Name:	()	Class:
Name.		Oldoo.

CHIJ KATONG CONVENT MID-YEAR EXAMINATIONS 2018 Secondary Four Express and Secondary Five Normal (Academic)

SCIENCE (CHEMISTRY, BIOLOGY)

5078/01

Paper 1 Multiple Choice Duration: 1 hour

Classes: 403, 404, 405, 501 and 502

Additional Materials: Optical Answer Sheets

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

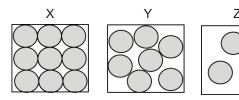
Write your name, registration number and class on all the work you hand in. Do not use staples, paper clips, highlighters, glue or correction fluid/ tape.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers, A, B, C and D.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Optical Answer Sheet.

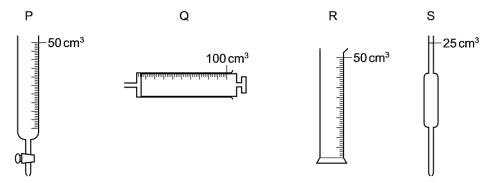
Complete the Chemistry and Biology sections on two separate Optical Answer Sheets provided.

Read the instructions on the Optical Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 16. A copy of the Periodic Table is printed on page 17.

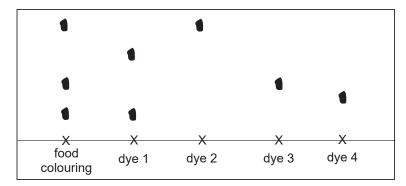
The use of an approved scientific calculator is expected, where appropriate.


This quest	nted pages
THIS QUEST	riteu pages

1 Diagrams X, Y and Z represent the three states of matter.

Which change occurs during boiling?

- A X to Y
- **B** Y to Z
- ${f C}$ Z to X
- D Z to Y
- **2** P, Q, R and S are pieces of apparatus.



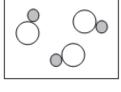
Which row describes the correct apparatus for the measurement made?

	apparatus	measurement made
Α	Р	15.60 cm ³ of acid to be added to alkali in a titration
В	Q	1 cm ³ of acid to be added to calcium carbonate in an experiment
С	R	75 cm ³ of gas given off in a thermal decomposition reaction
D	S	20.0 cm ³ of alkali to be used in a titration

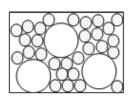
- 3 Which method of separation should be used to obtain pure water from copper(II) sulfate solution?
 - A crystallisation
 - **B** evaporation to dryness
 - **C** filtration
 - **D** simple distillation

4 A food colouring is compared with four different dyes. The chromatogram produced is shown in the diagram.

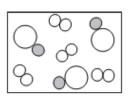
Which dyes does the food colouring contain?

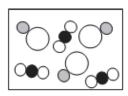

- A 1 and 2 only
- **B** 1 and 3 only
- C 2 and 3 only
- **D** 2 and 4 only
- 5 The table shows the boiling points of acetone and water.

substance	boiling point/ °C					
acetone	56					
water	100					


A sample of water was found to contain a small amount of acetone.

What could be the boiling point of the water sample?


- **A** 56 °C
- **B** 78 °C
- **C** 100 °C
- **D** 104 °C
- **6** Which diagram shows a mixture of two compounds?


Α

В

С

D

- 7 Which statement about an atom is correct?
 - **A** The nucleon number is smaller than the proton number.
 - **B** The nucleon number is the sum of the number of protons and electrons.
 - **C** The number of proton always equals the number of electrons.
 - **D** The number of proton always equals the number of neutrons.
- 8 How many hydrogen atoms are there in 4 moles of ammonia gas?
 - **A** 1.5 x 10²³ atoms
 - **B** 1.8 x 10²⁴ atoms
 - **C** 2.4 x 10²⁴ atoms
 - **D** 7.2 x 10²⁴ atoms
- **9** 20 cm³ of carbon monoxide was burnt in 40 cm³ of oxygen.

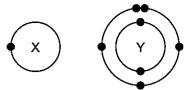
The equation of the reaction is shown.

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

What is the total volume of gas remaining at the end of the reaction?

- **A** 20 cm³
- **B** 40 cm³
- C 60 cm³
- **D** 80 cm³
- 10 Due to acid rain, the acidity of the soil is increased, making it unsuitable for plant growth.

Which substance is used by farmers to decrease the acidity in the soil?


- A calcium carbonate
- B calcium hydroxide
- C calcium nitrate
- D calcium sulfate
- 11 An unknown oxide was added separately to hydrochloric acid and aqueous sodium hydroxide. The pH of the resulting solution was measured and shown in the table.

chemical	pH of resulting solution
hydrochloric acid	7.0
sodium hydroxide	7.0

What could the unknown oxide be?

- A aluminium oxide
- B carbon monoxide
- C potassium oxide
- D sulfur dioxide

12 The electronic structures of atoms X and Y are shown.

What is the formula of the covalent compound formed between X and Y?

- A XY₅
- B XY₃
- C XY
- $D X_3Y$
- 13 The table shows the properties of substances J, K, L and M.

substance	, 3		electrical conductivity in solid state			
J	2.1	115	poor			
K	5.7	232	good			
L	6.3	1326	poor			
M	19.3	1064	good			

Which substances are metals?

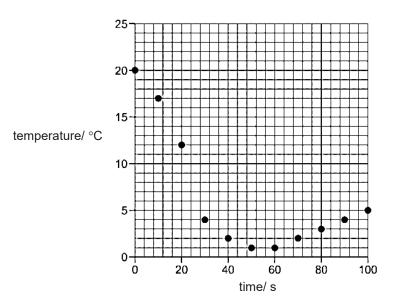
- A J and K only
- **B** J and L only
- C K and M only
- **D** L and M only
- 14 The table shows the electronic configuration of four elements, P, Q, R, S.

element	electronic configuration
Р	2.2
Q	2.8
R	2.8.2
S	2.8.7

Which statement is correct?

- A P and R are in the same group.
- **B** Q and R have the same number of electron shells.
- **C** Q and S are in the same period.
- **D** R and S have the same number of valence electrons.

15 The table shows the results of some halogen displacement experiments.


halide solution halogen added	Х	Υ	Z
X		✓	×
Υ	×		×
Z	✓	✓	

Key:
✓ visible reaction
× no visible reaction

What row shows the order of halogens in increasing reactivity?

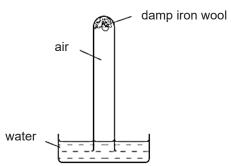
	lowest —		→ highest
Α	X	Υ	Z
В	Υ	X	Z
С	Υ	Z	X
D	Z	X	Υ

16 Solid hydrated sodium carbonate was added to aqueous citric acid. The mixture was stirred and the temperature was recorded every 10 seconds. The results are shown on the graph

Which row describes the reaction?

	reaction type	energy change						
Α	neutralisation	endothermic						
В	neutralisation	tion exothermic						
С	precipitation endothermic							
D	precipitation	exothermic						

[Turn over


- 17 Which process is endothermic?
 - condensation
 - В freezing
 - C photosynthesis
 - rusting
- 18 The effect of temperature on the rate of the reaction between zinc and hydrochloric acid can be investigated by measuring the production of gas.

Which equipment is not required for the investigation?


- Α condenser
- В gas syringe
- С stopwatch
- thermometer
- The element vanadium, V, forms several oxides. 19

Which reaction shows oxidation taking place?

- Α $VO_2 \to V_2O_3 \\$
- В $V_2O_5 \to VO_2 \\$
- C
- $\begin{matrix} V_2O_3 \rightarrow VO \\ V_2O_3 \rightarrow V_2O_5 \end{matrix}$ D
- The apparatus shown is set up and left for a week.

Which diagram best shows the level of the water at the end of the week?

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

δ [Turn over

The Periodic Table of Elements

14790	0	2 He helum 4	Ne Red 20	₩ 4	argon 40	38	호	krypton 84	15	× e	131	98	唇	1300	l o		
7	VII		9 F fuorthe 19	11 C1	chlorine 35.5	32	ă	bromine 80	53	Н	odne 127	82	¥	astatine			
	M		8 O Mygen 18	16 S	suffr 32	8	Se	selenium 79	52	Te	128	22	Po	mlluojod	116	Lv	ī
	۸		N N Ittogen	15 P	phosphorus 31	33	As	arsenic 75	51	S	antimony 122	æ	ö	Dismuth 209			
	2		6 Carbon	≵ !Ω	slloon 28	32	ဗီ	germanlum 73	20	ร	# £	82	ď	207	114	F/ fero/um	C
	=		B B T	13 A1	aluminum 27	31	Sa	gallum 70	48	'n	Indum 115	81	1	mallum 204			
		<u> </u>				90	5	gg gg	48	8	cadmium 112	8	F E	mercury 201	112	Co	ı
	80 85					28	3	8pper 64	47	Ag	siver 108	62	Au	197	111	Rg	ι.
Group						28	Z	nokel 59	48	B	mpaladum 106	78	ፚ	platinum 195	110	Ds	ı
Sig						27	ദ	cobalt 59	45	듄	modium 103	11	H	Indum 192	109	Mt	I.
		1 H Nydrogen 1	1 16			26	e e	10 20 20	4	쥰	ndhenlum 101	76	ő	08th	108	Hs	1
						25	ğ	manganese 55	43	٦ ۲	technetum	75	æ	menum 186	107	Bhrium	t
			umber ool mass			24	ပ်	chromium 52	42	ø.	molybdenum 96	74	>	tungsten 184	108	Sg	t
		Key	proton (atomic) number atomic symbol name relative atomic mass					vanadum 51									
	5 75		proton atc relati			22	=	ttanium 48	40	72	zirconlum 91	72	士	hamium 178	104	Refordum	ı
	3 33	58				21	တိ	scandlum 45	36	>	m _E 8	57-71	lanthanoids		89 - 103	actroids	
	=		4 Be beryllum 9	12 Mg	magnesium 24	20	ပ္ပ	calclum 40	38	ঠ	mntuuts 88	28	Ba	barrum 137	88	Ra	ı
	_	-25	3 Li Iffium 7	11 Na	sodium 23	18	×	potasslum 39	37	8	mpign 82	88	క	caeslum 133	87	Fr	ľ

			-				
71	2	unetium	175	103	۲	Jawrendun	1
70	X.P	ytterblum	173	102	2	nobellum	1
69	Tu	munu	169	101	PW	mendeleum	1
89	ш	erblum	187	100	F	femium	1
67	유	holmum	185	88	ш Ш	einsteinum	1
99	6	dysprosium dysprosium	163	88	ö	Callionium	1
89	2	terbium	159	26	益	berkelum	1
2	8	gadolinium	157	98	S	Curlem	1
63	ш	europlum	152	92	Am	americum	1
62	Sm	Samarlum	150	æ	P	plutorium	1
81	Pm	promethlum	ι	83	2	neptunium	1
90	P	neodymium	4	85	>	uranium	238
99	ď	prateodymium prateodymium	141	91	Pa	protectnium	33
28	రి	certum	140	80	F	thoulum	232
25	r _a	anthanum	139	68	Ac	Anim Anim	1

lanthanoids

actinoids

The volume of one mole gas is 24 dm³ at room temperature and pressure (r.t.p.).

Name: (() Class:

CHIJ KATONG CONVENT MID-YEAR EXAMINATIONS 2018 Secondary Four Express and Secondary Five Normal (Academic)

SCIENCE (CHEMISTRY)

5078/03

Paper 3 Chemistry Duration: 1 hour 15 minutes

Classes: 403, 404, 405, 501 and 502

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and registration number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid/ tape.

Section A

Answer all questions.

Write your answers in the spaces provided on the Question Paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the Question Paper.

A copy of the Data Sheet is printed on page 15. A copy of the Periodic Table is printed on page 16.

At the end of the examination, hand in:

- (a) Section A;
- (b) Section B separately.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAMINER'S USE		
Paper 1	/ 20	
Paper 3		
Section A	/ 45	
Section B	/ 20	
TOTAL	/ 85	

This quest ted pages.

[Turn over

Section A [45 marks]

Answer all the questions in the spaces provided.

1 Substances can be classified as elements, compounds or mixtures. Complete Table 1.1 to describe the following substances.

Table 1.1

substance	classification (element, compound or mixture)	atoms found within the substance	
hydrogen sulfide	compound	hydrogen, sulfur	
brass			
limestone	compound		

[3]

[Total: 3]

- 2 Iron is the fourth most common element in the Earth's crust and it is also believed to form a large extent of the Earth's core.
 - (a) Pure iron can be prepared by the thermal decomposition of iron pentacarbonyl. Fig. 2.1 shows the structure of iron pentacarbonyl.

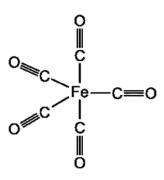


Fig. 2.1

(b) (i) Iron metal oxidises partially to form iron(II) oxide.

Predict the electrical conductivity of this compound by including the condition under which conductivity is observed or not at all.

.....[1]

[Turn over

2 (b) (ii) Complete Table 2.1 to show the number of electrons, neutrons and protons in iron(II) ion and oxide ion.

Table 2.1

	number of protons	number of neutrons	number of electrons
⁵⁶ ₂₆ Fe ²⁺	26		
¹⁶ ₈ O ²⁻		8	

					2]
	(c)	(i)	$^{54}_{26}$ Fe and $^{56}_{26}$ Fe are two common isotopes of	iron.	
			Define isotopes.		
					· • •
					[1]
		(ii)	These iron isotopes have different physic properties.	al properties but exhibit same chemic	al
			Explain this observation.		
					1]
				[Total:	6]
3			olourless solution of copper(I) chloride is left ir akes place.	a beaker for a period of time, the following	ng
			$2CuCI(aq) \rightarrow CuCI_2(aq)$	q) + Cu(s)	
	(a)	Calc	ulate the oxidation state of copper in CuC/ and	I CuC/ ₂ .	
		oxida	ation state of copper in CuC/		
		oxida	ation state of copper in CuCl ₂	[2]
	(b)	Expl reac	ain, in terms of change in oxidation states, wh tion.	y CuCl is both oxidised and reduced in th	is
				[2]

3	(c)	Des	cribe one observation in this reaction.
			[1]
			[Total: 5]
4	(a)	Nan	ne the pieces of apparatus most suitable to complete the following laboratory procedures:
		(i)	separate a precipitate from a solution,
			[1]
		(ii)	measure exactly 25.30 cm ³ of solution into a conical flask,
			[1]
		(iii)	measuring the mass gained in a reaction,
			[1]
		(iv)	bubbling gas into a test-tube containing solution.
			[1]
	(b)		omatography can be used to separate the coloured pigments extracted from lavender ers. The apparatus used is shown Fig. 4.1.
		Afte	r a few minutes, the solvent vapour fills the whole chromatography jar.
			chromatography paper start line solvent
			Fig. 4.1
			cribe what happens to the movement and arrangement of the solvent particles as they ome a vapour.
			[2]
			[Total: 6]

A solution of nitric acid is prepared by diluting 0.15 mol to make 100 cm³ of solution.

5

(a)	Calc	ulate the concentration of this solution in mol/dm³ and g/dm³.
		concentration = mol/dm³ [1]
		concentration = g/dm³ [1]
(b)	The follow	chemical equation for the reaction between nitric acid and potassium carbonate is as ws:
		$2HNO_3 + K_2CO_3 \rightarrow 2KNO_3 + CO_2 + H_2O$
		$$ cm 3 of 0.5 mol/dm 3 nitric acid is added to an aqueous solution containing 0.02 mol of ssium carbonate.
	(i)	Calculate the number of moles of nitric acid.
		number of moles =[1]
	(ii)	State the limiting reactant in this reaction.
		[1]
	(iii)	Calculate the number of moles of potassium nitrate formed.
		number of moles =[1]
		[Total: 5]

6 Fig. 6.1 describes some of the properties and reactions of several substances.

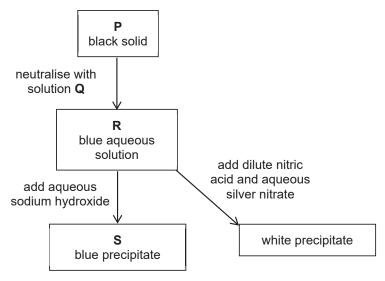


Fig. 6.1

(a) Identify P, Q, R and S.

(b)

P	
Q	
R	
S	[4]
Write the ionic equation for the reaction of R with aqueous silver nitrate.	
	[1]
	[Total: 5]

7 (a) Lithium, sodium and potassium belong to Group I of the Periodic Table. Table 7.1 shows the observations when these three metals react with water.

Table 7.1

Group I metal	observation
lithium	reacts quickly
sodium	reacts violently
potassium	reacts very violently

	(i)	Describe and explain the reactivity of Group I metals down the group.
		[3]
	(ii)	Rubidium is located below potassium in Group I.
		Predict what would happen when rubidium reacts with water.
		[1]
	(iii)	Name the gas evolved when Group I metals react with water.
		[1]
(b)	Gro	up 0 elements are also known as noble gases.
	(i)	State one physical property of noble gases.
		[1]
	(ii)	Using your knowledge of electronic structures, explain why elements in Group 0 are unreactive.
		[1]
		[Total: 7]

The petrol burnt in car engines react with air to form a mixture of gases.

Table 8.1 shows the composition of the mixture of all the gases coming from car exhaust fumes.

Table 8.1

gas	% of gas in the exhaust fumes
carbon dioxide	15
carbon monoxide	3
hydrocarbons	2
hydrogen	1
oxides of nitrogen	1
oxygen	1
water vapour	18
gas W	59

(a)	Identify gas W .		[1]
(b)	The amount of carbon dioxide er of the gas in the atmosphere.	mitted by vehicles contributes to the	ne increasing concentration
	Explain why this is a global conc	eern.	
			[2]
(c)	Explain why carbon monoxide is	s found in the exhaust gases.	
		•••••	
			[1]

(e)

8	(d)	Water is one of the major by-products in the combustion of petrol in vehicles.
---	-----	--

Draw a 'dot and cross' diagram of water, showing only the arrangement of electrons on the valence shells.

