.2111 & =4.4721 \\ A C & =D B \\ & =\sqrt{40} \\ & =6.3245 \\ A C^{2} & =A F^{2}+F C^{2}-2(A F)(F C) \cos \angle A F C \\ \cos \angle A F C & =\frac{A F^{2}+F C^{2}-A C^{2}}{2(A F)(F C)} \\ & =\frac{52+20-40}{2(\sqrt{52})(\sqrt{20})} \\ & & \\ & =60.255^{\circ} \\ & =60.3^{\circ} & (1 \text { d.p. }) \end{array}$	
4(c)	$\begin{aligned} \tan \angle H A D & =\frac{4}{2} \\ \angle H A D & =\tan ^{-1}(2) \\ & =63.434^{\circ} \\ & =63.4^{\circ} \quad(1 \text { d.p. }) \end{aligned}$ \therefore greatest angle of elevation is 63.4°	

Section 8

5(a)	Mean mark for first x tests $=\frac{126}{x}$
5 (b)	$\begin{aligned} \text { Mean mark for first }(x+2) \text { tests } & =\frac{126+9+8}{x+2} \\ & =\frac{143}{x+2} \end{aligned}$
5(c)	$\begin{aligned} \frac{126}{x}-\frac{143}{x+2} & =1 \\ \frac{126(x+2)-143 x}{x(x+2)} & =1 \\ 126 x+252-143 x & =x^{2}+2 x \\ 252-17 x & =x^{2}+2 x \\ x^{2}+19 x-252 & =0 \quad \text { (shown) } \end{aligned}$
5(d)	$\begin{aligned} x^{2}+19 x-252 & =0 \\ (x-9)(x+28) & =0 \\ x & =9 \text { or }-28 \text { (reject) } \end{aligned}$ \therefore Chloe took 9 tests initially.
5(e)	Number of marks Amanda scored in the last test $\begin{aligned} & =14(x+2)-13.5(x+1) \\ & =14(11)-13.5(10) \\ & =19 \end{aligned}$
6(ai)	$\angle B D A=48^{\circ}$ (angles in the same segment) $\angle A B O=90^{\circ}-48^{\circ}$ (right angle triangle in semicircle) OR $\begin{aligned} \angle D C E & =90^{\circ}-48^{\circ} \quad \text { (right angle riangie in semicircle) } \\ & =42^{\circ} \\ \angle A B O & =42^{\circ} \quad \text { (angles in the same segment) } \end{aligned}$ OR $\begin{aligned} \angle A O B & =48^{\circ} \times 2 \\ & =96^{\circ} \end{aligned}$ (anole at centre is twice angle at circumference) $12^{\circ} \text { (isosceles triangle } A O B \text {) }$

6(aii)	$\angle D C E=42^{\circ}$ (angles in the same segment) $\angle C D A=180^{\circ}-42^{\circ}-32^{\circ} \quad$ (sum of angles in riangle) $=106^{\circ}$ OR $\angle C B D=32^{\circ}$ (angles in the same segment) (angles in opposite segement are supplementary) $\begin{aligned} \angle \mathrm{CDA} & =180^{\circ}-32^{\circ}-42^{\circ} \\ & =106^{\circ} \end{aligned}$	
6(aiii)	$\begin{aligned} \angle O A B & =42^{\circ} \quad \text { (base angles of isosceles triangle) } \\ \angle O A G & =90^{\circ} \quad \text { (tangent perpendicular to radius) } \\ \angle G A B & =90^{\circ}-42^{\circ} \\ & =48^{\circ} \end{aligned}$ OR $\angle G A B=48^{\circ}$ (alternate segment theorem)	
G(b)	Since $\angle O B A \neq \angle G A B$, it does not satisfy the property of alternate angles with a set of parallel line. Hence, $B D$ is not parallel to GF OR If $B D$ is parallel to $G F, \angle O B A=\angle G A B$, based on alternate angles. Since $\angle O B A \neq \angle G A B, B D$ is not parallel to $G F$.	
7(ai)	$\begin{aligned} & \frac{5}{16}-8+17=25 \text { students } \\ & \therefore 8+17+34+p+3=\frac{25}{5} \times 16 \\ & 62+p=80 \\ & p=18 \quad \text { (shown) } \end{aligned}$	
7(aiia)	$\begin{aligned} \text { Mean } & =\frac{\sum f x}{\sum f} \\ & =\$ 53.875 \\ & =\$ 53.88 \quad \text { (2 d.p.) } \end{aligned}$	
7(aiii)	$\begin{aligned} \text { Standard deviation } & =\sqrt{\frac{\sum x_{x}^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}} \\ & =9.8734 \\ & =9.87 \quad \text { (3 s.f.) } \end{aligned}$	

8(d)	$\begin{aligned} & \text { At } x=1, \\ & m=(4-1)(1+6) \\ & \quad=21 \end{aligned} \quad \begin{array}{r} \text { gradient }=\frac{21}{1} \\ \quad=21 \end{array} \quad \therefore \text { Equation of line: } y=21 x .$	
8(e)	Sub. $y=9$ into equation of graph, $\begin{aligned} 9 & =(4-x)(x+6) \\ 9 & =-x^{2}-2 x+24 \\ x^{2}+2 x-15 & =0 \\ (x-3)(x+5) & =0 \\ x & =3 \text { or }-5 \\ \mathrm{P}(-5,9) & \\ \mathrm{Q}(3,9) & \end{aligned}$	
9(a)	$\begin{aligned} \text { Area of eyes } & =2 \times \pi r^{2} \\ & =2 \times(2.5)^{2} \pi \\ & =12.5 \pi \mathrm{~cm}^{2} \end{aligned}$ For isosceles triangle, $\begin{aligned} \cos \alpha & =\frac{3^{2}+3^{2}-2^{2}}{2(3)(3)} \\ & =\frac{14}{18} \\ \alpha & =\cos ^{-1}\left(\frac{14}{18}\right) \\ & =38.942^{\circ} \end{aligned}$ Area of nose $=\frac{1}{2}(3)(3) \sin 38.942^{\circ}$ $=2.8284 \mathrm{~cm}^{2}$ OR $\begin{aligned} h=\sqrt{3^{2}-1^{2}} & =\sqrt{8} \\ \text { Igle } & =\frac{1}{2} \times 2 \times \sqrt{8} \\ & =2.8284 \mathrm{~cm}^{2} \end{aligned}$	

11(a)	Total distance on map $\begin{aligned} & =1.8+1.9+4.7+3.8+2.8 \\ & =15 \mathrm{~cm} \end{aligned}$ Actual distance $\begin{aligned} & =\frac{15}{2} \times 600 \\ & =4500 \mathrm{~m} \\ & =4.5 \mathrm{~km} \end{aligned}$
11(b)	$\begin{aligned} & \text { FastDel service } \\ & \text { Base fare }=\$ 3.20 \\ & \begin{aligned} 400 \mathrm{~m} \text { thereafter or less: } \frac{3500 \mathrm{~m}}{400 \mathrm{~m}}=8.75 \approx 9 \end{aligned} \\ & \begin{aligned} \text { Normal fare } & =\$ 3.20+9 \times \$ 0.22 \\ & =\$ 5.18 \end{aligned} \\ & \begin{aligned} & \text { Normal fare }+ \text { peak surcharge }=\$ 5.18 \times 1.25 \\ &=\$ 6.475 \end{aligned} \\ & \begin{aligned} \text { Total metered fare } & =\$ 6.475+\text { booking }+\mathrm{ERP} \\ & =\$ 6.475+\$ 3.30+\$ 3.00 \\ & =\$ 12.775 \\ & =\$ 12.78 \quad(2 \mathrm{~d} . \mathrm{p} .) \end{aligned} \\ & \end{aligned} \quad \text { B A }$ Cheryl should choose FastDel service .

2017 4E EM Geylang Methodist Prelim Paper 1
GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

Answer all the questions.
1 (a) Evaluate $\frac{\sqrt{239}-17^{2}}{34.79^{3} \times 13}$, giving your answer correct to 5 significant figures.

Answer
(b) Simplify $5 x-2(x+2)$.

Answer

2 An estimated number of 36000 people were present at a concert.
(a) If the estimated number was actually rounded off to 3 significant figures, state the maximum possible number of people at the concert.

Answer

(b) If the estimated number was actually rounded off to 2 significant figures, state the minimum possible number of people at the concert.

Answer

3 Factorise completely $6 a x-2 b x+9 a y-3 b y$.

Answer \qquad [2]
[Turn over 3
Page 178

GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

4 The equation of a curve is $y=x^{2}+b x+c$ where b and c are constants.
(a) Given that $(2,0)$ is a point on the curve, show that $b=-\frac{4+c}{2}$. Answer
(b) If the y-intercept of the curve is 14 , find the values of b and c.

$$
\text { Answer } b=\quad c=
$$

5 Triangle $A B C$ is a right angled triangle. Given that $A B=13 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$, find two possible lengths for the side $A C$.

Answer \qquad

GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

6 (a) Express $-x^{2}-5 x-6$ in the form $-(x+a)(x+b)$, where a and b are constants.

Answer \qquad
(b) Hence sketch the curvo of $y=-x^{2}-5 x-6$, indicating clearly the intercepts and turning poim.

Answer

7 Write as a single fraction in its simplest form $\frac{3 x}{(x-2)^{2}}-\frac{2}{2-x}$.
\qquad

GMS(S)/EMarh/P1/Prelim2017/4E/5N/H4I

8 The number of apples, oranges and pears at a fruit stall is given by the ratio 2:3:7.
(a) If there are 126 pears at the fruit stall, find the number of apples at the fruit staft:

Answer
(b) If half the munber of oringes at the fruit stall is replaced by namfind the fifaction of papayas at the fruit stall.

Answer

9 Some values of x and y are given in the table below.

x	3	4	6	12
y	8	6	4	2

State whether x and y could be inidirect pr inverse propurson, and explain why this is so.

Answer

\qquad

10 Solve the following equations.
(a) $5(x-4)=4-2(3 x+1)$

Answer $x=$
(b) $\frac{3 x+1}{5}=\frac{1}{x-2}-1$

11 Factorise the following.
(a) $25 x-30 x^{2}$

Answer

(b) $5 x^{2}+13 x-6$

Answer
(c) $12 x^{2}-3$

Answer

12 A bag costs $\$ 3500$ in Singapore.
On a trip to the US, Amy manages to find an identical bag that costs US $\$ 3000$.

1 US dollar $=1.36$ Singapore dollars.
Is the bag cheaper in the US or Singapore? You must show your calculations. The length of a road from one end to the other is 34.1 km .
(a) On a map, the same road measures 5.5 cm . Write down the scale of the map in the fond $1: n$

Answer 1:
(b) A plot of land of area $88.412 \mathrm{~km}^{2}$ has been marked out for construction of commercial buildings: What is the area on the map that is marked out for construction of commercial buildines?
\qquad

14 A computer costs $\$ 2300$.
During a sale, David buys the computer for $\$ 1782.50$.
Calculate the percentage discount of the computer during the sale.

Answar
\% [2]

15 A car travelling at an initial speed of $v \mathrm{~m} / \mathrm{s}$ decelcrates uniformly for 4 seconds, then travels at a uniform speed of $5 \mathrm{~m} / \mathrm{s}$ for 8 seconds before decelerating uniformly until it comes to a complete rest. The speed-time graph for the car is shown below.

Speed (m/s)

(a) a van, starting at the same time as the car from the same initial point travels along the same route at a uniform speed of $11 \mathrm{~m} / \mathrm{s}$ throughout the journey. On the graph above, draw the line reptesenting the speed-time graph of the van, given that $v>11$.
(b) It is given that deceleration is represented by the gradient of the speed-time graph. The deceleration of the car duning the first 4 seconds is $3.75 \mathrm{~m} / \mathrm{s}^{2}$. Show that $v=20$.

Answer

GMS(S)/EMaul/PI/Prelim2017/4E/5N/1441

(c) It is given that the area under the speed-lime graph represents the distance travelled. At how many spconds, after the vapa and car started from the initial point, will the'van overtake the cart
\qquad

O is the centre of the circle passing through A, B, C, D and E.
Angle $A B E=x^{\circ}$, and angle $E D C=(5 x-38)^{\circ}$.
(n) Find in terms of x, angle $A O E$.

Answer \qquad [I]
(b) Find, in terms of x, angle $E B C$.

Answer
(c) Find x.

Anower $x=$

17 David's wages, W, varies directlyas the souare of the number of sales he makes in a month. In January, he makes snimber ot Sales. In February, the number of sales he makes increases by $[50 \%$ compared to January.
Calculate the percentage change in Davisrs wages in February as compared to January.

Answer \quad \% [3]

18 A class of 40 students had their individual weights taken and the mean and standard deviation of the weights were calculated. It was later found out that the weighing machine used was faulty and every student should be heavier by 2 kg . Describe the effect, if any, it would have on the mean and standard deviation that was calculated.

Answer \qquad
\qquad
[2]

19 (a) Express 600 as a product of its prime factors, giving your answer in index notation.

Answer
(b) $\quad p$ and q are not prime aumbers, -

Given that $600 \times p q$ risenerfect square, and that p and q are positive integerssmallerthin 10, find the smallest possible value of $p-q$.
answer
[2]

20 It is given that
$\xi=\{x: x$ is a positive integer smaller than 10$\}$,
$A=\{x: x$ is a pron number $\}$,
$B=\{x: x$ is an \&vennumber $\}$.
Write down all the numbers in the universal set in the Venn Diagram below.

Answer

[3]

$O A B$ is a triangle.
$\overrightarrow{O A}=8 \mathrm{a}$ and $\overrightarrow{O B}=12 \mathrm{~b}$.
P is a point on $A B$ such that $A P: P B=1: 3$.
(a) Write each of the following in terms of a and b. Give your answers in their simplest form.
(i) $\overrightarrow{A B}$.
(ii) $\overline{A P}$.
\qquad [1]
(b) A line is drawn from O to Q where Q lies on the line $A B$ extended. Given that B is the mid-point of $P Q$, express $\overrightarrow{O Q}$ in terms of a and b, giving your answer in its simplest form.

Answer

[2]
(c) Find the value of $\frac{\text { Area of triangle } O B Q}{\text { Area of triangle } O A Q}$.

22 The coordinates of A is $(-3,5)$ and the coordinates of B is $(7,10)$. $\overrightarrow{A C}=\binom{4}{-7}$.
(a) Find $\overrightarrow{A B}$, expressing your answer as a column matrix.

Answer \qquad
(b) Find $|\overrightarrow{A C}|$.

Answer
[1]
(c) Find the coordinates of C.

23 An architect designing a walkway draws a scale drawing of the walkway below. The drawing is drawn accurately to a scale of $1: 10000$. Point B is directly east of Point A.

Answer

(a) The architect plans to extend the walkway by 0.8 km at a bearing of 145° from point B. Use the scale drawing above to draw the extension of the walkway and label the end of the walkway as Point C.
(b) The wallwway is then further extended from Point C back to Point A. By measurement, find the length of the walkway from A to C in这lometres.

Answer \qquad km
(c) The architect intends to put a notice board along $B C$, equidistant from points A and C. By constructing a perpendicular bisector on the scale drawing, indicate and label the position of the notice board with the letter N.

FPAPER

Answer all the questions.
1 (a) Express as a single fraction in its simplest form

$$
\begin{equation*}
\frac{1}{p-2}-\frac{2}{4 p+3} \tag{3}
\end{equation*}
$$

(b) The formula used in an experiment is

$$
T=\frac{k(x-a)}{a}
$$

(i) Express x in terms of T, k and a.
(ii) Find, in terms of k, the value of T when $x=3 a$.

2 In the given diagram, $A B C D$ and $A L M N$ are squares.
$A B=(3 x-1) \mathrm{cm}$ and $A N=(x+2) \mathrm{cm}$.

(a) Write down the length of $L B$ in terms of x.
(b) The area of the rectangle $L B Y M$ is $10 \mathrm{~cm}^{2}$.

Write down an equation in x and show that it reduces to $2 x^{2}+x-16=0$.
(c) Solve the equation $2 x^{2}+x-16=0$, giving your solutions correct to two decimal places.
(d) Which value of x do you have to reject and why?
(e) Hence, calculate the perimeter of $L B Y M$, giving your answer to the nearest millimetre.

3 Singapore and Kuala Lumpur are 350.7 km apart.
(a) Ms Wong travelled by car from Singapore to Kuala Lumpur (KL) at an average speed of $90 \mathrm{~km} / \mathrm{h}$. How long did the journey take?
(b) Ms Wong left Singapore at 0600 . If she had a meeting to attend in KL. at 1000 , was shie early or late for this meeting?
(c) After the 3-hour meeting, Ms Wong took a one-hour lunch-break before making her return journey. She wanted to reach Singapore before the evening peak-hour commenced at 4 pm . If the speed limit is $100 \mathrm{~km} / \mathrm{h}$, would she be able to reach Singapore by 4 pm ?
(d) The upcoming Singapore-KL high-speed-rail (HSR) train line boasts a travelling time of 99 minutes in a single direction between the two cities. What is the average speed of the train?
(e) The maximum speed of the train is expected to be 300 krmh . What is the percentage decrease in speed as mentioned in (d), compared to the expected speed?

4 A bag contains 6 tennis-balls comprising of 4 green balls and 2 red balls.
Amy selects a ball at random from the bag and then replaced. She randomly selects another ball from the same bag.
(a) Draw a probability-tree diagram to represent the outcomes.
(b) Find, in its simplest form, the probability that the selected balls
(i) are green,
(ii) are of different colours,
(iii) include at least one red ball.

5

X, Y and Z are on level horizontal ground. The bearing of Y from X is 100°.
$X Y=48 \mathrm{~m}$, angle $X Z Y=100^{\circ}$ and angle $X Y Z=25^{\circ}$.
(a) Calculate
(i) the bearing of X from Y,
(ii) the bearing of Z from X,
(iii) the shortest distance from Z to $X Y$.
(b) If there is a tower of height 10 m at X, calculate the angle of depression of Y from the top of the tower.

6

The diagram shows a cross-section of a rhombus cookic-box, $A B C D$, and E is the intersection-point of $A C$ and $B D$.
$A B \| D C$ and $A D \| B C, A B=C D=10 \mathrm{~cm}$ and angle $B C D=130^{\circ}$.
(a) (i) Explain why angle $A E B$ is a right-angle.
(ii) Calculate $B D$.
(iii) Calculate the length of $E C$.
(iv) Hence, calculate the area of triangle $B C D$.
(b) A geometrically similar smaller version of the cookie-box is necessary for smaller quantities of cookies. In the smaller cookie-box, $A B=8 \mathrm{~cm}$

Find the cross-sectional area of the smaller cookie-box.

7 (a) The following table shows the scores of 30 students from Secondary 4 Ace in their Mathernatics Examination.

80	88	96	60	59	70	88	97	69	60
39	37	69	74	47	92	72	49	58	66
88	82	100	95	56	77	99	62	79	63

(i) Calculate the mean score for the students in Secondary 4 Ace.
(ii) Calculate the standard deviation for the scores above.
(b) The mcan and standard deviation of Sccondary 4 Bravo for the same examination are as follow:-

Mean Score	71.75
Standard Deviation	15.6

(i) Which class performed better? Support your claim with evidence.
(ii) Which class had more consistent results? Support your claim with evidence.

8 A funnel is in the form of an inverted right circular cone. Figure 1 shows a vertical cross-section of the funnel. It contains oil and water (which do not mix). The depths of water and oil are all 10 cm , with water at the bottom. It is given that the height of the funnel is 30 cm and the base radius is 9 cm .

Figure 1

Figure 2
(a) Find the volume of the funnel in terms of π.
(b) Find the fraction of
(i) $\frac{\text { volume of oil }}{\text { volume of water }}$,
(ii) $\frac{\text { surface area of the funnel incontact with water }}{\text { total surface area of the interior of the funsel }}$.
(c) All the water in the funnel is then drained through the tap at the vertex of the funnel, into another container formed by a cylinder of diameter 6 cm and summounted by a hemisphere at the lower part of the cylinder. as shown in Figure 2. The height of the cylindrical part of the container is 15 cm .
Find the depth of water in this container.
(Note: Only the water is drained; the oil remains in the funnel.)

9 Two outlets of a new fast-food chain sell three types of soft drinks, namely Coke, Sprite and Lemon Tea. The tables below show the sales of the sof drinks in the afternoon and evening respectively.

	Aflemoon		
	Coke	Sprite	Lemon Tea
Outlet A	280	200	150
Outlet B	200	300	350

	Evening		
	Coke	Sprite	Lemon Tea
Outlet A	420	300	260
Outlet B	350	420	540

The sales of the sof drinks in the afternoon are represented by the matrix A, where

$$
\Lambda=\left(\begin{array}{lll}
280 & 200 & 150 \\
200 & 300 & 350
\end{array}\right)
$$

(a) Write down the 2×3 matrix \mathbb{E} representing the sales in the evening for the two outlets respectively.

The cost price of supplying the sof drinks to the fast-food chain is $\$ 1.20, \$ 1.00$ and $\$ 1.50$ for Coke, Sprite and Lemon Tea respectively. The selling price for cach sof drink is $\$ 2.00, \$ 2.00$ and $\$ 3.50$.
The cost price of supplying the soll drinks is represented by matrix C, where

$$
C=\left(\begin{array}{l}
1.20 \\
1.00 \\
1.50
\end{array}\right)
$$

(b) Write down the column matrix S representing the selling price of the soft drinks for the three types of soft drinks respectively.
(c) Calculate $\mathbf{T}=\mathbf{A}+\mathbf{E}$, and describe what matrix \mathbf{T} represents.
(d) Evaluate Λ C and describe what is represented by the elements of AC.
(e) Evaluate $T(S-C)$, and explain what the elements of $T(S-C)$ represent.
(f) (i) If the fast-food chain's general manager would like to evaluate the combined total amount in sales for both outlets for the day, write down the matrix operation he necds to calculate.
(ii) Evaluate the matrix that you have specified in part (i) above.

10 (a) (i) Find the value of each intcrior angle of a regular 15 -sided polygon. Find an expression for y in terms of n.
(b)

The diagram shows a circle $A B C$, with centre O.
$F A D$ and $D C E$ arc tangents to the circle, and $O A=O C=8 \mathrm{~cm}$.
Angle $O A B=35^{\circ}$ and angle $C D O=30^{\circ}$.
(i) Name the pair of congruent triangles.
(ii) Find
(a) angle $D O A$,
(b) angle $C B A$,
(c) angle $E C B$.
(d) the area of the shaded region.

11 Answer the whole of this question on a shect of graph paper.
From the top of a mountain, Barry fires a pellet from an air gun upwards into the air. The height, h metres, of the pellet from Barry 8 seconds afer it is released can the modelled by the equation $h=1+10 t-3 t^{2}$.

Some conresponding values of l and h are given in the table below.

t	0	1	2	3	4	5	6
h	1	8	9	4	m	-24	-47

(a) Calculate the value of m.
(b) Using a scale of 2 cm to represent 1 second, draw a horizontal t-axis for $0 \leq i \leq 6$.
Using a scale of 1 cm to represent 5 metres, draw a vertical h-axis for $-50 \leq h \leq 10$.

On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to estimate
(i) the maximum height of the pellet above ground level,
(ii) the length of time that the pellet was more than 2 metres above ground level,
(iii) the time clapsed before the pellet reaches the same level as it was fired from.
(d) By drawing a tangent, find the gradient of the curve at $(5,-24)$. State the units of your answer.

12 From July 2017 onwards, the price of water to houscholds will be increased in two steps, on 1 July 2017 and on 1 July 2018. At the same time, the Government will be increasing the annual GST Voucher - U-Save rebate for eligible HDB houscholds by between $\$ 40$ and $\$ 120$, depending on the flat type. The average change in water bill after the increased U-Save rebates is given in Table A on the next page.
(a) Show that for a 4-room HDB flat, the U-Save Rebate given in July 2017 is $\$ 7$.

Table B shows how the water tariffs will be increased between 2017 and 2018.
Charlie owns a new 4-room build-to-order (BTO) HDB flat in Woodleigh.
Read and understand the contents of the utility bill dated June 2017 in Table C.
(b) Assuming that the amount of water Charlie used in July 2017 is the same as that for June 2017, calculate the individual charges in July 2017 for
(i) water usage (reading), [I]
(ii) watcrbome fee,
(iii) water conservation tax,
(iv) total cost of water services (after deduction of U-Save Rebate).
(c) Assuming that the amount of water Charlie uses for July 2018 is the same as that for June 2017, calculate the total cost of water services in July 2018 (before the U-Save Rebate).
(d) Why do you think that average changes in 2017 and 2018 bills are increasing from l-room HDB flats to the executive/multi-generation flats?

Table A：Average Change in Water Bill after Increased U－Save Rebates （by IDDH Mat Type）
Source：https：／／www．pub．gov．sg／Documents／Wulerl＇ricelRevisions！3rochure．pdf

	$\begin{aligned} & \text { 1-ropat } \\ & \text { iDEBAnt } \end{aligned}$	$\begin{aligned} & 2 \text { 2ropm } \\ & \text { IDBnor } \end{aligned}$	$\begin{aligned} & \text { 3-coomit } \\ & \text { HDBanas } \end{aligned}$	$\begin{aligned} & \text { qdroon } \\ & \text { intongit } \end{aligned}$	$\begin{aligned} & \begin{array}{l} s-r a o u t \\ c i p i s i n t ~ \end{array} \end{aligned}$	
－Euforeprice lnereniout	\＄23	\＄29．	\＄33	\＄42	\＄44	－ 349
A（red pricejticreait＇ （201力 tion in	\＄26	\＄34	\＄37	\＄17	\＄50	\＄5s
After，lacreiód H－Saye？ rebates（2017）4，	$\$ 16$	\＄24	\＄29	540	\＄45	\＄31
	－\＄7	－\＄5	－\＄4	－\＄2	＋\＄1	＋\＄2
Averagéchangt tif thiri2018 日int	－\＄3	\＄0	＋\＄2	＋\＄5	＋58	＋\＄11

Table B：Water Price Revisions
Source：https：／／www．pub．gov．sg／Documents／WaterPriceRevisionsBrochure．pdf

Note：Water is charged per cubic metre $\left(\mathrm{m}^{3}\right)$ ，which is equivalent to 1000 litres．
All figures are before GST．
＊For the calculation of total price，the Sanitary Appliance Fee is converted to its volumetric equivalent．

Table C：Utility Bill for June 2017
June 2017 Bill

菏reskedown of Current Charges	Uroge	Patan	Amarela	Tctal
24 ligetrioty eswions				
	730 kum	02139	167.43	157．As
1：Weter serviese by Public ventas sooid				
Reatholuhen on 28 inn 2017 ： 20048	38.80 M	1.1700	41．89	
Huthtomater	35， $\mathrm{Cu}^{\text {Cu }}$	028003	10.03	
Weitar Commevetion Tax	141．89	50\％	12．87	
Sonday Agplagas Fige	2 Fown	28097	89	70.10
	104	7.71	7.71	7.7
Subtotal			238.24	235.24
CET	20ssis	\％	18.40	36.45
Cumunt Chayest				51.70

d of Paper

Answer Key

1. (a) -0.00049971
(b) $3 x-4$
2. (a) 36049
(b) 35500
3. $(2 x+3 y)(3 a-b)$
4. (a) $b=-\frac{4+c}{2}$
(b) $b=-9 ; c=14$
5. $A C=5 \mathrm{~cm}$ or 17.7 cm
6. (a) $-(x+3)(x+2)$
(b)

7. $\frac{5 x-4}{(x-2)^{2}}$
8. (a) 36
(b) $\frac{1}{8}$
9. -
10. (a) $x=2$
(b) $x=\frac{1}{3} \quad$ or $\quad x=3$
11. (a) $5 x(5-6 x)$
(b) $(5 x-2)(x+3)$
(c) $3(2 x+1)(2 x-1)$
12. cheaper in Singapore
13. (a) 620000
(b) $2.3 \mathrm{~cm}^{2}$
14. 22.5\%
15. (a) -
(b) -
(c) $8=5$
16. (a) $2 x$
(b) $90-x$ or $218-5 x$
(c) $x=32$
17. 525%
18. -
19. (a) $600=2^{3} \times 3 \times 5^{2}$
(b) -5
20.

21. (ai) $12 b-8 a$
(aii) $3 b-2 a$
(b) $21 b-6 a$
(c) $\frac{3}{7}$
22. (a) $\binom{10}{5}$
(b) 8.06
(c) $(1,-2)$
23. (b) 1.16 km

Answer Key

1. (a) $\frac{2 p+7}{(p-2)(4 p+3)}$
(bi) $x=\frac{a T}{k}+a$
(bii) $T=2 k$
2. (a) $(2 x-3) \mathrm{cm}$
(b) -
(c) $x=2.59$ or -3.09
(d) -
(e) 13.5 cm
3. (a) 3.90 h
(b) She was early for the meeting.
(c) She would not be able to reach Singapore by 4 pm.
(d) $212.5 \dot{4} \mathrm{~km} / \mathrm{h}$ or $213 \mathrm{~km} / \mathrm{h}(103 \mathrm{~s} . f$.
(e) 29.15% or 29.2% (103 s.f.)
4. (a) -
(bi) $\frac{4}{9}$
(bii) $\frac{4}{9}$
(biii) $\frac{5}{9}$
5. (ai) 280°
(aii) 165°
(aiii) 16.9 m
(b) 11.8°
6. (ai) -
(aii) 18.1 cm
(aiii) 4.23 cm
(aiv) $38.3 \mathrm{~cm}^{2}$
(b) $49.0 \mathrm{~cm}^{2}$
7. (ai) $72.3 \dot{6}$ or 72.4 (lo 3 s.f.)
(aii) 17.6
(bi) -
(bii) -
8. (a) $810 \pi \mathrm{~cm}^{3}$
(bi) $\frac{7}{1}$ or 7
(bii) $\frac{1}{9}$
(c) 4.33 cm
9. (a) $E=\left(\begin{array}{lll}420 & 300 & 260 \\ 350 & 420 & 540\end{array}\right)$

[Turn over

(b) $S=\left(\begin{array}{l}2.00 \\ 2.00 \\ 3.50\end{array}\right)$
(c) $T=\left(\begin{array}{lll}700 & 500 & 410 \\ 550 & 720 & 890\end{array}\right)$

Matrix T represents the sales of Coke, Sprite and Lemon Tea in the aflemoon and evening at outlets A and B respectively.
(d) $A C=\binom{761}{1065}$

Matrix $A C$ represents the total cost price of supplying soft drinks to the fast-food chain in the aftemoon at outlets A and B respectively.
(e) $T(S-C)=\binom{1880}{2940}$

Matrix $T(S-C)$ represents the total profits in the afternoon and evening at outlets A and B respectively.
(fi) $\left.\left(\begin{array}{ll}1 & 1\end{array}\right)\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right]$
(fii) (3770)
10. (ai) 156°
(aii) $y=\frac{180 n-780}{n-3}$ or $180-\frac{240}{n-3}$
(bi) -
(biia) 60°
(biib) 60°
(biic) 65°
(biid) $43.8 \mathrm{~cm}^{2}$
11.
(a) $\mathrm{m}=-7$
(b)
(ci) 9.4 m
(cii) 3.15 s
(ciii) 3.35 s
(d) $-22.64 \mathrm{~m} / \mathrm{s}$
12. (a) $\$ 7$
(bi) $\$ 42.60$
(bii) $\$ 27.92$
(biii) $\$ 14.91$
(biv) $\$ 78.44$
(c) $\$ 97.91$
(d) -

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Geometry and Measurement

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

$$
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians }
$$

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
& \text { Mean }=\frac{\sum f x}{\sum f} \\
& \text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1. Calculate $\frac{0.85^{2}-5.34}{\sqrt{81.2}+3.134}$, giving your answer correct to 3 significant figures.

> Answer
2. A set of numbers is given below.

$$
-0.4, \frac{1}{3}, \sqrt[3]{3}, \frac{\pi}{7}, 0.66,-\sqrt{4}
$$

(a) Write the set of numbers in descending order.

> Answer
(b) Write down the irrational number(s) from the given set.

Answer \qquad [1]
3. Factorise completely $6 a^{2}\left(a^{2}-1\right)-\left(a^{2}-1\right)^{2}$.

Answer

4. The figure below is extracted from a baseball game broadcast.

It shows the kriuckleball velocity statistics of a baseball player.
State one aspect of the data that may be misleading and explain how it might lead to a mis-interpretation of the data by the audience.

Answer \qquad
\qquad
\qquad
\qquad
\qquad

5. Given that $a^{2}+6 a=6$, find the value of $a^{3}+7 a^{2}$.

Answer

6. On Monday, the temperature of a certain location at 1200 was $34^{\circ} \mathrm{C}$.

The temperature dropped to $-5^{\circ} \mathrm{C}$ at 1400 on Tuesday.
Given that the temperature decreases at a constant rate,
find the temperature at 0700 on Tuesday.

Need a home tutor? Visit smiletutor.sg
7. An integer k undergoes a series of operations as shown in the steps below.

Step $1: \frac{1}{6}$ is added to k.
Step 2: The value from step 1 is multiplied by 24.
Step 3: The value from step 2 is increased by 2.
Step 4: The value from step 3 is divided by 2 to give the resultant value n.
(a) Express n in terms of k.

Give your answer in its simplest form.

> Answer
(b) Hence explain why n is an integer and a multiple of 3 .

> Answer
\qquad
\qquad
\qquad
\qquad
8. V is inversely proportional to the cube of T.

Calculate the percentage change in V, given that T is increased by 300%.
9. $\xi=\{x: x$ is an integer, $10<x \leq 23\}$
$A=\{x: x$ is an prime number $\}$
$B=\{x: x$ is a multiple of 3$\}$
(a) Complete the Venn diagram below to illustrate this information.

Answer

(b) List the elements of $(A \cup B)^{\prime}$.

Answer
10. It is given that $\cos \left(180^{\circ}-A\right)=-\frac{24}{25}$ and $0^{\circ}<A<90^{\circ}$.

Find, without the use of a calculator, the value of $\sin \left(180^{\circ}-A\right)$.
11. Express $-8 x-11+x^{2}$ in the forn $(x+p)^{2}+q$.

Answer

12. The table below shows the number of books that a group of students has.

Number of books	1	2	3	4
Number of students	5	14	x	7

(a) Write down the largest possible value of x if the mode is 2 .

> Answer
(b) Find the value of x if the mean is 2.8 .
13. (a) Express 60 as the product of its prime factors.

$$
\text { Answer } 60=
$$

[1]
(b) Find the smallest positive integer value of x for which $60 x$ is a multiple of 378 .
14. Each term in this sequence is found by adding the same number to the previous term.

$$
a=13, b, c, 37, \ldots
$$

(a) Find the values of a, b and c.

$$
\text { Answer } a=\ldots \ldots \ldots
$$

(b) Write down an expression, in terms of n, for the $n^{\text {th }}$ term.

(c) Explain why 121 is not a term in this sequence.

Answer

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. The diagram shows the speed-time graph for the first 25 seconds of a car's journey.

(a) Find the instantaneous speed of the car after travelling for 20 seconds.

Answer \qquad m / s [2]
(b) Find the total distance travelled by the car.
16. Solve the equation $\frac{8}{3-x}=5 x-2$.
17. (a) Simplify $18 p^{2} c^{3} \div 4 p^{5} c^{-4}$.

Answer
(b) Given that $9 \times 27^{\text {2n }}=1$, find the value of n.

Answer $\quad n=$
18. (a) Solve the inequalities $-7 \leq 15-5 k<9$.

Answer
[2]
(b) Write down the integer(s) that satisfy $-7 \leq 15-5 k<9$.
19. (a) (i) Sketch the graph of $y=-\frac{1}{2} x^{2}$.

Answer

(ii) Sketch the graph of $y=\frac{5}{x^{2}}$.

Answer
(b) A student claimed that there are roots to the equation $\frac{x^{2}}{2}+\frac{5}{x^{2}}=0$.

Do you agree? Justify your answer.
Answer \qquad
\qquad
\qquad
20. The cumulative frequency distribution shows the results of a group of students estimating the mass, in grams, of metal balls in a container

The actual mass of the metal balls is 500 grams.
(a) Find the probability that a student, chosen at random, overestimated the mass.
\qquad
(b) Find the number of students who gave estimates within 20% of the actual mass.