The	combustion of petrol is exothermic.	[2]
(i)	Define exothermic.	
		[1]
(ii)	Give another example of an exothermic reaction.	
		[1]
	oT]	tal: 8]

Na	ame:	()	Class:
		Section B [20 marks] Answer any two questions in this s Write your answers in the spaces pr	
9	Мад	gnesium sulfate is formed from the reaction between a meta	al, M and an acid, N.
	(a)	Name M and N.	
		M	
		N	[2]
	(b)	·	
	(c)		prepared using metal M and acid N.
	(d)	Magnesium sulfate can also be prepared using acid N an	d another substance.
		Name this substance.	
			[1]

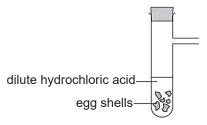
(e)	The miss	labels on two bottles, one containing acid N and the other containing aqueous ammonia, were ing.
	(i)	Briefly describe a method you would use to distinguish between the two solutions.
		[1]
	(ii)	State the result you would expect for acid N using the method described in (e)(i).
		[1]
		[Total: 10]
Iron	is a n	netal that is commonly used in the construction of ships and bridges.
(a)		is extracted from haematite using carbon in a blast furnace. Impurities from the iron are oved using limestone.
		cribe how limestone is used to remove impurities from iron and include suitable chemical ations in your answer.
(b)	 Whe	en iron is exposed to the environment for some time, it starts to rust.
(-)	(i)	Bridges made of iron are painted to prevent rusting.
		Explain how the layer of paint prevents iron from rusting.
		[1]
	Iron	miss (i) (ii) Iron is a n (a) Iron remo equa (b) Whee

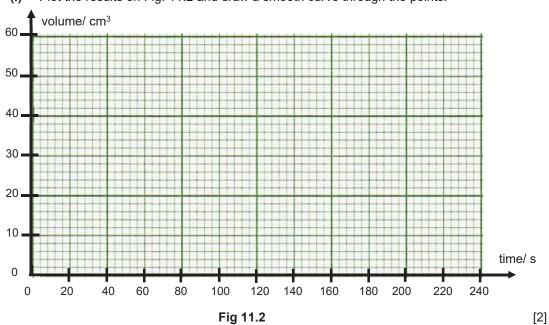
10 (b)	(ii)	Some ships that are made of iron prevent rusting by attaching blocks of zinc to its surface. After some time, it was observed the block of zinc corroded instead of iron.
		Explain how attaching blocks of zinc help to prevent the ship from rusting.
		[1]
	(iii)	Predict what happens when blocks of silver metal are attached to the iron surface of the ship instead of zinc.
		[1]
	(iv)	It was observed that ships in the sea tend to corrode more quickly than bridges.
		Suggest a reason to explain this phenomenon.
		[1]
(c)	In a	ddition to the production of iron using the blast furnace, iron is also obtained through recycling.
	Give	e two reasons why it is important to recycle metal.
	1	
	2	
		[2]
		[Total: 10]

- 11 Egg shells are made up mainly of calcium carbonate. A pupil carried out an experiment to react egg shells with excess dilute hydrochloric acid. The gas that was produced was measured at a regular time interval to investigate the speed of the reaction.
 - (a) Predict the solubility of this gas in water.

F.41	٠.
11	
	1

(b) Complete the diagram in Fig. 11.1 to show the apparatus which could be used to measure the volume of gas produced.




Fig. 11.1 [2]

(c) The results of this experiment are shown in Table 11.1.

Table 11.1

time/ s	0	20	40	60	140	180	200	220
volume of gas/ cm ³	0	14	25	32	48	50	50	50

(i) Plot the results on Fig. 11.2 and draw a smooth curve through the points.

11	(c)	(ii)	Explain why no further measurements were taken after 220 seconds.
			[1]
		(iii)	Using the graph drawn in (c)(i), estimate the volume of gas evolved for the first 100 seconds.
			[1]
		(iv)	Calculate the average speed of reaction in cm 3 / s for the first 10 seconds of the reaction. (Average speed = $\frac{\text{final volume - initial volume}}{\text{duration concerned}}$)
			cm³/ s [2]
		(v)	The experiment is repeated with crushed egg shell. On the same axes in Fig. 11.2, draw the graph you would expect for the second experiment. Labelled the graph as 'Q'. [1]

[Turn over

[Total: 10]

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

:	0	2 운	melium 4	10 Ne	леол 20	18	Ā	argon 40	36	궇	krypton	84	24	×	хөлоп	131	98	몺	radon	1				
Í	II/			9 F	fluorine 19	17	Ö	chlorine 35.5	35	늅	bromine	8	23	Н	iodine	127	82	Ϋ́	astatine	1				
1 1	>			 0	oxygen 16	16	ဟ	sulfur 32	34	Se	selenium	29	25	<u>e</u>	tellurium	128	84	ď	polonium	1	116	<u>ک</u>	livermorium	1
:	>			2 N	nitrogen 14	15	Ф.	phosphorus 31	33	As	arsenic	75	5	හි	antimony	122	83	面	bismuth	508	1	23144		
, 88	2			9 0	carbon 12	14	ത	silicon 28	32	ලී	germanium	73	20	S	. Ę	119	82	윤	lead	202	114	Œ,	flerovium	-
				Въ	11 11	13	ΑI	aluminium 27	31	Ğ	gallium	2	₽	드	mnipui	115	84	1	thallium	204			Vegetor	-
			13.			-			30	Zu	zinc	92	48	8	cadmium	112	8	운	mercury	201	112	ნ	copernicium	-
									59	ਟੋ	copper	64	47	Ag	silver	108	79	Au	plog	197	111	Rg	oentgenium	Ĺ
dno									28	Z	nickel	29	46	곱	palladium	106	78	귙	platinum	195	110	മ	darmstadtium	ı
Group									27	රි	cobalt	59	45	뜐	rhodium	103	22	4	iridium	192	109	¥	meitnerium	L
		г H .	nyarogen 1						56	Pe	no!	56	44	忍	ruthenium	101	9/	ර	osmium	190	108	£	hassium	ľ
			sistera de Si						25	M	manganese	55	43	ပ	technetium	*	75	å	rhenium	186	107	듑	pohrium	L
				umber ool	nass				24	ර්	chromium	52	42	Mo	molybdenum	98	74	≥	tungsten	184	106	ß	seaborgium	1
			Key	proton (atomic) number atomic symbol	name ve atomic ı				23	>	vanadium	51	41	2	niobium	93	22	Ħ	tantalum	181	105	<u>음</u>	dubnium	ī
			11	proton atc	relativ				22	F	titanium	48	9	72	zirconium	91	72	Έ	hafnium	178	104	፟ጅ	Rutherfordium	I.
								THE RESERVE AND THE PERSON NAMED IN	77	တွ	scandium	45	ඝ	>	yttrinm	88	57 – 71	lanthanoids			89 - 103	actinoids		
				3 Li Be	beryllium 9	12	Mg	magnesium 24	20	ප	calcium	40	88	ഗ്	strontium	88	99	æ	barium	137	88	Ra	radium	I
				დ <u> </u>	lithium 7	F	Sa	sodium 23	19	ᅶ	potassium	33	37	8	rubidium	82	22	ර	caesium	133	87	Œ	francium	1

	-						- 48
7	3	lutetium	0	103	ב	lawrencium	1
2	χp	ytterbium	6/-	102	2	nobelium	1
69	ے	thulium	80	5	ΡW	mendelevium	1
88	ய்	erbium 167	/01	9	F	ferminm	-
29	운	holmium	60	66	ß	einsteinium	1
88	Ճ	dysprosium	20	88	ರ	californium	
92	P P	terbium	601	26	益	berkelium	
64	පි	gadolinium	10/	96	S	curium	J
83	П	europium	132	32	Am	americium	-
62	Sm	samarium	200	94	2	plutonium	1
61	Pa	promethium	1	83	S	neptunium	-
09	B	neodymium	144	85	>	uranium	238
හු	ፚ	praseodymium	1	<u>ත</u>	Pa	profactinium	231
28	පී	cerium 4.40	1	8	£	thorium	232
25	Ľ	lanthanum	90	68	Ac	actinium	

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

CHIJ Katong Convent

4E/5N Science Chemistry Mid-Year Exam 2018

Answer scheme

Paper 1

1	2	3	· ·	5	6	7	8	9	10
В	Α	D	С	D	D	С	D	С	В
11	12	13	14	15	16	17	18	19	20
Α	D	С	Α	В	Α	С	Α	D	В

Paper 3

Section A

Qn		An	iswers		
1	substance	(elemen	sification t, compound nixture)	atoms found within the substance	ne
	hydrogen sulfide brass	cor	npound	hydrogen, suli	
	limestone		npound	calcium, carb	
2a	Fe(CO) ₅	>//		U	
2b(i)	Iron(II) oxide conducts electricity only in molten form. OR Iron(II) oxide does not conducts electricity as a solid.				
2b(ii)		mber of protons	number of neutrons	number of electrons	
	36 Fe 24	26	30	24	
	1602	8	8	10	
2c(i)	Isotopes are <u>atoms of the same element</u> with the <u>same number of protons</u> but <u>different number of neutrons.</u>				
2c(ii)	As the isotopes have the same number of valence electrons, they possess the same chemical properties.				
3a	oxidation state of copper in $CuCI = +1$ oxidation state of copper in $CuCI_2 = +2$				
3b	CuC/ is oxidised to $CuCl_2$ as the oxidation state of Cu increases from +1 in $CuCl$ to +2 in $CuCl_2$.				
	CuC/ is reduced to Cu as the Cu.	oxidation s	state of Cu decre	eases from +1 ir	n CuC <i>l</i> to 0 in

3c	The colourless solution turns blue
	OR A pink/ brown/ reddish-brown solid is formed.
4a(i)	filter funnel
4a(ii)	burette
4a(iii)	electronic balance
4a(iv)	delivery tube/ teat pipette
4b	When the solvent particles become a vapour, they are moving at <u>high speeds</u> in <u>all directions</u> and spaced <u>far</u> apart.
5a	Concentration of HNO ₃ in mol/dm ³ = $0.15 \div \frac{100}{1000} = \frac{1.5 \text{ mol/dm}^3}{1000}$
	Concentration of HNO ₃ in g/dm ³ = 1.5 x 63 = 94.5 g/dm^3
5bi	Number of moles of HNO ₃ = $\frac{100}{1000}$ x 0.5 = $\frac{0.05 \text{ mol}}{1000}$
5bii	Potassium carbonate / K ₂ CO ₃
5biii	$\frac{\text{Mole ratio}}{\text{K}_2\text{CO}_3: \text{KNO}_3} = 1:2$
	Number of moles of KNO ₃ = $0.02 \times 2 = 0.04 \text{ mol}$
6a	P: copper(II) oxide / CuO Q: hydrochloric acid / HC/ R: copper(II) chloride / CuC/ ₂ S: copper(II) hydroxide / Cu(OH) ₂
6b	Ag+ (aq) + Cr (aq) - AgCr(s)
7ai	The reactivity of Group I metals increases down the group.
	Down the group, there are more filled electron shells between the nucleus and the valence electron.
	Hence, there is a greater tendency to lose the valence electron to attain the noble
	gas electronic configuration.
7aii	It reacts explosively.
7aiii	Hydrogen gas
7bi	Noble gases are/ have colourless odourless gases at room temperature and pressure OR have low melting and boiling points insoluble in water poor conductors of electricity low densities (any one)

7bii	They have <u>fully-filled valence electron shells</u> and already achieved a stable noble gas electronic configuration.
8a	nitrogen/ N ₂
8b	Carbon dioxide is a greenhouse gas / causes climate change / causes global warming.
	This results in ice caps melting (or rise in sea levels) / increased flooding / desertification / increased death of corals.
8c	It is formed due to incomplete combustion.
8d	H Key Selectron from O X: electron fro
8ei	A reaction/ a change in which heat is given out to the surroundings.
8eii	Rusting, respiration, neutralisation or any acceptable answer.

Section B

Qn	Answers
9a\ \	M: magnesium
	N: sulfuric acid
9b	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$
9c	Steps for making crystals:
	Add <u>excess</u> magnesium metal to a test tube containing sulfuric acid and stir.
	2. <u>Filter</u> to obtain the filtrate, which is magnesum sulfate solution, and remove the excess magnesium metal residue.
	Heat the filtrate till it is saturated.
	Allow the saturated solution to <u>cool</u> so that the salt can crystallise.
	5. Filter to collect the crystals. Wash the crystals with a little cold distilled water to remove impurities and dry between sheets of filter paper.
9d	Magnesium oxide / magensium carbonate/ magnesium hydroxide
9ei	Add a few drops of universal indicator solution into each solution. OR
	·
	Dip a piece of red and blue litmus paper into each solution.
9eii	The solution will turn from green to red. OR
	The red litmus paper will remain red and the blue litmus paper will turn red.
10a	Limestone is first decomposed by heat to produce carbon dioxide and calcium
	oxide.
	$CaCO_3$ (s) \rightarrow CaO (s) + CO_2 (g)

	Calcium oxide reacts with the impurities from iron, which is sand, to form $\underline{\text{molten}}$ $\underline{\text{slag}}$. CaO (s) + SiO ₂ (s) \rightarrow CaSiO ₃ (/)
10bi	Paint serves as a protective layer that prevents iron from coming into contact with water and oxygen.
10bii	Zinc is more reactive than iron, hence zinc will react with water and oxygen first.
10biii	The ship will rust.
10biv	The presence of sodium chloride in seawater results in the increase of the speed of rusting.
10c	 ✓ Recycling helps to conserve finite/ non-renewable metal ores. ✓ Recycling helps to save energy, hence less fossil fuels are burnt for energy production. ✓ Recycling helps to save cost of extracting metals. ✓ Recycling reduces pollution as recycling metals creates less pollutants than extracting metals from its ores. ✓ Recycling reduces the need of landfills for metal extraction wastes
11a	The gas (carbon dioxide) is slightly soluble/ insoluble in water.
11b	a labelled gas syringe
	dilute hydrochloric acid egg shells
11c(i) 6	volume/ cm³ 0 0 0 0 0 0 0 0 0 0 0 0 0
11c(ii)	All the egg shell (calcium carbonate) had been used up.
11c(iii)	Based on students' graph, Acceptable range of 41 – 43 cm ³

11c(iv)	Based on students' graph
	average speed = $\frac{volume \ at \ 10 \ sec - volume \ at \ 0 \ sec}{10 \ sec}$
	10 360
44-(-)	a manufacitità a biologo que diseat bart a con a Construction
11c(v)	a graph with a higher gradient but same final volume
^	
//	1/
	1) ~ ~ [(0,3)

Name	Reg. No	Class

4EX/5NA

Science (Chemistry)
(with Biology/Physics Component)

5076/1 5078/1

Paper 1

SEMESTRAL ASSESSMENT ONE

May 2018 1 hour

Additional Materials: Electronic calculator OTAS Answer Sheet

INSTRUCTIONS TO CANDIDATES:

Do not open this booklet until you are told to do so.

Write your name, index number and class in the spaces at the top of this page and on any separate answer paper used.

Write in soft pencil.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

There are **twenty** questions on this paper. Answer **all** questions.

For each question, there are four possible answers A, B, C and D.

Choose the **one** you consider correct and record your choice in **soft pencil** on the OTAS answer sheet.

Read carefully the instructions on the answer sheet.

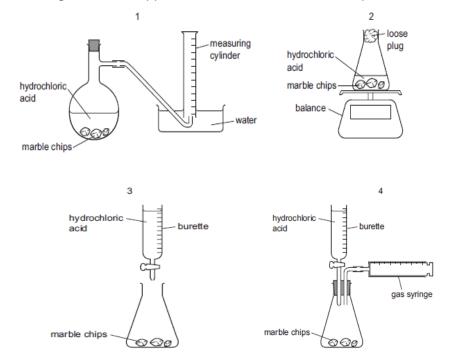
At the end of the examination, hand in your OTAS sheet and question paper separately.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 9.

This question paper consists of 9 printed pages.

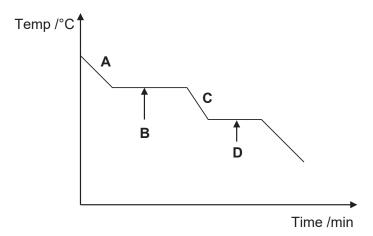
Setter: Mr Timothy Chen Vetter: Mdm Jarina Banu


Paper 1 (Multiple Choice Questions)

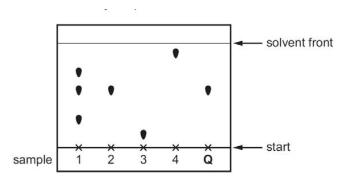
Answer all the questions on the OTAS.

21 A student follows the rate of the reaction between marble chips, CaCO₃, and dilute hydrochloric acid, by measuring the amount products produced or the amount of reactants reacted.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

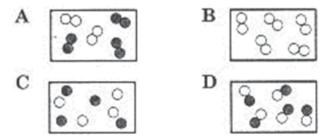

Which diagrams show apparatus that is suitable for this experiment?

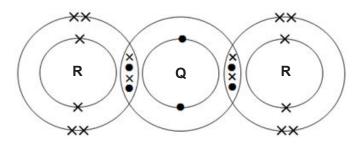
- **A** 1 and 2
- **B** 2 and 4
- **C** 1, 2 and 4
- **D** All of the above


22 A gas is being cooled to room temperature.

Which part of the cooling curve below shows that both the gas and liquid exist together?

Four samples are spotted onto chromatography paper. It is known that one of these samples is pure compound **Q**. A separate sample of pure compound **Q** is also spotted onto the paper. The paper is placed in a solvent.


The diagram shows the chromatogram produced.


Which statement is correct?

- A Sample 2 has travelled the furthest and sample 3 is pure compound **Q**.
- **B** Sample 3 has travelled the furthest and sample 2 is pure compound **Q**.
- **C** Sample 4 has travelled the furthest and sample 1 is pure compound **Q**.
- **D** Sample 4 has travelled the furthest and sample 2 is pure compound **Q**.

24 Which diagram shows a compound made up of two different elements?

- 25 Which statement about the particles, F-, Ne and Na+ is correct?
 - A They all contain more electrons than protons.
 - **B** They all contain more neutrons than protons.
 - **C** They all contain the same number of electrons.
 - **D** They all contain the same number of protons.
- **26** The figure below shows a compound formed by elements **Q** and **R**.

Which of the following is true?

- **A** The compound has a low boiling point.
- **B** The compound has mobile electrons and therefore can conduct electricity.
- **C** The atoms of **R** gain electrons from the atom of **Q** to form an ionic compound.
- **D** The atoms of \mathbf{Q} and \mathbf{R} share valence electrons to form a covalent compound with formula $\mathbf{Q}_2\mathbf{R}$.
- 27 Which statement is correct about all ionic compounds?
 - A They are formed when metals share electrons with non-metals.
 - **B** They conduct electricity in the molten state.
 - **C** They conduct electricity in the solid state.
 - **D** They dissolve in water.

28 Nitrogen monoxide and oxygen react to form nitrogen dioxide.

$$2NO(g) \ + \ O_2(g) \ \rightarrow \ 2NO_2(g)$$

What is the maximum volume of nitrogen dioxide that could be obtained when 1 dm³ of nitrogen monoxide reacts with 2 dm³ of oxygen?

- **A** 1.0 dm³ **B** 2.0 dm³
- **C** 3.0 dm³
- **D** 4.0 dm^3
- 29 Which sample contains the most atoms?
 - **A** 0.5 moles of water
 - **B** 0.5 moles of ammonia
 - C 1.0 moles of carbon dioxide
 - **D** 2.0 moles of hydrogen chloride
- **30** A household cleaning compound is used to remove calcium carbonate from bathroom surfaces.

Bubbles of gas can be seen forming when it is applied to the surface.

What is the pH of this cleaning compound?

- **A** pH 2
- **B** pH 7
- **c** pH 10
- **D** pH 14
- 31 The table shows the results of adding dilute nitric acid and aqueous sodium hydroxide to four oxides.

Which is the result obtained for aluminium oxide?

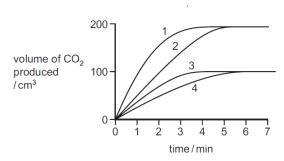
	dilute nitric acid	aqueous sodium hydroxide
A	reaction	reaction
В	reaction	no reaction
С	no reaction	reaction
D	no reaction	no reaction

- A bottle of magnesium carbonate has been contaminated with sodium chloride. How can the pure magnesium carbonate be obtained from this mixture?
 - A Add acid to the mixture, filter then collect the residue.
 - **B** Add acid to the mixture, filter then evaporate the filtrate.
 - **C** Add water to the mixture, filter then collect the residue.
 - **D** Add water to the mixture, filter then evaporate the filtrate.
- **33** Which reagent can be used to react with dilute hydrochloric acid to prepare silver chloride?
 - A solid silver
 - **B** solid silver oxide
 - **C** solid silver carbonate
 - D aqueous silver nitrate
- The results of experiments involving four metals, W, X, Y and Z, and their ions are shown.

$$Y(s)$$
 + $Z^{+}(aq)$ \rightarrow $Y^{+}(aq)$ + $Z(s)$ $W(s)$ + $X^{+}(aq)$ \rightarrow no reaction $Z(s)$ + $X^{+}(aq)$ \rightarrow $Z^{+}(aq)$ + $X(s)$

What is the order of reactivity of the four metals, most reactive to least reactive?

- **A** $W \rightarrow X \rightarrow Y \rightarrow Z$
- $\textbf{B} \hspace{1cm} X \to W \to Z \to Y$
- $\textbf{C} \hspace{1cm} Y \rightarrow Z \rightarrow X \rightarrow W$
- $D Z \rightarrow Y \rightarrow W \rightarrow X$
- **35** Element **Z** is in the same group of the Periodic Table as bromine but has a lower boiling point.


Which statement about **Z** is correct?

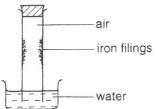
- A It can displace bromine from an aqueous solution of potassium bromide.
- **B** It has a proton number greater than 35.
- **C** It is a solid at room temperature.
- **D** It loses an electron when it reacts with a metal.
- 36 Which change always occurs when a metal atom is oxidised?
 - A It combines with oxygen.
 - **B** It gains electrons to form a negative ion.
 - **C** It loses electrons to form a positive ion.
 - **D** It gains protons to form a positive ion.

In four separate experiments, 1, 2, 3 and 4, nitric acid was added to excess marble chips and the volume of carbon dioxide formed was measured.

In all four experiments the same volume of nitric acid was used. Its concentration, or temperature, or both concentration and temperature, were changed.

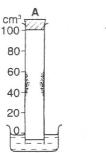
The results of the experiments are shown on the graph.

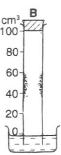
Which statement is correct?

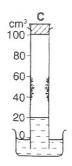

- A lower concentration of acid was used in experiment 3 than in experiment 1.
- **B** Experiment 4 was faster than experiment 3.
- C The acid used in experiment 2 was of a lower concentration than in experiment 1.
- **D** The temperature of the acid was the same in experiments 1 and 2.
- 38 The elements helium, argon and neon are noble gases.

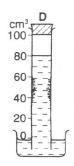
Which statement is correct?

- A All these elements have an octet configuration.
- **B** Argon is used to react with impurities in the manufacture of steel.
- C Helium is used in balloons as it is more dense than air.
- **D** Neon is used in light bulbs to give an inert atmosphere.


39 The inside of a tube is coated with iron filings. The tube is placed in a trough of


Water as shown.




Which diagram represents the likely appearance of the apparatus after one

week?

40 When a volcano erupts, which gas is produced in significant amounts?

- A carbon monoxide
- **B** methane
- **C** oxides of nitrogen
- D sulfur dioxide

-- End of paper 1 --

The Periodic Table of Elements

	0	두 5 무	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton	84	54	×e	xenon	131	98	格	radon	E				
	ΙΙΛ			6	ш	fluorine 19	17	ľ	chlorine 35.5	35	à	bromine	80	23	<u>—</u>	iodine	127	85	Αt	astatine	-				
	ΙΛ			œ	0	oxygen 16	16	S	sulfur 32	34	Se	selenium	79	52	<u>e</u>	tellurium	128	84	Ъ	polonium	Û	116	_	/ermorium	I
	^			\vdash		nitrogen 14	\vdash		o)	\vdash			-			y at-	\dashv	_			\dashv			<u>=</u>	
	N N			9	ပ	carbon 12	14	S	silicon p	32	g	jermanium 	73	20	S	ij.	119	82	Ъ	lead	207	114	ŀ	flerovium	Ŀ
				2	Ф	boron 11	13	Αį	aluminium 27	31	Ga	gallium	70	49	Ĭ	indium	115	81	<u>}</u>	thallium	204				
							ı			30	Zu	zinc	65	48	ප	cadmium	112	80	Ē	mercury	201	112	ပ်	copernicium	Ü
												copper												Ε	\neg
dn										28	z	nickel	59	46	Pd	palladium	106	78	盂	platinum	195	110	S	darmstadtium	Ü
Group										27	රි	cobalt	59	45	돈	modium	103	77	<u>_</u>	iridium	192	109	Μţ	meitnerium	Ŀ
		- I	hydrogen 1							26	Fe	iron	56	44	忍	ruthenium	101	9/	Os	osmium	190	108	Ŧ	hassium	F
										25	Mn	manganese	55	43	ည	technetium	ì	75	Re	rhenium	186	107	ВР	bohrium	Ü
				umber	lod	mass				24	ပ်	chromium	52	42	Mo	molybdenum	96	74	8	tungsten	184	106	Sg	seaborgium	D
			Key	proton (atomic) nui	omic sym	name relative atomic mas						vanadium													- 1
				proton	atc	relati				22	F	fifanium	48	40	Z	zirconium	91	72	士	hafnium	178	104	圣	Rutherfordium	Đ
												scandium										89 - 103			
	Ш			4	Be	beryllium 9	12	Mg	magnesium 24	20	Sa	calcium	40	38	ഗ്	strontium	88	99	Ba	barium	137	88	Ra	radium	I
	_			က	<u> </u>	lithium 7	1	Na	sodium 23	19	×	potassium	39	37	윤	rubidium	82	55	္လ	caesium	133	87	Ļ	francium	T

71 Lu	lutefium 175	103 r	lawrencium	1
Vb Vb	ytterbium 173	102 N	nobelium	1
69 Tm	thulium 169	101 Ma	mendelevium	j
68 Ę	erbium 167	100 Fm	fermium	1
67 Ho	holmium 165	96 4	einsteinium	J
99 Dy	dysprosium 163	8 5	californium	1
65 Tb	terbium 159	97 Rk	berkelium	1
64 Gd	gadolinium 157	თე 96	curium	1
	europium 152			
62 Sm	samarium 150	94 <u>P</u>	ni toni m	
61 Pm	promethium -	93 N	non-franci	
09 Nd	neodymium 144	92	Uranium	2
59 Pr	praseodymium 141	91 Pa	protactinium	231
Ce 28	cerium 140	96 T	thorium	232
57 La	lanthanum 139	89 AC	actinium	1
lanthanoids		actinoids		

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Name	Reg. No	Class

4EX/5NA

Science (Chemistry)

[65 marks]

5076/3 5078/3

SEMESTRAL ASSESSMENT ONE

May 2018

1 hour 15 minutes

Additional Materials: Electronic calculator

INSTRUCTIONS TO CANDIDATES:

Do not open this booklet until you are told to do so.

Write your name, index number and class in the spaces at the top of this page and on any separate answer paper used.

Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams, graphs or tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

FOR EXAMINER'S USE				
Section	Marks			
Paper 1 MCQ	/ 20			
Paper 3 Section A	/ 45			
Paper 3 Section B	/ 20			
Paper 5	/15			
Total	/ 100			

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer all questions on the spaces provided.

Answers any **two** questions out of the three questions given.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 13.

The use of an approved scientific calculator is expected, where appropriate.

This question paper consists of 13 printed pages.

Setter: Mr Timothy Chen Vetter: Mdm Jarina Banu

Paper 3

Section A (45 marks)

Answer **all** questions in the spaces provided.

1 The apparatus shown in Fig 1.1 can be used to separate a mixture of 3 liquids, **A**, **B** and water.

A has a boiling point of 50 °C while **B** has a boiling point of 78 °C.

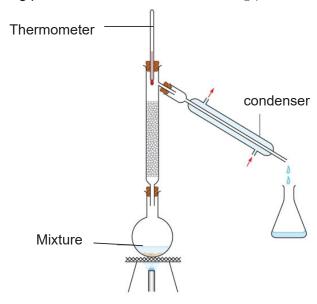


Fig. 1.1

(a)	State the name of this method of separation.
	[1]
(b)	What is the purpose of the water in the condenser?
	[1]
(c)	Predict the temperature of the thermometer when the first distillate appears in the beaker.
	Explain why.
	[2]

2 Table 2.1 shows the number of protons, electrons and neutrons of five particles ${\bf Q}$ to ${\bf V}$.

Table 2.1

Particle	Number of protons	Number of neutrons	Number of electrons
Q	5	5	4
R	7	7	10
S	8	8	8
Т	9	11	9
U	10	10	10
V	16	16	16

vvnic	on of th	e particles, Q to v in Table 2.1, fit each of th	e following descriptions?	
(a)	(i)	an atom with mass number of 16		
	(ii)	a positive ion		
	(iii)	an atom that has 8 valence electrons		
	(iv)	two atoms in the same group	and	[4]
(b)	Partio	cle T is an isotope of an element found in the		[4]
	Name	e the element and explain why ${f T}$ is an isotop	e of that element.	
				[2]

3 Fig. 3.1 shows the extraction of iron from iron ore.

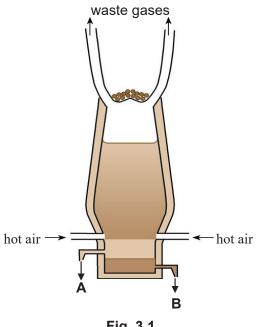
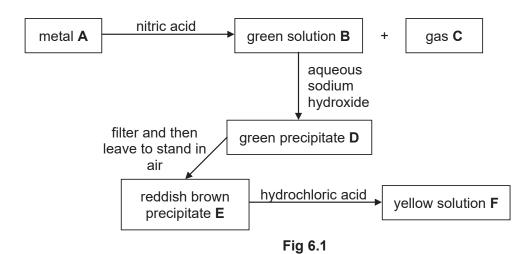


Fig. 3.1

(a	Haematite is the	source of iron	produced in the	he Blast Furnace.
١	-	, indominante le tim		produced iii t	no blace i airiace

(b)


(1)	Name the reducing agent for the reduction of flaematile.
	[1]
(ii)	With the aid of a chemical equation, describe how your answer in 3(a)(i) reduces haematite to molten iron.
	[3]
(iii)	Besides haematite, name the other 2 raw materials that are added to the Blast Furnace.
	[2]
Name	product A and state its usefulness as a substance floating above product B .

(c)	Iron c	an be used to make stainless steel.						
		Stainless steel can be made by adding elements such as chromium and nickel to iron to improve its strength.						
	(i)	What is the name given to mixtures such as stainless steel?						
		[1]						
	(ii)	Explain, in terms of the arrangement of atoms, why stainless steel is harder than pure iron.						
		[2]						
A st	udent t	trates 25.0 cm³ an alkali of metal X , X OH, with sulfuric acid.						
He r		that 20.0 cm³ of 0.2 mol/dm³ of sulfuric acid is required to neutralize the acid						
The	chemic	cal equation for the reaction is shown below:						
		$2XOH + H_2SO_4 \rightarrow X_2SO_4 + 2H_2O$						
(a)		e an indicator that can determine the endpoint of the reaction and describe the r change seen.						
		[2]						
(b)	(i)	Calculate the number of moles present in 20.0 cm ³ of the sulfuric acid used.						
(6)	(1)	Calculate the number of moles present in 20.0 off of the suitable acid used.						
		mol [1]						

	(ii)	Determine the concentration, in mol/dm³, of X OH used.
	(iii)	mol/dm³ [2] If the concentration of X OH used is 12.8 g/dm³, calculate the relative mass of X OH and, hence, determine the identity of X .
		Relative mass of X OH:
(c)	When	X OH is added to ammonium chloride, a gas is formed.
	Name	the gas formed and describe how to test for its identity.
		ro1
		[2]

5	Hydr	ogen o	can form compounds with both metals and non-metals.
	For e	exampl	e, it can form lithium hydride with lithium and also ammonia with nitrogen.
	(a)	What	is the bonding found in lithium hydride?
			[1]
	(b)	(i)	Draw the dot-and-cross diagram to show the arrangement of valence electrons found in lithium hydride and ammonia in the space below.
			Lithium hydride:
			ro1
			[2]
			Ammonia:
			[2]
		(ii)	Explain, in terms of bonding, why lithium hydride exist as a solid while ammonia exist as a gas at room temperature.
			[3]

6 Fig. 6.1 describes the reactions of metal **A**.

(a) Identify the following substances.

Α	
В	
С	
D	
Е	
F	 [6]

(b) Describe how to test for gas **C** that is formed in the above reactions.

 	[1]

-- End of paper 3 section A --

Paper 3 Section B (20 marks)

Answer any **two** questions in this section. Write your answer in the spaces provided.

7	(a)	(i)	Name an element from Period 3 and explain how the electronic structure of this element can be used to determine the group the element belongs.
			[3]
		(ii)	Moving from Group I to Group VII across period 3, the character of the elements change.
			Describe and explain this change.
			[3]
	(b)		element with an atomic number of 87 is extremely rare and only about 30 g exist ighout the Earth crust.
		Write	ict one physical and one chemical property of this element. a balanced chemical equation, with state symbols, to represent the chemical erty that you have described.
			[4]

		ains sulfur. When coal is burnt at power stations in an excess of oxygen, sulfur formed according to the reaction shown below.
		$S + O_2 \rightarrow SO_2$
(a)	(i)	Explain why sulfur is considered to be oxidised in this reaction.
		[1]
	(ii)	Find the mass of sulfur burnt if 320 dm ³ of sulfur dioxide is formed at room temperature and pressure.
	(iii)	[3] Describe how the release of sulfur dioxide can indirectly cause damage to buildings made of limestone.
(b)		pollutants can be produced in the internal combustion engines of automobiles.
		e the pollutants and describe how they are produced in the engines of mobiles.
		[4]

9	(a)		ain, in terms of collision theory, how the temperature of reactants affect the d of reaction.
			[2]
	(b)	A stu	dent wants to investigate the rate of reaction involving particle size.
			n that he has magnesium strips and magnesium powder with some hydrochloric describe how he can conduct a laboratory experiment to do his investigation.
		Your react	description should include the measurement obtained to measure the rate of ion.
			[5]
	(0)	Magn	
	(c)	iviagr	nesium can also react with copper(II) sulfate as shown below.
			Mg + CuSO₄ → MgSO₄ + Cu
		(i)	During this reaction, the temperature of the solution increases. Based on this observation, state what kind of reaction this is.
			[1]
		(ii)	Explain why this reaction is also considered a displacement reaction.
			[2]
			End of section B