Answer
21. Two connected discs of radii 2.5 cm and 8.3 cm are shown below.

A clockwise motion in the smaller disc will result in an anti-clockwise motion of the bigger disc.
W, X, Y are points on the circumference of the bigger disc and $E F$ is parallel to $W Y$. E and F are the center of the smaller and bigger discs respectively.

(a) The smaller disc makes one full complete clockwise rotation.

Find, in terms of π, the angle of rotation made by the larger disc.
Assume that friction is negligible in this question.

Answer \qquad radians [2]
(b) Given that $\angle E F W=1.03$ radians, find the area of the minor segment $W X Y$.

> Answer
\qquad cm^{2} [2]
22. A lake has an area of $6.25 \mathrm{kn}^{2}$. It is represented by an area of $0.16 \mathrm{~cm}^{2}$ on map A.
(a) (i) Find the scale of map A in the form $1: n$.

Answer
[2]
(ii) The length of a road on map A is 8.5 cm .

Find the actual length, in kilometres, of the road.

Answer \qquad km [1]
(b) The area of the lake is represented on another map B.

The scale of map B is $1: 450000$.
Find the area, in square centimetres, of the lake represented on map B.

Arswer
23. The planet Earth can be modelled by a sphere.

The Earth's circumference is estimated to be 40075 km .
[Take $\pi=3.142$]
(a) Find the radius, in kilometres, of the Earth.

Give your answer in standard form, correct to 3 significant figures.

(b) The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Express this speed in kilometres per hour.

> Answer
km / h [1]
(c) Find the time taken, in minutes, for a beam of light to travel a distance half the circumference of the Earth.
Give your answer in standard form, correct to 3 significant figures.

Answer
minutes [2]
24. In the following figure, a circle with center O is located in triangle $A B C$.
$A C$ meets the circle at point D and $A D=8.5 \mathrm{~cm}$.
E is a point on the circumference of the circle, $A B=17 \mathrm{~cm}$ and $A E=6 \mathrm{~cm}$.
The ratio of the area of triangle $A B C$ to the area of the circle is $5: 2$.
Find the shortest distance from C to $A B$.
[Take $\pi=3.142$]

25. In a battleship board game, the position of four ships labelled P, Q, R and S are represented on a Cartesian Plane with the North and East directions given. Point O is the origin.

(a) Given that line $P Q$ is perpendicular to line $O R$, Find the coordinates of the ship at Q.

\qquad
(b) Find the distance between Ship P and Ship S.

> Answer
units [1]
(c) Find the beaning of Ship R from Ship Q.

Answer

- [2]

26. In the diagram, $O P R S$ is a trapezium where $P R$ is parallel to $O S$.

The line $O P$ is produced to the point Q such that $\frac{O P}{O Q}=\frac{1}{3}$.

(a) Given that $\overrightarrow{O P}=2 \mathrm{a}$ and $\overrightarrow{O S}=2 \mathrm{~b}$, express in terms of a and b , as simply as possible,
(i) $\overrightarrow{\mathrm{SQ}}$.
(ii) $\overrightarrow{O R}$

Answer
(b) It is given that $\overrightarrow{O T}=6 a+4 b$.
(i) Explain why O, R and T lie on a straight line.

Answer \qquad
\qquad
\qquad
\qquad
(ii) State the name of quadrilateral $O Q T S$.

> Answer
(c) (i) Find, giving your answer as a fraction in its simplest form, $\frac{\text { area of triangle } P Q R}{\text { area of iriangle } Q Q S}$

Answer

(ii) Hence write down the ratio of $\frac{\text { area of triangle } P Q R}{\text { area of quadrilateral } O P R S}$.

Answer
 End of Paper 1

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi d \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi \pi^{2} h
\end{gathered}
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi u^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1. (a) (i) Simplify the expression $\frac{2 x^{2}+7 x-4 \text { : }}{x^{2}-16}$
(ii) Hence make x the subject of the formula $y=\frac{2 x^{2}+7 x-4}{x^{2}-16}$.
(b) Solve these simultaneous equations.

$$
\begin{aligned}
& 2 x=1-y \\
& 4 x+5 y=8
\end{aligned}
$$

(c) Given that $\frac{1}{x+y}+\frac{2}{x-y}=\frac{2 x+5 y}{x^{2}-y^{2}}$,
(i) show that $\frac{x}{y}=4$.
(ii) Hence find the value of $\left(\frac{3 x}{2 y}\right)^{2}$.
2. Alan bought m water bottles for $\$ 128$.
(a) Write down an expression, in terms of m, for the cost, in dollars, of one water bottle.
(h) Alan sold 12 of the water bottles at a profit of $\$ 2$ each and the rest at $\$ 7$ per water bottle.

Write an expression, in terms of m, for the total amount of money he received from the sale of the water bottles.
(c) Alan found that he made a profit of $\$ 20$ from the sale.

Write an equation in m to represent this information and show that it reduces to

$$
\begin{equation*}
7 m^{2}-208 n+1536=0 \tag{3}
\end{equation*}
$$

(d) Solve the equation $7 m^{2}-208 m+1536=0$.
(e) Find the selling price of each water bottle so that Alan makes a profit of 20%.
3. In the diagram, the points S, T, U and V lie on a circle with centre O.
G is a point on the circle such that $G U$ is the diameter of the circle. The tangent $K U$ and the chord $G T$ are extended to meet at point H. $\angle S T U=75^{\circ}$ and $\angle G H U=38.7^{\circ}$.

(a) Prove that triangle $G T U$ and riangle $G U H$ are similar.
(b) Given that $H U=8 \mathrm{~cm}$ and $U T: G T=5: 4$, find the area of triangle $G U H$.
(c) Stating your reasons clearly, calculate
(i) $\angle S V U$,
(ii) $\angle G T S$,
(iii) $\angle T G U$, and
(iv) $\angle T O Q$.
4. The diagram shows a conical container with radius 9 cm and height 24 cm .

Two balls are placed in the container as shown and $49.5 \pi \mathrm{~cm}^{3}$ of sand are needed to fill the container completely.

(a) Calculate the total surface area of the container.
(b) If the balls are removed and the container is inverted, find the height of the sand in the container.
(c) The radii of the two balls are in the ratio of $2: 5$.

Calculate the radius of the smaller bail.
5. Answer the whole of this question on a single sheet of graph paper.

The variables x and y are connected by the equation

$$
y=x-2+\frac{8}{x}
$$

Some corresponding values of x and y are given in the table below.

x	1	1.5	2	3	4	5	6	7	8
y	7.0	4.8	4.0	3.7	4.0	4.6	5.3	h	7.0

(a) Find the value of h.
(b) Using a scale of 2 cm to represent I unit on each axis, draw a horizontal x-axis for $0 \leq x \leq 8$ and a vertical y-axis for $0 \leq y \leq 8$.

On your axes, plot the points in the given table and join them with a smooth curve.
(c) By drawing a tangent, find the gradient of the curve $\mathbf{a}(4,4.0)$.
(d) Use your graph to solve the equation $x+\frac{8}{x}=8.5$ for $0 \leq x \leq 8$.
(e) (i) On the same axes, draw the line $y=7-x$ for $0 \leq y \leq 8$.
(ii) Write down the x-coordinates of the points at which the two graphs intersect.
(iii) Hence state the value of c such that the equation $2 x^{2}+c x+8=0$ is satisfied by the values of x found in part (e)(ii).
6. Diagram I shows a table with a horizontal plane $A B C D$ such that $A B=120 \mathrm{~cm}$ and $A D=70 \mathrm{~cm}$.
Three vertical planes are erected along three sides of the table such that E and F are vertically above C and D respectively and $C E=D F=30 \mathrm{~cm}$.
Q and P are the midpoints of $B C$ and $B E$ respectively.

Diagram I
(a) Calculate
(i) $A Q$,
(ii) angle $P A Q$.

A wooden board is attached along $E F$ with hinges such that it covers $A B E F$ in Diagram I. $A B E F$ then becomes a tabletop that can be used by an architect when he draws his designs. This tabletop can be lifted up and Diagram II shows the side view when this is done. The new position for B is now $B^{\prime}, 60 \mathrm{~cm}$ directly above B.

(b) (i) Show that angle $B E B^{\prime}$ is 46.397°, correct to 3 decimal places.
(ii) Hence find the distance moved by point B, when the tabletop is lifted up to B^{\prime}. [2]
7. A shop sells two types of cookies, Cranberry and Blueberry.

Each type is soldin packets of three different sizes, small (S), medium (M) and large (L). They are each sold at a different price.

The sales for two consecutive weeks, Week I and 2, are given in the following table.

	Week 1			Week 2		
Size	S	M	L	S	M	L
No. of packet of Cranberyy cookies sold	15	10	12	7	11	9
No. of packet of Blueberry cookies sold	13	11	14	12	8	17
Cost per packet	$\$ 4$	$\$ 5.50$	$\$ 6.50$	$\$ 4$	$\$ 5.50$	$\$ 6.50$

The matrix \mathbf{G} shows the sales of the cookies in Week 1.

$$
\mathbf{G}=\left(\begin{array}{ccc}
\mathrm{S} & \mathrm{M} & \mathrm{~L} \\
\left(\begin{array}{ccc}
15 & 10 & 12 \\
13 & 11 & 14
\end{array}\right)
\end{array} \begin{array}{l}
\text { Cranberry } \\
\text { Blueberry }
\end{array}\right.
$$

(a) Write down a matrix \mathbf{D} to represent the sales of the cookies in Week 2.
(b) Evaluate $M=(G+D)$ and state what its elements represent.
(c) The cost of each packet of cookies for each size can be represented by the matrix \mathbf{C}.

$$
\mathbf{C}=\begin{gathered}
\text { Cost } \\
\left(\begin{array}{c}
4 \\
5.5 \\
6.5
\end{array}\right) \begin{array}{l}
\mathrm{S} \\
\mathrm{M} \\
\mathrm{~L}
\end{array}
\end{gathered}
$$

Evaluate $L=\frac{1}{2}(\mathrm{MC})$ and state what its elements represent.
(d) (i) Write down a matrix \mathbf{T} such that TMC gives the total sales for the two weeks. [1]
(ii) Hence, evaluate TMC.
(e) The target sales of the cookies in Week 3, as compared to Week 1 are as follow:

Cranberry: increase by 35%
Blueberry: decrease to 85%
Write down the value of a and of b such that the matrix product

$$
\left(\begin{array}{ll}
a & b
\end{array}\right)\left(\begin{array}{lll}
15 & 10 & 12 \\
13 & 11 & 14
\end{array}\right)
$$

gives the tadrget sales of the cookies in Week 3 .
8. Diagram I shows a regular hexagon $A B C D E F$ and squares $A F P Q$ and $C B R S$.

(a) Find
(i) reflex $\angle B A Q$,
(ii) $\angle A Q R$.
(b) Show that $P A R$ is a straight line.
(c) Additional squares and hexagons are added to Diagram I to form a regular polygon, $A B R Q$, as shown in Diagram II.

Calculate the number of squares added to form the polygon $A B R \ldots Q$.
9. (a) An entrance examination consists of 2 different papers, Paper 1 and Paper 2.

A candidate must pass Paper 1 before he can proceed to sit for Paper 2.
He must pass both papers in order to pass the examination.
He has a maximum of 3 sittings to pass the examination.
The probability of passing Paper 1 and 2 are 0.9 and 0.8 respectively, and increases by 0.1 for each subsequent attempt of the same paper.
(i) The tree diagram shows the probabilities of the possible outcomes.

$1^{\text {st }}$ Sitting	$2^{\text {nd }}$ Sitting	$3^{\text {nd }}$ Sitting
Paper 1	Paper 2	Paper 2

Find the respective values of u, v, w, and x.
(ii) Calculate the probability that a candidate
(a) passes the examination at the end of the second sitting,
(b) does not pass the examination.
(iii) If 1000 candidates enrolled for the examination, estimate the number of candidates expected to pass eventually.
9. (b) The stem-and-leaf diagram shows the amount of time, in seconds, a group of boys can hold their breath when under water.

Stem	Leaf						
1	5						
2							
3							
4	0	0	1	2	3	5	7

Key: $4 \mid 2$ means 42
(i) Find the
(a) median time taken, and
(b) mean time taken.
(ii) Is the median or the mean time a better representation, for the time taken by this group of boys?
Explain your answer.
(iii) Calculate the standard deviation,
(iv) Another group of 30 boys measured the time they took to hold their breath underwater.
Their mean time taken was 53.5 seconds and the standard deviation was 7.86.
Compare and comment on the results between these two groups of boys.
10. ERGO is a company that sells ergonomic fumiture for homes.

The types of furniture include study table-chair sets, chairs, baby cots and bunk beds.
The table below shows the average time taken by the delivery men to assemble each type of furniture.

Furniture 1	Average time taken to assemble each piece (minutes)
Study table-chair set	45
Chair	3
Baby cot	12
Buink bed	105

(a) Find the total average time taken, in hours and minutes, to assemble one set of study table-chain set, one baby cot and one bunk bed.
(b) The Operation Manager in the company is responsible for planning the daily delivery route.
On a particular day, the delivery route is as shown below.

No.	Location	Order	Estimated time of delivery
1	Happy Valley	- 1 study table-chair set - 2 chairs	0900 to 1030
2	Joyful Pasture	- I baby cot	1030 to 1200
3	Dream Cove	- 1 baby cot - 1 bunk bed	1030 to 1200
4	Blissful Ave	- 1 stady table-chair set - I baby cot - 1 bunk bed	1300 to 1500
5	Peace Link	- 1 study table-chair set - 1 baby cot	1500 to 1700

Additional information needed for the delivery is shown on the opposite page.
The delivefy men left the office at 0915 for the first location at Happy Valley. After assembling the orders, they proceeded to the second location at Joyful Pasture and arrived at 1030.
(i) Calculate the average speed, in km / h, of the delivery van, leaving your answer to the nearest whole number.
Do you think the answer is a reasonable estimate of the actual travelling speed of the van? Justify your answer.
(ii) The daily working hours for the delivery men is 0830 to 1800 , and they are

Determine if the delivery men can leave the office punctually at 1800 for that day.
Support your answer with appropriate calculations.
State one reasonable assumption you have made in your calculations.

DISTANCE CHART BETWEEN THE VARIOUS LOCATIONS

Distance (in km)	ERGO Office	Mappy Valley	Joyful Pasture	Dream Cove	Blissful Ave	Peace Link
ERGO Office	-	13.8	18.1	9.7	7.2	1.9
Happy Valley	13.8	-	4.7	3.8	8	16.3
Joyful Pasture	18.1	4.7	-	6.1	10.6	20
Dream Cove	9.7	3.8	6.1	-	5.4	9.3
Blissful Ave	7.2	8	10.6	5.4	-	8.8
Peace Link	1.9	16.3	20	9.3	8.8	-

SPEED LMMITS FOR VEHICLES

The following speed limits are enforced by LTA to ensure everyone's safety:

Type of Vehicle	Roads	Expressways	Tunnels	
Cars \& motorcycles	$50 \mathrm{~km} / \mathrm{h}$	$70-90 \mathrm{~km} / \mathrm{h}$	$50-80 \mathrm{~km} / \mathrm{h}$	
Buses \& coaches	$50 \mathrm{~km} / \mathrm{h}$	$60 \mathrm{~km} / \mathrm{h}$	$50-60 \mathrm{~km} / \mathrm{h}$	
Light commercial vehicles (includes Light Goods Vebicles and small buses not exceeding 3.5 tonnes and seating capacity of up to 15 passengers)	$50 \mathrm{~km} / \mathrm{h}$	$60-70 \mathrm{~km} / \mathrm{h}$	$50-70 \mathrm{~km} / \mathrm{h}$	
Exceptions: Fire engines, Ambulances, and Govemment vehicles used by Singapore Police Force or the Singapore Civil Defence Force				

https://www.ltagov.sg/content/laweb/en/roads-and-motoring/road-safety-and-regulations/road-reguiations.html

End of Paper 2

Qn	,		
1	-0.380	12a	13
2 a	$\sqrt[3]{3}, 0 . \ddot{6}, \frac{\pi}{7}, \frac{1}{3},-0.4,-\sqrt{4}$	12b	$x=59$
2b	$\sqrt[3]{3}, \frac{\pi}{7}$	13a	$60=2^{2} \times 3 \times 5$
3	$(a+1)(a-1)\left(5 a^{2}!+1\right)$	13b	$x=63$
4	Stating aspect or equivalent -1 mark Explaining how audience might be mislead or equivalent - 1 mark	14	$\mathrm{a}=5 \mathrm{~b}=21$ and $\mathrm{c}=29$
5	5	14b	$\mathrm{T}_{\mathrm{n}}=8 n-3$
6	$5.5{ }^{\circ} \mathrm{C}$	14c	When 121 is a term in the sequence, n will have a value of 15.5 . A pattern number n must be an integer. The value of 121 is resulted from a value of $n=15.5$. This imply that the pattern number of 15.5 doesn't exist and hence 121 is not a term in this sequence.
7 a	$n=12 k+3$	15a	Speed $=25 \mathrm{~m} / \mathrm{s}$
7 b	$n=3(4 k+1)$ Since k is an integer, $4 k+1$ will always be an integer. Therefore, ${ }^{3}$ will be an integer. Based on $n=3(4 k!+1), n$ can be factorized to give $3(4 k+1)$. Hence 3 and $4 k+1$ are factors of $n=3\left(4 k^{\prime}+1\right)$ and n will be a multiple of 3 .	156	759 m
8	-98.4375\%	16	$x=1 \frac{2}{5}$ or $x=$
98		17a	$\frac{9 c^{7}}{2 p^{3}}$
		17b	$n=-\frac{1}{3}$
9b	14, 16, 20 and 22!		
10	$\frac{7}{25}$	18a	$1 \frac{1}{5}<k \leq 4 \frac{2}{5}$
11	$(x-4)^{2}-27$	18b	2,3 and 4

Qn			
19ai		23a	$6.38 \times 10^{3} \mathrm{~km}$
		23b	$1.08 \times 10^{9} \mathrm{~km} / \mathrm{h}$
		23c	3.11×10^{-3} minutes
		24	$x=8.43 \mathrm{~cm}$
19aiis		25a	Coordinates of ship Q is $(4,9)$
		25b	9.22 units
		25c	213.7°
19b	No, I do not agree. There are no roots to the equation as there are no common points of intersection between the two curves. These two curves will never meet each other.	$263 i$	$6 a-2 b$
20a	$\frac{7}{10}$	26aii	$2 a+\frac{4}{3} b$
20b	34	26bi	$\begin{aligned} \overrightarrow{O T} & =6 a+4 b \\ & =3\left(2 a+\frac{4}{3} b\right) \\ & =3 \overline{O R} \end{aligned}$ $\overrightarrow{O T}$ is parallel to $\overrightarrow{Q R}$ and O is a common point. O, R and T are collinear.
21a	$\frac{50}{83} \pi$	266 ii	Trapezium
21b	$6.85 \mathrm{~cm}^{2}$	26ci	$\frac{4}{9}$
22ai	1:625000	26cii	4:5
$\begin{aligned} & \text { 22aii } \\ & 22 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 53.125 \mathrm{~km} \\ & 0.309 \mathrm{~cm}^{2} \end{aligned}$		

Sec 4 Express/5 Normal Prelim Paper 1 Marking Schenn

SN	Answer	Mark	Comments
I	$\begin{aligned} & \frac{0.85^{2}-5.34}{\sqrt{81.2}+3.134} \\ = & -0.38019 \\ = & -0.380 \end{aligned}$	B1	Correct rounding off to $3 s f$ must be shown to be awarded Bl
2a	$\begin{aligned} & \sqrt[3]{3}=1.442249 \\ & \frac{\pi}{7}=0.448857 \\ & 0 . \ddot{6}=\frac{2}{3} \\ & \sqrt[3]{3}, \quad 0 . \ddot{6}, \frac{\pi}{7}, \frac{1}{3},-0.4,-\sqrt{4} \end{aligned}$	B1	Correct order
2 b	Irrational numbers are $\sqrt[3]{3}, \frac{\pi}{7}$	BI	
3	$\begin{aligned} & 6 a^{2}\left(a^{2}-1\right)-\left(a^{2}-1\right)^{2} \\ & =\left(a^{2}-1\right)\left[6 a^{2}-\left(a^{2}-1\right)\right] \\ & \left.=\left(a^{2}-1\right)\left[5 a^{2}+1\right)\right] \\ & =(a+1)(a-1)\left(5 a^{2}+1\right) \end{aligned}$	MI A1	Accept $\begin{aligned} & 5 a^{4}-4 a^{2}-1 \\ & =\left(5 a^{2}+1\right)\left(a^{2}-1\right) \\ & =\left(5 a^{2}+1\right)(a+1)(a-1) \end{aligned}$
4	The chart shown for year 2012 is approximately twice the size of the chart shown in 2013. However, the value of the knuckle velocity in 2012 is not twice the velocity as shown in 2013. Audience might be visually misled into thinking that the baseball player has reduced bis knuckle velocity by a great amount.	B1	Stating aspect or equivalent Explaining how audience might be mislead or equivalent

5	$\begin{aligned} & a^{2}+6 a=6 \\ & a\left(a^{2}+6 a\right)=6 a \\ & a^{3}+6 a^{2}=6 a \\ & a^{3}+6 a^{2}+a^{2}=6 a+a^{2} \\ & a^{3}+7 a^{2}=6 a+a^{2} \\ & =6 \end{aligned}$	M1 Al	$\begin{aligned} & a^{3}+7 a^{2} \\ & =a^{2}(a+7) \\ & =a^{2}[(a+6)+1] \\ & =a^{2}(a+6)+a^{2} \\ & =a\left(a^{2}+6 a\right)+a^{2} \\ & =6 a+a^{2} \\ & =6 \end{aligned}$ Or factoise to solve for 2 values of a and perform substitution to find answer.
6	Temperature difference $\begin{aligned} & =34-(-5) \\ & =39^{\circ} \mathrm{C} \end{aligned}$ Required temperature $\begin{aligned} & =34-\left(\frac{39}{26} \times 19\right) \\ & =5.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Accept workings like $\begin{aligned} & -5+\tau(1.5) \\ & =5.5 \end{aligned}$
7a	$n=12 k+3$	B1	Accept $n=3(4 k+1)$ o.e.
7 b	$n=3(4 k+1)$ Since k is an integer, $4 k+1$ will always be an integer. Therefore, n will be an integer. Based on $n=3(4 k+1), n$ can be factorized to give $3(4 k+1)$. Hence 3 and $4 k+1$ are factors of $n=3(4 k+1)$ and n will be a multiple of 3 .	B1	Only award B1 if student managed to explain both conditions of r.
8	$V=\frac{k}{T^{3}}$ When T is increased by 300%, New $T=4 T$ $\begin{aligned} & V=\frac{k}{(4 T)^{3}} \\ & V=\frac{k}{64 T^{3}} \end{aligned}$	M1	

	$\begin{aligned} & \text { Percentage decrease } \\ & =\frac{\frac{k}{64 T^{3}} \frac{k}{T^{3}}}{\frac{k}{T^{3}}} \times 100 \% \\ & =\frac{\frac{1}{64}-1}{1} \times 100 \% \\ & =-98.4375 \% \end{aligned}$	Al	
9a		B1	Any missing term will result in zero marks
9b	$14,16,20 \text { and } 22$	Bl	
10	$\cos A=\frac{24}{25}$ Let the unknown side of the triangle be x $\begin{aligned} & x^{2}=25^{2} 24^{2} \\ & x^{2}=625-576 \\ & x^{2}=49 \\ & x=7 \end{aligned}$ $\sin \left(180^{\circ} L A\right)=\sin A$ $=\frac{7}{25}$	M1 A1	Accept if students show triangles with values of Pythagoras' Theorem applied with writing out the steps.

11	$-8 x-11+x^{2}$ $=x^{2}-8 x+\left(\frac{-8}{2}\right)^{2}-\left(\frac{-8}{2}\right)^{2}-11$ $=(x-4)^{2}-27$	M1	
12 a	13	B1	
12 b	$\frac{5(1)+14(2)+3 x+7(4)}{26+x}$ $51+3 x=2.8(26+x)$ $61+3 x=72.8+2.8 x$ $0.2 x=11.8$ $x=59$ 13 a	$60=2^{2} \times 3 \times 5$	M1

15a	Let the speed be $x \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \frac{x-40}{20-17}=\frac{0-40}{25-17} \\ & \frac{x-40}{3}=-5 \\ & x-40=-15 \\ & x=25 \end{aligned}$ Speed $=25 \mathrm{~m} / \mathrm{s}$	M1 AI	
15b	Total distance travelled $\begin{aligned} & =\frac{1}{2}(13+40)(6)+(17-6)(40)+\frac{1}{2}(25-17)(40) \\ & =159+440+160 \\ & =759 \mathrm{~m} \end{aligned}$	M1 A1	
16	$\begin{aligned} & \frac{8}{3-x}=5 x-2 \\ & (3-x)(5 x-2)=8 \\ & 15 x-6-5 x^{2}+2 x=8 \\ & -5 x^{2}+17 x-14=0 \\ & 5 x^{2}-17 x+14=0 \\ & (5 x-7)(x-2)=0 \\ & (5 x-7)=0 \text { or }(x-2)=0 \\ & x=1 \frac{2}{5} \quad \text { or } \quad x=2 \end{aligned}$	M1 M1 AI	Marks awarded if student did not write " $x=$ \qquad " (i.e some students wrote down 1.4 or 2 as answers) Accept $x=1.4$
17a	$\begin{aligned} & 18 p^{2} c^{3} \div 4 p^{5} c^{-4} \\ & =\frac{18 p^{2} c^{3}}{4 p^{5} c^{-4}} \\ & \frac{-9 p^{2-5} c^{3+4}}{2} \\ & =\frac{9 p^{-3} c^{7}}{2} \\ & =\frac{9 c^{7}}{2 p^{3}} \end{aligned}$	B1	Accept $\frac{9}{2} p^{-3} c^{7}$ Do not accept $4.5 p^{-3} c^{7}$

17b	$\begin{aligned} & 9 \times 27^{2 n}=1 \\ & 3^{2} \times\left(3^{3}\right)^{2 n}=3^{0} \\ & 3^{2} \times 3^{6 n}=3^{0} \\ & 2 \div 6 n=0 \\ & n=-\frac{1}{3} \end{aligned}$	M1 A1	
18a	$\begin{aligned} & -7 \leq 15-5 k<9 \\ & -7 \leq 15-5 k \\ & -5 k \geq-22 \\ & k \leq \frac{22}{5} \\ & k \leq 4 \frac{2}{5} \\ & \text { and } \\ & \begin{array}{l} 15-5 k<9 \\ -5 k<9-15 \\ -5 k<-6 \\ k>1 \frac{1}{5} \end{array} \\ & \qquad \begin{array}{l} 1 \frac{1}{5}<k \leq 4 \frac{2}{5} \end{array} \end{aligned}$	M1 AI	For both correct inequalities Accept $1.2<k \leq 4.4$ [Number line is optional]
18b	2,3 and 4	BI	
19ai		B1	

19aii		Bl	, ,
19b	No, I do not agree. There are no roots to the equation ás there are no common points of intersection between the two curves. These two curves will never meet each other.	B1	Accept alternative method $\begin{aligned} x^{4} & +10=0 \\ x^{4} & =-10 \\ x^{4} & =\sqrt[4]{-10} \\ & =n o \text { solution } \end{aligned}$ Therefore, there are no roots. Students need to mention that $\mathrm{x}=$ no solution and conclude that there are no rook to be given marks.
20a	Number of students who overestimate $\begin{aligned} & =120-36 \\ & =84 \end{aligned}$ P (student overestimate the mass) $\begin{aligned} & =\frac{84}{120} \\ & =\frac{7}{10} \end{aligned}$	M1 Al	Accept 0.7
20b	120% of actual mass $\begin{aligned} & =\frac{120}{100} \times 500 \\ & =600 \end{aligned}$ 80% of actual mass $\begin{aligned} & =\frac{80}{100} \times 500 \\ & =400 \end{aligned}$	M1	Working out the respective upper and lower limits of the given range

	$\begin{aligned} & \text { Number of students } \\ & =56-22 \\ & =34 \end{aligned}$	A1	Readings/Markings must be shown on graph to score Ml if students didn't work out/write down the limits on their answer scripts.
21a	Arc length travelled by smaller disc $\begin{aligned} & =2.5 \times 2 \pi \\ & =5 \pi \mathrm{~cm} \end{aligned}$ Let θ be the angle of rotation made by the larger disc $\begin{aligned} & 8.3 \theta=5 \pi \\ & \theta=\frac{5 \pi}{8.3} \\ &=\frac{50 \pi}{83} \text { or } \frac{50}{83} \pi \quad \text { radian } \end{aligned}$	MI Al	Accept 0.602π
21b	$\begin{aligned} \angle F W Y & =1.03 \text { radian (alternate angles) } \\ \angle W F Y & =\pi-2(\mathrm{i} .03) \\ & =1.08159 \text { radian } \end{aligned}$ Area of segment $=$ $\begin{aligned} & \left(\frac{1}{2} \times 8.3^{2} \times 1.08159\right)-\left(\frac{1}{2} \times 8.3^{2} \times \sin 1.08159\right) \\ & =37.25536-30.40481 \\ & =6.85055 \\ & =6.85 \mathrm{~cm}^{2} \end{aligned}$	Ml	Accept $\angle W F Y=1.081 \text { or } 1.082$ Area of segment will be $6.84 \mathrm{~cm}^{2}$ or $6.86 \mathrm{~cm}^{2}$ respectively. *premature founding will only be awarded method mark
22ai	$\begin{aligned} & \text { Map:Actual } \\ & 0.16 \mathrm{~cm}^{2}: 6.25 \mathrm{~km}^{2} \\ & 0.4 \mathrm{~cm}: 2.5 \mathrm{~km} \\ & I \mathrm{~cm}: 6.25 \mathrm{~km} \\ & \\ & \text { Scale of map }=1: 625000 \end{aligned}$	M1 AI	
22aii	Map:Actual $1 \mathrm{~cm}: 6.25 \mathrm{~km}$ $8.5 \mathrm{~cm}: 53.125 \mathrm{~km}$ Actual Iength of road $=53.125 \mathrm{~km}$	B1	

24	$\angle O D A=90^{\circ}$ (tangent perpendicular to radius) Let the radius of the circle be r $\begin{aligned} & (6+r)^{2}=r^{2}+8.5^{2} \\ & 36+12 r+r^{2}=r^{2}+8.5^{2} \\ & 12 r=3625 \\ & r=3.02083 \end{aligned}$ Area of triangle $A B C$ $\begin{aligned} & =2.5 \times \pi(3.02083)^{2} \\ & =71.6802 \end{aligned}$ Let the shortest distance be x $\begin{aligned} & \frac{1}{2} \times x \times 17=71.6802 \\ & x=8.4329 \\ & x=8.43 \mathrm{~cm} \end{aligned}$	M1 M1 MI AI	Application of pythagoras' Theorem Finding radius Finding area of triangle Accept 3.020 or 3.021 Finding shortest distance
25a	$\begin{aligned} & \text { Gradient } \\ & =\frac{3-0}{0-(-2)} \\ & =\frac{3}{2} \end{aligned}$ Equation of line $Q R$ is $y=\frac{3}{2} x+3$ Sub $y=9$ into $y=\frac{3}{2} x+3$ $\begin{aligned} & 9=\frac{3}{2} x+3 \\ & 18=3 x+6 \\ & 3 x=12 \\ & x=4 \end{aligned}$ Coordinates of ship Q is $(4,9)$.	M1 M! A1	
25b	Distance between ship P and ship S $\begin{aligned} & =\sqrt{[0-(-2)]^{2}+[9-0]^{2}} \\ & =\sqrt{4+81} \\ & =\sqrt{85} \\ & =9.2195 \\ & =9.22 \text { units } \end{aligned}$	B1	Do not accept $\sqrt{85}$

25c	$\begin{array}{r} \tan \angle P Q R=\frac{6}{4} \\ \angle P Q R=\tan ^{-1}\left(\frac{6}{4}\right) \\ =\$ 6.30993 \end{array}$ Bearing of R from Q $\begin{aligned} & =360-90-56.30993 \\ & =213.69^{\circ} \\ & =213.7^{\circ} \end{aligned}$	M1 Al	
26ai	$\begin{aligned} \overline{S Q} & =\overline{S O}+\overline{O Q} \\ & =-2 b+6 a \\ & =6 a-2 b \end{aligned}$	B1	Accept $2(3 a-b)$
26aii	$\begin{aligned} \overline{O R} & =\overrightarrow{O Q}+\overline{Q R} \\ & =6 a+\frac{2}{3} \overline{Q S} \\ & =6 a+\frac{2}{3}(-6 a+2 b) \\ & =6 a+4 a+\frac{4}{3} b \\ & =2 a+\frac{4}{3} b \end{aligned}$	B1	$2\left(a+\frac{2}{3} b\right)$
26 bi	$\begin{aligned} \overline{O T} & =6 a^{\prime}+4 b \\ & =3\left(2 a+\frac{4}{3} b\right) \\ & =3 \overline{O R} \end{aligned}$ $\overline{O T}$ is parallel to $\overrightarrow{O R}$ and O is a common point. O, R and T are collinear.	BI	Students must prove that the value of $\mathrm{k}=3$ and state that there is a common point O to score B1
26bii	Trapezium	B1	
26ci	$\begin{aligned} & \text { area of } \triangle P Q R \\ & \text { area of } \triangle O Q S \\ & -\left(\frac{2}{3}\right)^{2} \\ & =\frac{4}{9} \end{aligned}$	BI	*

| 26 cii | Ratio of $\frac{\text { area of } \triangle P Q R}{\text { area of quadrilateral OPRS }}$
 $=\frac{4}{5}$
 $=4: 5$ | B1 |
| :--- | :--- | :--- | Accept $\frac{4}{5}$

Answers to 2017 Preliminary Exam Mathematics Paper 2

On	Answer
lai	$\frac{2 x-1}{x-4}$
ล1i	$x=\frac{4 y-1}{y-2}$
b	$y=2, x=-0.5$
ciif	36
2a	$\$ \frac{128}{\pi}$
b	$5\left[12\left(\frac{128}{m}+2\right) \div(m-12) 7\right]$
d	$16,13.7\left(\text { or } 13 \frac{5}{7}\right)$
e	$\$ 9.60$
38	$\angle G T U=90^{\circ}$ (right angie in semicircle) $\angle G U H=90^{\circ}$ (radius perpendicular to tangent) $\Rightarrow \angle G T U=G U H=90^{\circ}$ $\angle G$ is a common angle \therefore Triangle $G T U$ and triangle $G U H$ are similar. (All 3 corrsponding angles are equal)
b	$25.6 \mathrm{~cm}^{2}$
ci	105°
cti	15°
ciii	51.3°
civ	$102.6{ }^{\circ}$
4 s	$979 \mathrm{~cm}^{2}$
b	10.2 cm
c	3 cm
5 a	6.1
c	0.510 (accept 0.4 to 0.6)
d	$x=1.05,7.4$ (accept ± 0.05)
eiil	$x=1.2,3.25$ (accept $\pm 0.05)$
$6 a i$	125 cm
atit	$6.8{ }^{\circ}$
bii	61.7 cm
7a	$\left(\begin{array}{ccc}7 & 11 & 9 \\ 12 & 8 & 17\end{array}\right)$
b	$\left(\begin{array}{lll} 22 & 21 & 21 \\ 25 & 19 & 31 \end{array}\right)$ It represents the fotal sale or number of cookies of each type and each size sold in the two weeks. fnumber of cranberry and blueberry cookies sold in small. medium and large

On	Answer
7c	$\left.\begin{array}{l}170 \\ 203\end{array}\right)$
Average amount of money	
collected per week of each bype	
af cooki es.	