-- End of section B --

Blank Page

The Periodic Table of Elements

	0	2 He	helium 4	10	Ne	neon 20	18	Ą	argon	40	36	궃	krypton	84	54	×e	xenon	131	98	R	radon	E				
	IIN			6	ш	fluorine 19	17	ľ	chlorine	35.5	35	ä	bromine	80	23	<u>—</u>	iodine	127	85	¥	astatine	ľ				
	N			8	0	oxygen 16	16	တ	sulfur	32	34	Se	selenium	79	52	Te	tellurium	128	84	P	polonium	Ü	116	_	livermorium	ī
	Λ			7	z	nitrogen 14	15	۵	phosphorus	3.1	33	As	arsenic	75	51	Sp	antimony	122	83	Ξ	bismuth	509				
	Ν			9	ပ	carbon 12	14	S	silicon	28	32	g	germanium	73	20	Sn	ij	119	82	Ъ	lead	207	114	ΕĮ	flerovium	Ŀ
				2	Ф	boron 11	13	Αį	aluminium	17.	31	Ga	gallium	70	49	Ľ	indium	115	81	<u>1</u>	thallium	204				
							•				30	Zu	zinc	65	48	ප	cadmium	112	80	Ē	mercury	201	112	ర్	copernicium	Ü
										- 1															roentgenium	- 1
Group											28	Z	nickel	29	46	Pq	palladium	106	78	盂	platinum	195	110	S	darmstadtium	Ü
Gro											27	රි	cobalt	59	45	돈	modium	103	77	<u>1</u>	iridium	192	109	¥	meitnerium	la
		⊢ I	hydrogen 1								56	Fe	iron	56	4	2	ruthenium	101	9/	SO	osmium	190	108	£	hassium	F
											25	Mn	manganese	55	43	ည	technetium	j	75	Re	rhenium	186	107	В	pohrium	Ţ,
				umber	loc	nass					24	ပံ	chromium	52	42	Mo	molybdenum	96	74	≯	tungsten	\$	106	Sg	seaborgium	Ü
		3	Key	(atomic) n	mic sym	name relative atomic mass					23	>	vanadium	51	41	g	niobium	93	73	Та	tantalum	181	105	9	dubnium	Ü
				proton	atc	relati					22	F	titanium	48	40	Zr	zirconium	91	72	Ξ	hafnium	178	104	፟ጟ	Rutherfordium	D
											21	Sc	scandium	45	39	>	yttrium	89	57 – 71	anthanoids			39 - 103	actinoids		
	=			4	Be	beryllium 9	12	Mg	magnesium	7.7	20	S	calcium	40	38	ഗ്	strontium	88	99	Ba	barium	137	88	Ra	radium	1
	_			က	:-	lithium 7	7	Na	sodium	23	19	¥	pofassium	39	37	8	rubidium	82	25	S	caesium	133	87	Ľ.	francium	T

anthanoids	25	28	69	09	61			64	65	99	29		69	2	71
	Га	S	ሗ	PZ	Pm	Sm	En	පි	Тр	Š	운		Tm	Ϋ́	ŋ
	lanthanum	cerium	praseodymium	neodymium	promethium	3030		gadolinium	terbium	dysprosium	holmium		thulium	yfferbium	lutetium
	139	140	141	144	ſ			157	159	163	165		169	173	175
actinoids	89	90	91	92	93			96	26	86	66		101	102	103
	Ac	Т	Ра	\cap	å			Cm	쓢	ರ	Es	Е	Md	2	ځ
	actinium	thorium	protactinium					curium	-	californium	einsteinium		mendelevium	nobelium	lawrencium
	31	232	231	۲۷				ũ	1	3	Ы		1	1	1

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Name Reg. No Class

4EX5NA

Sci (Chem) 5076 /5078 [65 marks]

SEMESTRAL ASSESSMENT One May 2018

Paper 1 (20m)

21	22	23	24	25	26	27	28	29	30
В	В	D	D	С	Α	В	Α	D	Α
31	32	33	34	35	36	37	38	39	40
Δ	C	D	C	Δ	С	Δ	D	С	D

Paper 2 Section A (45m)

Qn	Part		Answer	Marks
1	(a)		ional distillation	1
	(b)		ondense the vapour entering the condenser as the distillate	1
	(c)	50 °C		1
		It is th	ne boiling point of A which has the lowest boiling point of the 3	1
		subst	ances	
2	(a)	(i)	S	1
		(ii)	Q	1
		(iii)	U	1
		(iv)	V and S	1
	(b)		uorine.	1
		Both	have 9 protons, however,	
		Fluor	ine has 10 neutrons while T has 11 neutrons.	11
3	(a)	(i)	carbon monoxide	1
		(ii)_/	Fe ₂ O ₃ + 3CO > 2Fe + 3CO ₂	1
			Fe ₂ O ₃ loses oxygen to carbon monoxide,	1
			And is thus reduced to form iron /	1
		1	The oxidation state of Fe decreases from +3 in haematite	
		\\	to 0 in iron.	4
		(iji)	Limestone and	1
			coke.	1
	/b\	Malta		1
	(b)		ers the molten iron, preventing it from oxidising with oxygen.	1
		IL COV	ers the moiten from preventing it from oxidising with oxygen.	1
	(c)	(i)	Alloys	1
	(6)	(ii)	Since the sizes of particles in stainless steel are different,	1
		(")	this disrupts the regular arrangement of iron, making it harder to slide	1
			when a force is applied. (ERC)	•
4	(a)	Unive	ersal indicator.	1
			e will be a colour change from purple to green.	1
			22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

	(b)	(i) (ii)	Mole of sulfuric acid = 0.02 * 0.2 = 0.004 mol Mole of sodium hydroxide = 0.004 * 2 = 0.008 mol	1
			Concentration of sodium hydroxide = 0.008 / 0.025 = 0.32 mol/dm ³	1
		(iii)	Molar mass = conc (g/dm 3) / conc (mol/dm 3) = 12.8 / 0.32 = 40 g/mol	1
			Molar mass of X = 40 – 16 -1 = 23	-
			Therefore, X is sodium.	1
	(c)		onia gas. gas evolved will turn damp red litmus paper blue.	1
5	(a) (b)	(i)	bonding	1 1 mark
			Li H	each for correct transfer/ sharing of electrons for both 1 mark for no inner shell electrons for both
		(ii)	Since lithium hydride consist of strong electrostatic forces of attraction between positive and negative ions while ammonia	1
			consists of weak intermolecular forces between ammonia molecules.	1
			And because much more energy is required to overcome the	1
			forces of attraction in lithium hydride compared to ammonia, Therefore, lithium hydride has a much higher melting and boiling	
			point, hence it exist as a solid while ammonia exist as a gas under room temperature.(ERC)	
			and room temperature.(ERO)	

6	(a)	A: iron	1
		B: iron(II) nitrate	1
		C: hydrogen gas	1
		D: iron(II) hydroxide	1
		E: iron(III) hydroxide	1
		F: iron(III) chloride	1
	(b)	Test the gas evolved using a burning / lighted splint. It should extinguish	1
		with a pop sound	

Section B (20m)

Qn	Part		Answer	Remarks							
7	(a)	(i)	Name 1 element from sodium to argon.	1							
			Since sodium has an electronic configuration of 2.8.1, showing that								
		<i>(</i>)	it has 1 valence electron. Therefore, it is in Group I.	1							
		(ii)	Across Period 3, the metallic character of the element decreases.	1							
			Since the tendency of the elements to form positive ions by losing electrons decreases while The tendency increases for elements to gain electrons, forming	1							
			negative ions as the number of valence electrons increases,	1							
			Therefore, elements show less metallic character across the period.								
	(b)		oft / can conduct electricity / low density.	1							
		It can	react with water to form alkali and hydrogen gas. /	1							
		It can	react with halogens to form halides.								
		25r (6	(i) + 2H2O (l) > 2FrOH (ag) (f) H2 (g) /	1 mark							
		Fr (\$)		for							
	((4)	012/19/	balanced							
	\	\ \ \ ,		chemical							
		1		equation							
			10/030	1 mark							
				for state							
				symbols							
8	(a)	(i)	Sulfur gains oxygen to form sulfur dioxide / the oxidation state of	1							
		<i>(</i>)	sulfur increases from 0 to +2.								
		(ii)	Mole of sulfur dioxide = 320 / 24 = 13.33 mol	1							
			Mole ratio of SO ₂ : S = 1:1 = 13.33:13.33	1							
		(iii)	Mass of sulfur burnt = 13.33 * 32 = 426.6 = 427g sulfur dioxide can react with the water to form sulfurous acid.	1							
		(111)	Sulfurous acid oxidises in the air to sulfuric acid which forms acid	<u> </u>							
			rain which can damage buildings made of limestone.	'							
Ц		L									

	(b)	Oxides of nitrogen	1
		Carbon monoxide	1
		Oxides of nitrogen are formed through the reaction of nitrogen and oxygen	1
		under high temperature in the engine.	1
		Carbon monoxide is formed through the incomplete combustion of petrol /	1
		fuel in the engine.	
-			
9	(a)	The smaller the particle size, the larger the surface area for reaction to	1
	. ,	occur.	
		This increases the frequency of collisions between reactant particles.	1
		resulting in a faster reaction.	
_	(b)	Add a fixed mass of magnesium strip to hydrochloric acid of	1
	. ,	fixed concentration.	
		Collect the volume of hydrogen gas collected using a gas syringe and	1
		measure the volume of hydrogen gas collected at regular time intervals	1
		(eg. 30 seconds)	
		Record the values collected and plot a graph of volume of hydrogen gas	1
		collected against time.	
		Repeat the experiment using magnesium powder instead of magnesium	1
	<	ribbon. Compare the slopes of the graph obtained for both ribbon and	
		powder to investigate the rate of reaction.	
	(c)	(i) Exothermic (i)	1
		(ii) Since magnesium is a more reactive metal than copper,	1
		Therefore it displaces copper from its sulfate to form magnesium	1
		sulfate and copper metal.	

End of Answer Scheme

0

CANDIDATE NAME			
CLASS		INDEX NUMBER	
Science (Phy Paper 1 Multip	ysics / Chemistry / Biology) ole Choice		5076, 5078/01 11 May 2018
Additional ma	aterials: Multiple Choice Answer Sheet		1 hour

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces provided.

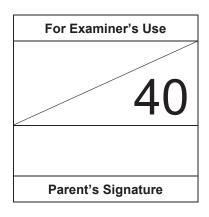
Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

There are **forty** questions on this paper. Answer all questions.

For each equation there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 8.

A copy of the Periodic Table is printed on page 9.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of 9 printed pages, including the cover page.

Multiple Choice Questions (40 marks)

Answer all questions.

- 1 A student mixes 25 cm³ samples of acid solution with different volumes of alkali solution.
 - At every 30 seconds, the student measures the change in temperature.

Which piece of apparatus is **not** needed?

- A gas syringe
- **B** measuring cylinder
- **C** thermometer
- **D** stop watch
- 2 A separation technique is shown below.

Which pair of mixtures can best be separated by the above technique?

- A aqueous sodium chloride and aqueous copper(II) sulfate
- B dilute hydrochloric acid and aqueous potassium hydroxide
- **C** magnesium carbonate and dilute nitric acid
- D zinc oxide and aqueous calcium nitrate
- 3 The table shows the melting and boiling points of four substances.

Which of the following substances contains particles that are sliding past each other at room temperature (25 °C)?

	melting point / °C	boiling point / °C
Α	– 110	– 55
В	- 20	15
С	0	100
D	744	1214

4 Aqueous sodium hydroxide is added to aqueous salt Z and a white precipitate formed. The white precipitate dissolved when excess sodium hydroxide is added.

When this reaction was completed, aluminium foil is added to the solution. The gas given off turned damp red litmus blue.

What is aqueous salt Z?

- A calcium nitrate
- B lead(II) sulfate
- C zinc nitrate
- D zinc sulfate
- 5 The symbols for two ions are shown below.

Which of the following statements is correct?

- A Both the ions contain the same number of electrons.
- **B** Both the ions contain the same number of protons.
- **C** The fluoride ion contains more electrons than the sodium ion.
- **D** The sodium ion contains more neutrons than the fluoride ion.
- 6 Statement 1: Non-metals share electrons to attain electronic configuration of a noble gas.

Statement 2: Non-metals share electrons to form covalent compounds.

Which of the following is true?

- A Both statements are correct, and statement 2 explains statement 1.
- **B** Both statements are correct, but statement 2 does not explain statement 1.
- C Statement 1 is correct but statement 2 is incorrect.
- **D** Statement 2 is correct but statement 1 is incorrect.
- 7 Which change occurs when magnesium bonds with chlorine?
 - A Chlorine loses seven electrons to form a noble gas configuration.
 - B Chlorine shares electrons with magnesium to form a molecule of magnesium chloride.
 - **C** Magnesium gains two electrons for form Mg²⁺ ions.
 - **D** Magnesium loses two electrons to form Mg²⁺ ions.

8 50 cm³ of nitrogen gas reacts with 50 cm³ of oxygen gas to produce nitrogen dioxide. The chemical equation for the reaction is given below:

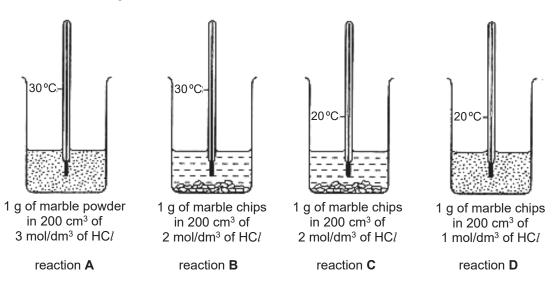
$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$

What are the volumes of the gases remaining at room temperature and pressure?

		volume of gases / cm ³				
	nitrogen	oxygen	nitrogen dioxide			
Α	0	0	100			
В	0	25	50			
С	25	0	50			
D	25	25	50			

9 20 g of magnesium oxide, MgO, reacts completely with 500 cm³ of dilute nitric acid.

The chemical equation of the reaction is as follows:


MgO (s) + 2 HNO₃ (aq)
$$\rightarrow$$
 Mg(NO₃)₂ (aq) + H₂O (l)

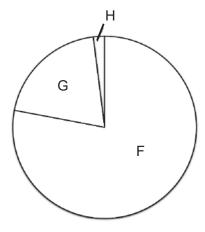
What is the concentration of the acid used? [relative atomic masses, A_r : O, 16; Mg, 24]

- **A** 0.002 mol/dm³
- **B** 0.008 mol/dm³
- C 2 mol/dm³
- **D** 8 mol/dm³
- **10** Which substance below will **not** react with aqueous potassium hydroxide but will react with dilute hydrochloric acid to form a salt and water?
 - A aluminium oxide
 - B carbon monoxide
 - C copper(II) oxide
 - D nitrogen dioxide
- 11 Which pair of reagents can be best used to prepare insoluble magnesium carbonate?

	reagent 1	reagent 2
Α	magnesium	ammonium carbonate
В	magnesium chloride	calcium carbonate
С	magnesium oxide	potassium carbonate
D	magnesium sulfate	sodium carbonate

12 Which of the following reactions will have the slowest rate of reaction?

- 13 What determines the Group of an element in the Periodic Table?
 - A The number of completely filled electron shells.
 - **B** The number of electrons in the valence shell.
 - **C** The number of electron shells containing electrons.
 - **D** The number of protons in the nucleus.
- 14 Caesium and potassium are both in Group I of the Periodic Table.


Which of the following statements about the elements is correct?

- A Caesium has a higher density than potassium.
- **B** Caesium reacts violently with water but potassium reacts explosively with water.
- C Potassium atoms are larger than caesium ions.
- **D** Potassium has a lower melting point than caesium.
- **15** Chlorine is in Group VII of the Periodic Table.

Which of the following statements is a property of chlorine?

- A It can displace bromine from aqueous sodium bromide.
- B It forms a basic oxide.
- **C** It has a darker colour than iodine.
- **D** It is a monoatomic element.

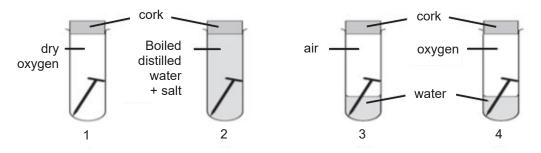
16 The pie-chart shows the composition of pure air.

Which of the following rows correctly identifies gases F, G and H?

	F	G	Н
Α	nitrogen	carbon dioxide	oxygen
В	nitrogen	oxygen	argon
С	oxygen	nitrogen	carbon dioxide
D	water vapour	oxygen	hydrogen

- 17 Which of the following statement(s) is/are true for all metals?
 - 1 They conduct electricity.
 - 2 They form basic oxides.
 - 3 They have high melting points.
 - 4 They have high densities.
 - A 1 only
 - **B** 1 and 2 only
 - **C** 1, 3 and 4 only
 - **D** 1, 2, 3 and 4
- 18 Excess dilute nitric acid is added to brass.

Which of the following observations is correct?


- A A blue solution is observed.
- **B** A colourless solution is observed.
- **C** A grey deposit is observed and a blue solution is formed.
- **D** A reddish-brown deposit is observed and a colourless solution is formed.

19 A metal X reacts as follows:

- X + dilute acid → salt + hydrogen gas
- $X + cold water \rightarrow no reaction$
- X + aqueous silver nitrate \rightarrow silver metal + nitrate of X

By comparing X with calcium and silver, which of the following shows the correct order of reactivity of the metals, starting with the least reactive?

- A calcium, silver, X
- B calcium, X, silver
- C silver, X, calcium
- D X, calcium, silver
- 20 An experiment was set up as shown below to investigate the rate of rusting under different conditions.

Which of the following predicts the order of the test-tubes in which rust would first appear?

- **A** 1, 2, 3, 4
- **B** 1, 3, 2, 4
- **C** 4, 2, 3, 1
- **D** 4, 3, 2, 1

End of Paper

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

c		7	운 :	helium 4	10	Ne	neon	20	18	Ā	argon	40	36	눟	krypton	84	54	×	xenon	131	86	찚	radon	ı				
II/					1	u_	-				٠				7		l											
					8	0	oxygen	9	16	ဟ	sulfur	32	34	Se	selenium	79	25	<u>e</u>	tellurium	128	82	8	polonium	ì	116	<u>ک</u>	livermorium	1
>	•				7	z	nitrogen	7	15	۵	phosphorus	31	33	As	arsenic	75	51	S	antimony	122	83	洒	bismuth	508				
2					9	ပ	carbon	12	14	Ö	silicon	28	32	ge	germanium	73	20	S	ţ	119	82	8	lead	202	114	Æ	flerovíum	ı
≡					2	ω	boron	Ξ	13	ΑΊ	aluminium	27	31	g	gallium	20	49	드	Indium	115	81	1	thallium	504				
													30	Ŋ	zinc	92	48	පි	cadmium	112	88	Î	mercury	202	112	ວົ	copernicium	ı
																					79				ł		Ε	
Group													88	Z	nickel	29	46	В	palladium	106	78	盂	platinum	195	110	S	darmstadtium	1
Gre													27	රි	cobalt	29	45	돈	rhodium	103	11	ī	iridium	192	109	ž	meitnerium	1
		- :	I .	nyaragen 1									56	e e	iron	26	44	₹	ruthenium	101	9/	SO	osmium	180	108	뫈	hassium	1
					•								52	M	manganese	33	43	ပ	technetium	•	75	æ	rhenium	186	107	윱	bohrium	1
					umber	00		mass					24	ပ်	chromium	52	42	Ø	molybdenum	96	74	≥	tungsten	184	106	Sg	seaborgium	ı
				Key	proton (atomic) number	atomic symbol	name	relative atomic mass					23			- 1				- 1	73			1			dubnium	ì
					proton	atc		relati					22	F	titanium	48	9	Ž	zirconium	91	72	Ï	hafnium	1	104		Rutherfordium	į
													21	တ္တ	scandium	45	39	>	yttrium	88	57 - 71	lanthanoids			89 103	actinoids		
-					4	Be	beryllium	6	12	Mg	magnesium	24	20	Sa	calcinm	40	88	Š	strontium	88	26	Ва	barium		88		radium	1
						=										_					22				87	ŭ.	francium	ı

71	3	Intetium	175	103	בֿ	wrencium	ı
-		~		-	2	<u>e</u>	_
-				-	Md	Ē	_
89	ய்	erbinm	167	100	E	fermium Ir	1
67	운	holmium	165	66	Ш	einsteinium	ı
99	2	dysprosium	163	88	ŭ	californium	ı
65	e	terbium	159	97	益	berkelium	ı
64	ලි	gadolinium	157	96	ű	curium	1
63	Ш	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	ď	neptunium	1
9	2	neodymium	144	85	_	uranium	238
59	ሷ	praseodymium	141	91	Ъа	protactinium	231
58	ဗီ	cerium	140	80	٤	thorium	232
22	E	lanthanum	139	89	Ac	actinium	ı
lanthanoids				actinoids			

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

www.KiasuExgamPaper.com

No additional	materials		ioui and 13 illillutes
Paper 3		11	7 May 2018 nour and 15 minutes
Science (Ch	emistry)		5076, 5078 / 03
CLASS	/	INDEX NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces above.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

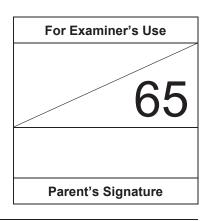
You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B


Answer any **two** questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 15.

A copy of the Periodic Table is printed on page 16.

The number of marks is given in the brackets [] at the end of each question or part question.

This document consists of 16 printed pages, including the cover page.

Section A [45 marks]

Answer all the questions in the spaces provided.

1 Name the substances needed for the following purposes.

purpose	name of substance
reducing the acidity in soil	
testing for presence of carbon dioxide gas	
testing for presence of chloride ions in water	

[3]

[Total: 3 marks]

2 The diagrams N, P, Q, R, S and T in Fig 2.1 represent the particles in different substances.

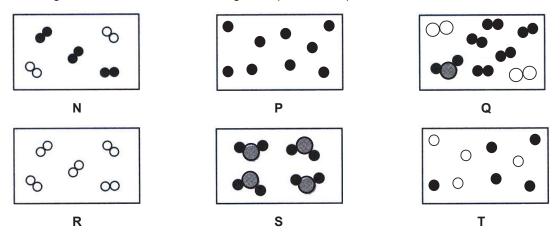


Fig 2.1

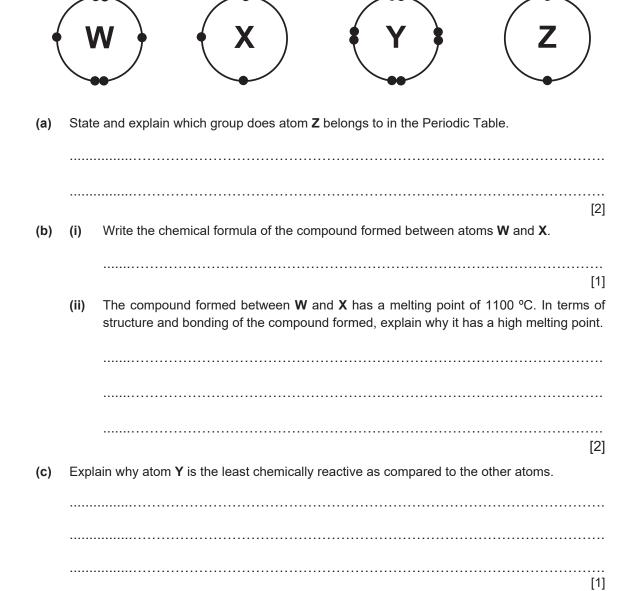
Use the diagrams **N**, **P**, **Q**, **R**, **S** and **T** to answer the questions below. (a) Which of the following above best represents liquid water?

		[1]

(b) Which of the following above best represents a mixture containing fluorine and chlorine gases?

	[1]
--	-----

(c) Which of the following above best represents air?


[1	1]
----	----

(d) Which of the following above best represents neon gas?

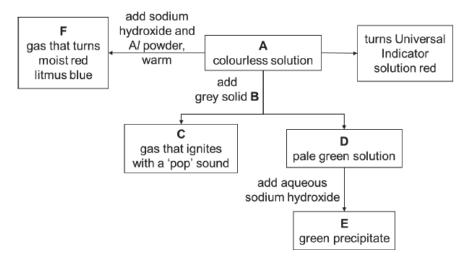
[Total: 4 marks]

3 The atomic structures of atoms **W**, **X**, **Y** and **Z** are shown below. The elements are found in Period 3 of the Periodic Table. The letters do not represent the elements and only the valence electrons of the elements are shown.

[Total: 6 marks]

4	obta	ined i	furnace reaction is an industrial process used to obtain iron from its ore. The iron s usually used to produce stainless steel, an <i>alloy</i> , which is harder and stronger than Stainless steel is an important material in construction building.
	(a)	(i)	Define the term, alloy.
			[1]
		(ii)	Apart from its hardness and strength, state another advantage of using stainless steel as an industrial material.
			[1]
	(b)		oon, also known as coke, is added to the Blast furnace reaction for the extraction of iron. chemical equation for this reaction is given below.
			$2 \operatorname{Fe_2O_3}(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Fe}(l) + 3 \operatorname{CO_2}(g)$
		mas	en 30% of iron(III) oxide, Fe_2O_3 , is present in 1000 kg of haematite used, calculate the s of carbon required for the extraction of iron. tive atomic masses, A_r : C, 12; O, 16; Fe, 56]
			mass of carbon required =[3]
			[~]

(c)	Silicon dioxide, SiO ₂ , is an impurity produced in Blast furnace. Explain how silicon dioxide is removed from the Blast furnace.
	[2]
(d)	During the production of iron, sulfur dioxide gas is produced. Explain why sulfur dioxide gas produced pose an environmental threat to water bodies.
	[2]
	[Total: 9 marks]


5	Chlorine gas, a member of the halogens, is an element in Group VII of the Periodic Table.		
	(a)	State two physical properties of chlorine, other than existing as a gas at room temperature and pressure.	
		[2]	
	(b)	Explain, using its electronic structure, why chlorine is found in Period 3 of the Periodic Table.	
		[2]	
	(c)	Chlorine gas reacts vigorously with hot zinc metal to produce solid zinc chloride. Construct a balanced chemical equation, including state symbols, for the reaction.	
		[2]	
	(d)	When chlorine gas is bubbled into aqueous potassium bromide, potassium chloride and bromine solution is obtained. Explain why this reaction occurs.	
		[2]	
		[Total: 8 marks]	

6 (a) Metals A, B and C are placed in salt solutions as shown in the table.

metal	result of placing metal in solution of					
Illetai	salt of A	salt of B	salt of C			
Α		no reaction	C displaced			
В	A displaced		C displaced			
С	no reaction	no reaction				

	Arrange the reactivity of the metals, starting with the least reactive metal.
	[1]
(b)	Explain why carbon can be used to obtain zinc from zinc oxide but not to obtain sodium from sodium oxide.
	[2]
(c)	Sodium metal is kept in oil to prevent it from corrosion. Explain how the oil prevents the sodium metal from corrosion, stating clearly the conditions that cause the corrosion of sodium.
	[3]
	[Total: 6 marks]

7 The figure below describes the reactions between colourless solution **A** and grey solid **B**.

(a) Identify A, B, C, D, E and F.

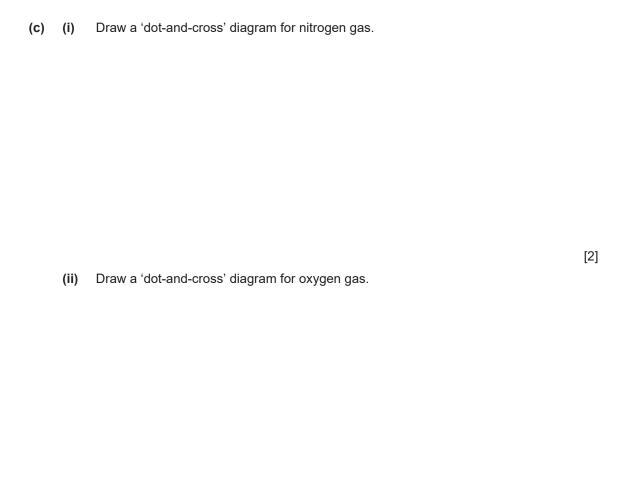
Α	
В	
С	
D	
Ε	
F	 [6]

(b) Construct a balanced ionic equation for the formation of precipitate **E**. State symbols are **not** required.

		[2]

(c) Explain why grey solid **B** cannot be a metal carbonate.

[1]


[Total: 9 marks]

Section B [20 marks]

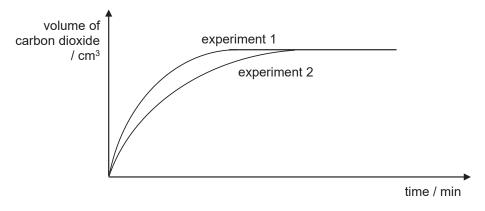
Answer any **two** questions in this section.

Write your answers in the spaces provided.

8		itrogen, oxygen and argon gases can be extracted from compressed liquefied air (mixture of iscible liquids) at -200°C .				
	(a)	(i)	State the separation method used to obtain the gases separately at $-200\ ^{\circ}\text{C}$.			
			[1	 1]		
		(ii)	Describe the changes in movement of the air particles as it is compressed and coole from room temperature to -200°C .	d		
			[**************************************	 1]		
	(b)	Oxyg	en is a reactive non-metal.			
		Desc	ribe, in terms of the number of electrons gained, lost or shared, what happens when			
		(i)	an oxygen atom combines with magnesium atom(s).			
			[2	 2]		
		(ii)	an oxygen atom combines with fluorine atom(s).			
			[2	 2]		

[2]

[Total: 10 marks]


9 (a) State two physical properties of copper metal.

Property 1:	
Property 2:	
	[2]

- (b) Describe a way to prepare a pure sample of copper(II) sulfate crystals, from copper metal. Use the following information to help you
 - copper does not react with dilute acids
 - copper burns in oxygen to form a black solid, which is copper(II) oxide
 - copper(II) oxide is insoluble in water
 - copper(II) sulfate is soluble in water

			[4]

(c) 10 g of copper(II) carbonate lumps were reacted with excess 1.0 mol/dm³ hydrochloric acid and the carbon dioxide gas produced was collected. The experiment was repeated again but using excess 2.0 mol/dm³ hydrochloric acid. The graph of the data collected is plotted and shown below.

experiment 1: 10 g of copper(II) carbonate lumps with excess 2.0 mol/dm³ hydrochloric acid experiment 2: 10 g of copper(II) carbonate lumps with excess 1.0 mol/dm³ hydrochloric acid

(i) State why the production of carbon dioxide gas stopped after a period of time.

[1]

(ii)	Use your knowledge of reacting particles to explain why a higher concentration of acid results in a faster rate of reaction.				
	[2				

(iii) The experiment is repeated using 5 g of **powdered** copper(II) carbonate and excess 2.0 mol/dm³ hydrochloric acid. Add to **Fig. 9.1** the graph you would expect. The original graphs are already included. Label the new graph as **3**.

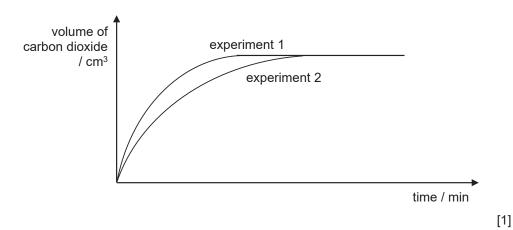
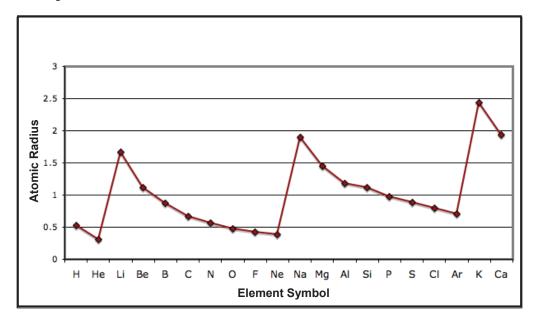



Fig. 9.1

[Total: 10 marks]

10 (a) The diagram below shows the atomic radius of the first 20 elements in the Periodic Table.

(i)	Use the diagram above to describe the change in atomic radius across the Period and
	down the Group.

		[2]

(ii) Describe the change in the character of the elements across Period 3 and how it affects the respective oxides formed.

(b) Lithium, potassium and sodium are Group I elements.State one physical property trend and one chemical property trend of these elements.

[2]

(c)	Describe a laboratory investigation that can be used to justify the relative positions of iron, magnesium and silver in the reactivity series. You may include a diagram if it helps you to answer the question.
	<u>Diagram</u>
	[4]
	[Total: 10 marks]

End of Paper

Data Sheet

Colours of Some Common Metal Hydroxides

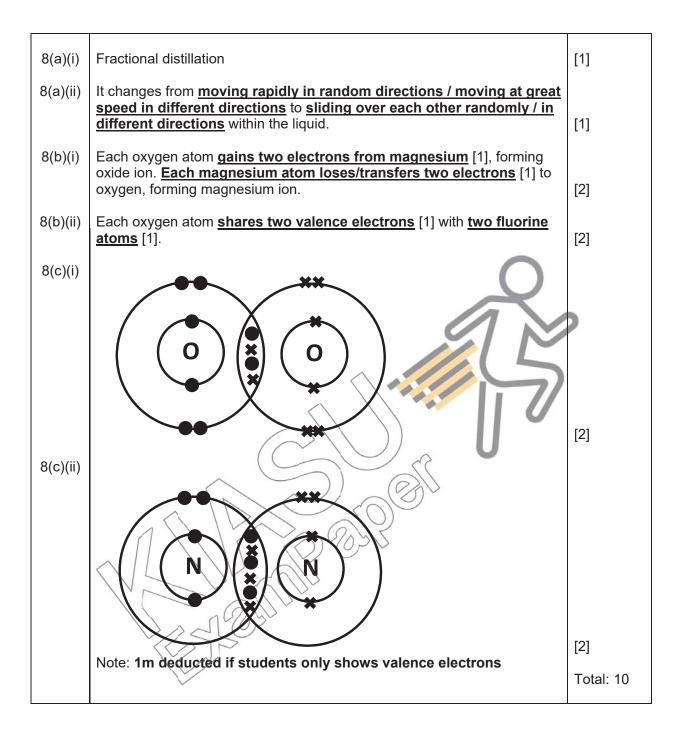
calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	2	윈	helium 4	19	Ne	леоп 20	18	Ā	argon 40	36	궃	krypton	8	54	×	xenon	131	86	唇	radon	ı				
	II				6	u_	fluorine 19	17	õ	chlorine 35.5	35	面	bromine	8	53	Н	iodine	127	85	¥	astatine	ı				
	N				8	0	oxygen 16	16	တ	sulfur 32	34	Se	selenium	23	25	<u>e</u>	tellurium	128	8	8	polonium	,	116		livermorium	1
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic	75	51	SS	antimony	122	83	ö	bismuth	508				
	2				9	O	carbon 12	14	Ö	silicon 28	32	96	germanium	73	20	S	ij	119	82	<u>유</u>	lead	207	114	ì	flerovium	1
	=				5	Ω	boron 11	13	Αį	aluminium 27	31	පී	gallium	2	49	드	indium	115	81	ï	thallium	204				
											30	Z	zinc	92	48	ర	cadmium	112	80	웃	mercury	201	112	ວົ	copernicium	1
											53	రె	cobber	64	47	Ag	silver	108	79	Au	plog	197	111	B	roentgenium	1
dn											28	Z	nickel	29	46	Б	palladium	106	78	ă.	platinum	195	110	മ	darmstadtium	ı
Group											27	රි	copalt	29	45	돈	rhodium	103	11	<u></u>	iridium	192	109	Ĭ	meitnerium	-
		-	I	hydrogen 1							26	æ	iron	56	44	2	ruthenium	101	9/	ő	osmium	190	108	£	hassium	
					•						25	ĕ	manganese	22	43	ည	technetium	,	75	æ	rhenium	186	107	윱	pohrium	1
					umber	0	nass				24	ဝ	chromium	52	45	⊗	molybdenum	96	74	≥	tungsten	184	106	Sg	seaborgium	'
				Key	(atomic) n	mic symt	name relative atomic mass				23	>	/anadium	51	4	윤	niobium	93	73	<u>г</u>	tantalum	181	105	음		
					proton	ato	relativ				22	F	titanium	48	40	Ž	zirconium	91	72	Ξ	hafnium	178	104	č	Rutherfordium	
											21	တ္တ	scandium	45	39	>	yttrium	8	57 - 71	lanthanoids			89 - 103	actinoids		
	=				4	æ	beryllium 9	12	Μg	magnesium 24	20	ပ္မ	calcium	40	88	ഗ്	strontium	88	26	Ba	barium	137	88	Ra	radium	1
	_				က	=	lithium 7	11	Sa	sodium 23	19	×	potassium	စ္တ	37	윤	rubidium	88	52	ర	caesium	133	87	<u>፲</u>	francium	ı