PRELIMINARY EXAM 2017

SECONBARY 4 EXPRESS 5 NORMAL (ACADEMIC)

Mathematics Paper 2

Qn	Solution and Answer	Marks allocation
1ai	$\frac{2 x^{2}+7 x-4}{x^{2}-16}=\frac{(2 x-1)(x+4)}{(x-4)(x+4)}=\frac{2 x-1}{x-4}$	M1: factorization A1
aii	$\begin{aligned} & y=\frac{2 x^{2}+7 x-4}{x^{2}-16} \\ & y=\frac{2 x-1}{x-4} \\ & x y-4 y=2 x-1 \\ & x y-2 x=4 y-1 \\ & x(y-2)=4 y-1 \\ & \therefore \frac{4 y-1}{y-2} \end{aligned}$	M1 Al
b	$\begin{array}{ll} 2 x=1-y & \cdots-\text { Eqn } 1 \\ 4 x+5 y=8 & \cdots \cdots \text { Eqn } 2 \end{array}$ Subst. Eqn 1 into Eqn 2 $\begin{aligned} & 2(1-y)+5 y=8 \\ & 3 y=6 \\ & \therefore y=2, x=-0.5 \end{aligned}$	M1: method of solving A1 each.
ci	$\begin{aligned} & \frac{1}{x+y}+\frac{2}{x-y}=\frac{2 x+5 y}{x^{2}-y^{2}} \\ & \frac{x-y+2 x+2 y}{x^{2}-y^{2}}=\frac{2 x+5 y}{x^{2}-y^{2}} \\ & \Rightarrow 3 x+y=2 x+5 y \\ & \Rightarrow x=4 y \\ & \therefore \frac{x}{y}=4 \text { (shown) } \end{aligned}$	M1: combine LHS as 1 fraction A1
cii	$\left(\frac{3 x}{2 y}\right)^{2}=\frac{9}{4}\left(\frac{x}{y}\right)^{2}=\frac{9}{4}(4)^{2}=36$	$\begin{aligned} & \text { M1: using (i) } \\ & \text { A1 } \end{aligned}$

On	Solution and Answer	Marks allocation
2a	$8 \frac{128}{\mathrm{~m}}$	B1: must show unit \$
b	$\$\left[12\left(\frac{128}{m}+2\right)+(m-12) 7\right]$	B1: o.e.
c	$\begin{aligned} & 12\left(\frac{128}{m}+2\right)+(m-12) 7-128=20 \\ & \frac{1536}{m}+24+7 m-84-128=20 \\ & 1536+7 m^{2}-208 m=0 \\ & 7 m^{2}-208 m+1536=0 \text { (shown) } \end{aligned}$	M1: form equation M1: simplification A1: required equation
d	$\begin{aligned} & 7 m^{2}-208 m+1536=0 \\ & \begin{aligned} \therefore m & =\frac{-(-208) \pm \sqrt{(-208)^{2}-4(7)(1536)}}{2(7)} \\ & =\frac{208 \pm \sqrt{256}}{14} \\ & =16,13.7\left(\text { or } 13 \frac{5}{7}\right) \end{aligned} \end{aligned}$	M1: method of solving M1: simplification A1: both answers
c	As no. of water bottles must be a whole number, $m=13.7$ is not accepted. Selling price of each botlle for 20% profit $=\$\left[1.2\left(\frac{128}{16}\right)\right]=\$ 9.60$	(students are STRONGLY ENCOURAGED to explain why one of the values is not accepted) B1
3 a	$\angle G T U=90^{\circ}$ (right angle in semicircle) $\angle G U H=90^{\circ}$ (radius perpendicular to tangent) $\Rightarrow \angle G T U=G U H=90^{\circ}$ $\angle G$ is a common angle \therefore Triangle $G T U$ and triangle $G U H$ are similar. (All 3 corrsponding angles are equal)	B1: 2 statements of evidence B1: concluding statement (accept 'By AA similarity')
b	From (a), $\triangle G T U$ and $\triangle G U H$ are similar $\begin{aligned} & \Rightarrow \frac{T U}{U H}=\frac{G T}{G U} \\ & \Rightarrow \frac{T U}{G T}=\frac{U H}{G U}=\frac{5}{4} \quad \Rightarrow \frac{8}{G U}=\frac{5}{4} \Rightarrow G U=\frac{4}{5} \times 8=6.4 \mathrm{~cm} \\ & \therefore \text { Area of triangle } G U H=\frac{1}{2} \times G U \times H U=\frac{1}{2} \times 6.4 \times 8=25.6 \mathrm{~cm}^{2} \end{aligned}$ Alternative approach $\tan 38.7^{\circ}=\frac{G U}{8} \quad \Rightarrow G U=8 \tan 38.7^{\circ}=6.4092 \mathrm{~cm}$ \therefore Area of triangle $G U H=\frac{1}{2} \times G U \times H U=\frac{1}{2} \times 6.4092 \times 8=25.6 \mathrm{~cm}^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { M1, A1 } \end{aligned}$

On	Solution and Answer	Marks allocation
3 ci	$\angle S V U=180^{\circ}-75^{\circ}=105^{\circ}$ (angles in opposite segment)	B1: subtract 1 mark from whole question if no or wrong angle properties
cii	$\angle G T U=90^{\circ}$ (right angle in semicircle) $\therefore \angle G T S=90^{\circ}-75^{\circ}=15^{\circ}$	B1
ciii	$\angle G U H=90^{\circ}$ (radius perpendicular to tangent) $\therefore \angle T G U=180^{\circ}-90^{\circ}-38.7^{\circ}=51.3^{\circ}$ (angle sum in triangle)	B1
civ	$\angle T O U=51.3{ }^{\circ} \times 2=102.6^{\circ}$ (angles at centre is twice angle at circum)	B1
4 a	Slant height of cone, $l=\sqrt{24^{2}+9^{2}}=\sqrt{657} \mathrm{~cm}$ \therefore Total surface area of container $=\pi \times \sqrt{657} \times 9+\pi \times 9^{2}=979.197 \ldots \approx 979 \mathrm{~cm}^{2}$ (3 s.f.)	M1 A1
b	$\begin{aligned} & \text { Volume of container }=\frac{1}{3} \times \pi \times 9^{2} \times 24=648 \pi \\ & \left(\frac{\text { Height of sand }}{24}\right)^{3}=\frac{49.5 \pi}{648 \pi}=\frac{11}{144} \\ & \therefore \text { Height of sand }=\sqrt[3]{\frac{11}{144}} \times 24=10.183 \ldots \approx 10.2 \mathrm{~cm}(3 \text { s.f. }) \end{aligned}$	M1 (accept method using ratio of radius to find new volume) M1: ratios of similar solids M1, A1
c	$\begin{aligned} & \text { Volume of the } 2 \text { balls }=648 \pi-49.5 \pi=598.5 \pi \mathrm{~cm}^{3} \\ & \text { Volume of small ball } \\ & \begin{array}{l} \text { Volume of big ball } \\ \Rightarrow \text { Volume of small ball }=\left(\frac{2}{5}\right)^{3}=\frac{8}{133} \times 598.5 \pi \\ \qquad \\ \qquad \begin{array}{l} \frac{4}{3} \times \pi \times r^{3}=36 \pi \\ \Rightarrow r^{3}=27 \\ \therefore r=3 \mathrm{~cm} \end{array} \end{array} . \begin{array}{l} \Rightarrow \end{array} \\ & \hline \end{aligned}$	M1 M1: ratios of similar solids (accept method using radius as 2 times and 5 times respectively) M1: volume of small ball A1
5 a	$h=6.1$	B1: c.a.o.
b	See attached graph paper Points Smooth curve	P2: all points plotted correctly [Pl: at least 6 points plotted correctly] C1: smooth curve
c	$\begin{aligned} & \text { Tangent drawn at }(4,4.0) \\ & \text { Gradient }=0.510(\text { accept } 0.4 \text { to } 0.6) \\ & \text { (Calculated value }=0.5) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{B 1} \\ \mathbf{B 1} \\ \hline \end{array}$
d	$\begin{aligned} & \text { Draw } y=6.5 \\ & \therefore x=1.05,7.4 \end{aligned}$	$\begin{aligned} & \mathrm{B1} \\ & \mathrm{B1}: \pm 0.05 \\ & \hline \end{aligned}$
ei	Draw the line $y=7-x$ for $0 \leq x \leq 8$	B2: correct line that span across the required range [B1: correct line but not long enough]

Qn	Solution and Answer	Marks allocation
Seii	$x=1.2,3.25$	B1: both, ± 0.05
eiii	$\begin{aligned} & x-2+\frac{8}{x}=7-x \\ & 2 x-9+\frac{8}{x}=0 \\ & 2 x^{2}-9 x+8=0 \quad \therefore c=-9 \end{aligned}$	Method using substitution of x values from (eii) is not accepted BI
6 aj	$\begin{aligned} & B Q=35 \mathrm{~cm} \\ & A Q=\sqrt{35^{2}+120^{2}}=\sqrt{15625}=125 \mathrm{~cm} \end{aligned}$	M1, A1
aii	$\begin{aligned} & P Q=15 \mathrm{~cm} \\ & \tan P A Q=\frac{15}{125} \\ & \therefore \text { angle } P A Q=\tan ^{-1}\left(\frac{15}{125}\right)=6.84 . . \approx 6.8^{\circ}(1 \text { d.p. }) \end{aligned}$	VM1: s.o.i, using $A Q$ from (ai) A1
bi	$\begin{aligned} & B E=\sqrt{30^{2}+70^{2}}=\sqrt{5800} \mathrm{~cm} \\ & \therefore \cos B E B^{\prime}=\frac{5800+5800-60^{2}}{2(5800)}=\frac{20}{29} \\ & \angle B E B^{\prime}=\cos ^{-1}\left(\frac{20}{29}\right)=46.3971 \ldots \approx 46.397^{\circ} \text { (3 d.p.) }[\text { showm }] \end{aligned}$ Alternative approach $\begin{aligned} & \tan E B C=\frac{30}{70} \Rightarrow \angle E B C=\tan ^{-1}\left(\frac{30}{70}\right)=23.1985 \ldots .^{\circ} \\ & \angle B^{\prime} B E=90^{\circ}-23.1985^{\circ}=66.8015^{\circ} \\ & \therefore \angle B E B^{\prime}=180^{\circ}-66.8015^{\circ} \times 2=46.397^{\circ}(\angle \text { sum in isos. } \triangle) \end{aligned}$	M1: find $B E$, s.o.i. M1: applying Cosine Rule A1 M1 M1 A1
bii	Distance moved by B is the length of arc on a circle centre E and radius $B E$, over an angle of $B E B^{\prime}$. Distance moved by B $=\frac{46.397}{360} \times 2 \pi \times \sqrt{5800}=61.671 \ldots \approx 61.7 \mathrm{~cm}(3 \text { s.f. })$	M1, Al
7a	$\mathbf{D}=\left(\begin{array}{ccc}7 & 11 & 9 \\ 12 & 8 & 17\end{array}\right)$	B1
b	$\mathbf{M}=\left(\begin{array}{lll} 22 & 21 & 21 \\ 25 & 19 & 31 \end{array}\right)$ It represents the total sale or number of cookies of each type and each size sold in the two weeks. number of cranberry and blueberry cookies sold in small. mediom and large size respectively in 2 weeks.)	B1 B1
c	$L=\frac{1}{2}\left(\begin{array}{lll} 22 & 21 & 21 \\ 25 & 19 & 31 \end{array}\right)\left(\begin{array}{c} 4 \\ 5.5 \\ 6.5 \end{array}\right)=\frac{1}{2}\binom{88+115.5+136.5}{100+104.5+201.5}=\binom{170}{203}$ Average amount of money collected per week of each type of cookies.	$\sqrt{\text { M1: using }} \mathbf{M}$ from (b), product step, s.o.i Al B1: interpretation with 'earnings' or eamed' not accepted.

Qn	Solution and Answer	Marks allocation
7 di	$\mathbf{T}=\left(\begin{array}{ll}1 & 1\end{array}\right)$	BI
dii	TMC $=\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{340}{406}=(340 \div 406)=(746)$	B1: not awarded if not in proper matrix representation
e	$a=1.35, b=0.85$	BI: both, o.e.
8ai	Int. \angle of hexagon $=720^{\circ} \div 6=120^{\circ}$ Reflex $\angle B A Q=90^{\circ}+120^{\circ}=210^{\circ}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
aii	$\begin{aligned} & \angle B A Q=360^{\circ}-210^{\circ}=150^{\circ}(\angle \text { sum at a pt.) } \\ & \left.\therefore \angle A Q R=180^{\circ}-150^{\circ}=30^{\circ} \text { (int. } \angle \mathrm{s}, A B / / Q R\right) \end{aligned}$	$\begin{aligned} & \mathrm{MI} \\ & \mathrm{Al} \end{aligned}$
b	$\begin{aligned} & \angle B A R=\left(180^{\circ}-150^{\circ}\right) \div 2=15^{\circ}(\text { base } \angle \text { of isos. } \triangle) \\ & \angle P A R=45^{\circ}+120^{\circ}+15^{\circ}=180^{\circ} \end{aligned}$ \therefore By the property Adjacent angles on a straight line is supplementary, PAR is a straight line Alternative approach $\begin{aligned} & \angle B A R=\left(180^{\circ}-150^{\circ}\right) \div 2=15^{\circ}(\text { base } \angle \text { of isos. } \triangle \text {) } \\ & \angle Q A R=150^{\circ}-15^{\circ}=135^{\circ} \\ & \angle P A Q+\angle Q A R=45^{\circ}+135^{\circ}=180^{\circ} \end{aligned}$	M1 A1: showing $\angle P A R$ is 180°, with \angle property and concluding statement
c	Int. \angle of polygon $=\angle B A Q=150^{\circ}$ \Rightarrow ext. \angle of polygon $=30^{\circ}$ \Rightarrow no. of sides of polygon $=360^{\circ} \div 30^{\circ}=12$ No. of pairs of square and hexagon $=6$ Total no. of squares $=6$ \therefore No. of squares added $=4$	M1 VM1: using no. of sides A1
9ai	$u=0.1, v=0, w=0.1, x=0.2$	B2: all [BI: 2 comect]
aiia	$0.9 \times 0.8=0.72$	B1: o.e.
aiib	$0.9 \times 0.2 \times 0.1+0.1 \times 1 \times 0.2+0.1 \times 0=0.038$	M1, AI: o.e.
aiii	$1000-1000(0.038)=962$	B1
9bia	Median time taken $=56 \mathrm{sec}$	B1
bib	Mean time taken $=53.8 \mathrm{sec}$	B1
bii	Median, as the extreme value of 15 can lower the mean time taken	B1
biii	Standard deviation $=11.3$	B2 [B1: correct value but not 3 s.f.]
biv	The 2 groups of boys have comparable lung power since they have almost the same mean but the second group of boys are more consistent in the amount of time they take to hold their breath under water (or there is a smaller variation in the amount of time they take to hold their breath under water) due to the smalter standard deviation.	B1: words in bold and underlined must be seen

Qn	Solution and Answer	Marks allocation
10a	Total time needed to assemble a study table-chair set, I baby cot and a bunk bed $=45+12+105=162 \mathrm{mins}=2 \mathrm{hrs} 42 \mathrm{mins}$	B1: working expected
bi	Total distance from ERGO office to Joyful Pasture $=13.8+4.7=18.5 \mathrm{~km}$ Total time taken for travelling $=$ Time duration from 0915 to 1030 - Total assemble time at Happy Valley $=75-(45+6)=24 \mathrm{mins}$ \therefore Average speed of delivery van $=18.5 \div \frac{24}{60}=46.25 \approx 46 \mathrm{~km} / \mathrm{h} \text { (nearest whole number) }$ This value may not be a reasonable estimate of the actual travelling speed of the van, as it could be higher, but due to the road condition and time spent for stopping at traffic lights, the average speed is lower. Accept also: Yes it is a reasonable value as it is within the speed limit by LTA.	M1: total distance \div total travelling time A1 B1: comment that actual speed could be higher
bii	Assumption: - Traffic condition is about the same on the roads to the various locations, such that the average speed of the van is $46 \mathrm{~km} / \mathrm{la}$. - Owners are at home when the delivery men reach each location - There is no major traffic delay that day - Delivery van travels on normal road and not using expressway Total traveiling time between the various locations from Joyful Pasture to ERGO Office $=\frac{(6.1+5.4+8.8+1.9) \mathrm{km}}{46 \mathrm{~km} / \mathrm{h}} \approx 29 \mathrm{mins}(\text { nearest } \min)$ Total assemble time at Joyful Pasture to Peace Link $=12 \times 4+105 \times 2+45 \times 2=348 \mathrm{mins}$ \Rightarrow Total time needed to complete all delivery and return to ERGO office $=29+348+45=422 \mathrm{mins}=7 \mathrm{hrs} 2 \mathrm{mins}$ Time to reach ERGO office after all delivery $\begin{aligned} & =1030+7 \mathrm{hrs} 2 \mathrm{mins} \\ & =1732 \end{aligned}$ \therefore The delivery men will be able to leave work punctually at 1800 that day. * award marks if calculated from the start: ERGO office to all locations and back to ERGO office again	B1: any valid assumptions VMI*: using speed in (bi) M1* M1* M1 B1: must be supported with appropriate calculation

Alternative approach:	B1: valid
Total time to complete all delivery before lunch	assumptions as above
$=$ Total travelling time from 1030 to next location after lunch + total assemble time	
$=\frac{6.1+5.4}{46}+\left(\frac{12+12+105}{60}\right)=\frac{1}{4}+2 \frac{3}{20}=2 \mathrm{~h} 24 \mathrm{mins}$	
\Rightarrow Lunch time at ($1030+2 \mathrm{~h} 24 \mathrm{mins}$) $=1254$	M1*
$\begin{aligned} \Rightarrow \text { Iime reach Blissful Ave after lunch } & =1254+45 \mathrm{mins} \\ & =1339 \end{aligned}$	M1
Time to reach office after last delivery	M1
$=1339+$ Total lassemble time after luncgh + Total travelling time after lunch $=1339+12 \times 2+105+45 \times 2+8.8+1.9$	
-1339+ 60	
$=1339+3 \mathrm{~h} 53 \mathrm{mins}$	
$=1732$	
\therefore The delivery, men will be able to leave work punctually at 1800 that day.	B1: must be supported with appropriate calculation
* award marks if calculated from the start: ERGO office to all locations and back to ERGO office again	
Accept method using total time to complete delivery and back to office is shorter than total time available from start of delivery at 0915 to 1800 .	

CLASS			

INDEX NUMBER

MATHEMATICS
4048/01
Paper 1
7 August 2017
2 hours
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .

Mathematical Formulue

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\text { Curved surface area of a cone }=\pi d
$$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi d^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi \psi^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

i Solve $0.5\left(4-\frac{x}{3}\right)=1$.

2 Write as a single fraction $c-d+\frac{1}{c}+\frac{1}{d}-\frac{c^{2}-d^{2}}{c+d}$.

Answer

3 Brad invested $\$ 4000$ into an account which pays $r \%$ per annum interest compounded monthly. His account triphed in value after 320 months.

Find r.

Answer $r=$

4 An interior angle of a regular polygon is 120° bigger than its exterior angle.
Find the number of sides of the polygon.

Answer

[2]

5 The total count of student late coming occurrences in a school is represented by a line graph as shown.

State and explain how the graph can be modified to give a more accurate representation of the late coming occurrences in the school.

Answer \qquad
\qquad
\qquad
$\xi=\{$ even integers $x: 2<x \leq 14\}$
$A=$ \{perfect squares $\}$
$B=\{$ factors of 12$\}$
(a) Draw a Venn diagram to illustrate this information.

Answer
(b) List the element(s) contained in the set $A \cap B^{\prime}$.

> Answer

7 Singapore's touristn hit a record high in 2016, where tourism numbers grew by 7.7% and tourism spending rose by 13.9%.

Some information about the number of tourists and tourism spending are given in the table.

Year	2016	2015
Number of Tourists	1.64×10^{7}	
Tourism Spending		$\mathrm{S} \$ 21.4$ billion

Estimate, to the nearest dollar, the average tourism spending in 2016.

8 Factorise completely
(a) $(d+e)^{2}-2(d+e)-8$,

Answer

(h) $1+x-2 a-2 a x$.

9 Two solid metal cones, which are geometrically similar, have surface areas A_{1} and A_{2} such that $9 A_{1}=16 A_{2}$.

If the volume of the larger cone is $32 \mathrm{~cm}^{3}$, find the volume of the smaller cone.

Answer \qquad cm^{3}
(a) Express 2,700 as a product of its prime factors.

Answer
(b) Using yout answer to part (a), explain why $2700 b$ is a perfect cube when $b=10$

Answer
(c) Find the shrallest value of p so that $2700 \times \sqrt{p}$ is divisible by 14 .

$$
\text { Answer } p=
$$

11 The length of a fectangle is 3 metres more than its width. Its perimeter is equal in value to its area.

Find the dimensions of this rectangle.

Box A

Box B

In Box A, there are 3 black balls and 2 white balls.
In Box B, there are 2 black balls and 1 white ball.
Ravi takes at random a ball from Box A and places it in Box B.
He then takes at random a ball from Box B.

Work out the probability that the ball he takes from Box B will be black.

9

13

An aeroplane is flying parallel to the ground.
Lights have been fitted at A and B as shown,
When the aeroplane is flying at a certain height, the beams from these lights meet exactly on the ground at C.

The angle of depression of the beam of light from A to C is 50°.
The angle of depression of the beam of light from B to C is 70°.
The distance $A B$ is 20 metres.
Find the height of the aeroplane from the ground when the lights meet at C.

14 The diagram represents an aerial view of a bank. Mark is at the inforration counter at M.

Scale: 1 cm to 2 m

(a) Mark tethered his dng to a lamp post outside the bank, by means of a leash, at a bearing of 220° and 15 m from M.

On the diagram, mark out the location outside the bank where the dog is tethered to and label this point X.
(b) Jasmine is keeping a lookout for the dog inside the bank.

She is standing at a point that is equidistant from points M and X.
By showing your working clearly, work out one possible position Jasmine is standing at and label this point J.
(c) The dog is unable to enter the bank.

The leash is 2 m long.
Draw the boundary of the region in which the dog can roam.

15 (a) $(-5,2)$ is the maximum point of a quadratic curve.
Write the equation of the graph in the form $y=p-(x+q)^{2}$.

Answer
[1]
(b) A straight line on the $x y$-axes passes through $(-5,2)$ and cuts the x-axis at $x=1$.

Find the equation of the straight line.

> Answer

16 Ron exchanged 2000 Singapore Dollars (SGD) for US Dollars (USD) in New York. The exchange rate was x USD to 1 SGD.

After his trip, he had 8% of his total USD left.
He exchanged the remaining USD for SGD at the rate of 1 USD $=1.46$ SGD and received 170 SGD.

Find x.

12

17 (a) Write down all the integers satisfying the inequalities $-11<1-3 x \leq 2$.

Answer

[3]
(b) Given $-6 \leq a \leq-1$ and $2 \leq b \leq 6$, find the range of possible values of $\frac{b}{a}$.

Answer

18 (a) Simplify $x\left(2 x^{\frac{1}{2}}\right)^{4}$.

> Answer
(b) Evaluate $\frac{3^{n+2}}{5\left(3^{n-1}\right)}$.

19 WY is the diameter of a semi-circle with centre X and radius $a \mathrm{~cm}$. Z is on the circumference and angle $Z X Y$ is a right angle. A smaller semi-circle, centred at O, is drawn with $Z Y$ as diameter.

Find the area of the shaded region, in terms of a, in its simplest form.

\qquad cm^{2}

20 The area A of a television screen varies proportionally to the square of its diagonal d. A television set with a diagonal of 30 cm has an area of $440 \mathrm{~cm}^{2}$.
(a) Find the area of a television screen with a diagonal of 75 cm .

Answer
cm^{2} [3]
(b) State the percentage change in A when d is decreased by 15%.

Answer ... [I]

4E5N Math PI 2017 Prelim

21 The diagram below, not drawn to scale, shows triangle $L M N$.

The equations of the hes $L M$ and $L N$ are $2 y=3 x+5$ and $x+4 y=24$ respectively.
(a) Find the coordinates of L.
\qquad .) [3]
(b) The coordinates of M are $(-3,-2)$ and $M N$ is parallel to the x-axis.

Write the equation of line $M N$.

Answer

22 Justin is locked out of his house.
He intends to borrow a ladder.
The only open window is on the second floor, 8 m above the ground.
There is a bush along the edge of the house, 1 m away from the house and 2 m in height.
The bush is too thick for Justin to pass through on foot or climb through along the ladder.
What is the minimum length of the ladder Justin needs in order for him to reach the window?

23 The diagram shows a circle which represents a ferris wheel with centre 0 . The diameter is 30 m .

NOT TO SCALE

(a) A seat starts at B and travels one-third of the circumference to A.

Explain why angle $A O B$ is equal to $\frac{2 \pi}{3}$ radian.

Answer
(b) Find the exact value, in radian, of angle $A B O$.

Answer \qquad radian
(c) It takes 2.5 minutes for a seat to travel from position B to A.

Find the average speed, in metres per second, of the wheel.
\qquad m / s

The diagram shows a pyramid on a horizontal rectangular base $P Q R S$.
The diagonals of PQRS meet at T.
U is vertically above T.
$P Q=8 \mathrm{~cm}, Q R=6 \mathrm{~cm}$ and $U R=13 \mathrm{~cm}$.
(a) Calculate angle URP.

> Answer
\qquad
(b) Find the volume of the pyramid.
\qquad cm^{3}
(c) Show that triangle $P T Q$ is congruent to triangle $R T S$.

Answer

\qquad
\qquad

End of Paper

JYSS 4E5N Prelim 2017 Paper 1

No.	Answer ; Workings	Marks	*Remarks
1	$\begin{aligned} & x=6 \\ & 2-\frac{x}{6}=1 \\ & \frac{x}{6}=1 \\ & x=6 \end{aligned}$	M1 A1	Alternative: $\begin{aligned} & 4-\frac{x}{3}=2 \\ & \frac{x}{3}=2 \\ & x=6 \end{aligned}$
2	$\begin{aligned} & \frac{c+d}{c d} \\ & =\frac{c-d+\frac{1}{c}+\frac{1}{d}-\frac{c^{2}-d^{2}}{c+d}}{c} \\ & =\frac{1}{c}+\frac{1}{d} \\ & =\frac{c+d}{c d} \end{aligned}$	M1 A1	M1 - For any correct method that eliminates $c-d-\frac{c^{2}-d^{2}}{c+d}$ to 0 .
3	$\begin{array}{l\|l} \hline r=4.13 & 12000=4000\left(1+\frac{r / 12}{100}\right)^{320} \\ & 3=\left(1+\frac{r}{1200}\right)^{320} \\ & r=4.1268 \\ & =4.13 \end{array}$	M1 A1	Award M1 for correct substitution of values
4	$12 \quad \|$Let x be the size of an exterior angle. $2 x+120^{\circ}=180^{\circ}$ $x=30^{\circ}$ $\frac{360^{\circ}}{30^{\circ}}=12$	M1 Al	
5	The titie is biased and does not allow readers to make their own judgement. It should only state "Late coming occurrences in the past 4 years". or The vertical axis has to start from zero so that it does not exaggerate the differences between the number of counts of late-coming. or The scale of the vertical axis have to be consistent and the intervals between the values on the vertical axis have to be equal. This prevents distortion of the graph.	B2	B1 - State the modification B1 - Explain how the modification will make the graph a better representation.

6	(a)	$\begin{aligned} & \xi=\{4 ; 6,8,10,12, \\ & A=\{4\} \\ & B=\{4,6,12\} \end{aligned}$	4\}	B2	Deduct lm for each mistake
	(b)	\{ \} or ϕ		B	
7		$\$ 1486$	$\begin{aligned} & \text { Tourism spending in } 2016 \\ & =\frac{113.9}{100} \times 21.4 \times 10^{9} \\ & =S \$ 2.43746 \times 10^{10} \end{aligned}$ Average visitor spending $\begin{aligned} & =\frac{2.43746 \times 10^{10}}{1.64 \times 10^{7}} \\ & =\$ 1486.256 \\ & =\$ 1486 \text { (nearest dollar) } \end{aligned}$	M1 MI AI	No mark is awarded to finding number of visitors in 2015 as this information is not needed.
8	(a)	$(d+e+2)(d+e-4)$	$\begin{aligned} & (d+e)^{2}-2(d+e)-8 \\ & =(d+e+2)(d+e-4) \end{aligned}$	B1	
	(b)	$(1-2 a)(1+x)$	$\begin{aligned} & 1+x-2 a-2 a x \\ & =1+x-2 a(1+x) \\ & =(1-2 a)(1+x) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { AI } \end{gathered}$	
		$13.5 \mathrm{~cm}^{5}$	$\begin{aligned} & \frac{A_{1}}{A_{2}}=\frac{16}{9} \\ & \frac{L_{2}}{L_{2}}=\sqrt{\frac{16}{9}}=\frac{4}{3} \\ & \text { Using } \frac{V_{1}}{V_{2}}=\left(\frac{L_{1}}{L_{2}}\right)^{3}, \\ & \frac{32}{V_{1}}=\left(\frac{4}{3}\right)^{3} \\ & \Rightarrow V_{i}=13.5 \mathrm{~cm}^{3}(3 \text { s.f. }) \end{aligned}$	M1 M1 A1	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{No.} \& Answer \& Workings \& Marks \& *Remarks \\
\hline \multirow[t]{3}{*}{10} \& (a) \& \multicolumn{2}{|l|}{\(2700=2^{2} \times 3^{3} \times 5^{2}\)} \& B1 \& \\
\hline \& (b) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
When \(b=10\),
\[
2700 \times 10=2^{2} \times 3^{3} \times 5^{2} \times(2 \times 5)=2^{3} \times 3^{3} \times 5^{3}
\] \\
Since all twe powers of \(2700 \times 10\) are multiples of 3 , \(\sqrt[3]{2700 \times 10}=\sqrt[3]{2^{3} \times 3^{3} \times 5^{3}=} \times 3 \times 5\), it is a perfect cube.
\end{tabular}} \& B1 \& Accept any correct explanation that \(2^{3} \times 3^{3} \times 5^{3}\) is a perfect cube. \\
\hline \& (c) \& \[
p \frac{1}{4} 49
\] \& \[
\begin{aligned}
\& \frac{2700 \times \sqrt{p}}{14} \\
\& =\frac{2^{2} \times 3^{3} \times 5^{2} \times \sqrt{p}}{2 \times 7} \\
\& \Rightarrow \sqrt{p}=7 \\
\& \Leftrightarrow p=49
\end{aligned}
\] \& B1 \& \\
\hline \multicolumn{2}{|c|}{\multirow[t]{3}{*}{11}} \& \multirow[t]{3}{*}{3 mby 6 m} \& \[
\begin{aligned}
\text { Let width } \& =x \mathrm{~m} \\
\text { length } \& =(x+3) \mathrm{m}
\end{aligned}
\] \& \& \\
\hline \& \& \& Perimeter \(=\) Area
\[
\begin{aligned}
\& 2(x+x+3)=x(x+3) \\
\& 4 x+6=x^{2}+3 x \\
\& x^{2}-x-6=0 \\
\& (x+2)(x-3)=0 \\
\& x=3 \text { or } x=-2(r e j)
\end{aligned}
\] \& M1
MI \& \begin{tabular}{l}
Correct expression for both area and perimeter \\
Correct factorization
\end{tabular} \\
\hline \& \& \& \[
\begin{aligned}
\& \text { Width }=3 \mathrm{~m} \\
\& \text { Length }=6 \mathrm{~m}
\end{aligned}
\] \& Al \& Correct values for both width and length \\
\hline \multicolumn{2}{|c|}{12} \& \[
\frac{\frac{13}{20}}{10}
\] \& \begin{tabular}{l}
Black from Box A then black from Box B:
\[
\frac{3}{5} \times \frac{3}{4}=\frac{9}{20}
\] \\
White from Box A then black from Box \(B\) :
\[
\frac{2}{5} \times \frac{2}{4}=\frac{1}{5}
\] \\
Total probability
\[
\begin{aligned}
\& =\frac{9}{20}+\frac{1}{5} \\
\& =13
\end{aligned}
\]
\end{tabular} \& M1
M1

A1 \& Accept 0.65

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{No.} \& Answer \& Workings \& Marks \& *Remarks \\
\hline \multicolumn{2}{|c|}{13} \& 16.6 m \& \(\angle A C B=60^{\circ}\) By Sine Rule,
\[
\begin{aligned}
\& \frac{20}{\sin 60^{\circ}}=\frac{B C}{\sin 50^{\circ}} \\
\& B C=17.6910 \mathrm{~m} \\
\& \sin 70^{\circ}=\frac{h}{17.6910}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \\
\hline \multirow[t]{2}{*}{14} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \(\frac{\text { B1 }}{\substack{\text { BI } \\ \text { No mark } \\ \text { for no } \\ \text { working }}}\) \& Accept position of \(J\) anywhere along the correct perpendicular bisector drawn and inside the bank. \\
\hline \& \& \& \& B1 \& \begin{tabular}{l}
Accept boundary as the arc of 1 cm outside the bank. \\
No mark given if arc extends inside the bank.
\end{tabular} \\
\hline \multirow[t]{2}{*}{15} \& (a) \& \multicolumn{2}{|l|}{\(y=2-(x+5)^{2}\)} \& B1 \& \\
\hline \& (b) \& \[
y=\frac{1}{3} x-\frac{1}{3}
\] \& Gradient of line passing through \((-5,2)\) and \((1,0)\)
\[
=\frac{2-0}{-5-1}=-\frac{1}{3}
\]
\[
\begin{aligned}
\& y=-\frac{1}{3} x+c \\
\& 0=-\frac{1}{3}(1)+c \\
\& c=\frac{1}{3} \\
\& \Rightarrow y=-\frac{1}{3} x+\frac{1}{3}
\end{aligned}
\] \& M1

Al \& Accept $\frac{1}{3}=0.333$

\hline
\end{tabular}

No.		Answer	Workings	Marks	*Remarks
16		$x=0.73$	$\begin{aligned} & \text { SGD } 1.46=1 \text { USD } \\ & \text { SGD } 170=\frac{170}{1.46}=116.438 \text { USD } \end{aligned}$ Total amount of USD $\begin{aligned} & =\frac{116.438}{8} \times 100 \\ & =1455.475 \mathrm{USD} \end{aligned}$ $2000 \mathrm{SGD}=1455.475 \text { USD }$ $\text { I SGD }=0.7277 \mathrm{USD}$ $x=0.73(2 \mathrm{~d} . \mathrm{p} .)$	M1 M1 A1	
17	(a)	$x=0,1,2,3$	$\begin{aligned} & -11<1-3 x \leq 2 \\ & -1 \leq 3 x<12 \\ & -\frac{1}{3} \leq x<4 \\ & \Rightarrow x=0,1,2,3 \end{aligned}$	M1 M1 A1	Award M2 for any correct method to get $-\frac{1}{3} \leq x<4$.
	(b)	$-6 \leq \frac{b}{a} \leq-\frac{1}{3}$		B1	Accept $\frac{1}{3}=0.333$
18	(a)	16	$\begin{aligned} & x\left(2 x^{\frac{1}{4}}\right)^{4} \\ & =x\left(16 x^{-1}\right) \\ & =16 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)	5.4	$\begin{aligned} & \frac{3^{n+2}}{5\left(3^{n-1}\right)} \\ & =\frac{3^{n+2-n+1}}{5} \\ & =\frac{3^{3}}{5} \\ & =5.4 \end{aligned}$	M1 AI	Also accept final answer as $\frac{27}{5} \text { or } 5 \frac{2}{5} .$

No.	Answer	Workings	Marks	*Remarks
19	$\frac{1}{2} a^{2}$	Area of quadrant $=\frac{1}{4} \pi a^{2}$ Area of triangle ZXY $=\frac{1}{2} a^{2}$ Area of segment ZY $=\frac{1}{4} \pi a^{2}-\frac{1}{2} a^{2}$		

	(b)	$y=-2$		B1	
22		$8.11 \mathrm{~m}$	Let x be the distance from the bush to the ladder. Using similar triangles, $\frac{2}{x}=\frac{8}{x+1}$ $6 x=2$ $x=\frac{1}{3}$ Length of ladder $=\sqrt{\left(1 \frac{1}{3}\right)^{2}+8^{2}}$ $=8.11 \mathrm{~m}$	M1 M1 M1 Al	
23	(a)	$\frac{2 \pi}{3}$ radian is one	of one revolution (2π).	B1	
	(b)	$\frac{\pi}{6} \text { radian }$	$\begin{aligned} & \text { angle } A B O \\ & =\frac{180^{\circ}-120^{\circ}}{2} \\ & =30^{\circ} \\ & =\frac{\pi}{6} \end{aligned}$	M1 A1	Accept radian method $\frac{\pi-\frac{2 \pi}{3}}{2}=\frac{\pi}{6}$
	(c)	$0.209 \mathrm{~m} / \mathrm{s}$	$\begin{aligned} & \text { Total time }=2.5 \times 60=150 \mathrm{~s} \\ & \text { Total distance } \\ & =r \theta \\ & =\frac{2 \pi}{3}(15) \\ & =10 \pi \\ & \text { Average speed } \\ & =\frac{10 \pi}{150} \\ & =0.209 \mathrm{~m} / \mathrm{s} \end{aligned}$	M1 M1 A1	
24	(a)	674°	$\begin{aligned} & T R=\sqrt{3^{2}+4^{2}}=5 \\ & \cos U R T=\frac{5}{13} \\ & \text { Angle } U R T=67.4^{\circ} \end{aligned}$	M1 M1 Al	
	(b)	192	$U T=\sqrt{13^{2}-5^{2}}=12$ Volume $\left.\right\|_{-1} \ldots m \text {. }$	M1 Al	

| (c) | $\mathrm{SR}=\mathrm{PQ}$ (sides of rectangle)
 $\mathrm{ST}=\mathrm{TQ}$ (T is the midpoint of diagonal)
 $\mathrm{TR}=\mathrm{TP}(\mathrm{T}$ is the midpoint of diagonal) | M1 | Accept correct
 SAS and ASA
 tests too. |
| :--- | :--- | :--- | :--- | :--- |
| By SSS Test,
 triangle $P T O$ is congruent to triangle RTS. | Al | | |

1 (a) Simplify $\frac{5(x-y)^{4},(x-y)^{3}}{(x+y)^{2}} \frac{6 x+6 y}{}$.
(b) Express $\frac{5}{x-1}-\frac{2}{x^{2}-1}$ as a single fraction in its simplest form.
(c) It is given that $z=\frac{x^{2}-y^{2}}{y}$.
(i) Make x the subject of the formula.
(iii) If $x=2$ and $z=3$, find the value(s) of y.
(d) Given that $\frac{x+3 y}{5 x-4 y}=\frac{2}{3}$, find the ratio $x: y$.

2 (a) The diagran below shows a regular pentagon $A B C D E$. $A C$ and $B D$ intersect at F.

(i) Find the value of angle $C D F$,
(ii) Explain why angle $D F A=108^{\circ}$.
(b) In the triangle $O A B, M$ is the midpoint of $O A$.
N is a point on $O B$ such that $O N: N B=2: 1$.
$M N$ is produced to P so that $M N$: $N P=1: 2$.

It is given that $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(i) Express, in terms of a and/or \mathbf{b},
(a) $\overline{N B}$,
(b) $\overrightarrow{M N}$,
(c) $\overrightarrow{N P}$.
(ii) Express $\overrightarrow{A B}$ and $\overrightarrow{B P}$ in terms of a and \mathbf{b}.
(iii) Write down two facts about points A, B and P.
(iv) Find $\frac{\text { area of triangle } P M B}{\text { area of triangle } P M A}$

3 (a) The $n^{\text {th }}$ term of a sequence is given by $T_{n}=\frac{n(n+3)}{2}$.
(i) Which term of the sequence bas value 275?
(ii) Explain why each term of the sequence is a whole number.
(b) The diagram shows a sequence of shapes $T_{1}, T_{2}, T_{3}, \ldots$.

Each shape consists of a number of shaded and unshaded triangles.

T_{t}

T_{2}

T_{3}
The letter represents the number of rows of triangles in each shape

T_{4}

The letters S, U and N represent the number of shaded triangles, unshaded triangles and total number of triangles respectively.

The data is recorded in the table below.

Shape		T_{1}	\boldsymbol{T}_{2}	$\boldsymbol{T}_{\mathbf{3}}$	\boldsymbol{T}_{4}	\boldsymbol{T}_{5}
Number of rows	r	1	2	3	4	5
Numbes of shaded triangles	S	0	1	3	6	a
Numbel triangles	U	1	3	6	10	b
Total nushaded mber of triangles	N	1	4	9	16	c

(i) Write down the value of a, of b and of c.
(ii) Write a formula for the total number of triangles in the $r^{\text {th }}$ shape, N_{r}.
(iii) Write a formula for the number of unshaded triangles in the $r^{\text {th }}$ shape, U_{r}.
(iv) Fend the number of shaded triangles in shape T_{50}.

4 In the diagram, which is not drawn to scale, O is the centre of the circie. Points A, B, C, D and E lie on the circumference.

$B D$ is a diameter.
The tangent at E meets $B D$ produced at F.
$E C$ meets $B D$ at H.
$B C=C D$ and angle $E A B=130^{\circ}$.
(a) Stating your reasons clearly, find
(i) reflex angle $E O B_{2}$ [1]
(ii) angle $E C B$,
(iii) angle $C B D$.
(iv) angle $D O E$,
(v) angle OFE
(b) Is the line $E D$ parallel to line $B C$?

Justify your answer with clear working.
[2]

5 The distance between Town P and Town Q is 150 km .
An express bus travels from Town P to Town Q at the average speed of $x \mathrm{~km} / \mathrm{h}$.
If the average speed of the bus is increased by $15 \mathrm{~km} / \mathrm{h}$, the time taken would be 21 minutes less.
(a) Express, in terms of x,
(i) the time taken by the bus at its original speed,
(ii) the time taken by the bus when the speed is increased by $15 \mathrm{~km} / \mathrm{h}$.
(b) Form an equation in x and show that it can be reduced to $7 x^{2}+105 x-45000=0$.
(c) Solve the equation in part (b) and hence find the original time taken in hours and minutes, correct to the nearest minute.

6 At the end of a semester, the final grade of the students is recorded based on their marks obtained from tests, projects, homework and quizzes.
The marks obtained by three students, Aaron, Beatrice and Carly, are given in the following table.

	Tests	Projects	Homework	Quizzes
Aaron	82	95	89	60
Beatrice	72	85	65	57
Carly	88	91	70	64

(a) (i) Write down a 3×4 matrix M that represents the information in the table.
(ii) The weightage for each component are as follows:

Tests	50%
Projects	20%
Homework	10%
Quizzes	20%

Represent the weightage as a decimal number in a 4×1 matrix \mathbf{X}.
(iii) Evaluate the matric $\mathbf{F}=\mathbf{M X}$.
(iv) State what the elements of F represent
(b) Overall, the cohort did better in projects than in quizzes.

Suggest how the weightage for each component could change so as to improve the final grade of the students.

7 The diagram, not drawn to scale, shows an open container which is made up of a cylinder and a frustum.
A frustum is a cone with part of its top removed.
The cylinder has height 18 cm and diameter of 15 cm .
The conical section has base diameter 15 cm , top diameter 6 cm and height 5.4 cm .

(a) Show that the height of the cone before its top was removed is 9 cm .
(b) The conainer is filled to its brim with water.

Calculate
(i) the volume of the water in the container,
(ii) the total surface area of the container in contact with water.
(c) All the water in the container is poured into a rectangular tank with a base area of $120 \mathrm{~cm}^{2}$.

Find the minimum height of the tank so that the water does not overflow.
Give your answer as a whole number.

8 The variables x and y are connected by the equation $y=2 x+\frac{50}{x}-30$, where $x \neq 0$.
Some corresponding values of x and y are given in the following table, corrected to 2 decimal places.

x	1	1.5	3	5	7	9	11	13	15	16
y	22.00	p	-7.33	-10.00	-8.86	-6.44	q	-0.15	3.33	5.13

(a) Find the value of p and of q.
(b) Using a scale of 1 cm to 1 unit on the horizontal x-axis and 2 cm to 5 units on the vertical y-axis, draw the graph of $y=2 x+\frac{50}{x}-30$ for $1 \leq x \leq 16$.
(c) By drawing a tangent, find the gradient of the curve at the point $x=10$.
(d) (i) On the same axes, draw the line $y=3-2 x$.
(ii) From the graph, state the x-coordinate of the points where this line intersects the curve.
(iii) These values of x are the solutions of the equation $A x^{2}-33 x+B=0$. Find the value of A and of B.

9 (a) A group of 600 young children was tested to find the distance that each of them was able to swim in ans indoor swimming pool.
The results of the test are shown on the cumulative frequency curve below.

Cumulative Frequency

(i) Using the given curve, find for this distribution,
(a) the median,
(b) the interquartile range.
(ii) The distance to pass the test was 35 metres.

Estimate the percentage of children who passed the test.
(iii) The same group of children was tested to swim in the outdoor swimming pool. The box-and-whisker plot shows the distribution of the test.

Make twn enmmarisons hetween the performances of the children in the two tests.
(b) A room consists of 30 students.

The students are selected from three different levels.
There are 11 students from Sec One, 9 students from Sec Two and 10 students from Sec Three.

Two students are selected from the room to compete with other students from another room.
The tree diagram below shows the possible outcomes and some of their probabilities.

(i) Calculate the value of x, of y and of z as shown on the tree diagram.
(ii) Expressing your answers in fractions in its lowest term, calculate the probability that
(a) both students are from the same level,
(b) both students are of different levels,
(c) one student will be from Sec One and the other from Sec Three.
\qquad

10 Sarah wants to sell chocolate cupcakes at the next neighbourhood Food Fair.
She intends to bake 180 to 200 cupcakes.
She bakes in batches of 16 cupcakes.
Information that Sarah needs is provided below.
(a) How many times must she bake in order to have a total of 180 to 200 cupcakes?

Sarah needs to decide how much to charge customers for a box of 6 chocolate cupcakes. She must make sure that she charges enough money to cover all of her costs.
(b) Using your answer from (a), find the number of boxes she will need for the packaging.
(c) Suggest a sensible amount for her to charge for a box of 6 cupcakes. Justify the decision you make and show your calculations clearly.

Ingredients Recipe tnakes 16 cupcakes	
114 g butter	
2	eggs
160 g	caster sugar
100 g	plain flour
60 g	cocoa powder
125 ml	evaporated milk
Chocolate cream frosting	

Baking supplies		
Items	Description	Unit cost
Butter	Pack of 500 g	$\$ 4.95$
Eggs	Pack of 30 eggs	$\$ 3.85$
Caster sugar	Pack of 800 g	$\$ 2.65$
Plain flour	Pack of 1 kg	$\$ 1.70$
Cocoa powder	Pack of 250 g	$\$ 4.10$
Evaporated Milk	Can of 350 ml	$\$ 1.60$
Chocolate Crearn Frosting for 50 cupcakes	1 tub	$\$ 18$
Cupcake liners	Pack of 100 pieces	$\$ 4.00$
Cupcake boxes	Pack of 5 boxes	$\$ 3.00$

Booth Rental Fee: $\$ 100$

END OF PAPER

4E5N Prelim 2017/Paper 2

Answer Key

1a	$\frac{30(x-y)}{x+y}$
1b	$\frac{5 x+3}{(x-1)(x+1)}$
1c(i)	$\begin{aligned} & x= \pm \sqrt{y^{2}+y z} \\ & \text { or } \\ & x= \pm \sqrt{y(y+z)} \end{aligned}$
lc(ii)	$y=-4$ or $y=1$
1d	17:7 ।
2a(i)	$36^{\circ} \quad 1$
2b(i)	(a) $\frac{1}{3} b$ (b) $\frac{2}{3} b-\frac{1}{2} a$ (c) $\frac{4}{3} b-a$
2b(ii)	$\begin{aligned} & \overrightarrow{A B}=\mathbf{b}-\mathbf{a} \\ & \overrightarrow{B P}=\mathbf{b}-\mathbf{a} \end{aligned}$
2b(iv)	$\frac{1}{2}$
3a(i)	$22^{\text {nd }}$ term $/ T_{n z}$
3b(i)	$\begin{aligned} & a=10 \\ & b=15 \\ & c=25 \end{aligned}$
3b(ii)	$N_{\text {, }}=r^{2}$!
3b(iii)	$U_{r}=\frac{r(r+1)}{2}$
3b(iv)	1225
4a(i)	260°
4a(ii)	50°
4a(iii)	45°
4a(v)	10°
4a(iv)	80°
4b	Not parallel
5a(i)	$\frac{150}{x}$
5a(ii)	$\frac{150}{x+15} \mathrm{~h}$

5 c	2 hours 3 mins
6a(i)	$\mathbf{M}=\left(\begin{array}{llll}82 & 95 & 89 & 60 \\ 72 & 85 & 65 & 57 \\ 88 & 91 & 70 & 64\end{array}\right)$
6a(ii)	$\mathrm{X}=\left(\begin{array}{l}0.5 \\ 0.2 \\ 0.1 \\ 0.2\end{array}\right)$
6a(iii)	$\left(\begin{array}{c}80.9 \\ 70.9 \\ 82\end{array}\right)$
7b(i)	$3680 \mathrm{~cm}^{3}(3 \mathrm{sf})$
7b(ii)	$1260 \mathrm{~cm}^{2}$ (3 sf)
7 c	31 cm
8 a	$\begin{aligned} & p=6.33 \\ & q=-3.45 \end{aligned}$
8 c	$1.5(\pm 1)$
8d(ii)	$\begin{aligned} & x=2.2(\pm 0.2) \\ & x=6.25(\pm 0.2) \end{aligned}$
8d(iii)	$\begin{aligned} & A=4 \\ & B=50 \end{aligned}$
9a(i)	(a) 23 m (b) 14 m
9a(ii)	14.2 \%
9 b (i)	$x=\frac{3}{10}, y=\frac{10}{29}, z=\frac{9}{29}$
9b(ii)	$\begin{aligned} & \text { (a) } \frac{136}{435} \\ & \text { (b) } \frac{299}{435} \\ & \text { (c) } \frac{22}{87} \end{aligned}$
10a	12 times
10b	32 boxes
10c	minimum $\$ 7.90$ per box so as to cover cost.

Marking Scheme

4E5N Prelim 2017 Paper 2

On	Answer Key		
1a	$\frac{30(x-y)}{x+y}$	$\begin{aligned} & \frac{5(x-y)^{2}}{(x+y)^{2}} \div \frac{(x-y)^{3}}{6 x+6 y} \\ & =\frac{5(x-y)^{4}}{(x+y)^{2}} \times \frac{6(x+y)}{(x-y)^{3}} \\ & =\frac{30(x-y)}{x+y} \end{aligned}$	Marks M1 A1
1b	$\frac{5 x+3}{(x-1)(x+1)}$	$\begin{aligned} & \frac{5}{x-1}-\frac{2}{x^{2}-1} \\ & =\frac{5(x+1)}{(x-1)(x+1)}-\frac{2}{(x-1)(x+1)} \\ & =\frac{5 x+5-2}{(x-1)(x+1)} \\ & =\frac{5 x+3}{(x-1)(x+1)} \end{aligned}$	M1 A1
1c(i)	$\begin{gathered} x= \pm \sqrt{y^{2}+y z} \\ \text { or } \\ x= \pm \sqrt{y(y+z)} \end{gathered}$	$\begin{aligned} & z=\frac{x^{2}-y^{2}}{y} \\ & y z=x^{2}-y^{2} \\ & x^{2}=y^{2}+y z \\ & x= \pm \sqrt{y^{2}+y z} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
1c(ii)	$y=-4$ or $y=1$	$\begin{aligned} & 3=\frac{(2)^{2}-y^{2}}{y} \\ & 3 y=4-y^{2} \\ & y^{2}+3 y-4=0 \\ & (y+4)(y-1)=0 \\ & y=-4 \text { or } y=1 \end{aligned}$ factorisation	MI M1 A1
1d	17:7	$\begin{aligned} & \frac{x+3 y}{5 x-4 y}=\frac{2}{3} \\ & 3(x+3 y)=2(5 x-4 y) \\ & 3 x+9 y=10 x-8 y \\ & 17 y=7 x \\ & \frac{x}{y}=\frac{17}{7} \\ & x: y=17: 7 \end{aligned}$	M1 M1 AI

2a(i)	36°	$\begin{aligned} & \angle B C D=\text { Each interior angle }=\frac{(5-2) \times 180}{5}=108^{\circ} \\ & \angle C D F \\ & =\frac{180^{\circ}-108^{\circ}}{2} \\ & =36^{\circ}(\text { base } \angle \text { of isos. } \Delta) \end{aligned}$	M1
2a(ii)		$\begin{aligned} & \angle A C B=36^{\circ} \text { (symmetry } / \text { congruent triangles) } \\ & \angle B F C=180^{\circ}-36^{\circ}-36^{\circ}=108^{\circ} \text { (isos. } \Delta \text {) } \\ & \angle D F A=108^{\circ} \text { (vert.opp } \angle \text { s) } \end{aligned}$	$\begin{aligned} & \mathrm{B1} \\ & \mathrm{~B} 1 \end{aligned}$
2 b (i)	(a) $\frac{1}{3} \mathrm{~b}$ (b) $\frac{2}{3} b-\frac{1}{2} a$ (c) $\frac{4}{3} b-a$	(a) $\overrightarrow{N B}=\frac{1}{3} \widehat{O B}=\frac{1}{3} \mathrm{~b}$ (b) $\begin{aligned} \overrightarrow{M N} & =\overrightarrow{O N}-\overrightarrow{O M} \\ & =\frac{2}{3} \mathrm{~b}-\frac{1}{2} \mathrm{a} \quad \text { (preferred answer) } \\ & =\frac{1}{6}(4 \mathrm{~b}-3 \mathrm{a}) \end{aligned}$ (c) $\begin{aligned} \overrightarrow{N P} & =\overrightarrow{2 \overrightarrow{M N}} \\ & =\frac{4}{3} \mathrm{~b}-\mathrm{a} \quad \text { (preferred answer) } \\ & =\frac{1}{3}(4 \mathrm{~b}-3 \mathrm{a}) \end{aligned}$	BI B1 B1
2b(ii)	$\begin{aligned} & \overrightarrow{A B}=\mathbf{b}-\mathbf{a} \\ & \overrightarrow{B P}=\mathbf{b}-\mathbf{a} \end{aligned}$	$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\mathbf{b}-\mathbf{a}$ $\begin{aligned} \overrightarrow{B P} & =\overrightarrow{N P}-\overrightarrow{N B} \\ & =\frac{4}{3} \mathbf{b}-\mathbf{a}-\frac{1}{3} \mathbf{b} \\ & =\mathbf{b}-\mathbf{a} \end{aligned}$	B1 B1
2 b (iii)		1. B is the midpoint of line $A B P$. 2. A, B and P are collinear $/ A B P$ lies on a straight line	B2
2b(iv)	$\frac{1}{2}$	area of triangle $P M B$ area of triangle $P M A$ $-\frac{1}{2}(P M)(P B) \sin P$ $\frac{1}{2}(P M)(P A) \sin P$$=\frac{P B}{P A}=\frac{1}{2}$ Altermative Mtd Use common height	B1
3a(i)	$22^{\text {nj }}$ tern $/ T_{22}$	$\begin{array}{ll} \frac{n(n+3)}{2}=275 \\ n^{2}+3 n-550=0 & \\ \left.\begin{array}{ll} n-22)(n+25)=0 & \text { Altermative Mid } \\ n=22 & \text { or } n=-25(\text { reject } \because \end{array} \quad n>0\right) \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
3 a (ii)		For any integer value of n, either n is even or $(n+3)$ is even. Hence, $n(n+3)$ is always divisible by 2 .	B1 1ccept tguatvelent reasoring

3b(i)	$\begin{aligned} & a=10 \\ & b=15 \\ & c=25 \end{aligned}$		B1 B1 B1
3b(ii)	$N_{r}=r^{2}$		B1
3b(iii)	$U_{t}=\frac{r(r+1)}{2}$		B1
3b(iv)	1225	$\left.\begin{array}{l} N_{50}=50^{2}=2500 \text { triangles in total } \\ U_{50}=\frac{50(50+1)}{2}=1275 \text { triangles unshaded } \end{array}\right\}$ Number of shaded riangles $=2500-1275=1225$	MI A1
4a(i)	260°	$\begin{aligned} & \text { reflex } \angle E O B \\ & =130^{\circ} \times 2(\angle \text { at centre }=2 \angle \text { at circumference }) \\ & =260^{\circ} \end{aligned}$	BI
4a(ii)	50°	$\begin{aligned} \angle E C B & =180^{\circ}-130^{\circ} \text { (angles in opposite segment) } \\ & =50^{\circ} \end{aligned}$	B1
4a(iii)	45°	$\begin{aligned} \angle C B D & \left.=\left(180^{\circ}-90^{\circ}\right) \div 2 \text { (isosceles triangle, } B C=C D\right) \\ & =45^{\circ} \end{aligned}$	B1
4a(iv)	80°	$\begin{aligned} \angle D O E & =260^{\circ}-180^{\circ} \\ & =80^{\circ} \end{aligned}$	B1
4a(v)	10°	$\begin{aligned} \angle O F E & \left.=180^{\circ}-90^{\circ}-80^{\circ} \text { (tangent } \perp \text { radius }\right) \\ & =10^{\circ} \end{aligned}$	B1V
4b	Not parallel	$\angle B D E=50^{\circ}$ (angles in same segnent) $\angle C B D=45^{\circ}$ (from aiii) $\angle C B D \neq \angle B D E$ \therefore Line $E D$ is not parallel to line $B C$ [accent anv other mathematically logical method]	M1 A1
5a(i)	$\frac{150}{x}$		B1
5a(ii)	$\frac{150}{x+15} h$		B1
56		$\begin{aligned} & \frac{150}{x}-\frac{150}{x+15}=\frac{21}{60} \\ & \frac{150(x+15)-150 x}{x(x+15)}=\frac{7}{20} \\ & \frac{2250}{x(x+15)}=\frac{7}{20} \\ & 45000 \approx 7 x(x+15) \\ & 7 x^{2}+105 x-45000=0 \end{aligned}$	M1 M1 Al

50	2 hours 3 mins	$\begin{aligned} & 7 x^{2}+105 x-45000=0 \\ & x=\frac{-105 \pm \sqrt{105^{2}-4(7)(-45000)}}{2(7)} \\ & x=73.028 \text { or } x=-88.028 \\ & \text { Original time taken }=\frac{150}{73.028}=2.054 \text { hours } \\ & =2 \text { hours } 3 \text { minutes } \end{aligned}$	M1 AI M1 Al
6a(i)	$\mathrm{M}=\left(\begin{array}{c\|c}82 & 95 \\ 72 & 85 \\ 88 & 91\end{array}\right.$	$\left.\begin{array}{ll}89 & 60 \\ 65 & 57 \\ 70 & 64\end{array}\right)$	B1
6a(ii)	$\mathrm{X}=\left(\begin{array}{l}6.5 \\ 0.5 \\ 9.2 \\ 0.1 \\ 0.2\end{array}\right)$		B1
6a(iii)	$\left(\begin{array}{c}80.9 \\ 70.9 \\ .82 .\end{array}\right)$	$\begin{aligned} \mathbf{F} & =\mathbf{M X} \\ & =\left(\begin{array}{llll} 82 & 95 & 89 & 60 \\ 72 & 85 & 65 & 57 \\ 88 & 91 & 70 & 64 \end{array}\right)\left(\begin{array}{l} 0.5 \\ 0.2 \\ 0.1 \\ 0.2 \end{array}\right) \\ & =\left(\begin{array}{c} 80.9 \\ 70.9 \\ 82 \end{array}\right) \end{aligned}$	B2 All correct B1 1 mistake 0 0 More than 1 mistake
6a(iv)		The elements in F represent the respective final combined score/grade of Aaton, Beatrice and Carly at the end of the semester.	B1
6b		The teacher could increase the weightage of projects and decrease the weightage of quizzes. (Any other suitable suggestions)	BI
7 a	1	Let the height of the original cone be $x \mathrm{~cm}$. Using similarity, $\begin{aligned} & \frac{x-5.4}{x}=\frac{6}{15} \\ & 15 x-81=6 x \\ & x=9 \text { (shown) } \end{aligned}$	M1 Al
7 b (i)	$3680 \mathrm{~cm}^{3}(3 \mathrm{sf})$	Height of cone that has been removed $9-5.4=3.6 \mathrm{~cm}$ Volume of water in cylinder $\begin{array}{ll} =\pi(7.5)^{2}(18) & 3181 \mathrm{~cm}^{3} \\ =1012.5 \pi \mathrm{~cm}^{3} & \end{array}$	$\begin{aligned} & \text { Ml } \\ & \text { for } \end{aligned}$

		Volume in cone (with top removed) $\begin{aligned} & =\frac{1}{3} \pi(7.5)^{2}(9)-\frac{1}{3} \pi(3)^{2}(3.6) \quad 496.2 \mathrm{~cm}^{3} \\ & =157.95 \pi \mathrm{~cm}^{3} \end{aligned}$ Volume of water in containes $\begin{aligned} & =1012.5 \pi+157.95 \pi \\ & =3677.1 \\ & =3680 \mathrm{~cm}^{3} \end{aligned}$	either of the two Al
7b(ii)	$1260 \mathrm{~cm}^{2}$ (3 sf)	Slant height, $L=\sqrt{9^{2}+7.5^{2}}=11.72 \mathrm{~cm}$ (4 sf) Slant height $l=\sqrt{3.6^{2}+3^{2}}=4.686 \mathrm{~cm}(4 \mathrm{sf})$ Surface area of cylinder in contact with water $\begin{aligned} & =2 \pi(7.5)(18)+\pi(7.5)^{2} \\ & =326.25 \pi \mathrm{~cm}^{2} \end{aligned} \quad 1025 \mathrm{~cm}^{2}$ Surface area of cone in contact with water $\begin{aligned} & =\pi(7.5)(11.72)-\pi(3)(4.686) \\ & =231.98 \mathrm{~cm}^{2} \end{aligned}$ $\begin{aligned} \text { Required surface area } & =326.25 \pi+231.98 \\ & =1256.92 \\ & =1260 \mathrm{~cm}^{2} \end{aligned}$	M1 (eilte cos)
7c	31 cm	Height $=\frac{3677.1}{120}=30.64 \mathrm{~cm}$ Minimum beight $=31 \mathrm{~cm}$ (whole number)	M1 Al
8a	$\begin{aligned} & p=6.33 \\ & q=-3.45 \end{aligned}$		$\begin{aligned} & \mathrm{Bl} \\ & \mathrm{BI} \end{aligned}$
8b		See attached: Correct Scale Plotted points Smooth Curve	$\begin{aligned} & \mathrm{S} 1 \\ & \mathrm{Pl} \\ & \mathrm{Cl} \end{aligned}$
8 c	$1.5(\pm 1)$	Draw a tangent at $x=10$. Gradient $=1.5(\pm 0.1)$	1
8 d (i)		Draw the line $y=3-2 x$.	1
8d(ii)	$\begin{aligned} & x=2.2(\pm 0.2) \\ & x=6.25(\pm 0.2) \end{aligned}$		$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$

8d(iii)	$\begin{aligned} & A=4 \\ & B=50 \end{aligned}$	$\begin{aligned} & 2 x+\frac{50}{x}-30=3-2 x \\ & 2 x^{2}+50-30 x=3 x-2 x^{2} \\ & 4 x^{2}-33 x+50=0 \\ & \therefore A=4 \quad \text { and } \quad B=50 \end{aligned}$	M1 A.
$9 \mathrm{a}(\mathrm{l})$	(a) 23 m (b) 14 m	$\begin{aligned} & \text { Median }=23 \mathrm{~m} \\ & \text { Interquartile Range }=\mathrm{Q}_{3}-\mathrm{Q}_{1} \\ &=30-16 \\ &=14 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Ml} \\ & \mathrm{~A} 1 \end{aligned}$
9a(ii)	14.2\%	Number of students who passed the test $\begin{aligned} & =600-515^{*} \\ & =85 \end{aligned}$ Percentage of students $\begin{aligned} & =\frac{85}{600} \times 100 \% \\ & =14.2 \%(3 \mathrm{~s} . \mathrm{f}) \end{aligned}$	
9a(iii)		Children on average swam further at the outdoor swimming pool as can be seen from the bigger median of 32 m . The maximum distance that was covered in the outdoor swimming pool is 50 m , which is lower than the maximum distance covered in the indoor swimming pool which is 60 m . The interquartile range for the test in the outdoor swimming pool is 22 m , which is more than the test in the indoor swimming pool, 14 m indicating that the distance covered at the indoor swimming pool is more consistent.	$\begin{aligned} & \text { B2 } \\ & \text { Any two } \end{aligned}$
9b(i)		$x=\frac{9}{30}=\frac{3}{10}, y=\frac{10}{29}, z=\frac{9}{29}$	$\begin{array}{\|l} \mathrm{Bl} \\ \mathrm{Bl} \\ \mathrm{BI} \\ \hline \end{array}$
9 b (ii)	(a) $\frac{136}{435}$ (b) $\frac{299}{435}$ (c) $\frac{22}{87}$	(a) $\left(\frac{11}{30}\right)\left(\frac{10}{29}\right)+\left(\frac{3}{10}\right)\left(\frac{8}{29}\right)+\left(\frac{1}{3}\right)\left(\frac{9}{29}\right)=\frac{136}{435}$ (b) $1 \frac{136}{435}=\frac{299}{435}$ (c) $\left(\frac{11}{30}\right)\left(\frac{10}{29}\right)+\left(\frac{1}{3}\right)\left(\frac{11}{29}\right)=\frac{22}{87}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
10a	12 times	Number of batches $=\frac{200}{16}=12.5 \approx 12$ If she bakes 12 times, she will get $12 \times 16=192$ cupcakes	M1 A1 Equivalem wartioge acteptutis

106	32 boxes	With 192 cupcakes, she needs $\frac{192}{6}=32$ boxes					B1
10c	B2 Quantity of ingredients fot 192 cupcakes (shaded box) - 1 mistake ($(-1 \mathrm{~m})$ - >1 mistake $(-2 \mathrm{~m})$	How much of each ingredient is needed:					7
		Itern	1 batch	For 12 batches	Sold as:	as: 1 Nomat	
		Butter	$\frac{114.8}{2}$	1368 \%	500		
		Eggs		24	30		
		Caster sugar	$\stackrel{2}{160 \mathrm{~g}}$	1920 s	800		
		Plain flour	160 g	1200 g	1 k		
		Cocos powder	$\begin{gathered} 100 \mathrm{~g} \\ 60 \mathrm{~g} \\ \hline \end{gathered}$	720 g	250		
	B2ل Cost of ingredients for 192 cupcakes (expenses) - I mistake (-1 m) - >1 mistake (-2 m)	Evaporated Milk	125 ml	1500 ml	350	ml	
		Chocolate Cream Frosting	$\begin{gathered} 16 \\ \text { cirpcakes } \end{gathered}$	$\begin{gathered} 192 \\ \text { cupcakes } \end{gathered}$	$\begin{array}{r} 50 \\ \text { cupcal } \end{array}$		
		Cupcake liners	$\begin{gathered} \hline 16 \\ \text { cupcakes } \\ \hline \end{gathered}$	192 liners	$\begin{array}{r}100 \\ -3 \text { liner } \\ \hline\end{array}$		
		Cupcake boxes		32 boxes	5 box	xes	
	B1 Add Booth Rental Fee	Cost breakdown					
		Item		Price		Expenses	
	B1V Find cost price of 6 cupcakes (\$7.85)	Buther	\$4.95			\$14.85	
			\$3.85 -			\$3.85	
			52.65			\$7.95	
	B1 Sensible amount with justification. Profit, transport costs etc are additional consideration.	Plain flour Cocoa powder	\$4.70			\$3.40	
		Cocoa powder Evaporated Milk	\$1.60			\$8.00	
		Chocolate Cream Frosting	\$18.00			572.00	
		Cupcake liners	\$4.00		23 ${ }^{4}$	\$8.00	
		Cupcake boxes			18fity	\$21.00	
	So long as it makes sense and covers the basic cost price. The minimum amount should be $\$ 7.90$ per box.			Sul	otal	5151.35	
				Booth		5100.00	
		Total expenses $\approx \$ 250$. Cost price for 6 cupcakes $=\frac{\$ 251.35}{192} \times 6=\$ 7.85$					

Question 8

智行殖願

MANJUSRI SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2017

Subject：	Mathematics
Paper：	$4048 / 01$
Level：	Secondary 4 Express／ 5 Normal（Academic）
Date：	7 August 2017
Duration：	2 hours
Setter：	Mr Lee Beng Huat

Candidates answer on the Question Paper
Additional materials：Geornetrical Insiruments

READ THESE INSTRUCTIONS FIRST

Write your Name，Register Number and Class on all the work you hand in．
Write in dark blue or black pen in the spaces provided on the Question Paper．
You may use a pencil for any diagrams or graphs．
Do not use staples，paper clips，highlighters，glue or correction fluid．
Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
Calculators shouid be used where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in tenns of u ．

At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question． The total number of marks for this paper is 80.

This paper consists of 15 printed pages including this cover page．

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Axc length }=r \theta, \text { where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f_{x}^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 (a) Estimate, correct to the nearest whole number, the value of $\frac{4.97^{2}-\sqrt{15}}{\sqrt[3]{30}}$ without
the usefof a calculator.

Answer

(b) Write down the following in order of size, smallest first.

$$
\begin{array}{llll}
\sqrt{0.35} & 35 \% & 3.5 & \frac{35}{53}
\end{array}
$$

Answer
2 (a) Solve $\frac{x}{3]}+15=9$.

$$
\text { Answer } x=
$$

(b) Simplify $15(x-13)+14(13-x)$.

Answer
3 During a sale there is a discount of 15% on all items selling in a shop. If the discounted price of a watch is $\$ 182.75$, find the original price of the watch before the discount.
Answer \$

4 (a) Simplify $18 a^{3} b \div 6 a b^{-3}$.
Answer ... [1]
(b) Given that $\sqrt{2} \times 4^{n}=1$, find the value of n.

Answer $n=$

$5 \quad \xi=\{$ integers $x: 11 \leq x<19\}$
$A=\{$ multiples of 3$\}$
$B=$ \{prime numbers $\}$
List the elements in
(a) A^{\prime} ?

Answer
(b) $A \cap B$,

Answer
[1]
(c) $(A \cup B)^{\prime}$.

7 The plan of a museum is drawn to a scale of 1:500.
(a) Find the length, in metres, of a corridor which is represented by a line 10.5 cm long on the plan.

Answer m [1]
(b) The area of the floor of a bookshop is $500 \mathrm{~m}^{2}$. Find, in square centimeters, its area on the plan.

Answer

cm^{2}
8 After Pluto is no longer considered a planet, Mercury is now the smallest planet while Jupiter is still the biggest planet in our solar system.
Planet Mercury has a mass of $3.3 \times 10^{23} \mathrm{~kg}$ and Jupitar has a mass of $1: 898 \times 10^{27} \mathrm{~kg}$. How many times is the mass of Jupiter compare to the mass of Mercury? Give your answer in standard form, correct to 3 significant figures.

9 The diagram shows a triangle $A B C$.

(a) One property of a triangle is that the length of the longest side must be less than the sum of the lengths of the two shorter sides.
Form an inequality in x and solve it.

Answer
(b) Given also that the perimeter of the triangle is no more than 85 cm .

Find the largest possible length of the longest side, given x is a prime number.

10 Write as a single fraction in its simplest form $\frac{x}{x^{2}-4}-\frac{2}{2-x}$.

Answer

11 Given that n is a positive integer and $n-\frac{1}{n}=5$. Find the value of $n^{2}+\frac{1}{n^{2}}$.

Answer

12 The CEO used the following line graph to show the annual profits made by the company over a numbert years.

State one aspect of the graph that may be misleading and explain how the annual profits in 2017 can be projected wrongly.