88

	_	Ē	10	_		Ë	
71	3	lutefil	17.	ë	<u>د</u> 	lawrenc	
20	Υp	ytterbium	173	102	8	nobelium	1
8	Ę	thulium	169	101	βg	mendelevium	ı
88	ய்	erbinm	167	100	Ę	fermium	1
67	운	holmium	165	66	Ш	einsteinium	ı
99	2	dysprosium	163	88	ັວ	californium	ı
65	Ω	terbium	159	97	츖	berkelium	ı
64	ဗ	gadolinium	157	96	Ç	curium	1
හු	品	europium	152	95	Am	americium	ı
62	Sm	samarium	150	94	P.	plutonium	ı
61	Pm	promethium	ı	93	å	neptunium	;
8	R	neodymium	144	85	>	uranium	238
23	ፚ	praseodymium	141	9	Ъа	protactinium	231
	ဗီ		- 1				232
22	<u>e</u>	lanthanum	139	88	Ac	actinium	ı
lanthanoids				actinoids			


The volume of one mole of any gas is $24\,\text{dm}^3$ at room temperature and pressure (r.t.p.). 16

Secondary 4 Express and 5 Normal Academic Science(Chemistry) Mid-Year Examination Mark Scheme

Qn no.			A	nswer Sche	me			Marks Allocated		
1	Α	6	В	11	D	16	В	[1] each		
2	D	7	D	12	D	17	Α	20 m max		
3	С	8	С	13	В	18	D			
5	C	9	CC	14	Α	19	C			
5	Α	10	C	15	Α	20	1			
1		purpose			name of su	bstance	5			
	reducing the acidity in soil calcium oxide / calcium hydroxide time / slaked lime / calcium carbonate									
	testing for presence of carbon dioxide gas limewater / calcium hydroxide									
	testing for presence of acidified silver nitrate / acidified									
	chloride ions in water lead(II) nitrate / acidified silver sulfate									
			>//		7			[3]		
	1m each	/ / /		200	3			Total: 3		
	Reject: cn	emical to	rmuia ot	substance				rotal. o		
	1	1)1		17						
2(a)	S	> (6	Z(Z),					[1]		
2(b)	N	35	0,5					[1]		
2(c)	Q							[1]		
2(d)	Р							[1]		
								Total: 4		
3(a)	Z belongs t	to group	II because	e [1]						
	it contains	two valei	nce electr		ectron shel	I. [1]		[2]		
3(b)(i)	X ₂ W ₃ (reje					,		[1]		
	` •		,					- -		
3(b)(ii)	amount of	energy is	needed to		strong ele	ectrostati	Thus, large c forces of	[2]		
	•		•	ostatic forc			oreak ionic molecules /			
L								I		

3(c)	It has <u>eight valence electrons</u> / <u>a completely filled valence shell</u> / <u>does not need to take in, give out or share electrons with other elements</u> .	[1]
		Total: 6
4(a)(i)	An alloy is a <u>mixture containing</u> at least <u>one metal with other elements</u> <u>/ substances</u> .	[1]
4(a)(ii)	It is more corrosion-resistant / does not rust easily.	[1]
4(b)	Mass, Fe ₂ O ₃ , present = 30% x 1000 = <u>300 kg</u> [1]	
	Mole, $Fe_2O_3 = (300 \times 1000) \div (2 \times 56 + 3 \times 16) = 1875 \text{ mol}$ [1]	
	Mole ratio: 2 Fe ₂ O ₃ : 3 C 1875 : 2812.5	
	Mass, C = 2812.5 x 12 = <u>33 750 g / 33.75 kg</u> [1]	[3]
	Note: 1. Allow ECF for wrong answer. 2. –1 if no/wrong units written for final answer.	
4(c)	<u>Limestone</u> [1] is used to remove silicon dioxide. It <u>decomposes at high</u> <u>temperature</u> in Blast furnace to produce basic <u>calcium oxide</u> [1], which reacts with silicon dioxide.	[2]
4(d)	Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidic, killing marine/aquatic lives / fishes [1].	[2] Total: 9
		Total. 0
5(a)	Low melting point / low boiling point / light-green in colour / does not conduct electricity / exist as diatomic molecules [Any two]	[2]
5(b)	Chlorine has an electronic structure of <u>2.8.7</u> [1], hence it contains <u>3</u> <u>electrons shells</u> [1] filled with electrons. Therefore, it is in period 3.	[2]
5(c)	$\frac{Cl_2(g) + Zn(s) \rightarrow ZnCl_2(s)}{1m - correct balanced equation; 1m - correct state symbols}$	[2]
5(d)	Chlorine is more reactive than bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine.	[2]
		Total: 8

6(a)	C, A, B (only answer)	[1]
6(b)	Carbon is more reactive than zinc [1], but less reactive than sodium [1]. Hence it displaces zinc from zinc oxide but not sodium from sodium oxide.	[2]
6(c)	By keeping sodium in oil, the oil <u>creates a physical barrier</u> [1] that prevents the surface of sodium metal to come in contact with <u>oxygen gas</u> [1] and <u>water / water vapour</u> [1], which causes corrosion.	[3] Total: 6
7(a)	A – nitric acid or HNO ₃ B – iron metal or Fe C – hydrogen gas or H ₂ D – iron(II) nitrate or Fe(NO ₃) ₂ E – iron(II) hydroxide or Fe(OH) ₂ F – ammonia or NH ₃	
	1m each, accept chemical formula	[6]
7(b)	Fe ²⁺ + 2 OH ⁻ → Fe(OH) ₂ 1m – correct equation, 1m – balanced equation	[2]
7(c)	A metal carbonate will <u>produce carbon dioxide gas</u> , instead of hydrogen gas. OR A metal carbonate <u>does not produce hydrogen gas</u> when reacted with acid.	[1] Total: 9

		1
9(a)	High density / High melting and boiling points / conducts electricity / conducts heat / malleable / ductile / shiny surface / Solid at room temperature / Pink/brown solid [Any two]	[2]
9(b)	Heat/Burn copper metal in air / in oxygen to produce copper(II) oxide. [1] To an excess amount of CuO, add a fixed volume of sulfuric acid and stir the mixture. [1]	
	Filter to remove the excess CuO from the mixture. [1] Warm/Heat the filtrate to saturation and then allow it to cool for crystallization to occur. [1]	[4]
9(c)(i)	Copper(II) carbonate is used up.	[1]
9(c)(ii)	At a higher concentration, there are more reactant particles per unit volume [1]. Hence, the frequency of effective collisions between particles increases [1], leading to a faster rate of reaction.	[2]
9(c)(iii)	Graph showing half the volume of carbon dioxide gas and faster rate of reaction compared to Graph 1. Graph must be labelled.	[1]
		Total: 10
10(a)(i)	Atomic radius increases down the group [1] and decreases across the period [1].	[2]
10(a)(ii) 10(b)	The elements changes from metals to non-metals across the period / becomes less metallic across the period metallic to non-metallic character across the period [1] and the oxides changes from basic to acidic across the period [1]. Physical property trend: melting or boiling point decreases / density	[2]
	increases [1] Chemical property trend: chemical reactivity increases [1]	[2]

10(c)

Reaction condition [1]: state the use of either water / steam / dilute acids

Data collection [1]: counting the number of bubbles produced / measure volume of gas produced at regular intervals / measure lost in mass over regular intervals

Comparison of data [1]:

The beaker / test-tube / boiling-tube with more bubbles produced will be magnesium, followed by iron. Silver will not have any bubbles produced as it is unreactive towards acid.

OR

Measure the gas collected at regular intervals and plot a graph of volume of gas produced over-time / Measure the lost in mass at regular intervals and plot a graph of mass reading on scale balance against time. The graph with steepest gradient will be magnesium, followed by iron followed by silver which shows a horizontal line due to its chemical unreactivity.

Justification of relative positions [1]:

Hence, magnesium is the most reactive, followed by iron, and silver is the least reactive (or vice versa)

[4]

Total: 10

Pasir Ris Secondary School

Name	Class	Register Number
SECONDARY 4 EXPRESS MID-YEAR EXAMINATION 2018		
SCIENCE (CHEMISTRY)	5076 May 2018	
	Way 2010	

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, glue or correction fluid.

Section A

There are **ten** questions in this section. Answer **all** questions.

For each question there are four possible answers, A, B, C and D.

Choose the one you consider correct and record your choice in the boxes provided on page 4.

Section B & C

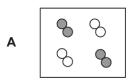
Answer all questions in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 8.

Section	Marks
Α	/10
В	/20
С	/10
Total	/40

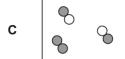
This document consists of 9 printed pages (inclusive of this page).

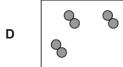
Setter: Mr Mohd Riffaii [Turn over

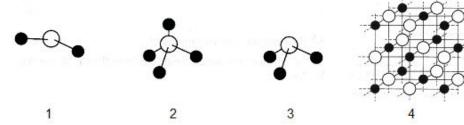

Section A: Multiple Choice Questions [20 marks]

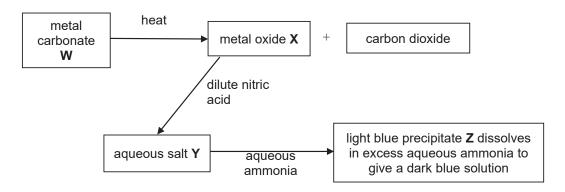
21 A mixture contains an organic liquid ${\bf J}$, and a dilute solution of potassium chloride. Liquid **J** boils at 21 °C and is immiscible in water.

Which two methods of separation should be used in sequence to obtain samples of liquid ${\bf J}$ first before solid potassium chloride?


	method 1	method 2
Α	use a separating funnel	evaporation
В	evaporation	sublimation
С	distillation	filtration
D	filtration	evaporation


22 Which diagram represents a mixture of diatomic elements?


В

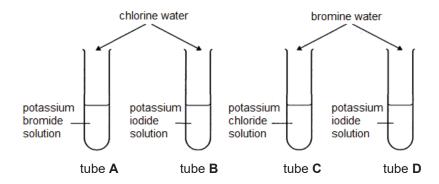

23 The diagrams represent four different compounds.

In which row are the compounds correctly named?

	1	2	3	4
Α	ammonia	sodium chloride	methane	water
В	methane	ammonia	sodium chloride	water
С	water	ammonia	methane	sodium chloride
D	water	methane	ammonia	sodium chloride

24 Study the following reaction scheme.

What is the identity of metal carbonate **W**?


A copper(II) carbonate

B iron(II) carbonate

c iron(III) carbonate

D zinc carbonate

25 The diagrams show a series of experiments carried out using chlorine water and bromine water.

Which test tube, A, B, C or D shows no change in colour?

26 Which of the following processes is an endothermic reaction?

A combustion

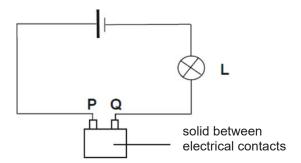
B freezing

C photosynthesis

D respiration

27 Sulfur undergoes changes when it reacts with air and water.

The substances that sulfur form are represented in the following stages.


Stage 1	Stage 2	Stage 3	Stage 4
S	SO_2	SO ₃	H_2SO_4

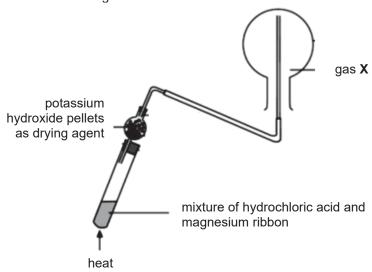
Which of the following shows the correct change in oxidation states of sulfur in each stage of the process?

	S	SO ₂	SO ₃	H ₂ SO ₄
Α	0	+2	+6	+8
В	0	+4	+6	+6
С	+2	0	+6	+6
D	+6	+6	+2	0

- 28 Which statements about the pollutant carbon monoxide are correct?
 - 1 It is a colourless and odourless gas.
 - 2 It is formed by the complete combustion of natural gas.
 - 3 It reacts with the haemoglobin in the blood and reduce the transport of oxygen.
 - A 1 and 2 only
 - B 2 and 3 only
 - C 1 and 3 only
 - **D** 1, 2 and 3
- 29 The diagram shows a complete circuit.

Which solid, when placed between ${\bf P}$ and ${\bf Q}$, would cause the light bulb ${\bf L}$ to light up?

- A copper
- B hydrogen fluoride
- C sodium chloride
- **D** sulphur


30 In the preparation of salts, which of the following would require the use of a burette and pipette?

A calcium sulfate B sodium sulfate

C silver sulfate D zinc sulfate

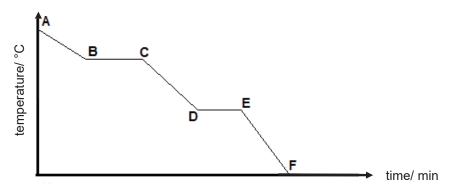
31 The diagram shows an upward delivery method for gas **X**.

What is the nature of the gas?

A The gas is soluble in water and denser than air.

- **B** The gas is soluble in water and less dense than air.
- **C** The gas is insoluble in water and denser than air.
- **D** The gas is insoluble in water and less dense than air.

32 Which ionic equation represents the neutralisation of dilute sulfuric acid with aqueous sodium hydroxide?


 $A \quad H^+ + OH^- \rightarrow H_2O$

B NaOH + $H^+ \rightarrow Na^+ + H_2O$

C $H_2SO_4 + 2OH^- \rightarrow SO_4^{2-} + 2H_2O$

D $SO_4^{2-} + 2Na^+ \rightarrow Na_2SO_4$

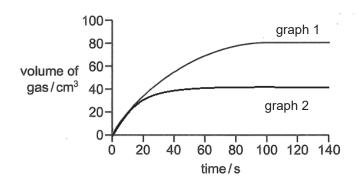
33 The diagram shows a cooling curve of steam.

Which of the following options correctly describes the changes that occur between points **C** to **D**?

	separation of particles	energy of particles	attractive forces between particles
Α	decreases	increases	decreases
В	decreases	decreases	increases
С	increases	increases	decreases
D	increases	decreases	increases

34 An element has an atomic number of 4.

Which statement about this element is correct?


- A It forms ions by losing electrons.
- **B** It has four occupied electron shells in each of its atoms.
- **C** It is an unreactive gas at room temperature and pressure.
- **D** It is found in Group IV of the Periodic Table.
- 35 An element X forms an ion of X^{2+} .

Which group of the Periodic Table is this element found in?

- A Group I
- **B** Group II
- C Group V
- **D** Group VI

36 Some zinc carbonate was reacted with excess dilute nitric acid.

The graph shows the volume of carbon dioxide gas evolved at 20 second intervals until the reaction has finished. Graph 1 shows the results obtained from this reaction.

Which of the following could have been changed to produce graph 2?

- A The concentration of acid was doubled.
- **B** The concentration of acid was halved.
- **C** The mass of zinc carbonate was halved.
- **D** The particle size of the zinc carbonate was doubled.

37 The reaction between hydrochloric acid and calcium carbonate is shown.

$$2HCl + CaCO_3 \rightarrow CaCl_2 + H_2O + CO_2$$

What volume of 1.0 mol/dm 3 hydrochloric acid is needed to react completely with 1.0 g of calcium carbonate (M $_r$ = 100)?

A 10 cm³

B 20 cm³

C 100 cm³

D 200 cm³

38 Which of the following substances is **not** present in the reaction during the extraction of iron?

A calcium oxide

B calcium carbonate

C calcium hydroxide

D calcium metasilicate

39 Which oxide will neither react with acids nor alkalis?

A carbon dioxide B carbon monoxide

C magnesium oxide
D zinc oxide

40 The results of three metal displacement experiments are tabulated as shown.

experiment	metal	metal nitrate solution							
Схроппоп	motar	JNO ₃	KNO ₃	LNO ₃					
1	J	-	no reaction	L displaced					
2	K	J displaced	-	L displaced					
3	L	no reaction	no reaction	-					

What is the order of reactivity of these metals?

	most reactive	—	least reactive
Α	J	K	L
В	K	L	J
С	K	J	L
D	L	J	K

End of Paper

The Periodic Table of Elements

	0	2	운	hellum 4	10	Se	neon	20	18	Ā	argon	40	36	ヹ	krypton	84	54	×e	xenon 131	98	조	radon	1				
200000	 				6	ш	fluorine	19	17	ũ	chlorine	35.5	35	ă	bromine	8	53	Н	lodine 127	82	¥	astatine	ı				
	5				80	0	oxygen	16	16	ဟ	suffur	32	34	Se	selenium	79	52	Te	tellurium 128	84	Po	polonium	1	116	^	livermorium	1
3	>				7	z	nitrogen	14	15	۵	shoophorus	31	33	As	arsenic	75	51	Sp	antimony 122	83	ä	bismuth	508				
	2				9	O	carbon	12	14	ï	silicon	28	32	Ge	germanium	73	20	S	₽ 118	82	8	lead	202	114	F/	flerovium	E
000	=				2	В	poron	1	13	AI	aluminium	27	31	Ga	gallium	20	49	딤	indium 115	81	17	thallium	204				
													30	Z	zinc	92	48	8	cadmium 112	80	£	mercury	201	112	5	copernicium	1
													59	3	copper	64	47	Ag	silver 108	79	Au	plog	197	111	Rg	oentgenium	1
dn													28	z	nickel	29	46	Б	palladium 106	78	₫	platinum	195	110	Ds	farmstadtium	1
Group													27	ဝိ	cobalt	29	45	몺	rhodium 103	11	1	indium	192	109	¥	meitnerium	1
		+	I	hydrogen 1									26	Fe	iron	26	44	Ru	ruthenium 101	9/	SO	osmium	190	108	Hs	hassium	1
	2												25	Mn	manganese	22	43	2	technetium -	75	Re	rhenium	186	107	Bh	pohrium	į.
					umber	00		nass					24	ဝ	E	52	42	W	um molybdenum techn	74	8	tungsten	184	106	Sg	seaborgium	E
				Key	proton (atomic) number	atomic symbo	name	relative atomic mass					23	>	vanadium	51	41	g	niobium 93	73	Ē	tantalum	181	105		E	Î
					proton	ato		relativ					22		titanium	48		Z	zirconium 91	72	Ï	hafnium	178	104	¥	Rutherfordium	ı
													21	Sc	scandium	45	39	>	yttrium 89	57 - 71	lanthanoids			89 - 103	actinoids		
	=				4	Be	peryllium	o	12	Mg	magnesium	24	20						strontium 88	1		parium	137	88		radium	1
1					3	:	lithium	7	11	Na			19	¥	potassium	39	37	8	rubidium 85	55	S	caesium	133	87	ĭ	francium	1

71	3	Intetium	175	103	د	lawrencium	1
2	χ	ytterbium	173	102	9 N	mobelium	1
69	Ē	thulium	169	101	Md	mendelevium	1
89	ய்	erbinm	167	100	Fm	fermium	1
29	운	holmium	165	66	Es	einsteinium	1
99	ò	dysprosium	163	86	ర	californium	1
65	2	terbium	159	97	š	berkelium	1
64	g	gadolinium	157	96	S	curium	1
63	ш	europium	152	92	Am	americium	1
62	Sm	samarium	150	94	P	plutonium	1
61	Pm	promethium	1	93	ď	neptunium	1
09	P	neodymium	144	92	_	uranium	238
29	Ā	praseodymium	141	91	Pa	protactinium	231
28	ဗီ	cerium	140	06	돈	thorium	232
22	Ľa	lanthanum	139	89	Ac	actinium	1
lanthanoids				actinoids			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Pasir Ris Secondary School

Name	Class	Register Number

SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC MID YEAR EXAMINATION 2018

SCIENCE (PHYSICS, CHEMISTRY)

5076/03

Paper 3 Chemistry

Monday 0800 – 0915

07 May 2018 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

You may use lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 15. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

n or part question.