Answer \qquad
\qquad
\qquad

13 Given that $x y=0.2: 0.5$ and $y: z=\frac{1}{3}: \frac{1}{2}$, find $x: y: z$.

14 The diagram shows a pentagon and five equilateral triangles. Calculate the sum of the angles a, b, c, d and e.

15 Jane can make 8 dresses in 7 hours. Judy can make 7 dresses in 6 hours.
If Jane and Judy continue to make dresses at the same rate, how long will it take them to make 20 dresses? Give your answer in hours and minutes, to the nearest minutes.
\qquad hours \qquad minutes [3]
$16 A, B$ and C are points on the circle centre $O . P B Q$ and $P A R$ are tangents to the circle. Reflex $\angle A O B=x^{\circ}$.

(a) Given C is a point along the major arc $A B$, express $\angle A C B$ in terms of x.

$$
\text { Arswer } \angle A C B=\text {. }
$$

(b) Express $\angle A P B$ in terms of x.

$$
\text { Answer } \angle A P B=
$$

17 In the diagram, $A E=3 \mathrm{~cm}, E C=7 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $B D=17 \mathrm{~cm}$.
Name a pair of congruent triangles, stating your case of congruency.

Answer \qquad
\qquad
\qquad
\qquad
18 (a) Express 168 as a product of its prime factors.

$$
\begin{equation*}
\text { Answer } 168= \tag{2}
\end{equation*}
$$

(b) Find the smallest positive integer m such that $\frac{168}{\sqrt{m}}$ is a perfect cube.

$$
\text { Answer } m=
$$

(c) Alice uses all 168 cubes of side I unit to make a cuboid. Each of the sides of the cuboid is made up of more than 3 cubes. Find the number of cubes on each side of the cuboid.

19
11

Figure 1

Figure 2

Figure 3

Figure 5

From the graphs above, select one which illustrates each of the following statements.
(a) The amount of pressure y, exerted is inversely proportional to the surface area of a cube, of sides $x \mathrm{~cm}$.

Answer Figure [1]
(b) The suyfface area y, of a sphere is proportional to the square of the radius, $x \mathrm{~cm}$.

Answer Figure
(c) The total taxi fare $\$ y$, of a fixed flag down fees plus x metres of distance travelled, given ${ }^{1}$ cent is charged for every metre wavelled.

Answer Figure
20 Sketch the graph of $y=(x+3)(5-x)$ on the axes below, indicating its turning point and all the intercepts on the axes clearly.

21 There are three mugs X, Y and Z. Mugs X and Y are geometrically similar.
The volume of X and Y are $512 \mathrm{~cm}^{3}$ and $216 \mathrm{~cm}^{3}$ respectively.

(a) Find the ratio of the surface area of X to Y.

Answer
:
(b) The volume of Y is given by the formula $V=\pi r^{2} h$ where h is the height of the mug and r the radius of the circular base. Find the volume of Z which has $\frac{2}{3}$ the height of Y and twice the radius of the circular base of Y.

Answer \qquad cm^{3}

22 In the diagram, the vertices of a triangle A, B and C are $(-5,1),(5,6)$ and $(0,1)$ respectively.

Find
(a) the equation of line $B C$,

Answer
[2]
(b) the equation of the line which passes through A and is parallel to $3 x+6 y=5$.

Answer

(c) the area of the riangle $A B C$.

> Answer
\qquad units ${ }^{2}$

23 A frustum and a cone were obtained by slicing a conical container, height $2 h$, as shown in Diagram I at the midway of the height. These figures were then attached to a cylinder, height h, to form a new container as shown in Diagram II. Water was poured into the empty container in Diagram II at a constant rate from the top and it took 33 seconds to fill to the brim.

Diagram I

Diagram II

Given that it took p seconds for the water to reach the container to a height of h and q seconds to reach the height $2 h$.
(a) Find the value of p and of q.

$$
\text { Answer } p=
$$

$q=$
(b) On the grid in the answer space, sketch the graph of the depth of water (d) against the time (f).

Answer

24 The diagram below is part of the scale drawing of a rectangular field showing the position of 3 soccer players, A, B and C. In the drawing, 1 cm represents 5 m .

(a) The ball is placed in the field equidistant from A and B and 30 m from C.

By contructing suitable lines and arcs in the answer space above, mark and label clearly:the position of the ball X.
(b) Measule and state the distance between player A and the ball X.

Answer m
(c) Both players A and C are to run for the ball.

Player A can run at a speed of $6 \mathrm{~m} / \mathrm{s}$ while player C's top speed is $7 \mathrm{~m} / \mathrm{s}$.
Who will get the ball first? Show your working clearly.

Answer Player

Answer all the questions.

1 (a) It is given that $H=\frac{k}{\sqrt{m-n}}$
(i) Find H when $k=12, m=6$ and $n=-3$.
(ii) Express n in terms of H, k and m.
(b) Simplify $\frac{9 a^{2} b}{(2 a)^{2}} \div \frac{12 a b^{3}}{8 b^{5}}$, leaving your answer in positive indices.
(c) Solve the equation $\frac{5}{x+7}+\frac{4}{11-x}=1$.
(d) Solve the following simultaneous equations:

$$
\begin{align*}
5 x-3 y & =22 \\
y-4 x+12 & =0 \tag{3}
\end{align*}
$$

2 (a) Alex needs a loan of $\$ 45000$ to buy a new car.
Bank $A B C$ charges an interest rate of 2.45% per annum compounded monthly.
Bank $X Y Z$ charges a simple interest rate of 2.65% per annum.
If Alex plans to take a five year loan, which bank should he loan from? Justify your answer.
(b) Alex buys the new car on hire purchase. He uses the $\$ 45000$ loan to pay the 30% down payment and then makes monthly payments of $\$ 1950$ for 5 years.
(i) Calculate the cash price of the new car.
(ii) Calculate the interest Alex has to pay in this hire purchase scheme.
(iii) Calculate the rate of simple interest charged for hire purchase. Leave your answer in 3 decimal places.
(c) Alex took his new car for a road trip from Singapore to Bangkok.

Before the trip. Alex paid $\mathrm{S} \$ 109$ for 50 hitres of petrol to fill up the tank.
In Bangkok, Alex paid a total of 9408 Thai bahts for 320 litres of petrol he pumped into his car.

Given $\mathrm{S} \$ 1=24.5$ Thai bahts.
Alex said that the petrol price in Bangkok is less than half the petrol price in Singapore.
Do you agree? Justify your answer.

3 (a) Given $\overrightarrow{P Q}=\binom{-7}{24}$ and $\overrightarrow{P S}=\binom{k}{12}$.
(i) Find $|P Q|$.
(ii) Find the value of k such that P, Q and S are collinear.
(iii) Find the coordinates of Q if P is the point $(10,-15)$
(b) In the diagram, $\overrightarrow{O A}=6 \mathbf{a}, \overrightarrow{O B}=6 \mathbf{b}$ and $3 \overrightarrow{A N}=\overrightarrow{A B} . M$ is the mid-point of $O B$.

Express, as simply as possible, in terms of a and/or \mathbf{h},
(i) $\overrightarrow{A N}$,
(ii) $\overrightarrow{O N}$,
(iii) $\overline{N M}$.
P is a point not shown in the diagram such that $\overrightarrow{M P}=3 \overrightarrow{M N}$.
(iv) Find the position vector of P.
(v) Make two statements about the points O, A and P.

Calculate the value of
(vi) $\frac{\text { area of } \triangle A M N}{\text { area of } \triangle B M N}$,
(vii) $\frac{\text { area of } \triangle B M N}{\text { area of } \triangle B O A}$.

4 A photocopier prints pages in either 'black and white' or in 'colour'.
(a) In one minute, this photocopier prints x pages in black and white.

Write dowa an expression in terms of x, for the number of seconds it takes to print one page if black and white.
(b) In one minute, this photocopier prints 2 more copies in black and white than it does in colour. Write down an expression, in terms of x, for the number of seconds it takes to print one page in colour.
(c) It takes 1.2 seconds longer to print one page in colour than it takes to print one page in black and white. Form an equation in terms of x and show that it reduces to

$$
x^{2}-2 x-100=0
$$

(d) Solve the equation $x^{2}-2 x-100=0$, leaving your answers in 2 decimal places.
(e) Hence, find the time taken in minutes and seconds to print 85 pages in colour. Give your answer corrected to the nearest second.

5 The diagram shg wa circle, centre O and radius $r \mathrm{~cm} . A B$ is perpendicular to the $C D$. Given that $A B=9 \mathrm{~cm}$ and $C D=6 \mathrm{~cm}$.

(a) Express $O B$ in terms of r.
(b) Show that the radius of the circle $=5 \mathrm{~cm}$.
(c) Calculate the area of the minor segment $C D E$.

6 (a) The first four terms in a sequence of numbers, $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$, are given below

$$
\begin{aligned}
& u_{1}=1^{2}+1=2 \\
& u_{2}=2^{2}+3=7 \\
& u_{3}=3^{2}+5=14 \\
& u_{4}=4^{2}+7=23
\end{aligned}
$$

(i) Write down an expression for u_{S} and show that $u_{5}=34$.
(ii) Find an expression, in terms of n, for u_{n}.
(iii) Evaluate u_{30}.
(b) A toy manufacturing company makes toy boats and toy cars.

The following table is used in calculating the cost of manufacturing each toy boat and toy car.

Boat			
Cardata	4	2	3

This information can berepresented by the matrix $T=\left(\begin{array}{lll}6 & 4 & 5 \\ 4 & 2 & 3\end{array}\right)$.
(i) Labour cost $\$ 8$ per hour, wood cost $\$ 5$ per block and paint costs $\$ 3$ per tin. Represent the cost by a 3×1 column matrix C.
(ii) Evaluate the matrix $V=T C$.
(iii) State what the elements of V represent.
(iv) Given that $W=\left(\begin{array}{ll}80 & 50\end{array}\right)$, evaluate $W V$ and explain what the answer represents.

7 The stem and leaf diagram below shows the mass of 21 students.

Stem	Leaf
4	778
5	033466689
6	1247788
7	01

Key: $5 \mid 2$ means 52 kg
(a) Find
(i) the modal mass,
(ii) the percentage of students more than 62 kg .
(b) The box-and-whisker plot for the above distribution is shown below.

(i) Write down the value of a and of b.
(ii) Find the interquartile range.
(c) Two students are selected from the group.

Calculate the probability that only one student is at least 50 kg .

8 The diagram shows three markers A, B and C placed on a horizontal ground. The marker A is 250 m from C and the marker B is 400 m due West from A. Angle $B A C=65^{\circ}$

Diagram is not drawn to scale
(a) Calculate
(i) the length $B C$,
(ii) the area of the triangle $A B C$,
(iii) the angle $A B C$ and
(iv) the bearing of C from B.
(b) An eagle is hovering vertically above A.

The angle of elevation of the eagle from B is 18°.
Find the angle of depression of C from the eagle.

9 Some information about a soda can is shown below.

In this question, the soda can (above) can be modelled as a cylinder with an inner hemisphere that is hollowed inwards (concave) at the base of the can.

(a) Calculate i
(1) the base area, in square centumetres, of the soda can and
(ii) the total volume, in cubic centimetres, of the soda can.
(b) The material used to make the wall of the soda can must be carefblly chosen such that the total mass of each filled soda can is below 620 g .
The manager of the soda manager proposed to use an alloy which has amass of 0.8 g for every $1 \mathrm{~cm}^{2}$ to make the can.

If the thickness of the soda can is negligible, will you accept his proposal?
Jestify your answer with suitable calcalation.

10 Answer the whole of this question on a sheet of graph paper.

The table below gives the values of x and y connected by the equation $y=\frac{x^{2}}{6}+\frac{12}{x}-6$. The table below shows some corresponding values of x and y.

x	1	1.5	2	3	4	5	6	7
y	6.2	2.4	0.7	-0.5	-0.3	0.6	k	3.9

(a) Calculate the value of k.
[1]
(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $0 \leq x \leq 8$.

Using a scale of 2 cm to 1 unit, draw a vertical y-axis for $-1 \leq y \leq 7$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) By drawing a tangent find the gradient of the curve at $x=1.5$.
(d) (i) On the same axes, draw the line $y=\frac{x}{6}$.
(ii) Write down the x-coordinate of the points where the line intersects the curve.
(iii) These values of x is a solution of the equation $x^{3}-x^{2}+A x+B=0$.

Find the value of A and value of B.

Manjusri Secondary School Preliminary Examination 2017 Elementary Mathematics 4048 Paper 1
 Answer key

1(a)	7
1(b)	$35 \%, \sqrt{0.35}, \frac{35}{53}, 3.5$
2(a)	-18
2(b)	$x-13$
3	\$215
4(a)	$3 a^{2} b^{4}$
4(b)	$-\frac{1}{4}$
5(a)	$11,13,14,16,17$
5(b)	$11,13,17$
5 (c)	14, 16
6	$(3 a-2 b)(p-4 q)$
7(a)	52.5 cm
7 (b)	3.6 cm
	$20 \mathrm{~cm}^{2}$
8	5.75×10^{1}
9(a)	$x>5$
9 (b)	28 cm
10	$\frac{3 x+4}{(x+2)(x-2)} \text { or } \frac{3 x+4}{x^{2}-4}$
11	27
12	Data from Year 2007, 2009, 2011 to 2015 are missing. The scale in horizontal axis is not consistent. The line graph may not be sloping upward as it seem to be.
13	4:10:15
14	660°

15	8 hours 40 minutes
16(a)	$\frac{1}{2}\left(360^{\circ}-x\right) \text { or } 180^{\circ}-\frac{1}{2} x$
16(b)	$x-180^{\circ}$
17	$\begin{aligned} & B C=E C=7 \mathrm{~cm} \\ & C D=C A=10 \mathrm{~cm} \\ & \angle A C B=\angle D C E=90^{\circ} \\ & \therefore \triangle A B C \cong \triangle D E C(\mathrm{SAS}) \end{aligned}$
18(a)	$2^{3} \times 3 \times 7$
18(b)	441
18(c)	$4 \times 6 \times 7$
19(a)	Figure 3
19(b)	Figure 5
19(c)	Figure 2
20	
21(a)	16:9
21 (b)	$576 \mathrm{~cm}^{3}$
22(a)	$y=x+1$
22(b)	$y=-\frac{1}{2} x-\frac{3}{2} \text { or } 2 y=-x-3$
22(c)	12.5 units ${ }^{\text {a }}$
23(a)	$p=3, q=12$

1
Preliminary Examination 2017
4 Express/ 5 Normal Academic Elementary Mathematics 4048 Paper 1

Marking Scheme

1 (a)	$\frac{5^{2}-\sqrt{16}}{\sqrt[3]{27}}=7$	BI
1 (b)	$\begin{aligned} & \sqrt{0.35} \approx 0.59 \\ & 35 \%=0.35 \\ & \frac{35}{53} \approx 0.66 \\ & 35 \%, \sqrt{0.35}, \frac{35}{53}, 3.5 \end{aligned}$	M1 Al
2 (a)	$\begin{aligned} x+45 & =27 \\ x & =-18 \end{aligned}$	B1
2 (b)	$\begin{aligned} & 15(x-13)-14(x-13) \\ & =x-13 \end{aligned}$	$\begin{gathered} \mathrm{M1} \\ \mathrm{Al} \end{gathered}$
3	$\begin{aligned} & \frac{100}{85} \times 182.75 \\ & =\$ 215 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
4 (a)	$3 a^{2} b^{4}$	B1
4 (b)	$\begin{aligned} & 2^{\frac{1}{2}} \times 2^{2 n}=2^{0} \\ & \frac{1}{2}+2 n=0 \\ & n=-\frac{1}{4} \end{aligned}$	M1 Al
5 (a)	$11,13,14,16,17$	B1
5 (b)	$11,13,17$	Bl
5 (c)	14,16	B1
6	$\begin{aligned} & 3 a p-12 a q+8 b q-2 b p \\ & =3 a(p-4 q)+2 b(4 q-p) \\ & =(3 a-2 b)(p-4 q) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Al } \end{aligned}$

7 (a)	$\begin{aligned} & 1 \mathrm{~cm}: 500 \mathrm{~cm} \\ & 1 \mathrm{~cm}: 5 \mathrm{~m} \\ & 10.5 \mathrm{~cm}: 10.5 \times 5=52.5 \mathrm{~m} \end{aligned}$	B1
7 (b)	$\begin{aligned} & 1 \mathrm{~cm}^{2}: 25 \mathrm{~m}^{2} \\ & 500 \mathrm{~m}^{2}: \frac{500}{25}=20 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{Al} \end{aligned}$
8	$\begin{aligned} & \frac{1.898 \times 10^{27}}{3.3 \times 10^{23}} \approx 5751 \\ & =5.75 \times 10^{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Al } \end{aligned}$
9 (a)	$\begin{aligned} & 3 x-8+2 x+5>3 x+7 \\ & x>5 \end{aligned}$	$\begin{aligned} & \mathrm{M1} \\ & \mathrm{Al} \end{aligned}$
9 (b)	$\begin{aligned} & (3 x-8)+(2 x+5)+(3 x+7) \leq 85 \\ & x \leq 10 \frac{1}{8} \end{aligned}$ Largest possible length $=3 \times 7+7=28 \mathrm{~cm}$	M1 B1 A1
10	$\begin{aligned} & \frac{x}{x^{2}-4}+\frac{2}{x-2} \\ & =\frac{x+2(x+2)}{(x+2)(x-2)} \\ & =\frac{3 x+4}{(x+2)(x-2)} \text { or } \frac{3 x+4}{x^{2}-4} \end{aligned}$	M1 A1
11	$\begin{aligned} \left(n-\frac{1}{n}\right)^{2} & =n^{2}-2+\frac{1}{n^{2}} \\ n^{2}+\frac{1}{n^{2}} & =5^{2}+2 \\ & =27 \end{aligned}$	MI A1
12	Data from Year 2007, 2009, 2011 to 2015 are missing. The scale in horizontal axis is not consistent. The line graph may not be sloping upward as it seem to be. (Do not accept: the vertical axis does not start from 0)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{Bl} \end{aligned}$
13	$\begin{aligned} & x: y=2: 5 \\ & y: z=2: 3 \\ & x: y: z=4: 10: 15 \end{aligned}$	$\begin{aligned} & \mathrm{BI} \\ & \mathrm{B1} \\ & \mathrm{~B} 1 \end{aligned}$

14	$\begin{aligned} \text { Sum of } \text { nterior angles in pentagon } & =(5-2) \times 180^{\circ} \\ & =540^{\circ} \end{aligned}$ Sum of angles a, b, c, d and $e=5\left(360^{\circ}\right)-540^{\circ}-10\left(60^{\circ}\right)$ $=660^{\circ}$ (deduct'one mark if student assumed regular pentagon)	M1 M1 A1	
15	In 1 hour, Jane made $\frac{8}{7}$ dresses. Judy made $\frac{7}{6}$ dresses. Both made $\left(\left(\frac{8}{7}+\frac{7}{6}\right)=\frac{97}{42}\right.$ dresses. $\begin{aligned} \text { Time to make } 20 \text { dresses } & =20 \div \frac{97}{42} \\ & =8.659 \text { hour } \\ & =8 \text { hours } 40 \text { minutes } \end{aligned}$	M1 M1 A1	
16 (a)	$\begin{aligned} & \angle A O B=360^{\circ}-x \\ & \angle A C B=\frac{1}{2}\left(360^{\circ}-x\right) \text { or } 180^{\circ}-\frac{1}{2} x \end{aligned}$	M1 A1	
16(b)	$\begin{aligned} & \angle O A P=\angle O B P=90^{\circ} \\ & \angle A P B=180^{\circ}-\left(360^{\circ}-x\right)=x-180^{\circ} \end{aligned}$	M1, A1	
17	$\begin{aligned} & B C=E C=7 \mathrm{~cm} \\ & C D=C A=10 \mathrm{~cm} \\ & \angle A C B \div \angle D C E=90^{\circ} \\ & \therefore \triangle A B G \equiv \triangle D E C \text { (SAS) } \end{aligned}$	M1 M1 A1	
18 (a)	2 $\frac{168}{2}$ 84 3 $\frac{42}{21}$ 7 $\frac{7}{7}$ 168 $=2^{3} \times 3 \times 7$	M1 A. 1	
18 (b)	$\begin{aligned} \frac{168}{3 \times 7} & =2^{3} \\ \sqrt{m} & =21 \\ m & =441 \end{aligned}$	M1 A1	
18 (c)	$\begin{aligned} 168 & =2 \sum_{\\|}^{2} \times(2 \times 3) \times 7 \\ & =4 \times 6 \times 7 \end{aligned}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{Al} \end{aligned}$	

4

5

6

$24(\mathrm{a})$	Construct the perpendicular bisector of $A B$	Bl
	Mark the point X 6 cm from C	Bl
$24(\mathrm{~b})$	$5 \times 5=25 \pm 0.5 \mathrm{ml}$	Bl
$24(\mathrm{c})$	Time taken to reach the ball A: $\frac{25}{6}=4.17 \mathrm{sec}$ C. $\frac{30}{7}=4.28$ Plaver A will get the ball first.	MI

Preliminary Examination 2017
4 Express/ 5 Normal Academic
Elementary Mathematics 4048 Paper 2
Answer key.

1

Preliminary Examination 2017
4 Express/ 5 Normal Academic
Elementary Mathematics 4048 Paper 2
Marking Scheme

1	(a)(i)	$\begin{aligned} H & =\frac{12}{\sqrt{6-(-3)}} \\ & =4 \end{aligned}$	BI	
	(a)(ii)	$\begin{aligned} & H \sqrt{m-n}=k \\ & m-n=\left(\frac{k}{H}\right)^{2} \\ & n=m-\left(\frac{k}{H}\right)^{2} \end{aligned}$	M1 Al	
	(b)	$\begin{aligned} \frac{9 a^{2} b}{4 a^{2}} \times \frac{8 b^{5}}{12 a b^{3}} & =\frac{9 \times 8}{4 \times 12} a^{2-3} b^{1+5-3} \\ & =\frac{3 b^{3}}{2 a} \end{aligned}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{Al} \end{aligned}$	
	(c)	$\begin{gathered} 5(11-x)+4(x+7)=(x+7)(11-x) \\ x^{2}-5 x+6=0 \\ (x-2)(x-3)=0 \\ x=2 \text { or } x=3 \end{gathered}$	M1 M1 Al	Factorise
	(d)	Substitute $y=4 x-12$ into $5 x-3 y=22$ $\begin{aligned} & 5 x-3(4 x-12)=22 \\ & x=2 \text { and } y=-4 \end{aligned}$	$\begin{gathered} \mathrm{MI} \\ \mathrm{Al} \mathrm{AI} \end{gathered}$	Elimination method can be used
				11 Marks
2	(a)	$\begin{aligned} \text { Bank } A B C: \text { Amount } & =45000\left[1+\frac{2.45}{12(100)}\right]^{5 \times 12} \\ & =\$ 50858 \\ \text { Bank } X Y Z: \text { Interest } & =45000 \times \frac{2.65}{100} \times 5=\$ 5962.50 \\ \text { Amount } & =\$ 50962 \end{aligned}$ Alex should loan from Bank $A B C$.	M1 M1 M1 A1	

	(b)(i)	Cash Price: $\begin{aligned} & \frac{100}{30} \times 450000 \\ & =\$ 150000 \end{aligned}$	B1	
	(b)(ii)	Hire Purchase Price $\begin{aligned} & 45000+(1950 \times 5 \times 12)=\$ 162000 \\ & \text { lnterest }=\$ 12000 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)(iii)	$\begin{aligned} \text { Rate } & =\frac{12000 \times 100}{105000 \times 5} \\ & =2.286 \%(3 \mathrm{~d} . \mathrm{p}) \end{aligned}$	B1	
	(c)	Price of 1 litre of petrol in Singapore: $\frac{109}{50}=S \$ 2.18$ Bangkok: $\frac{9408}{320}=29.4$ Thai bahts $=\frac{29.4}{24.5}=\mathrm{s} \$ 1.20$ Half of Singapore price $=\frac{1}{2} \times 2.18=\$ 1.09$ Since $1.20>1.09$, I do not agree.	MI M1 A1	
				11 Marks
3	(a)(i)	$\sqrt{(-7)^{2}+24^{2}}=25$ units	B1	
	(a)(ii)	$\begin{aligned} & \overrightarrow{P Q}=n \overrightarrow{P S} \\ & \binom{-7}{24}=n\binom{k}{12} \\ & n=2 \\ & k=-3.5 \end{aligned}$	M1 AI	Accept $\frac{12}{k}=\frac{24}{-7}$ butnot $\frac{k}{12}=\frac{-7}{24}$
	(a)(iii)	$\begin{aligned} \overline{O Q} & =\overline{O P}+\overline{P Q} \\ & =\binom{10}{-15}+\binom{-7}{24}=\binom{3}{9} \end{aligned}$ Coordinates of $Q=(3,9)$	B1	
	(b)(i)	$\begin{aligned} \overrightarrow{A N} & =\frac{1}{3} \overrightarrow{A B} \\ & =2 \mathrm{~b}-2 \mathrm{a} \end{aligned}$	B1	

	(b)(ii)	$\begin{aligned} \overrightarrow{O N} & =\overrightarrow{O A}+\overrightarrow{A N} \\ & =4 \mathrm{a}+2 \mathrm{~b} \end{aligned}$	B1	
	(b)(iii)	$\begin{aligned} \overrightarrow{N M} & =\overrightarrow{O M}-\overrightarrow{O N} \\ & =\mathrm{b}-4 \mathrm{a} \end{aligned}$	B1	
	(b)(iv)	$\begin{aligned} \overline{M P} & =3 \overrightarrow{M N} \\ \overrightarrow{O P} & =\overline{O M}-3 \overrightarrow{N M} \\ & =3 \mathrm{~b}-3(\mathrm{~b}-4 \mathrm{a}) \\ & =12 \mathrm{a} \end{aligned}$	BI	
	(b)(v)	Points O, A and P are collinear points/ form a straight line . A is a mdd-point of $O P / O A=\frac{1}{2} O P$.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(b)(vi)	$\frac{\text { Area of } \triangle A M N N}{\text { Area of } \triangle B M N}=\frac{1}{2}$	B1	
	(b)(vii)	$\frac{\text { Area of } \triangle B M N}{\text { Area of } \triangle B O A}=\frac{1}{3}$	B1	
				12 Marks
4	(a)	$\frac{60}{x}$	B1	
	(b)	$\frac{60}{x-2}$	B1	
	(c)	$\begin{aligned} & \frac{60}{x-2}-\frac{60}{x}=1.2 \\ & 60 x-60(x-2)=1.2 x(x-2) \\ & x^{2}-2 x-100=0 \text { (shown) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Form equation Attempt to simplify
	(d)	$\begin{aligned} & x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-100)}}{2(1)} \\ & x=-9.05 \text { or } 11.05(2 \mathrm{~d} . \mathrm{p}) \end{aligned}$	M1 AI	
	(e)	$\begin{aligned} \text { Time takea } & =85\left(\frac{60}{11.05-2}\right) \\ & =564 \mathrm{~seconds} \\ & =9 \mathrm{~min} 24 \mathrm{sec} \end{aligned}$	M1 BI	
				9 Marks

5	(a)	$O B=9-r$	B1	
	(b)	$\begin{aligned} & (9-r)^{2}+3^{2}=r^{2} \\ & 81-18 r+r^{2}+9=r^{2} \\ & r=5 \mathrm{~cm} \text { (Shown) } \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{Al} \end{aligned}$	
	(c)		B1 MI M1 Al	
				8 Marks
6	(a)(i)	$u_{5}=5^{2}+9=34$	BI	
	(a)(ii)	$u_{n}=n^{2}+2 n-1$	B1 B1	Bl for n^{2} B1 for $2 n-1$
	(a)(iii)	$\begin{aligned} U_{30} & =30^{2}+2(30)-1 \\ & =959 \end{aligned}$	B1	
6	(b)(i)	$\left(\begin{array}{l}8 \\ 5 \\ 3\end{array}\right)$	B1	
	(b)(ii)	$\begin{aligned} V & =\left(\begin{array}{lll} 6 & 4 & 5 \\ 4 & 2 & 3 \end{array}\right)\left(\begin{array}{l} 8 \\ 5 \\ 3 \end{array}\right) \\ & =\binom{83}{51} \end{aligned}$	B1 B1	
	(b)(iii)	Elements of V represent the cost of manufacturing each toy boat and toy car respectively.	B1	
	(b)(iv)	$W V=\left(\begin{array}{ll} 80 & 50 \end{array}\right)\binom{83}{51}=(9190)$ The answer represents the total cost of manufacturing 80 toy boats and 50 toy cars.	B1 B1	

5

				10 Marks
7	(a)(i)	Modal mass $=56 \mathrm{~kg}$	B1	
	(a)(ii)	$\frac{7}{21} \times 100 \%=33 \frac{1}{3} \% \text { or } 33.3 \%$	B1	
	(b)(i)	$\begin{aligned} & a=53 \\ & b=58 \end{aligned}$	$\begin{aligned} & \mathrm{BI} \\ & \mathrm{BI} \end{aligned}$	
	(b)(ii)	$\begin{aligned} \text { Interquartile range } & =67-53 \\ & =14 \mathrm{~kg} \end{aligned}$	B1	
	(c)	$\left\{\begin{array}{l} \left(\frac{18}{21} \times \frac{3}{20}\right)+\left(\frac{3}{21} \times \frac{18}{20}\right) \\ =\frac{9}{35} \end{array}\right.$	M1 A1	
				7 Marks
8	(a)(i)	$\begin{aligned} B C^{2} & =250^{2}+400^{2}-2(250)(400) \cos 65^{\circ} \\ B C & =371.45 \\ & =371 \mathrm{~m}(3 \text { s.f. }) \end{aligned}$	$\begin{gathered} \hline \mathrm{Bl} \mathrm{B1} \\ \mathrm{Al} \\ \hline \end{gathered}$	
	(a)(ii)	$\begin{aligned} \text { Area } & =\frac{1}{2}(250)(400) \sin 65^{\circ} \\ & =45315.38 \\ & =45300 \mathrm{~m}^{2}(3 \text { s.f. }) \end{aligned}$	M1 A1	
	(a)(iii)	$\begin{aligned} & \frac{\sin \angle A B C}{250}=\frac{\sin 65^{\circ}}{371.45} \\ & \angle A B C=37.588 \\ & \approx 37.6^{\circ}(1 \text { d.p. }) \end{aligned}$	M1 Al	
	(a)(iv)	$\begin{aligned} \text { Bearing } & =90^{\circ}-37.6^{\circ} \\ & =052.4^{\circ} \end{aligned}$	B1	
	(b)	Let h be the height of eagle above the ground $\begin{aligned} & \frac{h}{400}=\tan 18^{\circ} \\ & h=129.967 \mathrm{mI} \\ & \tan \angle A C E=\frac{129.967}{250} \\ & \angle A C E=27.46^{\circ} \\ & \text { Aagle of depression } \left.=27.5^{\circ} \text { (to } 1 \text { d.p. }\right) \end{aligned}$	B1 M1 Al	
				11 Marks

9	(a)(i)	$\begin{aligned} \text { Area of hemisphere } & =2 \pi(2.5)^{2} \\ & =39.2699 \mathrm{~cm}^{2} \end{aligned}$ $\begin{aligned} \text { Atea of ring } & =\pi\left(3.2^{2}-2.5^{2}\right) \\ & =12.534 \mathrm{~cm}^{2} \end{aligned}$ $\begin{aligned} \text { Axea of the base } & =51.8048 \\ & =51.8 \mathrm{~cm}^{2} \end{aligned}$	M1 A1	Any one part of working shown
	(a)(ii)	$\begin{aligned} & \begin{aligned} \text { Volume of hemisphere } & =\frac{1}{2} \times \frac{4}{3} \times \pi(2.5)^{3} \\ & =32.7249 \mathrm{~cm}^{3} \end{aligned} \\ & \begin{aligned} \text { Volume of cylinder } & \left.=\pi \times 3.2^{2} \times 11.4\right) \\ & =366.73696 \mathrm{~cm}^{3} \end{aligned} \\ & \begin{aligned} \text { Volume of the soda can } & =334.01 \\ & =334 \mathrm{~cm}^{3}(3 \text { s.f. }) \end{aligned} \end{aligned}$	M1 A1	Any one part of working shown
	(b)	Surface area of the can $\begin{aligned} & =2 \pi(3.2) \times 11.4+\pi(3.2)^{2}+51.8048 \\ & =313.185 \\ & =313 \mathrm{~cm}^{2} \end{aligned}$ Mass of the empty can using the proposed material $\begin{aligned} & =313.185 \times 0.8 \\ & =250.548 \mathrm{~g} \end{aligned}$ Mass of soda in each can $\begin{aligned} & =95 \% \times 334 \times 1.2 \\ & =380.76 \mathrm{~g} \end{aligned}$ Total mass of each filled soda can $\begin{aligned} & =250.548+380.76 \\ & =631.308 \mathrm{~g} \end{aligned}$ Since $631.308>620 \mathrm{~g}$, \therefore I will NOT accept the proposal.	M1 B1 B1 M1 MI AI	Allow error from part (a).to carry forward in this whole part of question.
				10 Marks
10	(a)	$k=2$	B1	
	(b)	Refer to attached graph.	B1 - Axes drawn to scale B1 - Points are plotted correctly Bl - Smooth curve plotted	

10	(c)	Tangent is drawn at the point $x=1.5$ Refer to attached graph Gradient $=-4.8 \pm 0.5$ (Range accepted from -5.3 to -4.3)	B1 B1	
	(d)(i)	Draw the line $y=\frac{x}{6}$ Refer tolatlached graph.	B1	
	(d)(ii)	$x=2.240 .1$ or $x=5.2 \pm 0.1$	B1 B1	
	(d)(iii)	$\begin{aligned} & \frac{x^{2}}{6}+\frac{12}{x}-6=\frac{x}{6} \\ & x^{3}-x^{2}-36 x+72=0 \\ & A=-36, B=72 \end{aligned}$	M1 Al	Both correct
				11 Marks

Name : \qquad ()
lass:
Date: \qquad

SERANGOON GARDEN SECONDARY SCHOOL
Visiom: Critical Thimkers, Thoughtfuil Leaders
Mission: Love Learm, Learn to lead
PREEIMINARY EXAMIINATION 2017

CLASS \square RIGISTER $\mathbb{N} U M \mathbb{B E R}$ \square
MATHIENATICS
4048102
Paper 2
Secondmry 4 Express/ 5 Norman Acadlumic
22 August 2017
2 honars 30 minnutes
0800-1030
Additional Materials: Writing Paper
Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, class and class register number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer alll questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 100 .

Areas for Imorovement		
Error	Penalty	
Accuracy of non-exact answers	-1	
Missing/ Wrong units (for Paper 2 only)	-1	
Presentation/Not using ink	-1	

This quesefom paper comsisis of 13 printed pages and I blank page.

MATHEMATICAL FORMULAE

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved surface area of cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2}
\end{aligned}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

(1) (a) n is a positive integer. Show that $n^{2}+n$ is always even.
(ib) Solve the equation $p^{2}-7 p+12=0$.
Hence solve the equation $q^{4}-7 q^{2}+12=0$.
(c) A $2.5 \mathrm{~km}^{2}$ lake has an area of $40 \mathrm{~cm}^{2}$ on a map.
(i) If the scale of the map is such that 1 cm represents $n \mathrm{~km}$, find the value of n.
(ii) The distance between the hospital and the village town on the map is 30 cm . Find the actual distance, in kilometres, between the hospital and the village town.

2 Mr Kia is going on a business trip to a province in the same country. There ate two options for him to go to the province: by domestic flight or by car.

- If he decides to drive, he would cover a distance of 400 km at a speed of $x \mathrm{~km} / \mathrm{h}$.
- If he decides to take a domestic flight, he would cover a distance of 300 km at a speed of $(x+250) \mathrm{km} / \mathrm{h}$.
(i) Find an expression, in terms of x, for the time taken to travel from home to the province if Mr Kia decides to drive.
(iii) Find an expression, in terms of x, for the time taken to travel from home to the province if Mr Kia decides to take a domestic flight.
(iiii) If the flight time is 210 minutes less than the driving time, form an equation in x and show that it reduces to $7 x^{2}+1550 x-200000=0$.
(iv) Solve the equation $7 x^{2}+1550 x-200000=0$, giving your answers correct to 1 decimal place.
(v) If Mr Kia needs to meet his client punctually at 1400, find the latest time that he needs to leave home ir he decides to dive. Assumae that time has beem factored in for the usual traffic comeitioms.
\$ (a) A set of 10 cards is made as shown.

The cards are shuffled and placed face down on a desk. A card is drawn at random from the set of cards. It is then replaced and shuffed again before another card is being drawn again.

Calculate the probability that
(ii) both cards show the letter \mathbb{T},
(iii) exactly one of the cards shows the letter T.
(b) The table shows the ages of 1100 penple who entered a $10-\mathrm{km}$ run

Age $(x$ years $)$		$20 \leq x<30$	$30 \leq x<40$	$40 \leq x<50$
Frequency	Men	375	186	99
	Women	250	122	68

(i) One person is chosen at random. Find, as a fraction in its lowest term, the probability that the person is a man aged less than 40 years old.
(ii) Two persons are chosen at random. Find the probability that both of them are women aged 30 or more.

A In the diagram, $\overrightarrow{O A}=a, \overrightarrow{O B}=b$ and $\overrightarrow{A Y}=k b . X$ lies on the line $A B$ such that $\overrightarrow{A X}=\frac{1}{3} \overrightarrow{A B}$.

(i) Express $\overrightarrow{A X}$ and $\overrightarrow{O X}$ in terms of and lb.
(iii) Express $\vec{B} Y$ in terms of k, a and $l b$.
(ifiii) Given that $O X$ is parallel to $B Y$, find the value of k.
(iv) The line $O X$ when produced, meets $A Y$ at Z. Express $\overrightarrow{A Z}$ in terms of 1 b.
(v) Find the value of
(a) $\frac{\text { area of } \triangle O A X}{\text { area of } \triangle O B X}$,
(b) $\frac{\text { area of } \triangle A X Z}{\text { area of quadrilateal } X B Y Z}$.

5 The following shows the work done by a student in calculating the sum of the first n natural numbers.

$\sim n$	Series	Sum	Formurla
1	1	1	$\frac{1}{2}(1)(1+1)$
2	$1+2$	3	$\frac{1}{2}(2)(2+1)$
3	$1+2+3$	6	$\frac{1}{2}(3)(3+1)$
4	$1+2+3+4$	10	$\frac{1}{2}(4)(4+1)$
\vdots		\vdots	\vdots
66	$1+2+3+4+5+6$	a	\vdots
\vdots	\vdots	\vdots	\vdots
n	$1+2+3+\cdots+n$	c	

(i) Study the pattern and write down the values of a and b.
(iii) Find in terms of n, the value of c.

After doing some additional calculations, the student realised that

$$
\begin{gathered}
1^{3}+2^{3}+3^{3}=36=6^{2} \\
1^{3}+2^{3}+3^{3}+4^{3}=100=10^{2}
\end{gathered}
$$

(iiii) Determine the sum of the series
(a) $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}$,
(b) $1^{3}+2^{3}+3^{3}+\cdots+n^{3}$ in terms of n.
(iv) Hence, using (iiii)(b), determine the exact value of the sum of the series

$$
\begin{equation*}
3^{3}+6^{3}+9^{3}+12^{3}+\cdots+300^{3} . \tag{2}
\end{equation*}
$$

6' (a) State the order and name of each matrix.

	Matrix	Order	Name of matrix
(i)	$\left(\begin{array}{c}2 \\ 5 \\ 12\end{array}\right)$		
(iii)	$\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$		

(b) The Tan family owns two cars. Every week (Monday to Friday) on average, Mr Tan spends $\$ 150, \$ 70$ and $\$ 10$ on petrol, carpark charges and road pricing (ERP) respectively. Every week (Monday to Friday) on average, Mrs Tan spends $\$ 80, \$ 45$ and $\$ 30$ on petrol, carpark charges and road pricing (ERP) respectively.

The information can be represented by the matrix

$$
\mathbb{P}=\left(\begin{array}{cc}
\left.\begin{array}{cc}
\mathrm{Mr} & \mathrm{Mrs} \\
\text { Tan } & \text { Tan } \\
70 & 80 \\
70 & 45 \\
10 & 30
\end{array}\right) \begin{array}{l}
\text { Petrol } \\
\text { Carpark charges } \\
\text { Road pricing (ERP) }
\end{array} .
\end{array}\right.
$$

During weekends, the Tan family drives the weekend car and spends on average $\$ 20, \$ 10$ and $\$ 2$ on petrol, carpark charges and ERP respectively.
In a year, on average, both Mr Tan and Mrs Tan work for 48 weeks.
(i) Represent the average weekend car expenses of the Tan family by a matrix \mathbb{R}.
(iii) Evaluate $\mathbb{Q}=\mathbb{P}\binom{1}{1}$ and $\mathbb{S}=48 \mathbb{Q}+52 \mathbb{R}$.
(iiii) State what the elements of \mathbb{S} represent.
(iv) The matrix \mathbb{T} is given by $\mathbb{T}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \mathbb{S}$. Evaluate matrix \mathbb{T} and describe in a sentence what the element(s) of the matrix T represent.
(v) A recent credit card promotion entitles Mr and Mrs Tan 12.5% savings on petrol every time they pump petrol.
Calculate the new expenses for petrol, carpark charges and ERP for the Tan family in a year.

In the diagram above, $A E C$ and $B E D$ are chords of the circle with centre O. $\angle A D E=30^{\circ}$ and $\angle C Q D=50^{\circ} . C Q$ and $D Q$ are tangents to the circle and F is the midpoint of chord $C D$.
(i) Explain why $\triangle A D E$ is similar to $\triangle B C E$.
(iii) Name a pair of congruent triangles.
(iiii) Find, stating your reasons clearly,
(a) $\angle D A C$,
(b) $\angle B E C$.
(iv) Is it possible to draw a circle that passes through C, O, D and Q ? Explain your answer clearly.

8 Answer the wholle of this question on a single sheet of graph paper.
The table below gives the values of x - and y-coordinates of some points on the graph of $y=\frac{a x}{x+b}$.

x	-0.5	0	1	2	3	4	5
y	-2	0	2	3	3.6	4	4.3

(a) By formulating two equations, find the values of a and b.
(b) Using a scale of 2 cm to represent 1 unit on both the x-axis and y-axis, plot the points given in the table and join them with a smooth curve for $-0.5 \leq x \leq 5$.
(c) By drawing a suitable tangent, find the gradient of the curve at the point $x=1.5$.

Using the values of a and b found in (a),
(d) find the solution(s) of the equation

$$
\frac{a x}{x+b}=-\frac{1}{3} x+1
$$

by drawing a suitable straight line on the same axes,
(e) find the range of values of x such that $\frac{a x}{x+b}<2.5$.

9 Points A and B are points at the bottom a cliff 50 metres tall in height. Point C on a flat ground is 250 metres away from A with $A B$ making an angle of 75° with the line $A C$. The bearing of C from A is 217° and A and B are 90 m apart.

Calculate the
(a) bearing of B from A,
(b) area of the land formed by the points A, B and C,
(c) shortest distance from C to the bottom of the cliff.

An outdoor adventure company wants to build a flying fox using a metal cable with the starting point X on the cliff and the landing point at C.
(d) Find the distance away from B vertically below X such that the slope is the greatest.
(e) Find the angle that the metal cable makes with the ground at point C.

11 A company manufactures geometrically similar flagpole bases of two different sizes as shown below.

The bases are made of cement and are in the shape of truncated right pyramids. If each pyramid could be completed, its vertex would be the top of the flagpole at K and K^{\prime} respectively. The height of the flagpole for the bigger-sized base is 2.5 metres and the ratio of the side length of the bottom surfaces $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is $3: 5$.
(a) The area of the bottom surface $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is $2500 \mathrm{~cm}^{2}$. What is the area of the bottom surface $A B C D$?
(b) Given that $E^{\prime} F^{\prime}=F^{\prime} G^{\prime}=40 \mathrm{~cm}$, find the length $K^{\prime} Y^{\prime}$ and the volume of the base (as represented by the stamded part) for the bigger-sized flagpole base.
(c) Hence, find the volume of the base for the smaller-sized flagpole base.
(d) If it costs $\$ 15$ to buy a smaller-sized flagpole base and $\$ 25$ to buy a biggersized flagpole base, which flagpole base is more value for money? Explain with clear working.

11 The concert band of a school intends to rent a concert venue for their annual performance as their school hall is undergoing a renovation.

Information that the chairperson Peter and his committee need is on the opposite page.

As shown in Figure 1, seats in the concert hall are arranged along arcs of concentric circles of equal spacing. There are three rows of seats in front and one row of limited seats behind the stage.
(i) Show that angle $C O D=1.55$ radians and find the area taken $u p$ by the stage.
(iii) Each normal concert chair takes up 80 cm of the arc. Show that row 1 can fit a maximum of 47 normal concert chairs.

Peter and his committee decide that they will have a total of 3 rehearsals (including the rehearsal on the actual performance day) and a total of 30 VIP guests. They need to decide whether they should take up Package A or Package B of the concert hall rental offered by the venue management.
(iiii) Assuming that Peter and his committee decide to charge $\$ 20, \$ 15, \$ 12$ and $\$ 25$ for Row 1, 2, 3 and 4 respectively, help Peter to decide which package he should take up. Justify the decision with clear calculations and assumption(s) so that Peter can present the proposal to his teacher-incharge.

Details of the stage

Figure 1

Figure 2

Cost of remtal of items

Package	Details (All prices in this colummare mett prices)	Cost of remtimg one normal concert chair (excluading 7\% GST)	Cost of renting ome VIIP concert chair (excluyding 7% GST)
A	- Basic rental cost: $\$ 2800$ - Freebies: - Free 150 normal concert chairs - Free 25 VIP chairs - $1^{\text {st }}$ rehearsal (unlimited time usage on day of event): $\$ 100$ - $2^{\text {nd }}$ rehearsal: 20% off normal rehearsal price - $3^{\text {rd }}$ rehearsal and beyond: 10% off normal rehearsal price	\$8	\$18
B	- Basic rental cost: $\$ 1500$ - Freebies: - Free 100 normal concert chairs - Free 10 VIP chairs - All rehearsals cost $\$ 120$ each with unlimited time usage - Terms and Condition: Row 4 cannot be opened for selling of tickets.	\$12	\$20

END OF PAPER

Sec 4E/5NA Prelims P2 Suggested Mark Scheme

Qn	Solution	
Algebra		
1(a)	$n^{2}+n=n(n+1)$ If n is odd, then $(n+1)$ is even. If n is even, then $(n+1)$ is odd. Product of an odd number and an even number is even. Thus $n(n+1)$ is even. Alternative: If n is odd, then n^{2} is odd. Then sum of two odd numbers n and n^{2} is even. If n is even, then n^{2} is even. Then sum of two even numbers n and n^{2} is even.	
(b)	$\begin{aligned} & p^{2}-7 p+12=0 \\ & (p-3)(p-4)=0 \\ & p=3 \text { or } p=4 \\ & q^{4}-7 q^{2}+12=0 \\ & \text { let } p=q^{2} . \\ & q^{2}=3 \Rightarrow q=\lambda \sqrt{3} \text { or } q^{2}=4 \Rightarrow q=42 \end{aligned}$	
(c)	$\begin{aligned} & 40 \mathrm{~cm}^{2}: 2.5 \mathrm{~km}^{2} \\ & 1 \mathrm{~cm}^{2}: 0.0625 \mathrm{~km}^{2} \\ & 1 \mathrm{~cm}: 0.25 \mathrm{~km}_{n=0.25} \end{aligned}$	
(ii)	Actual distance between the hospital and the village town $\begin{aligned} & =30 \times 0.25 \mathrm{~km} \\ & =7.5 \mathrm{~km} \end{aligned}$	
		$\begin{array}{r} \text { Total for } \\ \text { Q1: } 9 \end{array}$

Word problem and quadratic equations		
2(i)	Time taken to travel from home to the province if Mr Kia decides to drive $=\frac{400}{x}$ h	
(ii)	Time taken to travel from home to the province if Mr Kia decides to take a domestic flight $=\frac{300}{x+250} \mathrm{~h}$.	

(ii)	$\begin{aligned} & \frac{400}{x}-\frac{300}{x+250}=\frac{7}{2} \\ & 400(x+250)-300(x)=\frac{7}{2}(x)(x+250) \\ & 400 x+100000-300 x=\frac{7}{2} x^{2}+875 x \\ & \frac{7}{2} x^{2}+775 x-100000=0 \\ & 7 x^{2}+1550 x-200000=0 \text { (shown) } \end{aligned}$	
(iv)	$\begin{aligned} & 7 x^{2}+1550 x-200000=0 \\ & x=\frac{-1550 \pm \sqrt{(1550)^{2}-4(7)(-200000)}}{14} \\ &=\frac{-1550 \pm \sqrt{8002500}}{14} \\ &=94.919 \text { or }-312.776 \\ &=94.9 \text { or. }-3128 \text { (1d.p.) } \end{aligned}$	
(v)	x must be positive, thus $x=94.919$ If Mr Kia drives, time taken $=\frac{400}{94.919} \mathrm{~h}=4.2141 \mathrm{~h}$ $0947 \mathrm{hrs} \xrightarrow{13 \text { minutes }} 1000 \mathrm{hrs} \xrightarrow{4 \mathrm{hr}} 1400 \mathrm{hrs}$ He must leave home latest by 0947.	

Total for Q2: 10

Probability

$3 S, 3 T, A, 2 I, C$
3(a) P(both cards show the letter T)
(i) $=\frac{3}{10} \times \frac{3}{10}$
(ii) P (exactly gone of the cards shows the letter T)
$=\frac{3}{10} \times \frac{7}{10}+\frac{7}{10} \times \frac{3}{50}$
$=\frac{42}{100}=\frac{31}{50}$
(b)

Age (x years			$20 \leq x<30$	$30 \leq x<40$
Frequency	Men	375	186	99
	Women	250	122	68

Probability that the person is a man aged less than 40 years old

	$\begin{aligned} & =\frac{375+186}{1100} \\ & =\frac{561}{1100} \\ & =\frac{51}{100} \end{aligned}$	
(ii)	Probability that both of them are women aged 30 or more $\begin{aligned} & =\frac{122+68}{1100} \times \frac{122+68-1}{1099} \\ & =\frac{190}{1100} \times \frac{189}{1099} \\ & =\frac{513}{17270}=0.0297 \end{aligned}$	

Total for Q4: 9

Total for Q5: 7

	$\begin{aligned} & Q=P\binom{1}{1}=\left(\begin{array}{ll} 150 & 80 \\ 70 & 45 \\ 10 & 30 \end{array}\right)\binom{1}{1}=\left(\begin{array}{c} 230 \\ 115 \\ 40 \end{array}\right) \\ & S=48 Q+52 R=48\left(\begin{array}{c} 230 \\ 115 \\ 40 \end{array}\right)+52\left(\begin{array}{c} 20 \\ 10 \\ 2 \end{array}\right)=\left(\begin{array}{c} 12080 \\ 6040 \\ 2040 \end{array}\right) \end{aligned}$	
(iii)	The elements 12080,6040 and 2040 represent the Tan family's yearly car expenses on petrol, carpark charges and ERP respectively.	
(iv)	$\begin{aligned} T & =\left(\begin{array}{lll} 1 & 1 & 1 \end{array}\right) S \\ & =\left(\begin{array}{lll} 1 & 1 & 1 \end{array}\right)\left(\begin{array}{c} 12080 \\ 6040 \\ 2040 \end{array}\right)=(12080+6040+2040) \\ & =(20160))_{\times 1} \end{aligned}$ It represents the Tan family's total car expenses in a year.	
(v)	Method 1: $\begin{aligned} \text { New yearly expenses for petrol } & =0.875 \times 12080=\$ 10570 \\ \text { carpark charges } & =\$ 6040 \\ E R P & =\$ 2040 \end{aligned}$ Method 2: $\begin{aligned} & \text { Given } P_{\text {new }}=\left(\begin{array}{cc} 131.25 & 70 \\ 70 & 45 \\ 10 & 30 \end{array}\right) \\ & Q_{\text {ncw }}=P_{\text {ncw }}\binom{1}{1}=\left(\begin{array}{cc} 131.25 & 70 \\ 70 & 45 \\ 10 & 30 \end{array}\right)\binom{1}{1}=\left(\begin{array}{c} 201.25 \\ 115 \\ 40 \end{array}\right) \\ & S_{\text {new }}=48 Q_{\text {ncw }}+52 R_{\text {recw }}=48\left(\begin{array}{c} 201.25 \\ 115 \\ 40 \end{array}\right)+52\left(\begin{array}{c} 17.5 \\ 10 \\ 2 \end{array}\right)=\left(\begin{array}{c} 10570 \\ 6040 \\ 2040 \end{array}\right) \end{aligned}$	

7(i) $\angle A D E=\angle B C E$ (angle in the same segment)
$\angle D A E=\angle C B E$ (angle in the same segment)
By the AA similarity test, $\triangle A D E$ is similar to $\triangle B C E$.
(ii) Any of the following answers:

- $\triangle D O F$ is congruent to $\triangle C O F \quad O R$
- $\triangle D O Q$ is congruent to $\triangle C O Q$ OR
- $\triangle D F Q$ is congruent to $\triangle C F Q$
(iii) $\angle O D Q=\angle O C Q=90^{\circ}(\tan \perp \mathrm{rad})$
(a) $\angle D O Q=360^{\circ}-90^{\circ}-90^{\circ}-50^{\circ}=130^{\circ}$
$\angle D A C=\frac{1}{2} \angle D O C$
$=65^{\circ}$ (angleat centre $=$ twice angle at circumference)
(b)
$\angle B E C=\angle A E D$ (vertically opposite angles)
$=180^{\circ}-30^{\circ}-65^{\circ}$ (\angle sum of triangle)
$=85^{\circ}$
(iv) It is possible to draw a circle that passes through C, O, D and Q since
$\angle O D Q=\angle O C Q=90^{\circ}(\tan \perp \mathrm{rad})$ and angle in a semicircle .
in this case, $O Q$ is the diameter of the circle.
Total for Q7: 7

Tri	ometry	
9 (a)	Bearing of B from $A=217^{\circ}+75^{\circ}=292^{\circ}$	
(b)	Area of the land formed by the points A, B and C $\begin{aligned} & =\frac{1}{2}(90)(250) \sin 75^{\circ} \\ & =10866.67 \\ & =10900 \mathrm{~m}^{2}(3 \mathrm{s.f.}) \end{aligned}$	
(c)	Shortest distance from C to the bottom of the cliff. $=d$ $=250 \sin 75^{\circ}$ $=241.48$ $=241 \mathrm{~m} \text { (3s.f. })$	
(d)	Slope is greatest when angle of elevation is the greatest from C. Distance away from B $\begin{aligned} & =90-250 \cos 75^{\circ} \\ & =25.295 \\ & =25.3 \mathrm{~m}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	
(e)	$\begin{aligned} & \text { Required angle } \\ & =\tan ^{-1}\left(\frac{50}{241.48}\right) \\ & =11.7^{\circ} \quad(1 \mathrm{d.p} .) \end{aligned}$	

TANJONG KATONG SECONDARY SCHOOL
 Preliminary Examination 2017
 Secondary 4

CANDIDATE
NAME

CLASS
MATHEMATICS
Paper 1

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .

This doluanur cuasios ve no pratacu pages.
[Tura over

Mathematical Formulae

Compound Interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\text { Curved surface area of a cone }=\pi r \ell
$$

Curved surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 Calculate $\sqrt[3]{(-3.01)^{2}+2.8}$.
(a) Write down the first five digits on your calculator display.

Answer (a) \qquad
(b) Write your answer to part (a) correct to 3 decimal places.

Answer (b) \qquad

2 These are the first four terms of a sequence.
$42 \quad 34 \quad 26$

18
(a) Write down the eighth term in the sequence. Answer (a)
(b) Write down an expression, in terms of n, for the nth term in the sequence.

Answer (b) \qquad

3 Given that $81 \div 27^{\frac{n}{3}}=9$, find n.

Answer

5

4 (a) Two integers, 12 and x, are related such that their highest common factor is 6 and their lowest common multiple is 60 . Find the value of integer x.

Answer (a) $x=$ \qquad [1]
(b) Andy bought an external hard drive with storage of 1×10^{12} bytes.

A 5-minute-long high definition video takes up 7.2×10^{9} bytes.
Assuming he continues to record all his videos in high definition, what would be the total duration that can be stored in the external hard drive? Give your answer to the nearest minute.
\qquad minutes

5 The angle, in degrees, of a quadrilateral EFGH are represented by these expressions: Angle $E=40+2 x$, angle $F=100-x$, angle $G=60+6 x$ and angle $H=70+2 x$.
(a) Calculate the value of x.

> Answer (a)
(b) What is the name of the quadrilateral?

Answer (b)

6 The value of 200 homes at Mount Ace estate is shown below.

Value of homes (\$x)	Number of homes
$200000<x \leq 300000$	24
$300000<x \leq 400000$	16
$400000<x \leq 500000$	85
$500000<x \leq 600000$	67
$600000<x \leq 3000000$	8

The mean value for the homes at Mount Ace estate is $\$ 505500$.
Explain if the mean value is a fair representation for the value of homes at Mount
Ace estate. Give your reason.
Answer \qquad
\qquad
\qquad
\qquad

[Turn over

7

7 (a) Factorise completely $8 y^{2} z-18 z+4 x^{2} y^{2}-9 x^{2}$.

> Answer (a)
(b) Simplify $\left(-a b^{-1}\right)^{3} \div \frac{1}{2} a^{3} b^{-2}$, expressing your answer in positive index form.

Answer (b)
$8 \quad \xi=\{$ integersx: $1 \leq x \leq 20\}$
$P=\{x$: prime numbers $\}$
$Q=\{x: 1+3 x<18\}$
(a) List the elements in
(i) Q,

Answer(a)(i)
(ii) $P \cap Q$.

Answer(a)(ii)
(b) Show that $P^{\prime} \cap Q \neq \phi$.

Answer (b) \qquad
\qquad

8

9 Two geometrically similar botles A and B have base areas of $27 \mathrm{~cm}^{2}$ and $75 \mathrm{~cm}^{2}$ respectively.
Given that the capacity of bottle A is 0.21 litres, find the capacity of bottle B.

Answer

10 A group of 15 students took a Science test and their results are represented in the stem-and-leaf diagram below.

Stem	Leaf				
5	3	4	6	7	
6	2	2	4	9	9
7	1	3	7		
8	0	2	x		

5|3 represents 53 marks

(a) Given that the range of the Science test results is 32 , find the value of x.

$$
\text { Answer }(a) x=
$$

\qquad
(b) The passing mark for the Science test is 55. A student from this group is chosen at random. Find the probability that this student failed the test.

Answer (b)
(c) Find the percentage of students who scored more than 75 marks.

9

11 The box plots below show the distribution of plants grown in two nurseries, A and B.

Nursery A

(a) Find the interquartile range for Nursery A.

Answer (a) \qquad [1]
(b) For each of the statements below, write whether you agree or disagree.

Give a reason for each answer, stating clearly which statistics you use to make your decision.
(i) On average, the plants in Nursery A grows taller than in Nursery B.

Answer \qquad because \qquad
\qquad
(ii) A greater proportion of the plants grow above the height of 40 cm in Nursery B than do in Nursery A.

Answer \qquad because \qquad

12 (a) Express $x^{2}-6 x+4$ in the form $(x-a)^{2}+b$.

Answer (a) \qquad
(b) Sketch the graph of $y=x^{2}-6 x+4$.

(c) The graph of $y=x^{2}-6 x+4$ is reflected in the y-axis. Write down the equation of the line of symmetry for the new graph.
\qquad

11
hours \qquad minutes [2]

13 Mr Toh needs to tile his office floor which has an area of 60 square metres (sqm). Which company will offer a cheaper deal for Mr Toh? Justify your answers with
 Mr Toh needs to tile his office floor which has an area of 60 square metres (sqm) Which company will offer a cheaper deal for Mr Toh? Justify your answers with calculations.
 | TIMBRE WORKS | TILE KING |
| :---: | :---: |
| $\$ 35$ per sqm (for first 40 sqm) | FLAT RATE |
| 30% discount thereafter | $\$ 25$ per sqm |
 Answer
 14 Water is pumped into a cylindrical container at a constant rate such that x litres is pumped in t minutes. 144 litres of water is collected in the cylindrical container after 3 hours.
 Find
 (a) an equation for x in terms of t,
 > Answer (a)

 Answer (a)

 Answer (a)
 (b) the time taken, in hours and minutes to fill a volume of 400 litres.
 \qquad

\qquad

$$
\text { volume of } 400 \text { litres. }
$$

\qquad minutes [2]

15 (a) Explain whether it is possible to form a regular polygon with an interior angle of 125°.

Answer (a) \qquad
\qquad
(b) The diagram shows a sketch of a n-sided regular polygon and a regular octagon. Calculate n.

$16 \operatorname{Bag} A$ contains three balls numbered 2,3 and 4 respectively.
Bag B contains four balls numbered $1,3,5$ and 7 respectively.
A ball is taken at random from each bag and their respective numbers f and g are recorded.
(a) Complete the table to show the possible outcomes for the sum of the two numbers f and g, on the balls selected.

		f, number on ball from Bag A		
		2	3	4
g, number on ball from Bag B	1			
	3			
	5			
	7			

(b) Find the probability that
(i) $f+g<7$,
(ii) $f+g$ is an odd number,

> Answer (b)(ii)
\qquad
(iii) $f>g$.
\qquad

17 The figure shows triangle $E F H$ where $E H=17 \mathrm{~cm}$ and $\angle E F H=90^{\circ}$ G is a point on $F H$ such that $E G=10 \mathrm{~cm}$.

(a) Given that $\sin \angle E G H=\frac{3}{5}$, find
(i) $E F$,
\qquad cm [1]
(ii) $\tan \angle E G H$.
Answer (a)(ii)
(b) Find the shortest distance from F to $E H$.

Answer (b)
(c) A circle C_{1} is drawn passing through E, F and G. A second circle C_{2} is drawn passing through E, F and H.
Find the ratio of the circumference of C_{1} to circumference of C_{2},

Answer (c) \qquad : \qquad [1]

18 The mean, median and mode of the distribution of heights for 9 athletes are all equal to 165 cm .

Three of the athletes have a height of 165 cm and the tallest athlete is 170 cm .
Given that the heights of the athletes are integers, find the least possible height of the shortest athlete.

19 The diagram shows an isosceles triangle inscribed in a circle where $X Z=7 \mathrm{~cm}$ and $X Y=Y Z=5 \mathrm{~cm}$. Determine whether $X Z$ is a diameter of the circle. Explain your answer.

Answer \qquad
\qquad
\qquad

20 A container in the shape of an inverted cone has a top radius of $r \mathrm{~cm}$ and a height of $4 r \mathrm{~cm}$. Water is poured into the container at a constant rate. It takes 40 minutes to fill the container completely with water.

(a) Calculate the time taken to fill the container to a height of $2 r \mathrm{~cm}$.

Answer (a) \qquad minutes [2]
(b) A graph is drawn to show the relationship between the depth of the water, $d \mathrm{~cm}$, and the time taken, t minutes, as the container is filled. Complete the graph to represent how the depth of water changes with time.

21 The diagram below shows a curve of $y=a(x+h)^{2}-18$. The curve cuts the x-axis at -5 and 1 and the y-axis at A. B is the minimum point on the curve.

(a) Express the equation of the curve in the form of $y=a(x+h)^{2}-18$, where a and h are constants.

Answer (a) $y=$ \qquad
(b) A straight line cuts the curve at $x=-5$ and point A.

Find the equation of the straight line.

22 The points A, B, C, and D lie on the circumference of a circle such that $\angle B D C=38^{\circ}$, $\angle A B D=42^{\circ}$ and $\angle A B C=90^{\circ}$. Chords $A C$ and $B D$ intersect at E.

(a) (i) Giving your reason, find angle $A C D$.

Answer (a)(i) \qquad [1]
(ii) State whether EC is longer than $E D$. Give your reason clearly.

Answer (a)(ii) \qquad
(b) Describe where the centre of the circle is.

Answer (b)

23 The scale drawing shows the positions of two train stations, P and Q. The scale is 1 cm to 10 km .

A third train station, R is 80 km from P on a bearing of 150°.
(a) Mark and label on the diagram the position of train station R.

A train, T travels along a path which is equidistant from $P R$ and $R Q$.
(b) Using ruler and compasses only, mark and label the path in which train T moves.

(c) At a particular instant, the position of train T is such that it is equidistant from train stations P and Q. Using ruler and compasses only, mark and label the position of train T at that instant.
(d) Train T approaches train station R at an average speed of $95 \mathrm{~km} / \mathrm{h}$. Calculate the time taken from its position in (c) to arrive at R. Give your answer in minutes.
\qquad minutes [2]

TANJONG KATONG SECONDARY SCHOOL
Preliminary Examination 2017
Secondary 4

CANDIDATE		
NAME	\square	
CLASS	\square	

MATHEMATICS

4048/02
Paper 2
Wednesday 23 August 2017
2 hours 30 minutes
Additional Materials: Writing Paper
Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to
three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 100.

1 A soccer club offers anniual memberships for both adults and juniors.
The adult annual membership fee is $\$ 150$.
Junior members need to pay 80% of the adult annual membership fee.
(a) Calculate the discount each junior member receives.

If an adult member does not pay the membership fee by the due date, the club will charge a penalty of 5% per month until the fee is paid.
Simon paid the $\$ 150$ membership fee exactly two months after the due date.
(b) Calculate the penalty that Simon will be charged.

The soccer club received a statement of the transactions in its saving account for the month of January 2017.

Date	Details	Deposit	Withdrawal	Balance
01 Jan 2017	Brought Forward			$\$ 63950.00$
09 Jan 2017	Match Fees	$\$ 750.00$		$\$ 64700.00$
15 Jan 2017	Withdrawal			$\$ 42700.00$
23 Jan 2017	Membership Fees	$\$ 3800.00$	$\$ 46500.00$	
31 Jan 2017	Interest	$\$ 124.54$	$\$ 46624.54$	

(c) (i) Calculate the withdrawal amount on 15 Jan 2017.
(ii) Interest on the account is calculated on the minimum balance for the month and added to the account on the last day of the month.

What is the annual rate of interest for this account?
Write your answer, correct to one decimal place.
(d) The soccer club plans to invest $\$ 120000$ in an account which pays compound interest at the rate of 2% per annum, compounded monthly.
Find the total amount that can be withdrawn at the end of 4 years.

2 A toothpaste firm supplies tubes of toothpaste to 2 different stores.
The number of tubes of toothpaste supplied per delivery to each store, the sizes of the tubes and the number of deliveries made to each store over a year are shown below. [Turn over

		Number of tubes per delivery			Number of deliveries over a year
Size of tube		50 ml	75 ml	100 ml	2
Name of store	Econ	400	300	400	2
	Prime	-	200	600	4

(i) Given that $\mathbf{T}=\left(\begin{array}{ccc}400 & 300 & 400 \\ 0 & 200 & 600\end{array}\right)$, find the matrix product $\mathbf{S}=\mathbf{T}\left(\begin{array}{c}50 \\ 75 \\ 100\end{array}\right)$.
(ii) Describe what the elements in S represent.
(iii) Write down two matrices such that the elements of their product under matrix multiplication would give the total number of tubes of toothpaste of each size supplied by the firm over a year. Find this product.

3 (a) Solve the inequality $\frac{2 p-1}{5} \leq \frac{3+p}{2}$.
(b) Simplify $\frac{12 x^{2}}{4 y} \div \frac{6 x^{3}}{y^{4}}$.
(c) Simplify the expression $\frac{4 w^{2}-36}{2 w^{2}+7 w+3}$.
(d) (i) Express as a single fraction in its simplest form

$$
\begin{equation*}
\frac{2}{y+3}-\frac{3}{y-1} \tag{2}
\end{equation*}
$$

(ii) Solve the equation

$$
\begin{equation*}
\frac{2}{y+3}-\frac{3}{y-1}=5 . \tag{3}
\end{equation*}
$$

4 (a) (i) Express 4536 as the product of its prime factors.
(ii) Given that $\frac{4536}{k}=p^{3}$, where k and p are integers and p is as large as possible, find the values of k and of p.
(iii) The lowest coinmon multiple of two numbers is 4536 .

The highest common factor of these two numbers is 126 .
Both numbers are greater than 126.
Find the two numbers.
(b) When n is a positive integer, $2 n+3$ is an odd number.
(i) Write down an expression for the next odd number greater than $2 n+3$.
(ii) Find and simplify an expression for the difference between the squares of these two odd numbers.
(iii) Hence explain why the difference between the squares of two consecutive odd numbers is always a multiple of 8 .

(a) During a soccer match a ball is passed from A to B and then from B to D as shown in the diagram. B is due north of A.
$A B=35 \mathrm{~m}, B D=58 \mathrm{~m}$ and $A D=70 \mathrm{~m}$.
(i) Show that angle $D A B=55.7^{\circ}$.
(ii) Find the bearing of A from D.
(iii) Calculate the area of triangle $D A B$.
(b) Another player is standing at C.

Angle $C B D=30^{\circ}$ and angle $B D C=48^{\circ}$.
Calculate the length $C D$.
(c) The x - and y-axes are shown in the diagram.
$\overrightarrow{A D}=\binom{p}{q}$, where p and q are measured in metres.
(i) Show that $p=57.8$.
(ii) Find the value of q.
(a) A has coordinates $(-3,5)$ and $\overrightarrow{A B}$ is given by $\binom{-7}{-4}$. Find
(i) $|\overrightarrow{A B}|$,
(ii) the position vector of B.
(iii) Given that $\overrightarrow{C D}$ is parallel to $\overrightarrow{A B}$, and $\overrightarrow{C D}=\binom{k}{16}$, find the value of k.
(b)

$P Q R S$ is a parallelogram.
$\overrightarrow{P S}=6 \mathrm{~b}$ and $\overrightarrow{P Q}=10 \mathrm{a}$.
U is the point on $S R$ such that $S U: S R=2: 5$.
When produced, $P S$ and $Q U$ meet at T.
(i) Express each of the following, as simply as possible, in terms of a and/or \mathbf{b},
(a) $\overrightarrow{P R}$,
(b) $\overrightarrow{S U}$,
(c) $\overrightarrow{T U}$.
(ii) Calculate the value of
(a) $\frac{\text { area of triangle } Q R U}{\text { area of triangle } Q U S}$,
(b) $\frac{\text { area of triangle } S U T}{\text { area of triangle } P Q T}$.

7 Answer the whole of this question on a sheet of graph paper.
An open rectangular tank has a square base of side x metres. The volume of the tank is $9 \mathrm{~m}^{3}$.
(a) (i) Find an expression, in terms of x, for the height of the tank.
(ii) Hence show that the total external surface area of the tank, A square metres, is given by

$$
\begin{equation*}
A=x^{2}+\frac{36}{x} \tag{1}
\end{equation*}
$$

(b) The table below shows some values of x and the corresponding values of A.

x	2	2.5	3	4	5	6	7	8
A	22	20.7	21	25	32.2	42	54.1	p

(i) Find the value of p.
(ii) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $2 \leq x \leq 8$.
Using a scale of 2 cm to represent $10 \mathrm{~m}^{2}$, draw a vertical A-axis for $20 \leq A \leq 80$.

On your axes, plot the points given in the table and join them with a smooth curve.
(iii) By drawing a tangent, find the gradient of the curve at the point where $x=4$.
(iv) Use your graph to find
(a) the value of x for which the surface area is $50 \mathrm{~m}^{2}$.
(b) the dimensions of the tank which has the least possible surface area.

8 The diagram shows a circle, $A B C$, centre O. $B D$ is a tangent to the circle and it meets $A C$ produced at D.

(a) Show that triangles $A B D$ and $B C D$ are similar.
(b) Given that ratio area of triangle $A B D$: area of triangle $B C D=4: 1$ and the radius of the circle is 7.5 cm ,
(i) show that angle $B A C=\frac{\pi}{6}$ radian,
(ii) find the perimeter of the shaded region.
(c) In the diagram, A, B, C and D are points on the circumference of a semi-circle, centre O.