For Examiner's Use

Section A

Total

This document consists of 16 printed pages, including the cover page.

Setter: Mr Mohd Riffaii [Turn over

Section A

Answer **all** the questions in the spaces provided.

Use **three** words from the box below to describe each substance in Table 1.1. The words can be used once, more than once, or not at all.

For Examiner's Use

solid	liquid	gas	atom	molecule
	element	compound	mixture	ions

Table 1.1

substance	diagram	description words		
A	+ - + - + - + - + - + - + - + - +	1		
В		1		
С		1 2 3		

[3]

(b)	(i)	Explain why substance A will conduct electricity when dissolved in water.	
			[1]
	(ii)	Suggest another way of making substance A conduct electricity.	
			[1]

2 Spots of different coloured dyes were placed along a pencil line on a sheet of chromatography paper. The paper was then placed in a solvent.

For Examiner's Use

Fig. 2.1 shows the chromatogram obtained.

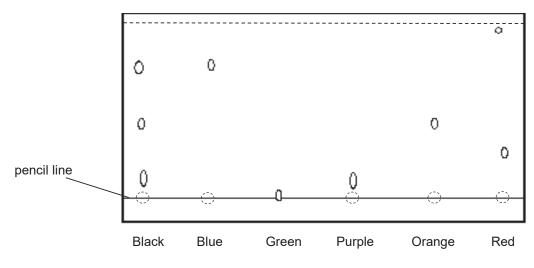


Fig. 2.1

(a) Which physical property allows chromatography to separate components of the dyes?

[1]

(b) Based on Fig. 2.1, what can be deduced about the components of the black dye?

[1]

(c) Suggest why the start line was drawn in pencil line and **not** in ink for this experiment?

[1]

3	Hydrogen bromide has a melting point of –87 °C and a boiling point of –67 °C.				
	(a)		a 'dot and cross' diagram to show the arrangement of electrons in a molecule of gen bromide. Show only the outer shell electrons.	ose ose	
				[2]	
	(b)	Hydro	gen bromide dissolves in water to form an acidic solution which is colourless.		
		(i)	Give the formula of the ion which causes the acidity.		
				[1]	
		(ii)	Describe what is seen when chlorine gas is bubbled through the solution.		
				[1]	
		(iii)	Construct an ionic equation, including state symbols, for the reaction you have described in (ii).		
				[2]	

4	Zinc blende is an ore that contains mainly zinc sulfide (ZnS). The extraction of zinc from its or happens in the blast furnace. The ore of zinc blende is roasted in air (oxygen) to form zinc oxide which is then reduced wire carbon monoxide in the blast furnace, similar to the extraction of iron from haematite.			
	The	extra	ction of zinc can be represented by the equation as shown.	
			$ZnO + CO \rightarrow Zn + CO_2$	
	(a)	Stat	e which substance is reduced and give a reason for your answer.	
	substance reduced			
		reas	son	[2]
	(b)		produced by the blast furnace is often alloyed to increase its hardness and strength. ss is an alloy of zinc and copper.	
		(i)	Draw the structure of brass in the box provided in Fig. 4.1.	
			Fig. 4.1	[1]
(ii) With reference to your drawing in Fig. 4.1, explain why brass is harder compared to pure zinc.		With reference to your drawing in Fig. 4.1, explain why brass is harder and stronger compared to pure zinc.		
				[2]

5	The show		ion between copper(II) oxide and hydrogen can be represented by the equation as	For Examiner's Use
			$CuO(s) + H_2(g) \rightarrow H_2O(g) + Cu(s)$	
	In th	is rea	ction, 0.40 g of solid copper(II) oxide was used.	
	(a)	(i)	Calculate the number of moles of copper(II) oxide used in the reaction.	
		(ii)	Hence, determine the number of moles of hydrogen gas is required for all the $copper(\mathrm{II})$ oxide to be used up in the reaction.	[1]
				[1]
	(b)	It is	also known that 165 cm ³ of hydrogen gas was used in the reaction.	
		(i)	Using your answer from (a) , determine the limiting reagent. Explain your answer clearly by showing all relevant calculations.	
		(ii)	Hence or otherwise, calculate the mass of water vapour produced at the end of the reaction.	[3]
				[2]

			tual ch							
]
V								V		-
V								Х		
						1		Y		
W									Z	
					ı	Fig. 6.	1			
a) W	v is more me	etallic t	han Z .							
	v is more mo							 	 	
, . b) V	' is less reac	ctive tha	an W .					 	 	
, . b) V		ctive tha	an W .	t than				 	 	

[2]

Study the flowchart in Fig. 7.1 and answer the following questions. For Examiner's 7 colourless colourless white solid solution of + sulfuric acid solution ${\bf B}$ C barium salt A add zinc metal colourless gas **D** colourless that extinguishes + solution E lighted splint with a 'pop' sound add aqueous silver nitrate white precipitate F Fig. 7.1 (a) Identify substances A to F. В C D Ε [6] Write a balanced chemical equation for any **one** of the reactions described in Fig. 7.1. (b)

8 (a) A chemical company makes salts for use in industries. Table 8.1 shows some names and formulae of salts with the names of the acids and other compounds used to make them.

For Examiner's

Complete the table by writing the missing information.

Table 8.1

name of salt	formula of salt	name of acid used to make salt	name of the other compound used to make salt
sodium sulfate	Na ₂ SO ₄		
potassium phosphate	K ₃ PO ₄	phosphoric acid	
silver chloride	AgC <i>l</i>		
calcium phosphate		phosphoric acid	calcium hydroxide

[3]

(b) Fig. 8.2 shows a rusted car. However, not all the parts have rusted. The areas that have not rusted are either painted or have plastic coatings.

Fig. 8.2

Explain how the paint and plastic coating can slow down rusting.

[2]

(c) Harmful gases released into the atmosphere can form acid rain which speeds up rusting.

Name one such gas which causes acid rain and state its source.

[2]

Section B

For Examiner's Use

Answer any **two** questions in this section.

Write your answers in the spaces provided.

9 Read the information about chlorine.

Chlorine ranks among the top ten chemicals produced today. Chlorine is produced by passing an electric current through a concentrated solution of sodium chloride or through molten sodium chloride. This process is one of the most important commercial processes in industry. Chlorine, in one form or another, is added to most swimming pools, spas, and public water supplies because it kills bacteria that cause disease. Many people also use chlorine to bleach their clothes. Large paper and pulp mills use chlorine to bleach their products.

Two naturally occurring isotopes of chlorine exist, chlorine-35 and chlorine-37. Chlorine exists commonly both in the Earth's crust and in seawater as sodium chloride. Smaller amounts of potassium chloride and magnesium chloride also occur in seawater.

Chlorine is very reactive. The reaction between chlorine and other elements can often be vigorous. For example, chlorine reacts explosively with hydrogen to form hydrogen chloride.

(a)	I he information contains examples of a mixture. Identify two mixtures in the information.	
		[1]
(b)	The chemical symbols of the two chlorine isotopes are shown below.	
	³⁷ C <i>l</i> ³⁵ C <i>l</i>	
	Compare and contrast the structures of the nuclei in chlorine isotopes.	
		[2]

	(c)	Magnesium	burns in	chlorine	gas to	produce	magnesium	chloride.
--	-----	-----------	----------	----------	--------	---------	-----------	-----------

For Examiner's Use

(i) Complete Table 9.1 which gives information about the two ions in magnesium chloride.

Table 9.1

name of ion	number of protons	number of neutrons	number of electrons	electronic structure
magnesium ion	12			2,8
chloride ion	17	18		

[2]

(ii) Draw a 'dot' and cross diagram to show the arrangement of electrons in magnesium chloride. Show only outer shell electrons.

[2]

- (d) Chlorine can react with hydrogen to form hydrogen chloride. Hydrogen chloride is a gas at room temperature.
 - (i) In terms of electrons, describe the bonding in hydrogen chloride.

[1]

(ii) At room temperature, magnesium chloride is a solid while hydrogen chloride is a gas.

Use your knowledge of the bonding in magnesium chloride and hydrogen chloride to explain the difference in physical state.

.....

[2

10	(a)	Hydr	ochloric acid is used for rust removal while sodium hydroxide is used in detergents.	For Examiner's Use
		(i)	State the colour of Universal Indicator in dilute hydrochloric acid and in aqueous sodium hydroxide.	OSE .
				[2]
		(ii)	Explain briefly, in terms of ions in solution, the reason for the difference in acidity and alkalinity of hydrochloric acid and sodium hydroxide solutions.	
				[2]
		(iii)	The reaction between hydrochloric acid and magnesium metal produces a soluble salt, magnesium chloride. Describe the steps to obtain a pure sample of magnesium chloride from the reaction.	
				[4]
	(b)	of hy	experiment, 20.0 cm³ of 1.50 mol/dm³ sodium hydroxide exactly neutralised 25.0 cm³ drochloric acid. Using the chemical equation provided for the reaction, calculate the entration of the hydrochloric acid used.	
			NaOH + HC $l \rightarrow$ NaC l + H $_2$ O	
				[2]

11	(a)	_	11.1 shows o different e			n between o	calcium car	bonate and I	nydrochloric acid	For Examiner's Us
			riment 1 wa riment 2 wa	•	-	• .		n carbonate. n lumps.		
		volu	ıme of carb	on dioxide	released /	cm ³				
			60							
			50		<u> </u>					
			40	neout /	*					
			30	Tul July 1	nerit?					
			20	THE STATE OF	REGER !					
			10							
			0	2	4	6	8	10	time / s	
				_		Fig. 11.1				
		(i)	Based on	the graphs	, compare			for the two e		
										[1]
		(ii)	-	knowledge affects the	-	•	o explain wl	hy the particl	e size of calcium	
										[2]
		(iii)				quation, ind	_	te symbols,	for the reaction	

(b)	Sketch on Fig. 11.1 the speed of reaction for 5 g of powdered calcium carbonate . Label this 'Experiment 3'.					
(c)	The te	emperature of the mixtures increased during the reaction in both experiments 1 and				
	(i)	Suggest whether the reactions are exothermic or endothermic.				
			[1]			
	(ii)	Explain in terms of bond breaking and bond forming for your answer in c (i).				
			[2]			
	(iii)	Suggest a method that can be used to accurately determine that all the acid has been used up during the reaction.				
			[1]			

End of Paper

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

							Sic	Group								
	=										≡	2	>		IIA	0
						+										2
						hydrogen										hellum He
			Key			-									- 8	4
	4	protor	proton (atomic) number	number	7.5						သ	9	7	00	6	10
_	Be	at	atomic symbo	loqu							ω	ပ	z	0	ட	Ne
ber	nyllium	305	name								poron	carbon	nitrogen	oxygen	fluorine	neon
	0	relat	relative atomic mass	mass							7	12	14	16	19	20
	12										13	14	15	16	17	18
_	Mg										AI	Ö	۵	တ	õ	Ā
mag	magnesium										aluminium	silicon	shoophorus	suffur	chlorine	argon
- 1	57		0.000								77	28	31	32	35.5	40
		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
_			>	ວັ	Mn	Fe	ဝိ	ž	3	Z	Ga	ge	As	Se	ä	궃
ca		B	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
			51	52	55	26	59	29	64	65	20	73	75	79	80	84
			41	42	43	44	45	46	47	48	49	20	51	52	53	54
			g	Mo	ဥ	R	몺	В	Ag	ප	드	S	S	Те Т	_	Xe
rubidium stro 85	strontium yttrium 88 89	ž	niobium 93	molybdenum 96	technetium	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	₽ 119	antimony 122	tellurium 128	iodine 127	xenon 131
-		1	73	74	75	9/	77	78	79	80	81	82	83	84	85	98
	Ba lanthand		Ta	>	Re	SO	1	盂	Au	Ē	11	P _O	窗	8	¥	R
caesium ba	arium	hafnium	tantalum	tungsten	rhenium	osmium	indium	platinum	plog	mercury	thallium	lead	bismuth	polonium	astatine	radon
	137	178	181	184	186	190	192	195	197	201	204	202	508	1	1	1
	88 89 103		105	106	107	108	109	110	111	112		114		116		
_	Ra actinoic	ds R	g G	Sg	В	Hs	¥	Ds	Rg	5		FI		^		
E	radium	Rutherfordium	Ð	seaborgium	pohrium	hassium	meitnerium	darmstadlium	roentgenium	copernicium		flerovium		livermorium		
	1	I	ı	E	ı	1	I	1	1	1		ı		1		

lanthanoids	22	28	59	9	61	62	63	64	65	99	- 67	89	69	20	71
	La	å	Ā	PN	Pm	Sm	ш	gg	2	ò	운	ய்	Ē	χ	3
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbinm	thulium	ytterbium	Intetium
	139	140	141	144	T	150	152	157	159	163	165	167	169	173	175
actinoids	88	90	91	92	93	94	98	96	97	86	66	100	101	102	103
	Ac	Ę	Pa	<u></u>	d	P	Am	ر ا	益	Ö	Es	Fm	Md	S	ב
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	1	232	231	238	1	1	1	1	1	1	1	1	1	1	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Answers	for Pape	r 1			111		
21	Α	26	С	31	D	36	С
22	Α	27	В	32	A	37	B
23	D	28	C	33	B	38	C
24	A C	29	(A	\34\	Α	39	В
25	С	30	/B/	35	В	40	С

Pasir Ris Secondary School

SECONDARY 4 EXPRESS MID-YEAR EXAMINATION 2018

SCIENCE (CHEMISTRY)

Paper 1: Friday 0800 - 0900

Paper 3: Monday 0800 - 0915

5076

04 May 2018 07 May 2018

20 + 65 marks

MARKING SCHEME

This document consists of 14 printed pages (inclusive of this page).