(a) Calculate, stating your reasons clearly,
(i) angle $D A B$,
(ii) angle $A B D$,
(iii) reflex angle $B C D$.
(b) Given that $O B=3.5 \mathrm{~cm}$, find the area of the segment $B C D$.

9 (a) The table shows the sizes of 50 pairs of ladies' shoes sold one day in a shoe shop.

Shoe sizes	5	6	7	7.5	8	8.5	9
Number of pairs of shoes sold	4	18	3	5	8	7	5

(i) Find the median shoe size.
(ii) Find the modal shoe size.
(iii) Explain which central measure would be the most appropriate and useful to the manager when she is ordering stock.
(iv) Find the standard deviation of the shoe sizes.
(v) The standard deviation of the shoe sizes of mens' shoes sold on the same day was 1.52 .

Use this information to comment on one difference between the two distributions.
(b) In a class of n students, 13 of them are boys and the rest are girls.

Two students are selected at random to represent the class at a conference. The tree diagram shows the possible outcomes and their probabilities.

(i) Copy and complete the tree diagram.
(ii) Find, as a single fraction in terms of n, the probability that
(a) the first student selected is a girl,
(b) two boys are selected.
(iii) The probability that two girls selected is $\frac{5}{18}$.

Find the total number of students in the class.

10 Amos makes cookies.
The amount of dough needed to make one cookie is 8 grammes.
The density of the dough is $0.5333 \mathrm{~g} / \mathrm{cm}^{3}$.
(i) Find the volume of dough needed for each cookie.

The dough is rolled into a sphere before baking.
(ii) Calculate the radius of the sphere.

When each cookie is baked, it forms a shape as shown.
The cookie can be modelled as a cylinder of radius 3 cm and a height of 0.7 cm . The increase in volume is due to air trapped in the cookie.

(iii) Calculate the volume of air trapped in the cookie.

A regular hexagonal box is designed to hold 7 such cookies per layer, as shown.

(iv) Find the volume of the box if it is to hold five layers of cookies.

End of Paper

5	5 ai	$\cos D \hat{A} B=\frac{35^{2}+70^{2}-58}{2(35)(70)}$		bi	
	gii	235.7°		bila	$\frac{n-13}{n}$
	aiii	$1011.97 \mathrm{~m}^{2}$		bilb	$\frac{156}{n(n-1)}$
	b	$C D=29.6$		biii	$n=28$ or $n=9$ (rej)
	ci	$\cos \left(90^{\circ}-55.7^{\circ}\right)=\frac{p}{70}$	10	i	$15.0 \mathrm{~cm}^{3}$
	cii	$q=39.4$		ii	$r=1.53 \mathrm{~cm}$
6	ai	8.06		iii	$4.80 \mathrm{~cm}^{3}$
	aii	$\binom{-10}{1}$		iv	$814.4745 \mathrm{~cm}^{3}$
	aiii	$k=28$			
	bia	$\overrightarrow{P R}=10 \mathrm{a}+6 \mathrm{~b}$			
	bib	$\overrightarrow{S U}=4 a$			
	bic	$\overrightarrow{T U}=-4 \mathbf{b}+4 \mathrm{a}$			
	biia	$\frac{3}{2}$			
	biib	$\frac{4}{25}$			

	18	\$30	7	ai	$\frac{9}{x^{2}}$
	b	\$15		ail	$4 x\left(\frac{9}{x^{2}}\right)$
	ci	\$22000		bi	$p=68.5$
	cii	3.5\%		bii	All points correctly plotted Smooth curve drawn
	d	129985.79		biii	Draw tangent at $x=4$ Grad $=6.38$
	2 i	$\binom{82500}{75000}$		biva	$x=6.8$
	if	The element in S represent the total volume of toothpaste (in ml) supplied to Econ and Prime respectively.		bivb	Dimensions $=2.5 \mathrm{~m} \times 2.5 \mathrm{~m} \times 1.44 \mathrm{~m}$
	iii	$\begin{aligned} & \left(\begin{array}{ll} 2 & 4 \end{array}\right)\left(\begin{array}{ccc} 400 & 300 & 400 \\ 0 & 200 & 600 \end{array}\right) \\ & \left(\begin{array}{lll} 800 & 1400 & 3200 \end{array}\right) \end{aligned}$	8	a	$\begin{aligned} & \angle B C D=90^{\circ} \text { (angles in semi-circle) } \\ & \angle A B D=90^{\circ} \text { (tangent perpen. radius) } \\ & \therefore \angle A B C=\angle B C D \\ & \angle B D C \text { is common angle } \\ & \therefore \triangle A B D \text { and } \triangle B C D \text { are similar } \end{aligned}$
3	a	$p \geq-17$		bi	$\frac{B D}{C D}=\frac{2}{1} \Rightarrow \frac{A B}{B C}=\frac{2}{1}$ Since radius $=7.5 \mathrm{~cm}$ $A B=15$ and $\mathrm{BC}=7.5 \mathrm{~cm}$ $\sin B \hat{A} C=\frac{1}{2}$ $B \hat{A} C=\frac{\pi}{6} \text { (shown) }$
	b	$\frac{y^{3}}{2 x}$		bii	15.4 cm
	c	$\frac{4(w-3)}{2 w+1}$		cai	$\angle D A B=36^{\circ}(\angle$ at centre $=2 \angle$ at circumference $)$
	di	$\frac{-y-11}{(y+3)(y-1)}$		caii	$\begin{aligned} \angle A B D & =\frac{180-72}{2} \text { (base } \angle \text { of isos. } \Delta \text {) } \\ & =54^{\circ} \end{aligned}$
	dii	$y=0.318$ or -2.52		caiii	216°
4	ai	$2^{3} \times 3^{4} \times 7$		cb	$1.87 \mathrm{~cm}^{2}$
	aii	$\begin{aligned} & k=21 \\ & p=6 \end{aligned}$	9	a i	7.25
	aiii	504 and 1134		ii	6
	4bi	$2 n+5$		iii	Mode will be the most appropriate and useful as the manager can stock up more shoes of size 6.
	4 bil	$8 n+16$		iv	1.25
	4biii	$8(n+2)$ is a multiple of 8 for n is a positive integer		v	The shoe sizes of ladies are more consistent than the men's shoe sizes.

23
Examiner's
Examiner
Use
22

> For -xaminer Use

XINMIN SECONDARY SCHOOL

SEKOLAH MENENGAH XINMIN
Mid-Year Examination 2017

CANDIDATE NAME

CLASS

INDEX NUMBER

MATHEMATICS

Secondary 4 Express / 5 Normal (Academic)

2 hours

Setter : Ms Pang Hui Chin
Vetter : Mrs Vivien Tay
Moderator: Mrs Sabrina Phang
Additional Materials: Nil

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80 .

Errors	Qn No,	Errors	On No.
Accuracy		Simplification	
Brackets		Units	
Geometry		F2. Marks Awarded	T2)
Presentation		\%we Marks Peinallsed	(takn

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$
> Volume of a cone $=\frac{1}{3} \pi r^{2} h$
> Volume of a sphere $=\frac{4}{3} \pi r^{3}$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

3
Answer all the questions.

1 (a) Factorise completely $3 a c-7 c-18 a b+42 b$.
Answer (a)
(b) If $9 x^{2}+30 x+k$ is a perfect square, state the value of k.

2 Solve the inequality $-2 \leq 2 x-7<19$.

3 Evaluate, giving your answer in standard form,
(a) $\frac{17.31+13.13}{4.041 \times \sqrt{898.9}}$,
Answer (a)
(b) $2\left(7.8 \times 10^{-1}\right)+\left(3.9 \times 10^{2}\right)$.
Answer (b)

4 Given that x is an integer sich that $-4 \leq x \leq 3$ and y is a prime number such that $0<y \leq 7$, find
(a) the largest possible value of $\frac{x^{2}}{y}$,

> Answer (a)
(b) the least possible value of $x^{2}-y^{2}$.

5 In the diagram, $A B=4 \mathrm{~cm}, B C=5 \mathrm{~cm}, C D=6 \mathrm{~cm}, D E=1.5 \mathrm{~cm}$ and $A E=5 \mathrm{~cm}$.

Show that triangles $A C E$ and $D C B$ are similar.

Answer In triangles $A C E$ and $D C B$, \qquad
\qquad
\qquad
\qquad

6 Given that $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$, express v in terms of u and f.
-7 An article in a newspaper reported the trend in the average global temperature from 1950 to 2010. The article contained the line graph shown below.

Can we determine the average global temperature in 1975 from the line graph?
Explain your answer.
Answer. .

8 Solve $8^{3 x-1}=16$.

Answer $x=$

9 The equations of the 2 graphs are in the form $y=x^{n}$.
For each of the following, state a possible value of n.
(a)

Answer (a) $n=$
(b)

10 Written as the product of its prime factors,

$$
\begin{aligned}
& 2160=2^{4} \times 3^{3} \times 5, \\
& 252=2^{2} \times 3^{2} \times 7 .
\end{aligned}
$$

(a) Find the smallest positive integer k such that $\frac{2160}{k}$ is a perfect cube.

$$
\text { Answer (a) } k=
$$

(b) Write down the HCF of 252 and 2160 in index notation.

Answer (b)

11 The scale of a map is $2 \mathrm{~cm}: 0.4 \mathrm{~km}$.
(a) Write this scale in the form $1: n$.
(b) The actual area of a park is $4 \mathrm{~km}^{2}$. Find the area, in square centimetres, of the park on the map.

12 Solve the following simultaneous equations.

$$
\begin{aligned}
& 3 x-4 y=25 \\
& 4 x-5 y=32
\end{aligned}
$$

Answer $x=$

$y=$

13 In Singapore, Charlie pays $\$ 1.45$ for 500 ml of bottled water.
When Charlie visited Japan, he paid $¥ 220$ for 32 ounces of bottled water.
1 Singapore dollars $=77.96$ Japanese Yen ($\left.{ }^{(}\right)$
1 ounce $=29.57 \mathrm{ml}$

Is bottled water cheaper in Singapore or in Japan?
You must show your calculations.

14 Simplify $\frac{1}{3-x}+\frac{3-x}{x^{2}-9}$.

15 Simplify $\left(\frac{25 x^{2} y^{0}}{3 x^{0} y^{2}}\right)^{0} \times\left(\frac{3 a}{2}\right)^{-3}$.

16 The diagram below shows a solid pet feeding bowl made from a truncated right circular cone with a hemispherical depression.

The truncated right circular cone is made by removing a cone with base radius 9 cm and and vertical height of 18 cm from a larger solid cone with a base diameter of 30 cm and a vertical height of 30 cm . The hemispherical depression has a radius of 9 cm .

The feeding bowl is to be made out of metal.
Calculate the volume of metal needed to make 10 of such feeding bowls, leaving your answer to the nearest whole number.

17 Given that P is inversely proportional to $Q^{2}+1$ and that $P=13$ when $Q=1$,
(a) express P in terms of Q,

Answer (a)

[2]
(b) find the values of Q when $P=1$.

18 The diagram below shows a sequence of patterns made of squares of sides 1 unit each.

(a) Study the pattern and find the values of x and y.

Stage, n	Shaded area, S	Perimeter, P
1	4	12
2	8	20
3	12	28
4	x	y

$$
\begin{aligned}
\text { Answer (a) } x & = \\
y & =
\end{aligned}
$$

(b) Express P in terms of n.

> Answer (b)
(c) Determine if the number 166 would appear in the P column, stating your reasons clearly.

Answer (c) \qquad
\qquad
\qquad

14

In the diagram, $A B C D E F$ is an n-sided regular polygon with exterior angle $C D H=30^{\circ}$. The lines $C G$ and $D H$ are parallel to each other.
Find
(a) the value of n,

$$
\text { Answer (a) } n=
$$

(b) obtuse $\angle D C G$,

$$
\begin{equation*}
\text { Answer }(b) \angle D C G= \tag{1}
\end{equation*}
$$

(c) $\angle C B D$.
$20 \xi=\{x: x$ is an integer such that $40 \leq x \leq 50\}$
$A=\{x: x$ is a multiple of 3$\}$
$B=\{x: 2 x+5<99\}$
(a) Draw a Venn diagram to illustrate this information.

Answer (a)
(b) List the elements of $A^{\prime} \cap B^{\prime}$ in set notation.

Answer (b)
(c) On your Venn diagram, shade the region which represents $A \cup B^{\prime}$.

21 In the diagram, A, B, C, D, E and F lie on a circle with centre $O, A C$ is the diameter of the circle. $\angle A B F=\angle D B F=\angle C B D$.

If $\angle B A C=37^{\circ}$ and $\angle B F E=86^{\circ}$, find, giving reasons for each answer, (a) $\angle A C B$,
(b) $\angle D C A$,

$$
\text { Answer }(b) \angle D C A=\ldots \ldots \ldots \ldots \ldots \ldots{ }^{\circ}
$$

(c) $\angle F E D$.

22 The staff of a company were asked about their monthly salary. The results are shown in the stem-and-leaf diagram.

1	010	050		
2	055	055	980	985
3	010	010	050	050
4	485	800	800	800
5	600	800	800	
6	750	750		
7				
8				
9				
10	999			

Key $\quad 31010$ means $\$ 3010$
(a) Find the mean salary of the staff.

> Answer (a) \$
(b) Find the median salary of the staff.

Answer (b) \$
(c) Does the mean or the median give a better representation of the salary of the staff in the company? Explain your answer.

Answer (c) \qquad
\qquad
\qquad

233 pairs of white socks, 2 pairs of black socks and 5 pairs of grey socks are mixed and placed in a drawer. On a particular day, Yan Xin woke up late. He randomly snatched two socks from the drawer, put them on and rushed to school.
(a) Complete the following tree diagram to show this information.

First Second

(b) Find, in its simplest form, the probability that Yan Xin has taken
(i) a pair of socks of the same colour,

23 (b) (ii) a pair of socks of different colours,

24 (a) By completing the square, express $x^{2}-6 x+5$ in the form $(x-a)^{2}-b$.
Answer (a)
(b) Hence,
(i) solve the equation $x^{2}-6 x+5=0$,

Answer (b)(i) $x=$ \qquad or [2]
(ii) sketch the graph of $y=x^{2}-6 x+5$.

Answer (b)(ii)

In the diagram, $A B C$ is a right-angled triangle such that two of its vertices A and B are the centres of two circles.
The minor arc length $W Y=\frac{3 \pi}{2} \mathrm{~cm}, A Y=5 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$.
(a) Show that the length of $B Y$ is 3 cm .

Answer (a)
(b) Find the size of the angle $X A Y$ in radians.

25 (c) Hence, find the area of the shaded region.

Answer (c) cm^{2} [3]

END OF PAPER

XINMIN SECONDARY SCHOOL

CANDIDATE NAME

CLASS

INDEX NUMBER

MATHEMATICS
4048／2
Paper 2
2 May 2017
Secondary 4 Express／ 5 Normal（Academic）
2 hours and 30 minutes
Setter ：Mr Bennett Lim
Vetter ：Mrs Vivien Tay
Moderator：Mrs Sabrina Phang
Additional Materials：Writing Paper；Graph Paper（1 sheet）

READ THESE INSTRUCTIONS FIRST

Write your name，register number and class on all the work you hand in．
Write in dark blue or black pen on both sides of the paper．
You may use an HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue or correction fluid．
Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientific calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact， give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［］at the end of each question or part question． The total number of marks for this paper is 100.

Errors	Qn No．	Errors	Qn No．
Accuracy		Simpliflcation	
Brackets		Units	
Geometry		ToskMarks＇Awarded	践
Presentation			

 Page 450

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{\circ}
$$

Mensuration

$$
\text { Curved surface area of a cone }=\pi r l
$$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

$$
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians }
$$

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1. Solve the equation $\frac{3}{x-5}-5=\frac{2 x}{3-x}$.
2. The Hangzhou-Changsa High-speed Railway runs at a speed of $350 \mathrm{~km} / \mathrm{h}$ and covers a distance of 933 km between the two cities.
(a) Find the speed of the train in m / s.
(b) Calculate the time taken for the train ride, giving your answer in hours and minutes, correct to the nearest minute.
3. (a) On 12 September 2013, Tyler invested some money in a bank that pays simple interest at a rate of 3% per annum. He received $\$ 573.75$ in total interest on 12 December 2015. How much money did Tyler invest in the bank?
(b) Tyler also invested $\$ 12000$ in another bank that pays compound interest at a rate of 2.25% per annum compounded half-yearly. How much money will Tyler get back at the end of 5 years?
4.

$P Q R$ is a right-angled triangle in which $\angle P R Q=x^{\circ}, P Q=7 \mathrm{~cm}$ and $P R=25 \mathrm{~cm}$.
The point S lies on $Q R$ produced. Write down, as a fraction, the value of
(a) $\cos \angle P R S$,
(b) $\tan (90-x)^{\circ}$,
(c) $\sin (180-x)^{\circ}$.
5. The following diagram shows an inverted solid cone that is cut up into 2 sections, P and Q, such that section P is a cone similar to the original cone. The height of cone P is 15 cm and the height of the originel cone is 21 cm .

(a) If the curved surface area of cone P is $250 \mathrm{~cm}^{2}$, calculate the curved surface area of the original cone.
(b) Calculate the ratio of the volume of the original cone to the volume of cone P.
(c) If the volume of section Q is $\nu \mathrm{cm}^{3}$, calculate the volume of cone P in terms of ν.
6. The position vector of point A is $\binom{2}{5}$ and $\overrightarrow{A B}=\binom{-3}{4}$.
(a) Find $|\overrightarrow{A B}|$.
(b) Find the coordinates of B.
(c) Given that $\overrightarrow{C D}$ is parallel to $\overrightarrow{B A}$ and $\overrightarrow{C D}=\binom{k}{13.6}$, find the value of k.
7. The cumulative frequency curve below illustrates the marks obtained, out of 100 , by 500 students in XMSS Mid-Year Examination.

(a) Find
(i) the median mark,
(ii) the interquartile range,
(iii) the percentage of students who scored less than 50 marks.
(b) Given that 15% of students scored a distinction, find the minimum marks students must score to get a distinction.
(c) The same 500 students sat for their Preliminary Examination. The box and whiskers diagram below illustrates the marks obtained.

(i) Which examination was more difficult? Give a reason for your answer.
(ii) Which examination had more students scoring more than 70 marks? Explain your answer.
8. The figure shows a triangle $P Q R$ with $P(1,1), Q(-1,2)$ and $R(a, b)$. The gradient of $P Q, P R$ and $Q R$ are $-2 n, 2 n$ and n respectively.

Find
(a) the length of $P Q$,
(b) the value of n,
(c) the coordinates of R,
(d) the equation of line $Q R$.
9. (a) It is given that $A=\left(\begin{array}{cc}2 & 2 \\ -4 & 6\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 5 \\ 0 & -1\end{array}\right)$.

Find
(i) matrix P if $P=B^{2}$,
(ii) matrix Q if $A+2 Q=2 B$.
(b) A tour agency records the weekly average number of tour packages to Japan and Korea sold in the months of May and June in 2016.
In May 2016, 25 Japan tour packages and 32 Korea tour packages were sold weekly. In June 2016, 30 Japan tour packages and 40 Korea tour packages were sold weekly. This information can be represented by the matrix

$$
\begin{gathered}
\text { Japan Korea } \\
L=\left(\begin{array}{cc}
25 & 32 \\
30 & 40
\end{array}\right) \begin{array}{l}
\text { May } \\
\text { June }
\end{array}
\end{gathered}
$$

It is assumed that there are 4 weeks in each month.
(i) The prices of the Japan and Korea tour packages in 2016 were $\$ 690$ and $\$ 900$ respectively. Represent the prices of the tour packages by a 2×1 columa matrix N.
(ii) Evaluate the matrix $R=4 L N$.
(iii) State what the elements of R represent.
(iv) The tour agency decides to offer a discount on the tour packages bought respectively compared to 2016.
By using matrix multiplication involving L, calculate the total estimated number of Japan and Korea tour dackages sold weekly in May 2017 and June 2017 resper
10. In the diagram, $O A C B$ is a trapezium where $A C$ is parallel to $O B$. The lines $O A$ and $B C$ are produced to the point D such that $\frac{O A}{A D}=\frac{1}{2}$.

(a) Given that $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$, express, as simply as possible, in terms of a and/or b,
(i) $\overrightarrow{B D}$,
(ii) $\overrightarrow{O C}$.
(b) Given that $\overrightarrow{O E}=3 a+2 b$,
(i) state the name of the quadrilateral $O D E B$,
(ii) explain why O, C and E lie in a straight line.
(c) Find
(i) $\frac{\text { area of } \triangle A D C}{\text { area of } \triangle O D B}$,
(ii) $\frac{\text { area of } \triangle O D B}{\text { area of quadrilateral } O D E B}$.
11. In a laser tag enclosure, A, B, C and D are points on level ground, with A due north of C and $D . \angle B A D=75^{\circ}, \angle B D C=100^{\circ}, A B=70 \mathrm{~m}$ and $C D=30 \mathrm{~m}$.

(a) Show that the length of $B D=68.66 \mathrm{~cm}$, correct to 2 decimal places.
(b) Calculate
(i) the bearing of D from B,
(ii) the length of $C B$,
(iii) the area of $\triangle A B D$.

In a game, Mario at point B ran along the path $B A$ towards point A at a specd of $8 \mathrm{~m} / \mathrm{s}$. Sonic at the top of a 20 -metre high guard tower at point D spotted Mario at point B.
He fired a shot that hit Mario when he was closest to the guard tower.
Assume that the time taken by the shot to hit the target from the time it was fired was negligible.
(c) Find
(i) the angle of depression of Mario from Sonic when the shot was fired,
(ii) the time that elapsed from the instant Sonic spotted Mario at point B to the instant Sonic fired the shot.
12. Answer the whole of this question on a sheet of graph paper.

The speed, v, in metres per second of a toy car on a race track propelled by a spring launcher is given by $v=5+4 t-t^{2}$, where t is the time in seconds. The table below shows the corresponding values of t and ν.

1	0	1	1.5	2.5	4	5
ν	5	8	8.75	8.75	5	0

(a) Draw the graph of $v=5+4 t-t^{2}$ for $0 \leq t \leq 5$. Use a scale of 2 cm to 1 s on the horizontal t-axis and 2 cm to $1 \mathrm{~m} / \mathrm{s}$ on the vertical v-axis.
(b) Use your graph to find the maximum speed reached by the car.
(c) (i) By drawing a tangent, find the gradient of the graph at the point when $t=3.5 \mathrm{~s}$.
(ii) Use your answer to $\mathbf{c}(\mathbf{i})$ to explain what was happening to the car at $t=3.5 \mathrm{~s}$.
(d) (i) By adding a suitable line to your graph, solve $4 t-t^{2}-2=0$.
(ii) What do the solutions represent?
13. Mr Mah is a motorcycle shop owner in Singapore who sells brand new motorcycles. He is interested in importing the brand new Kawasaki Z100SX motorcycle from Japan. The total costs to be incursed for importing the motorcycles to Singapore, include the amount payable to the manufacturer, shipping costs, govemment taxes and duty.

Information that Mr Mah needs is on the following page.
Mr Mah is interested in importing 20 motorcycles to sell.
(a) Calculate
(i) the cost of each motorcycle payable to the manufacturer,
(ii) the shipping and insurance cost of each motorcycle.

Mr Mah targets a profit of 15% of his total costs incurred.
Mr Mah needs to decide how much he should sell each motorcycle.
(b) Suggest a sensible selling price for each motorcycle. Justify your proposed selling price with a concluding statement.

Motorcycle Specifications

Motorcycle Model	Kawasaki Z1000 SX
Year	2017
Weight	228 kg

Cost Payable to Manufacturer

Price per Unit (S\$) Discount for purchases:	$\$ \$ 18,250$
>9 units	2.5%
>19 units	5.0%
>29 units	7.5%

Shipping and Insurance Cost:	
Net weight (kg)	Cost (SS)
$<2,000$	3,250
$2,000-3,000$	4,000
$3,001-4,000$	4,750
$4,001-5,000$	5,500
$5,001-10,000$	6,000
$>10,000$	6,500

The following is extracted from the Singapore Land and Transport Authority (LTA') website. TAX STRUCTURE FOR MOTORCYCLES \& SCOOTERS

LTA is responsible for planning, operating, and maintaining Singapore's land transport infrastructure and systems.
2,3 The RF and ARF are government taxes to be paid by the importer for the registration of the motorcycles for sale in Singapore.
${ }^{4}$ OMV (Open Market Value) - Refer scturer of the motorcycle.
${ }^{5}$ It is a tax on the cost paid to the mai
(0) 1) $k=10$
b) $2^{2} \times 3^{2}$

11 a) 1:20000
b) 100
$127 x=3, y=-4$
13) Singapere
14) $\frac{2 x}{(3-x)(x+3)}$
15) $\frac{8}{27 a^{3}}$
16) 40150

17 a) $P=\frac{26}{Q^{2}+1}$
b) 5 or -5

18 a) $x=16, y=36$
b) $p=8 n+4$
(a) a) $n=12$
b) 150°
c) 15°
20) b) है $47,49,50$
21) a) 53°
b) 60°
c) 150

22 al \$ 4241.95
b) 3767.50
$23 \mathrm{hi} \frac{33}{95}$
b) $\frac{58}{95}$

24a) $(x-3)^{2}-4$
bi) 1 or 5

25b) 0.983
c) 28.6
(a) $(3 a-7)(c-6 b)$
b) $k=25$
2) $2 \frac{1}{2} \leqslant x<13$

Ba) 2.57×10^{-1}
b) 3.9156×10^{2}
fa) 8
b) -49
b) $v=\frac{u f}{u-f}$
7) No because the line
segments between the dots have no meaning
8) $x=7 / 9$
(a) $n=3,5 \ldots$
any odd positive integer >1
b) $n=-2,-4 \ldots$
any sips. innontic cuteger
(8a) 2.24
b) $F n=1 / \varphi$
c) $R(7,4)$
d) $4 y=x+9$
qa) i) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
ii) $\left(\begin{array}{cc}0 & 4 \\ 2 & -4\end{array}\right)$
bi) $N=\binom{690}{900}$
(i) $\left(\begin{array}{ll}184 & x 0 \\ 226 & 800\end{array}\right)$
(v) $\binom{83.7}{103}$

10a1) $3 a-b$
bi) Raperun
ii) $a+2 / 3 b$ ii) $\overrightarrow{O E}=3 \overrightarrow{O C}$

$$
0, c, E \text { collweor }
$$

(i) $\mathrm{H} / 9$
ii) $1 / 3$
(ii) $1020 \mathrm{~m}^{2}$

11a) 68.66
b) 260° i1) 79.6
(i) 778 s

Ql) $x=4$ or 7
-2) a) $97.2 \mathrm{~m} / \mathrm{s}$
b) 2 h 40 min

Q3 a) $\$ 8500$
b) \$13420.43
fa) $-\frac{24}{25}$
b) $\tan (90-x)=\frac{24}{7}$
c) $\sin (180-\lambda)=\frac{7}{25}$
sa) $490 \mathrm{~cm}^{2}$
b) $\frac{343}{125}$
c) $\frac{125}{218} \mathrm{~V}$
ba) 5 unit
b) $(-1,9)$
c)

$$
\begin{aligned}
& m=-3.4 \\
& k=-10.2
\end{aligned}
$$

Tai) 51
(ii) 22
iii) 481
b) 69
ci) nnd-year is more difficultas medion matt is comes
ii) Prelim exam. It has more than $25 / \%$
of students slicing 74 m or more liefer than wind yea, $f 25$? scoring 62 m a mare

YUSOF ISHAK SECONDARY SCHOOL PRELIMINARY EXAMINATION 2017

THE FIRST PRESIDENT SCHOOL THE FIRST PRESIDENT SCHOOL THE FIRST PRESIDENT SCHOOL THE FIRST PRESDENT SCHOOL THE FIRST PRESHEAT SCHOOL THE FIRST PRESIOENT SCHOOL THE FIRST PRESIDENT SCHOOL THE FIRST PRESIOENT SCHOOL THE FIRST PRESIDENT SCHOOL FHE FIRST PRESIDEAT SCHOOL

CANDIDATE

NAME

> CLASS

index NUMBER

MATHEMATICS

4 Express / 5 Normal (Academic)
Paper 1
$16^{\text {th }}$ August 2017
Candidates answer on the Question Paper
2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

For Examiner's Use

This document consists of 12 printed pages.

Answer all the questions.

1. Evaluate the following, leaving your answer correct to four significant figures.
$\frac{-3.3^{2} \times \sqrt{2^{3}}}{\left[1-8\left(7+7^{-i}\right)\right)} \times \sin \frac{\pi}{3}$
2. The value of a house decreased by 14.3% between 2000 and 2016 . In 2000 the house was valued at $\$ 850000$. Find its value in 2016.
\qquad
3. A container is unloaded by 6 men in 24 minutes.

Given that all the men work at the same rate, find how long it would take 9 men to unload the same container.
4. A car manufacturer states that a particular car

- Uses 5 litres of fuel in travelling 100 km
- produces 115 grams of CO_{2} for each kilometer travelled.

Use this information to calculate the mass of CO_{2} produced by 1 litre of fuel. Give your answer in kilograms.

Answer

5. (a) Factorise completely $50 p^{2}-72 q^{2}$.
(b) Solve the equation $\frac{x-2}{4}-\frac{x+1}{3}=1$.
(c) $T=2 \pi \sqrt{\frac{h}{g}}$. Make h the subject of the formula.

Answer (a) [
Answer (b)
Answer (c)2]
6. Similar buckets are available in two sizes.

The larger bucket has height 30 cm and base diameter 16 cm .
The small bucket has base diameter 8 cm .

(a) Find the height of the small bucket.
(b) Given that the small bucket has volume $850 \mathrm{~cm}^{3}$, find the volume of the large bucket.
Answer (a) $\ldots \ldots \ldots \ldots \ldots . . \mathrm{cm}[1]$
Answer (b) $\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{cm}^{3}[2]$
7. The temperature inside a greenhouse is $p^{\circ} \mathrm{C}$, and outside it is $-q^{\circ} \mathrm{C}$, where p and q are positive integers.
Write down an expression for
(a) the difference between the two temperatures,
(b) the mean of the two temperatures.

Answer (a)
${ }^{\circ} \mathrm{C}$ [1]

Answer (b) \qquad
8. Green Line trains run every 10 minutes.

Red Line trains run every 20 minutes.
Purple Line trains run every 35 minutes.
One train from each Line leaves the city centre at 0900.
After how many minutes will trains from all three Lines next leave the city centre in the same time?

Answer
minutes [2]
9. $P Q, Q R$ and $R S$ are adjacent sides of a regular polygon. Given that $\angle R P Q=20^{\circ}$, calculate
(a) the exterior angle of the polygon,
(b) the number of sides of the polygon,
(c) $\angle P R S$.

Answer (a)
(b) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
(c) $\angle P R S=$
10. P is directly proportional to Q^{2}.

If Q is increased by 200%, find the percentage increase of P
11. Solve the inequalities $\frac{10 x+8}{3}+2<5+4 x<8$.

Show your solution on the number line below.

[3]
12. The diagram shows an equilateral triangle $P Q R$ with $P Q=(2 x-3) \mathrm{cm}, Q R=(15-x-y) \mathrm{cm}$ and $P R=(x+3 y-7) \mathrm{cm}$.

(a) Using the information shown in the diagram, write down and simplify two simultaneous equations in x and y.
(b) Solve these equations to find the value of x and the value of y.
\qquad
(b) $x=$ \qquad $y=$
13. The information shows the common injuries children suffer in the Linited States of America (LiSA) in 2013.

USA TODAY Snapshot ${ }^{\text {mu }}$

(a) Explain one way in which the information is misleading.

Answer \qquad
\qquad
\qquad
(b) Suggest one recommendation to overcome the misleading information provided.

Answer \qquad
\qquad
\qquad
14. A map is drawn to a scale of $1: 50000$.
(a) An airport runway is represented by a line of length 5.8 cm on the map. Calculate, in km . the actual length of the runuay.
(b) The actual area of the airport is $6.5 \mathrm{~km}^{2}$. Calculate, in square centimetres, the area on the map which represents the airport.
15. (a) Sketch the graph of $y=(1-x)(x-3)$.

(b) (i) Express $x^{2}-4 x+5$ in the form $(x-a)^{2}+b$.
(ii) Sketch the graph of $y=x^{2}-4 x+5$.

$$
\begin{equation*}
\text { Answer (b)(i) } x^{2}-4 x+5= \tag{1}
\end{equation*}
$$

16. A company produces three types of soft drinks in 2 different sizes.

The following matrices shows the weekly production, in thousands of litres and the cost per litre in cents, for producing soft drinks of any flavour in 2 different sizes.

Raspberry Orange Lemon
$\begin{array}{l}\text { Regular } \\ \text { Large }\end{array}\left(\begin{array}{lll}15 & 26 & 18 \\ 14 & 24 & 16\end{array}\right) \quad$ Cost $\left.\left.\begin{array}{l}\text { Regular } \\ (45\end{array}\right) 60\right)$
(a) Find $\left(\begin{array}{ll}45 & 60\end{array}\right)\left(\begin{array}{lll}15 & 26 & 18 \\ 14 & 24 & 16\end{array}\right)$.

Answer (a)
[2]
(b) Explain what your answer to (a) represents.

Answer (b) \qquad
\qquad
17.

$$
\begin{aligned}
& \varepsilon=\{x: x \text { is an integer and } 0<x \leq 15\} \\
& A=\{x: x \text { is a prime number }\} \\
& B=\{x: x \text { is an integer divisible by } 3\}
\end{aligned}
$$

Draw a Venn diagram to illustrate this information, showing elements in each set clearly.

Answer ε

18. $A B C D$ is a trapezium in which $B C=8$ units. A is the point $(-4,0)$ and B is the point $(-1,4)$. The area of the trapezium is 50 square units.

(a) Calculate the length of $A B$.

> Answer (a).
(b) Find the coordinates of C.
Answer (b) (............ ,.............)
(c) Find the coordinates of D.

Answer (c) (............ ,)
(d) Write down the value of $\cos \angle A B C$.

Answer (d) $\cos \angle A B C=$..
19. A production line produces loaves of bread with a mass of 500 grams each.

Two separate production lines, P and Q, were operated and 10 loaves were taken as samples from each line which had the following masses:

Line $P \quad 502,487,488,490,507,500,498,491,505,490$
Line $Q 510,501,482,489,496,506,478,489,503,492$
(a) Find the mean mass of the products from both lines.

Answer (a) Line P.
Line Q
(b) Find the standard deviation of the product mass from both lines.

Answer (b) Line P.
Line Q
(c) If a loaf from each line is picked at random and each weighs 480 grams and 485 grams respectively, which line did the lighter loaf likely to come from?
Justify your decision with explanation.

Answer \qquad
\qquad
\qquad
20. On a plate there are ten biscuits.

Four of the biscuits are round and six of the biscuits are square.
Joe chooses a biscuit at random from the plate and eats it.
He then chooses another biscuit at random from the plate.
The tree diagram shows the possible outcomes and some of the probabilities.

First biscuit
 Second biscuit

(a) Complete the tree diagram.
(b) Calculate the probability that Joe chooses
(i) two round biscuits,
(ii) one round biscuit and one square biscuit.
\qquad
Answer (b)(i)
(b)(ii)
21. (a) Simplify the expression $\left(3 x^{2} y\right)^{3} \times\left(5 x^{-3} y^{4}\right)^{-1}$, giving your answer in positive index
notation.

Answer (a)
[2]
(b) Solve $\left(\frac{1}{8}\right)^{-\frac{2}{3}} \times 32^{\frac{3}{5}}=2^{p-2} \div 2^{2}$.
(c) Express the number 0.0040589 in standard form.

Answer (c)
22.
(a) Given that $p=\binom{3}{4}$ and $q=\binom{m}{2}$, find
(i) $|p|$:
(ii) the value of m such that $p+q$ is parallel to the y-axis.

Answer (a)(i) \qquad ..units [1]

Answer (a)(ii)
(b) In the diagram, $\triangle A B C D E$ is a regular hexagon. $\overrightarrow{Q A}=\mathrm{a}, \overrightarrow{A B}=\mathrm{b}$.

(I) Express the following vectors, as simply as possible, in terms of \mathbf{a} and \mathbf{b}.
(i) $\overrightarrow{O C}$,
(ii) $\overrightarrow{B C}$,
(iii) $\stackrel{+}{A D}$.
(II) What type of quadrilateral is $A B C D$? Justify your answer using vectors.

$$
\begin{equation*}
\text { Answer }(b)(I)(i) \tag{1}
\end{equation*}
$$

(ii) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
(iii)
23. All construction lines must be clearly shown.
(a) Construct, and label clearly, the quadrilateral $A B C D$ in which $A B=B C=C D, \angle A B C=70^{\circ}$ and $\angle B A D=100^{\circ}$.
The line $A B$ has been drawn for you.
(b) On the quadrilateral, construct
(i) the bisector of angle $A B C$,
(ii) the perpendicular bisector of the line $B C$.
(c) The two bisectors in (b) intersect at the point P. Measure and write down the length of $B P$, in cm , correct to 1 decimal place.

Answer (c)

End of Paper

YUSOF ISHAK SECONDARY SCHOOL PRELIMINARY EXAMINATION 2017

CANDIDATE

 NAME

INDEX NUMBER

Mathematics

4048/02
4 Express / 5 Normal Academic
Paper 2
18 August 2017
2 hours 30 minutes
Additional Materials: Answer paper
Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write in dark blue or black pen.
You may use an $H B$ pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π_{π}, use either your calculator value or 3.142 , unless the question requires the answer in terms of π

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100.
[2]

Mathernatical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta, \text { where is } \theta \text { in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

[3]

1. (a) Solve the equation $(1+4 x)^{2}=81$.
(b) Express as a single fraction in its simplest form $\frac{1}{2 x+3}+\frac{3}{2 x-1}$.
(c) Find the integers x such that $2 x+1<9<3 x+1$.
(d) Factorise completcly $a^{2}+9 b^{2}-6 a b-2 a+6 b$.
2. (a) A string of beads on a table is partly covered by a piece of cloth as shown.

There are 2 white beads between every 2 black beads.
Altogether, there are 14 black beads.
John guessed that the number of white beads was 28 .
Do you agree? Justify your decision with calculations.

(b) It is given that $3 b=4 a$ and $2 c=5 a$.
(i) Find $a: b: c$.
(ii) If $a+b+c=10$, find b.
3. John bought x light bulbs for $\$ 25$.
(a) Write down an expression in terms of x for the price, in dollars, he had paid for each light bulb.
(b) He wanted to sell each light bulb at a profit of 50 cents.

Show that his selling price for each light bulb was $\$ \frac{50+x}{2 x}$.
(c) John managed to sell 8 light bulbs at this price. Write down an expression, in terms of x, for
(i) the total amount of money, in dollars, he had received for selling the 8 light bulbs.
(ii) the number of light bulbs that remained unsold.
[1]
(d) John sold the remaining light bulbs at $\$ 2$ each.

Write down an expression in terms of x for the total amount of money, in dollars, he had received from selling these light bulbs.
(e) John received $\$ 46$ altogether.

Form an equation in x and show that it reduces to $x^{2}-29 x+100=0$.
(f) Hence or otherwise, find the number of light bulbs John had bought.
4.

Figure 1
Figure ! shows the quadrilateral $A B C D$. Quadrilateral $A B C D$ represent a level enclosed area for the rabbits with a path $B D$.
$A B=600 \mathrm{~m}, B C=1040 \mathrm{~m}, B D=950 \mathrm{~m}$ and $\angle C B D=42^{\circ}$ and $\angle B A D=118^{\circ}$.
(a) Calculate
(i) $\angle A B D$,
(ii) the length of $C D$,
(iii) the shortest distance from C to $B D$.
(b) An eagle is flying directly above the path $B D$ at a height of 500 m .

Calculate the greatest angle of depression of the point C as seen by the eagle.
5. P, Q, R, S and T are the different shaped blocks of ice stored in the refrigerated enclosed room.
(a) At 10 p.m. on Monday the cooling system failed, and the blocks started to melt. At the end of each 24 hour period, the volume of each block was 14% less than its volume at the start of that period.
(i) Block P has a volume of $7500 \mathrm{~cm}^{3}$ at $10 \mathrm{p} . \mathrm{m}$. on Monday. Calculate its volume at $10 \mathrm{p} . \mathrm{m}$. on Wednesday.
(ii) Block Q had a volume of $6490 \mathrm{~cm}^{3}$ at 10 p.m. on Tuesday. Calculate the volume at 10 p.m. on the previous day.
(iii) Showing your working clearly, find on which day the volume of R was half its volume at 10 p.m. on Monday.
(b) At 10 p.m. on Monday, Block S was a hemisphere with radius 18 cm . Calculate
(i) its volume,
(ii) its total surface area.
(c) As block T melted, its shape was always geometrically similar to its original shape. It had a volume of $5000 \mathrm{~cm}^{3}$ when its height was 12 cm . Calculate its height when its volume was $1080 \mathrm{~cm}^{3}$.

[7]

6. Figure 2A shows the cross-section of an underground train tunnel.

Figure 2A

Figure 2B

With reference to Figure 2B.
$A B$ represents the horizontal track surface, where the shaded region beneath it is covered with concrete.
Arc $A Y B$ represents the metal ceiling of the tunnel.
O is the centre of the circle with radius r metres.
X is the midpoint of $A B$ and its vertically below Y.
Given that $A B=X Y=16 \mathrm{~m}$.
(a) Calculate
(i) the value of r.
(ii) $\angle A O X$,
(iii) the volume of concrete used for the tunnel, given the tunnel is 900 m long.
(b) A similar model of the tunncl is made. The radius of the model's cross-section is 5 cm .
Calculate the curved surface area of the model's ceiling.
(c) A 130 metre long train travelling at a speed of $50 \mathrm{~km} / \mathrm{h}$ entered the tunnel.

Calculate the time, in minutes and seconds, needed for the frain to completely travel out of the tunnel.
7.

Figure 3 shows the circle $A B S Q$.
$A B S Q$ has centre $O . T Q P$ and $T S R$ are tangents to the circle.
$\angle Q T S=64^{\circ}, \angle S A B=32^{\circ}$ and $\angle A C Q=73^{\circ}$.
(a) Joseph commented that there are at least three right angles in Figure 3. Justify his comment with workings and reasons.
(b) Calculate
(i) $\angle S Q B$,
(ii) $\angle T O Q$,
(iii) $\angle A B Q$,
(iv) $\angle B S R$.

[9]

8. A wooden cuboid has length 20 cm , width 7 cm and height 4 cm .

Three hemisphere, each of radius 1.5 cm , are hollowed out of the top of the cuboid, to leave the block as shown in the diagram.

(a) Calculate the volume of wood in the block.
(b) The four vertical sides are painted pink. Calculate the total area that is painted pink.
(c) The inside of each hemispherical hollow is painted white. The flat part of the top of the block is painted green.
Calculate the total area that is painted
(i) white, [1]
(ii) green.
9. Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y=4 x+\frac{60}{x}-30$.
Some corresponding values of x and y are given in the following table.

x	1.5	2	2.5	3	4	5	7	8
y	16	a	4	2	1	b	6.6	9.5

(a) Calculate the values of a and b.
(b) Using the scales of 2 cm to represent 1 unit of x and 1 cm to represent 1 unit of y, draw the graph of $y=4 x+\frac{60}{x}-30$ for the range $1.5 \leq x \leq 8$.
(c) From your graph, find
(i) the least value of y,
(ii) the range of values of x for which $y=4 x+\frac{60}{x}-30<8$.
(d) Find, by drawing a tangent, the gradient of the curve when $x=5$.
(e) By drawing a suitable straight line on the same axes, find the solutions of the equation $3 x^{2}+60-30 x=0$.
[11]
10. All cmployees in Singapore have a compulsory savings known as the Central Provident Fund (CPF).
Each worker is required to save a certain percentage of what he earns each month with the CPF and the employer contributes another percentage of his salary to his CPF account.
The total CPF contribution is then kept into 3 accounts in the proportion as shown in the table below.

Contribution rates from 1 January 2016 for private sector and public sector non-pensionable cmployees being:

- Singapore Citizen
- SPR* from the third year of obtaining SPR status
- SPR during the first two ycars of obtaining SPR status but who has jointly applied with employer to contribute at full employer-full employee rates
*SPR (Permanent Resident)

Employeersage (years)	Contribution Rates from 1 dan 2016 		
	By Ein (\% of		
55 and below	17	20	37
Above 551060	13	13	26
Above 60 to 65	9	7.5	16.5
Above 65	75	5	12.5

Allocation rates from 1 January 2016 for private sector and public sector non-pensionable employecs

Employae's ago (years)	Alfocation Rlates from 1 tan 2016 (for mantuly wages $\Sigma \$ 750$)		
35 and below	23	6	8
Above 35 to 45	21	7	9
Above 45 to 50	19	8	10
Above 50 to 55	15	115	10.5
Above 55 to 60	12	3.5	10.5
Above 60 to 65	3.5	25	10.5
Above 65	1	1	10.5
		4 B	

In October 2016, Mr Ong who is 38 years old, earns $\$ 3000$ a month, while his wife, who is 34 years old, eams $\$ 2000$ a month.
(a) Calculate Mr Ong's contribution and his employer's contribution to his CPF account monthly.

Both Mr Ong and his wife have just paid the 10% downpayment for their HDB flat which costs $\$ 400000$. They intend to pay the rest over a period of 20 years.
(b) Calculate how much they will have to pay per month for the 20 years.

For a part of the amount they have to pay, the Ongs will use the money from both their Ordinary Accounts, and they will borrow the balance from a bank.
(c) Show that the amount from both their Ordinary Accounts to be used for the monthly payment of the flat is $\$ 1090$.
(d) Calculate the amount of money they have to borrow from the bank over the period of 20 years.

The Ongs have to pay a simple interest rate of 1.48% for Year 1 and 1.58% thereafter.
(e) Calculate the total amount they have to pay the bank after 20 years.

YUSOF ISHAK SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2017

MATHEMATICS PAPERI
SEC 4E/5N

MARKINGSCHEME

1	$\begin{aligned} & \frac{-33^{2} \times \sqrt{2^{3}}}{\left[1-8\left(7+7^{-4}\right)\right]^{2}} \times \sin \frac{\pi}{3}=-00084628 \quad\left(\sin \frac{\pi}{3}, \text { Fridian mode }\right] \\ & =-0.008463 \text { (4 sig. Gigures) } \end{aligned}$	Do not accept -0.0001785935 (Degree mode) B1 [1]
2	$\begin{aligned} & \$ 850000 \times(100-14.3) \% \\ & =\$ 728450 \end{aligned}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{Al}[2] \end{aligned}$
3	$\begin{aligned} & 24 \times 6 \\ & 16 \text { minutes } \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1[2] \end{aligned}$
4	$\begin{aligned} & 1 \text { litre }=20 \mathrm{~km} \\ & 20 \mathrm{~km} \text { will emit } 115 \times 20=2300 \text { grams of } \mathrm{CO}_{2} \\ & 2.3 \mathrm{~kg} \end{aligned}$	M! $\mathrm{A} \mid[2]$
$5(2)$	$\begin{aligned} & 50 p^{2}-72 q^{2} \\ & 2\left(25 p^{2}-36 q^{2}\right) \\ & 2(5 p-6 q)(5 p+6 q) \end{aligned}$	MI $\mathrm{Al}[2]$
$5(b)$	$\begin{aligned} & \frac{x-2-x+1}{4}-1 \\ & \frac{3(x-2) 4(x+1)}{12}=1 \\ & \frac{3 x-6-4 x-4}{12}=1 \\ & -x-10=12 \\ & x=-22 \end{aligned}$	MI A1 [2]
5(c)	$\begin{aligned} & T=2 \pi \sqrt{\frac{h}{g}} \\ & \left(\frac{T}{2 \pi}\right)^{2}=\frac{h}{g} \\ & h=g\left(\frac{T}{2 \pi}\right)^{2} \text { or } h=\frac{g T^{2}}{4 \pi^{2}} \end{aligned}$	M1 Al[2]
6 (6)	$\begin{aligned} & \text { As the two buckets are similar } \\ & \therefore \frac{\text { Heightor small bucket }}{\text { Heightor large bucket }}=\frac{8}{16} \\ & \frac{\text { Height of small bucket }}{30}=\frac{8}{16} \\ & \text { Height of small bucket }=\frac{8}{16} \times 30=15 \mathrm{~cm} \end{aligned}$	B1 [1]
6(b)	$\begin{aligned} & \frac{\text { Volume of large bucket }}{\text { Volum of small bucket }}=\left(\frac{16}{9}\right)^{2} \\ & \frac{\text { Volume of large bucket }}{850}=(2)^{3} \\ & \text { Valume of targe bucket }=8 \times 850=6800 \mathrm{~cm}^{3} \end{aligned}$	MI A! [2]

7(4)	$p+q$	B1 [1]
7(b)	$\frac{1}{2}(p-q)$	Bl [1]
8	Che of 1 $\begin{aligned} 10,20,35 & =5 \times 2 \times 2 \times 7 \\ & =140 \end{aligned}$ After 140 minutes	$\begin{aligned} & \mathrm{MI} \\ & \mathrm{Al}[2] \end{aligned}$
9(a)	40°	B1 [1]
9(b)	9	B![1]
9(c)	120°	B1 [1]
10	$P \alpha Q^{2}$ $P=k Q^{2}$ where k is a constant New $\begin{aligned} & P_{\mathrm{NEH}}=k(3 Q)^{2} \\ & \text { Percentage increase } \left.=\frac{k\left(9 Q^{2}-Q^{2}\right.}{k Q^{2}}\right) \times 100 \%=800 \% \end{aligned}$	Ml $\mathrm{Al}[2]$
11	$\begin{aligned} & \frac{10 x+8}{3}+2<5+4 x<8 \\ & \frac{10 x+8}{3}+2<5+4 x \text { and } 5+4 x<8 \\ & 10 x+8+6<15+12 x \text { and } 4 x<3 \\ & 2 x>-1 \text { and } x<\frac{3}{4} \\ & x>-\frac{1}{2} \\ & \therefore-\frac{1}{2}<x<\frac{3}{4} \end{aligned}$	M) AI Al \{3]
12(a)	$2 x-3=x+3 y-7$ $x-3 y=-4$ or$\quad$$2 x-3=15-x-y$ $3 x+y=18$ $x+3 y-7=15-x-y$ $2 x+4 y=22$ $x+2 y=11$ \{Any or	MI Al [2]
$2(\mathrm{~b})$	$x=5 \quad y=3$	$\begin{aligned} & \mathrm{MI} \\ & \mathrm{~A} \mid\{2 \mid \end{aligned}$

13(a)	The information did not specify the total of number of children surveyed/population. OR The information did not specify the information was obtained in one hositpal/all hositpals in the USA. OR BIG HEADLINE makes you think that 5.3% of children get spinal cord injuries... a pretty scary statistic for parents:	Any 1 with explanation B2 [2] To explain why is this imporiant to mention the population of the children surveyed.
13(b)	For the record, the real figure should be based on the number of injuries per year out of a population of certain number in that country	81 [1]
14(a)	$\begin{aligned} & 1: 50000 \\ & 1 \mathrm{~cm} \text { represent } 0.5 \mathrm{~km} \\ & 5.8 \mathrm{~cm} \text { represent } 0.5 \times 5.8=2.9 \mathrm{~km} \end{aligned}$	B1 11$]$
14(b)	$1 \mathrm{~cm}^{2}$ represent $0.5 \times 0.5 \mathrm{~km}^{2}$ $\frac{6.5}{0.25}=26 \mathrm{~cm}^{2}$	$\begin{aligned} & \mathrm{MI} \\ & \mathrm{AI}[2] \end{aligned}$
15(a)		
15(b)(i)	$x^{2}-4 x+5=(x-2)^{2}+1$	B1 [1]
15(b)(ii)		Bl - turning point BI $-y$ intercept [2]
16(*)	$\left(\begin{array}{lll}1515 & 2610 & 1770\end{array}\right)$	$\begin{aligned} & \text { M1 } \\ & \mathrm{A} 1[2] \end{aligned}$
16(b)	The fotal weekly cosis for Raspbernt, Orange and Lemon drinks are $\$ 15.15, \$ 26.10$ and $\$ 17.70$ respectively	B1 [1]

17		B2 BI (one number wrong)
18(8)	Length of $A B=\sqrt{4^{2}+3^{2}}=$ Suatits	B1 [1]
18(b)	$C(7,4)$	B1 [1]
18(c)	$\begin{aligned} & 50=\frac{1}{2}(8+x) \times 4 \partial x=17 \\ & D(13,0) \end{aligned}$	Ml Al [2]
18(d)	$\cos \angle A B C=-\frac{3}{5}$	B1 [1]
19(x)	Mean mass of Line $P=495.8 \mathrm{~g}$ Mean mass of Line $Q=494.6 \mathrm{~g}$	$\begin{aligned} & \mathrm{Bl} \\ & \mathrm{~B}![2] \end{aligned}$
19(b)	Standard deviation of Line $P=707 \mathrm{~g}$ Standard deviation of Line $Q=9.92 \mathrm{~g}$	$\begin{aligned} & \mathrm{BI} \\ & \mathrm{~B} 1[2] \end{aligned}$
19(c)	The lighter loaf is likely to come from Q where the mean is lower. The mass of line Q's products are also more varied from their mean value and hence, a higher chance of being lighter.	$\begin{aligned} & \mathrm{Bl} \\ & \mathrm{BI}[2] \end{aligned}$
20(a)	$\frac{3}{9}, \frac{6}{9}, \frac{4}{9}, \frac{5}{9} \text { oe }$	Bl for all three correct [1]
20(b)(b)	$\frac{12}{90}$	FT from their tree diagram IFT [1]
$20(b)($ ii) $)$	$\frac{48}{90}$	FT fom the ir tree diagram. B1 for $\frac{24}{90}$ oe FT seen Ot M1 for $\begin{aligned} & \left(\frac{4}{10} \times \frac{6}{9}\right)+\left(\frac{6}{10} \times \frac{4}{9}\right) \\ & \text { oeFI } \\ & \text { 2FI [2] } \end{aligned}$

21(1)	$\begin{aligned} & \left(3 x^{2} y\right)^{4} \times\left(5 x^{-3} y^{4}\right)^{-1} \\ & =27 x^{5} y^{3} \times \frac{1}{5} x^{3} y^{-4} \\ & =\frac{27 x^{9}}{5 y} \end{aligned}$	M! A. 12$]$	
21(b)	$\begin{aligned} & \left(\frac{1}{8}\right)^{-1} \times 32^{\frac{1}{3}}=2^{p-2} \div 2^{2} \\ & 4 \times 8=2^{p-4} \\ & 2^{3}=2^{p-4} \\ & p=9 \end{aligned}$	Mi $\mathrm{Al}[2]$	
21 (c)	$0.0040589=4.0589 \times 10^{-3}$	B1 [1]	
22(a)(i)	$\left\|p_{1}\right\|=\sqrt{(3)^{2}+(4)^{2}}$ $\|p\|=5 \text { units }$	B1 [1]	
22(3)(ii)	$m=-3$	B.1 [1]	
22(l)(b)(i)	$\overrightarrow{O C}=2 \overrightarrow{A B}=2 b$	B1 [1]	
22(b)(ii)	$\begin{aligned} \overrightarrow{B C}=\overline{B A} & +\overline{A O}+\overline{O C} \\ & =-b-a+2 b \\ & =b-a \end{aligned}$	B: [1]	
$22(b)(\operatorname{iin})$	$\begin{aligned} & \overline{A D}=\overline{A B}+\overline{B C}+\overline{C D} \\ &=\mathrm{b}+\mathrm{b}-\mathrm{a} \\ &=2 \mathrm{~b}-2 \mathrm{z} \end{aligned}$	B1[1]	
22(b)(II)	Since $\overrightarrow{A D}=2 \overrightarrow{B C}$ $A D \\| B C$ $A B C D$ is a trapezrum	B1 [1]	
23(${ }^{2}$ (b)(i) (b) (ii8)		(a) 2 2] (b) (i) [1] (b) (i) [1] 2 possible lacation of point D. But ne effect on the answer.	
23 (c)	$E P=3.9 \mathrm{~cm} \pm 0.7 \mathrm{~cm}$	B1] 11	

Yusof Ishak Secoodery School
Preliminary Examination 2017
Mathematics Paper 2

Marking Scheme

1 (a)	$\begin{aligned} & (1+4 x)^{2}=81 \\ & 1+4 x= \pm \sqrt{81} \\ & 1+4 x=9 \text { or } 1+4 x=-9 \\ & 4 x=8 \text { or } 4 x=-10 \\ & x=2 \text { or } x=-25 \end{aligned}$	M1 A) [2]
1 (b)	$\begin{aligned} & \frac{1}{2 x+3}+\frac{3}{2 x-1} \\ & =\frac{1(2 x-1)+3(2 x+3)}{(2 x+3)(2 x-1)} \\ & =\frac{2 x-1+6 x+9}{(2 x+3)(2 x-1)} \\ & =\frac{8 x+8}{(2 x+3)(2 x-1)} \end{aligned}$	M1 A) [2]
1 (c)	$\begin{aligned} & 2 x+1<9<3 x+1 \\ & 2 x+1<9 \text { and }<3 x+1 \\ & \Rightarrow 2 x<8 \text { and } 3 x>8 \\ & \Rightarrow x<4 \text { and } x>\frac{8}{3} x=3 \end{aligned}$	M1 Al [2]
1 (d)	$\begin{aligned} & a^{2}+9 b^{2}-6 a b-2 a+6 b \\ & =\left(a^{2}+9 b^{2}-6 a b\right)-2 a+6 b \\ & =(a-3 b)^{2}-2(a-3 b) \\ & =(a-3 b)(a-3 b-2) \end{aligned}$	MI Al [2]

\{14]

2(a)	Number of sets of 2 white beads and 1 black bead $14-1=13$ Total number of white teads $13 \times 2=26$ Disagree Students must be able to explain and show how they obtained the answer:	83 [3]
2(b) ${ }^{\text {d }}$)	$\begin{aligned} & 3 b=4 a \Rightarrow \frac{a}{b}=\frac{3}{4} \Rightarrow a: b=3: 4 \\ & 2 c=5 a \Rightarrow \frac{a}{c}=\frac{2}{5} \Rightarrow a: c=2: 5 \\ & \therefore a: b: c=6: 8: 15 \end{aligned}$	B1 B1 [2]
2(b)(ii)	$\begin{aligned} & \text { Let } a=5 k, b=8 k, c=15 k \\ & 6 k+8 k+15 k=10 \\ & k=\frac{10}{29} \\ & \therefore b=\frac{80}{29} \end{aligned}$	MI A1 AIt [3]

3 (a)	x bulbs cost $\$ 25$ 1 bulb cost $\$ \frac{25}{x}$	B1 [1]
3 (b)	$\begin{aligned} & \text { Selling proe for each light bulb }=\$ \frac{25}{x}+\$ 0.50 \\ & =\$ \frac{25+50.50 x}{x} \\ & =\$ \frac{2(25+0.5 x)}{2 x} \\ & =\$ \frac{50+x}{2 x} \end{aligned}$	B1 [1]
3 (c)(i)	$\begin{aligned} & \text { Total amount }=\$ \frac{50+x}{2 x} \times 8 \\ & =\$ \frac{4(50+x)}{x} \end{aligned}$	B1 [1]
3(c)(ii)	Number of unsold light butbs $=x-8$	B1 [1]
3(d)	$\begin{aligned} & \text { Total armount }=\$ 2 \times(x-8) \\ & =\$ 2(x-8) \end{aligned}$	B1 [1]
3(e)	$\begin{aligned} & \frac{4(50+x)}{2}+2(x-8)=46 \\ & \frac{200+4 x}{x}+2 x-16=46 \\ & \frac{200+4 x+2 x^{2}-16 x}{x}=46 \\ & 2 x^{2}-12 x+200=46 x \\ & 2 x^{2}-58 x+200=0 \\ & x^{2}-29 x+100=0 \text { (Shown) } \end{aligned}$	MI A1 A1 [3]
3(f)	$\begin{aligned} & x=\frac{-(-29) \pm \sqrt{(-29)^{3}-4(1)(100)}}{2(1)} \\ & x=\frac{29 \pm \sqrt{441}}{2} \\ & x=\frac{29 \pm 21}{2} \\ & x=25 \text { or } x=4 \end{aligned}$ The number of light bullos cannot be less than 8 . $\therefore r=4$ is rot applicable The number of light bults, $x=25$.	MI Al A! [3]

[16]

$4(2){ }^{\text {(1) }}$	in $\triangle A B D$, Using Sine Rule, $\begin{aligned} & \frac{\sin 118}{950}=\frac{\sin \angle A D B}{600} \\ & \Rightarrow \sin \angle A D B=\frac{600 \times \sin 118}{950} \\ & \angle A D B=33.89^{\circ} \\ & \angle A D B=33.9^{\circ}(1 \text { decimal place })- \\ & \angle A B D=180^{\circ}-118^{\circ}-33.9^{\circ} \\ & =28.1^{\circ} \end{aligned}$	
4(a)(ii)	in $\triangle B C D$, Using Cosine Rule, $\begin{aligned} & C D=\sqrt{950^{2}+1040^{2}-2(950)(1040) \cos 42} \\ & C D=7181 \\ & C D=718 \mathrm{~m}(3 \mathrm{sig}, \text { figures }) \end{aligned}$	M2 A! $\text { A } 14]$
4(a)(ii)	Let the required distance be h. $\begin{aligned} & \text { A rea of } \triangle B C D=\frac{1}{2} \times 950 \times 1040 \times \sin 42^{\circ} \\ & \frac{1}{2} \times 950 \times 1040 \times \sin 42^{\circ}=\frac{1}{2} \times 950 \times h \\ & h=1040 \times \sin 42^{\circ} \\ & h=6959 \\ & h=696 \mathrm{~m}(3 \text { sig figures }) \end{aligned}$	M1 Al [2]
4(b)	The greatest angle of depression occurs when the eagle is directly above the point on $B D$ such that it is nearest io C $\begin{aligned} & \tan \theta=\frac{500}{6959} \\ & \theta=35 \mathrm{~T} \end{aligned}$ Greatest angle of depression is 357° (1 decimal place)	M1 $A![2]$

[17]

$5(2) \times 1$	$\begin{aligned} \text { On Monday, volume } & =7500 \mathrm{~cm}^{3} \\ \text { On Tuesday, volume } & =86 \% \text { of } 7500 \\ & =\frac{86}{100} \times 7500=6450 \end{aligned}$ On Wednesday, volume $=86 \%$ of 6450 $\begin{aligned} =\frac{86}{100} \times 6450 & =5547 \\ & =5547 \mathrm{~cm}^{3}(3 \text { sig. Ggures }) \end{aligned}$	Ml A 1 [2]
$5(a) \times$ ii)	Let x be the actual volume of Block Q, the volume of Block Q has been reduced as 86% of its actual volume on Tuesday. $\begin{aligned} & \Rightarrow 86 \% \text { of } x=6450 \\ & x=6450 \times \frac{100}{86}=7500 \end{aligned}$ Actual volume of Block Q on Monday $=7500 \mathrm{~cm}^{3}$ (3 sig. figures)	M1 Al [2]
S(a)(iii)	Let v be the volume of Block R on Monday On Tuesday, volume $=\frac{86}{100} v=0.86 v$ On Wedresday, volume $=\frac{85}{100}(0.86 v)=0.7396 \mathrm{v}$ On Thursday, volume $=\frac{86}{100}(0.7396)=0.6361 v$ On Eriday, volume $=\frac{86}{100}(0.6361 v)=0.547 v$ On Saturday, volume $=\frac{86}{100}(0.547 \mathrm{v})=0.470 \mathrm{v}$ Volume reduces to half on Saturday.	MI AI [2]
S (b) $\left.x^{(}\right)$	$\begin{aligned} & \text { Volume of hemisphere }=\frac{1}{2}\left(\frac{4}{3} \pi m^{3}\right) \\ & \begin{aligned} \text { Volume ofS } & =\frac{1}{2}\left(\frac{4}{3} \pi(18)^{3}\right) \\ & =\frac{2}{3} \times 3.142 \times 5832 \\ & =122161 \\ & =12200 \mathrm{~cm}^{3}(3 \text { sig figures }) \end{aligned} \end{aligned}$	M 1 Al [2]
$5(b)$ (ii)	Toial sufface area of solid hemisphere S $\begin{aligned} & =\frac{1}{2}\left(4 \pi^{3}\right)+\pi^{2} \\ & =\frac{1}{2}\left(4 \pi(18)^{2}\right)+\pi(18)^{2} \\ & =2036016+1018008 \\ & =3054024 \\ & =3050 \mathrm{~cm}^{2}(3 \mathrm{sig} . \text { figures }) \end{aligned}$	MI A1 [2]
5(c)	$\begin{aligned} & \text { Valune before }=\left(\frac{\text { beight before }}{\text { heught aiter }}\right)^{2} \\ & \left(\frac{5090}{1080}\right)=\left(\frac{12}{h}\right)^{1} \end{aligned}$	

[18]

	$\begin{aligned} & \frac{125}{27}=\left(\frac{12}{h}\right)^{1} \\ & \left(\frac{5}{3}\right)^{1}=\left(\frac{12}{h}\right)^{\prime} \\ & \frac{5}{3}=\frac{12}{h} \\ & 5 h=36 \\ & h=7.2 \mathrm{~cm} \end{aligned}$	MI A) [2]

[19]

$6(2 \mathrm{Ki})$	$\begin{aligned} & O A^{2}=O X^{2}+A X^{2} \\ & r^{2}=(16-r)^{2}+8^{3} \\ & r^{2}=256-32 r+r^{2}+8^{2} \\ & 32 r=320 \\ & r=10 \end{aligned}$	M1 Al A1 [3]
6(a) ${ }^{\text {(ii) }}$	$\begin{aligned} & \sin \angle A O X=\frac{A X}{O A} \\ & =\frac{B}{10} \\ & \angle A O X=\sin ^{-1}\left(\frac{8}{10}\right) \\ & \angle A O X=53.1^{\circ}(1 \text { decimal place }) \end{aligned}$	B1 [1]
6(a)(iii)	$\begin{aligned} & \angle A O B=2\left(53.1^{\circ}\right) \\ & \text { Shaded region }=\frac{2\left(53.1^{\circ}\right)}{360^{\circ}} \times \pi \times 10^{2}-\frac{1}{2} \times 10 \times 10 \sin 2\left(53.1^{\prime}\right) \\ & =44.74 \mathrm{~m}^{2} \\ & \therefore \text { Volume of concrete used } \\ & =4474 \times 900 \\ & =40266 \mathrm{~m}^{3} \\ & =40300 \mathrm{~m}^{3} \text { (correct to } 3 \text { sig. ngyures) } \end{aligned}$	MI AI A1 [3]
6 (b)	$\begin{aligned} & \text { Length of the model tunnel }=\frac{900}{10} \times 5 \\ & =450 \mathrm{~m} \\ & \text { Reflex } \angle A O B=360-2(53.1)^{\circ}=25.374^{\circ} \\ & \text { Curved surface area }=\frac{253.74}{360^{\circ}} \times 2 \pi \times 5 \times 450 \\ & =9965.6 \mathrm{~cm}^{2} \\ & =9970 \mathrm{~cm}^{2}(3 \text { sig ngures }) \end{aligned}$	B1 M1 A1 [3]
6 (c)	Total distance the train has to travel $=900+130=1030$ m. Time taken $=\frac{1030}{50000} \times 60=1.236$ minutes 1 minute 14 seconds	

7(a)	$\angle B S Q=90^{\circ}$ (r. \angle in a semicircle) $\angle B A Q=90^{\circ}$ (rt. \angle in a semicircle) $\angle O S T$ or $\angle O Q T=90$ (tangent perp. radius at point of contact)	$\begin{aligned} & \mathrm{BI} \\ & \mathrm{Bl} \\ & \mathrm{Bl}[3] \end{aligned}$
7(b) ${ }^{\text {(})}$	$\angle S Q B=32(\angle 5$ in the same segment)	B1 [1]
7(b)(ii)	$\begin{aligned} & \angle O T Q=\frac{64^{\circ}}{2}=32^{\circ}(\text { OT bisects } \angle Q T S) \\ & \angle T O Q=180-32-90^{\circ}=58(\angle \text { sum of } \triangle) \end{aligned}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{Al}[2] \end{aligned}$
$7(b)(i i i)$	$\angle A C E=180^{\circ}-73^{\circ}=107^{\circ}$ (adj. $\angle s$ on a str. itine) $\angle A B Q=180-32-107=41(\angle$ sum of $\angle)$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1[2] \end{aligned}$
7(b) (iv)	$Q T=S T$ (tangents drawn to circle form ext. point are equal) $\begin{aligned} \angle D S T & =\frac{180^{\circ}-64^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isosceles } \Delta) \\ & =58^{\circ} \\ \angle B S R & =180^{\circ}-90^{\circ}-58^{\circ}(\mathrm{adj} . \angle S \text { on a st line }) \\ & =32^{\circ} \end{aligned}$ OR $\angle B S R=32$ (altemate segment theorem)	M) A1[2] B1, B1 [2]

8(a)	Volume of wood in the block $=$ $\begin{aligned} & (20 \times 7 \times 4)-3\left(\frac{1}{2} \times \frac{4}{3} \times \pi \times 1.5^{3}\right) \\ & =560-212085 \\ & =538.7915 \\ & =539 \mathrm{~cm}^{\prime}(3 \text { significant figures }) \end{aligned}$	$\begin{aligned} & \mathrm{MI} \\ & \mathrm{~A} \mid[2] \end{aligned}$
$8(b)$	Total area that is painted pink $=$ $\begin{aligned} & 2(7 \times 4)+2(20 \times 4)=56+160 \\ & =216 \mathrm{~cm}^{2} \end{aligned}$	B1! $]$
8(c) ${ }_{\text {(}}$)	$\begin{aligned} & \text { Total area inat is painted white }=2 \times 8 \times(1.5)^{2} \times 3 \\ & =42.417 \\ & =42.4 \mathrm{~cm}^{2}(3 \text { signincant furues }) \end{aligned}$	B1!1]
8(c)(i)	$\begin{aligned} & \text { Total area that is painted green }=(20 \times 7)-3\left(\pi \times 1.5^{2}\right) \\ & =118.795 \\ & =119 \mathrm{~cm}^{2} \end{aligned}$	E [[1]

[22]

	$y=4 x+\frac{60}{x}-30$ and $y=x$ i.e. whenx $=2.75$ or $x=7.2$	P!
Al $[3]$		

10(a)	Mr Ong's monthly contribution $=\frac{20}{100} \times \$ 3000=\$ 600$ His employer's monthly contribution $=\frac{17}{100} \times \$ 3000=\$ 510$	$\begin{aligned} & \mathrm{Bl} \\ & \mathrm{~B} 1[2] \end{aligned}$
196)	They have to pay $\frac{90}{100} \times \$ 400000=\$ 360000$ over 20 years Each month, they have to pay $\frac{\$ 360000}{20 \times 12}=\$ 1500$	MI Al [2]
10(c)	Amount to be used for monthly payment $=\left(\frac{21}{100} \times \$ 3000\right)+\left(\frac{23}{100} \times \$ 2000\right)=\$ 1090 \text { (Shown) }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$
10(d)	They have to borrow ($51500-51090$) $20 \times 12=598400$	B1. [1]
10(e)	$\begin{aligned} & \text { They have to pay } \\ & \left(\frac{148}{100} \times 98400 \times 1\right)=\$ 1456.32 \text { Year 1 Interest } \\ & \left(\frac{1.58}{100} \times 98400 \times 19\right) \text { Year } 2 \text { onwards } \\ & \$ 29539.68 \\ & \$ 98400+\$ 145632+\$ 2953968 \\ & =\$ 129396 \end{aligned}$	MI M1 [AI]