Setter: Mr Mohd Riffaii [Turn over

Section A: Structured Questions [45 marks]

1	(a)		description words			[3]
		1 sol	•	Stude	ents incorrectly state	
		2 ion	S	mixt	ıre due to the different	
		3 cor	mpound	charg		
		1 liqu			ents incorrectly state solid	
		2 ele 3 ato	ment	due t	o the connecting atoms or	
		3 810	·	mole	cuie	
				Stude	ents incorrectly state	
		1 gas			ire due to the different	
			npound lecule	colou	red shapes failing to	
			icouic	appre	ciate the line or as	
				atom	s.	
		Any	order	<u> </u>		
					1 mark for every 3 correct	
				L	answers	
	(b)	(i)	Presence of mobile ions to	act as	9 9	[1]
			charge carriers to enable		charge carriers. Students state free	
		/ii\	conduction of electricity Heating A till it melts / A is	in	electrons which is reserved for metals. Students state electrolysis and	[4]
		(ii)	molten state.	III	Students state electrolysis and electroplating it as a method.	[1]
			[Total: 5	marks		
2	(a)		ent solubilities of compon	ents ्		[1]
		solver	nt	`	word response. Failing to state solubility of	
					the dyes.	
	(b)	Conta	ins blue, purple and orange	//	Most who got wrong failed to indicate blue	[1]
	(2)	Coma	into brace, parpris dira erange	1	as well as they felt it wasn't perfectly in line.	1.1
))		
	(c)		ite/Carbon in the pencil is in			[1]
			solvent and would not aff	fect th		
		results	5. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(90)	not used. Some used 'lead' as a term to	
			[Total: 3	Marks	explain about the carbon from pencil.	
3	(a)	1	Liotalio	Mank	1	
	(-)	1	V XUI		Most could not recall how to draw the	
			(, u (())) ×		bromine electrons properly. Left blank.	
		M	H Br 🕽		Legend stated only as hydrogen/bromine	[2]
			\mathbb{X}			r_1
			**			
	<u> </u>	L			1	

	(b)				
		(i)	H ⁺	Students wrote equations of HBr or H ⁻ .	[1]
		(ii)	Colourless solutions starts to turn reddish - brown	Students described the displacement reaction itself rather than colour observations. Some stated yellow instead of reddish brown.	[1]
		(iii)	$Cl_2(g) + 2Br(aq) \rightarrow$ $2Cl^*(aq) + Br_2(aq)$ [1] – correct chemical formula/ions [1] – correct state symbols (2 nd mark is only awarded if the 1 st mark is given)	Very poorly done. 98% could not do this question and could not balance equation. Need to revisit this topic.	[2]
4	(a)	Substa	ance reduced: ZnO has been	[Total: 6 marks] substance reduced: most incorrectly state	
7	(a)	reduce Reaso form Z		as just Zn. Reason: students are able to explain the loss of oxygen to identify the substance reduced. However, their phrasing is wrong using oxygen has been reduced from zinc oxide.	[2]
	(b)	(i)		most students who made mistakes drew orderly arranged atoms or did not differentiate the size of the atoms enough. the size of the atoms enough. Labelling might help.	[1]
		(ii)	The different sized atoms disrupts the orderly arrangement [1] of pure metal. This makes it harder for the layers to slide over one another [1] thereby making it harder.	Most fail to get the full marks by either omitting different size disrupts orderly arrangement.	[2]
				[Total: 5 marks]	
5	(a)	(i) N	/r of CuO = 64 + 16 = 80		
		=	No. of moles of CuO $\frac{0.40}{80}$ = 0.0050 moles		[1]

		(ii)	Mole ratio, CuO:H ₂ is 1:1, hence 0.0050 moles of H ₂ is required	Students fail to state why the value is same as a(i).	[1]
	(b)	(i)	No. of moles of hydrogen gas used $= \frac{165}{24000}$ $= 0.006875 \text{moles} \qquad [1]$ Mole ratio, CuO:H ₂ is 1:1 $0.005 \text{mole of CuO requires only}$ $0.005 \text{ moles of H}_2 \text{. However,}$ $0.006875 \text{moles of H}_2 \text{ is used.}$ Hence H ₂ is in excess. [1]	Quite a large number of students had not done this part as they forgot to change cm3 to dm3. They also had forgotten the formula. Lastly, they incorrectly associate CuO and H2 mole directly by looking which is more rather than by looking at amount of H2 available vs needed.	[3]
		(ii)	Mr of water vapour = 2 + 16 = 18 Mole ratio of CuO:H ₂ O is 1:1. Hence 0.005mols of water vapour is formed. [1] Mass of water vapour = 0.005 x 18 = 0.09q [1]	Quite a fair number of students erroneously used the amount of hydrogen used in a(i). to calculate the number of moles. 1m was given for method mark.	[2]
6	(a)	cha fron	e: In the same Reriod, metallic tracter of elements decreases in left to right of PD so W is more tallic than Z.	[Total: 7 marks] Most students were able to do this question. However the explanation needs improvement as they only say the Z is a halogen rather than showing less	[1]
	(b)	eler	e; On moving down Group I ments, the reactivity increases so	character of a metal. Most students could do this well.	[1]
	(c)	Fal ele ele	lse; On moving down Group I ments, the melting point of the ment decreases so V should have ligher melting point than W.	Quite a fair number of students had forgotten trends of Grp 1	[1]
	(d)	the ato	se, <u>On moving down any group,</u> number of electron shells in the ms of the element increases so X ould have less electron shells than	Almost all students were able to answer this question well.	[1]

		(No mark for reason if 'true/falso incorrect.)	e' is			
					[Total: 4 marks]	
7	(a)	A: barium chloride		A students	s could not identify the acid.	
		B: hydrochloric acid C: barium sulfate D: hydrogen gas		HCI. Most poption.	s could not identify the acid as placed Barium sulfate in this	
		E: zinc chloride F: silver chloride			it this blank	
					udents were able to identify this able to work backwards.	[6]
	(b)	2AgNO ₃ (aq) + ZnC l_2 (aq) \rightarrow 2Ag Zn(NO ₃) ₂ (aq) BaC l_2 (aq)+ H ₂ SO ₄ (aq) \rightarrow BaSC 2HC l (aq) 2HC l (aq) + Zn (s) \rightarrow ZnC l_2 (aq)) ₄ (s) +	could not wri	ts who could not do the above to a balanced equation. Some nonsensical response as the not go through.	[2]
			1		[Total: 8 marks]	
8	(a)	name of salt formula of salt		e of acid used ake salt	name of the other compound used to make salt	
	\langle	sodium sulfate Na ₂ SQ ₄	sulfi	uric acid	sodium oxide/hydroxide/carbona te	
	3	potassium phosphate K ₃ PO ₄	phos	sphoric acid	potassium oxide/ hydroxide/carbonate	
		silver chloride AgCl	hydi acid	rochloric	silver nitrate	
		calcium phosphate Ca ₃ (PO ₄) 2 -) phos	sphoric acid	calcium hydroxide	[3]
		Few recalled the charge for phosphor c acid				
	(b)	The paint and plastic coating acts a barrier [1] to	t r	be used to pre number did n	could identify why the paint can event rusting but quite a large not state how it acts as a // barrier from the reactants.	[2]

			ent / minimize oxyg coming into contac tly [1]					
	(c)	Sulfu	gen dioxide – moto r dioxide – fac nic eruptions			tly stated the ga incorrect respor	ses SO2 but COnse.	[2]
							[Total: 7 marks]	
	Sect mark		- Free Response C	Questions [20				For Examiner's Use
9	(a)	Solut	ion of sodium chlor ater	ride and		swimming pool, nly inferred not n		[1]
	(b)	They neutr	have same numbe have different ons, <u>C/-35 has 18</u> has 20 neutrons.	number of	number in po	roton but did not the number of to show how	ted the the same elaborate on the neutron through they knew the	[1] [1]
	(c)	(i)			Table 8.1			
			name of ion	number of protons	number of neutrons	number of electrons	electronic structure	
			magnesium ion		12	lons mean that there is a difference between proton and electron. Mg loses 2 electrons	3	[2]
			chloride ion			Chlorine gains one electron	2,8,8	
		(ii)			(Mg)	2+		
			charges [1], elec	ctrons [1]				[2]
			Most failed to dra- for magnesium wi		arges and wro	ngly indicated the	e outermost shell	

	(1)	(1)			
	(d)	(i)	Hydrogen and chlorine share a pair of electrons between them.	Most wrongly stated by just stating it has covalent bonds without describing further.	[1]
		(ii)	Magnesium chloride is a solid at room temperature as <u>a large</u> amount of energy is required to overcome the <u>strong electrostatic</u> forces of attraction <u>between oppositely charged ions</u> .	Most students failed to state everything to get full marks. Many confused between structure and bonding. Structure describes how the particles are packed and its movement and arrangement.	[1]
			Hydrogen chloride is a gas at room temperature as only a <u>small</u> <u>amount of energy</u> is required to overcome the <u>weak intermolecular</u> forces of attraction <u>between molecules</u> .	[Total: 10 marks]	[1]
10	(a)	(i)	Universal indicator in hydrochloric acid is red while it is purple in sodium hydroxide. Reject orange/yellow for hydrochloric acid and blue for sodium hydroxide	Orange and blue are synonymous for weak acid and alkalis	[2]
		(ii)	There are more H* ions than OH- ions in acid. [1] There are more OH: than H* ions in alkaline solutions. [1]	Acids have both types of ions only that there are more of one type than the other. The converse is true.	[2]
			Add magnesium/carbonate/oxide in excess to acid [1] Filter the mixture to obtain magnesium as residue and keep the filtrate [1] Heat the filtrate to saturate the solution and allow it to cool to allow crystals to form [1] Dry the crystals between sheets of filter paper [1]	By drawing out the reaction, students can visualise better and not omit the steps.	[4]
	(b)	[1]	f moles of NaOH = 0.02x1.5 = 0.03 entration of HCl = 0.03 / 0.0250 [1] = 1.20 mol/dm ³		[2]
				[Total: 10 marks]	
11	(a)	(i)	Experiment 1 has a faster rate of reaction than experiment 2. / Experiment 1 took a faster time to complete than experiment 2.	Steeper gradient indicates a faster rate of reaction.	[1]
		(ii)	Powdered calcium carbonate has a larger surface area to volume	Most omitted to state which particle was the smaller one and assumed the reader to	[2]

		ratio / larger total surface area exposed to collisions. [1] Results in higher frequency of effective collisions [1], thus greater speed of reaction.	know. Many used higher probability instead of frequency.	
	(iii)	$CaCO_3(s) + 2HCl(aq) \rightarrow$ $CaCl_2(aq) + CO_2(g) + H_2O(l)$	Most could not recall reactions between acid and carbonates and the product obtained.	[2]
(b)	Volume of carbon dioxide released/(cm²) ω A o o	Experiment 3 2 4 8 8 10 Time (sec)	Sizeable number of students failed to label the correct term. Students failed to appreciate the half volume compared to first graph. Students did not follow the reaction speed of the first graph.	[1]
(c)	(i)	Exothermic reactions.	Heat increase is exothermic reaction	[1]
	(ii)	Greater energy is given off when bonds of products are formed [1] then energy taken in from surrounding in breaking bonds [1] of reactants. Hence there is a net increase in temperature.	Students failed to appreciate how bonds of existing compunds need to be broken in order to form new bonds. Breaking of bonds require energy which is taken in (endo) from surroundings. Forming of bonds require the energy to be given out to surroundings (exo). Since final is exo it means that more energy is given off than taken in.	[2]
	(iii)	Using a pH meter.	accurately = use instrument to measure	[1]
			[Total: 10 marks]	

End of Paper

Setter

Mr. Joel Lee

West Spring Secondary School MID-YEAR EXAMINATION 2018

Science (Chem	nistry) EXPRESS / NOR	MAL (A	CADE	EMIC)	5076/5078
Name		()	Date	10 May 2018
Class				Duration:	1 hr 45 min
Additional Materials:	Periodic Table				
READ THESE INS	TRUCTIONS FIRST				
You may use a HB pen Write in dark blue or bla	er, class and name on al acil for any diagrams, gra ack pen. per clips, highlighters, glu	phs, table	s or ro	ugh working.	
	d scientific calculator is e you do not show your w				
Section A (20 Marks) Answer all questions. Write your answers in t	he spaces provided on p	age 6.			
Section B (45 Marks) Answer all questions. Write your answers in t Show all relevant work	he spaces provided on tl ings.	ne questic	on pape	er.	
Section C (20 Marks) Answer both questions Write your answers in t Show all relevant work	he spaces provided.				
The number of marks is	s given in [] at the end o	f		FOR EXAM	IINER'S USE
each question or part q				Section A	/20
				Section B	/45
				Section C	/20

[Turn over

Section A

Answer all questions in the spaces provided on page 6.

1 The approximate pH values of four aqueous substances are shown. Which substance could be used to neutralise excess acid in the stomach?

	substance	рН
Α	baking soda	9
В	salt	7
С	orange juice	4
D	vinegar	3

- 2 Which two substances react without giving off a gas?
 - A citric acid and calcium carbonate
 - **B** hydrochloric acid and magnesium.
 - **C** nitric acid and aqueous ammonia.
 - **D** sodium hydroxide and ammonium sulfate.
- Which ionic equation represents the reaction between aqueous potassium hydroxide and dilute sulfuric acid?
 - A H^+ (aq) + OH $^-$ (aq) \rightarrow H₂O (I)
 - **B** H_2SO_4 (aq) + $2K^+$ (aq) $\rightarrow K_2SO_4$ (aq) + H_2 (g)
 - **C** $2K^+$ (aq) + SO_4^{2-} (aq) $\rightarrow K_2SO_4$ (aq)
 - **D** KOH (aq) + H⁺ (aq) \rightarrow K⁺ (aq) + H₂O (I)
- 4 A student proposed a few methods to safely prepare a sample of sodium chloride in the laboratory:
 - 1 sodium hydroxide and hydrochloric acid
 - 2 sodium metal and hydrochloric acid
 - 3 sodium nitrate and hydrochloric acid

Which of the above method(s) may be used?

- A 1 only
- B 2 only
- C 1 and 2 only
- **D** 1 2 and 3
- **5** Which of the following contains the greatest number of atoms?
 - A 0.5 mol of helium
 - B 30 dm³ of krypton
 - C 40 g of calcium
 - **D** 100 g of gold

What is the mass of sodium hydroxide present in 500 cm³ of 1.0 mol/dm³ sodium hydroxide solution?

A 0.5 g

B 20 g

C 40 g

D 2 kg

7 In a reaction, 10 cm³ of butene (C₄H₈) was burnt in 80 cm³ of oxygen. The equation for the reaction is shown:

$$C_4H_8(g) + 6O_2(g) \rightarrow 4CO_2(g) + 4H_2O(I)$$

At the end of the reaction, what is the total volume of gas remaining? (all volumes are measured at r.t.p.)

A 40 cm³

B 60 cm³

C 80 cm³

D 100 cm³

8 Which air pollutant below is **not** correctly matched to its source?

	pollutant	source	
Α	carbon monoxide	incomplete combustion of petrol in car engines	
В	nitrogen oxides	lightning activity	
С	sulfur dioxide	decomposition of organic matter	
D	unburned hydrocarbons	incomplete combustion of petrol in car engines	

9 The data below gives the concentration of various air pollutants, in parts per billion, in four different cities.

In which city are limestone buildings under the greatest threat from pollution?

	carbon monoxide	oxides of nitrogen	sulfur dioxide
Α	5	45	11
В	17	11	23
С	25	8	32
D	108	5	23

10 Which statement about the elements of the Periodic Table is correct?

A Group 0 elements are unreactive metals.

B Group II elements tend to form positive ions.

C Group VII elements exist as single atoms.

D The elements become more metallic from the left of the Periodic Table to the right.

- 11 Fluorine, F, is an element in Group VII of the Periodic Table. Which of the following statements about fluorine is **false**?
 - A Fluorine exists as diatomic molecules.
 - **B** Fluorine forms ions with a -1 charge.
 - **C** Fluorine has a higher melting point than chlorine.
 - **D** Fluorine is a non-metal.
- 12 The reaction between iron(III) ions and iodide ions is represented by the following ionic equation:

$$2Fe^{3+}$$
 (aq) + $2I^{-}$ (aq) $\rightarrow 2Fe^{2+}$ (aq) + I_2 (s)

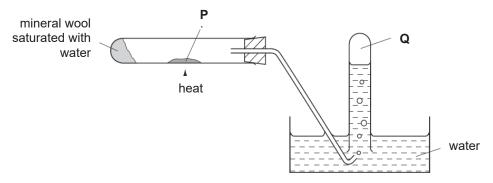
Which statement about the reaction is correct?

- **A** Fe²⁺ ions are oxidised by loss of electrons.
- **B** Fe³⁺ ions are reduced by gain of electrons.
- **C** Fe³⁺ ions are reduced by loss of electrons.
- **D** I ions are oxidised by gain of electrons.
- Aqueous solution **X** is known to contain a powerful oxidising agent.

 To two separate samples of solution **X**, a solution of potassium iodide was added to one, while a solution of acidified potassium manganate(VII) was added to the other.

Which of the following correctly describes the colour of solution **X** in the respective samples?

	after addition of aqueous potassium iodide	after addition of aqueous acidified potassium manganate(VII)
Α	brown	colourless
В	brown	purple
С	colourless	colourless
D	colourless	purple


The ionic equations below represent the reactions between four metals zinc, iron, **X** and **Y** and the aqueous ions of one of the other listed metals.

$$Zn + X^{2+} \rightarrow Zn^{2+} + X$$

 $Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$
 $X + Fe^{2+} \rightarrow no reaction$
 $Y + Zn^{2+} \rightarrow Y^{2+} + Zn$

What is the correct order of reactivity of the metals?

	most reactive			least reactive
Α	X	Fe	Zn	Υ
В	Y	Fe	X	Zn
С	Y	Zn	Fe	X
D	Zn	Υ	X	Fe

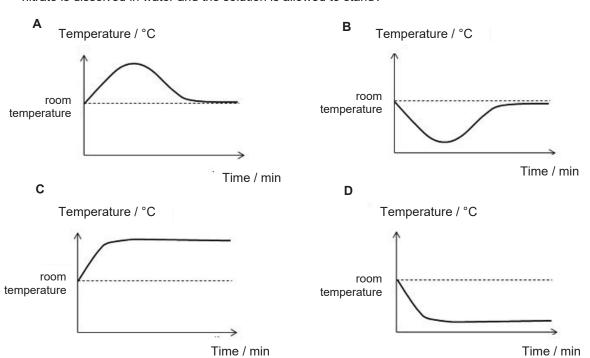
- 15 Which of the following explains why recycling ensures that metals will be available in the future?
 - **A** Dumping of metals in landfill sites is unsightly.
 - **B** Recycling avoids the environmental damage of opening new mines.
 - **C** Recycling costs less than obtaining metals from their ores.
 - **D** There are only limited amounts of metals in the Earth's surface.
- 16 In the experiment shown below, steam is passed over heated solid P, which reacts to give gas Q:

Which of the following could be P and Q?

	Р	Q
Α	copper	hydrogen
В	potassium	oxygen
С	silver	oxygen
D	zinc	hydrogen

17 Aqueous sodium hydroxide and aqueous ammonia were added separately to two different aqueous solutions each containing the same metallic ion. In both cases, a white precipitate was formed which dissolved when excess sodium hydroxide or ammonia was added.

What is the ion?


- A Al³⁺
- **B** Ca²⁺
- C K⁺
- **D** Zn²⁺
- An aqueous solution of compound **Z** reacts with aqueous sodium hydroxide to form a green precipitate. A piece of aluminium foil is added to the mixture and heated; a gas that turns damp red litmus paper to blue is given off.

What is **Z**?

- A ammonium nitrate
- B copper(II) nitrate
- c iron(II) chloride
- **D** iron(II) nitrate

- 19 Which of the following processes is exothermic?
 - A Burning of petrol in car engines
 - **B** Evaporation of a water puddle
 - C Melting tar for the paving of roads
 - D Sublimation of dry ice
- The dissolving of ammonium nitrate in water is an endothermic process.

 Which graph correctly shows how the temperature of the mixture changes over time when ammonium nitrate is dissolved in water and the solution is allowed to stand?

Answers

Section B

Answer **all** the questions in the spaces provided.

1 The physical and chemical properties of five unknown oxides are summarised in Table 1.1.

Table 1.1

unknown oxide	state at r.t.p	solubility in water	pH of aqueous solution	reacts with dilute hydrochloric acid?	reacts with dilute sodium hydroxide?
Α	solid	soluble	14	yes	no
В	solid	insoluble	-	yes	yes
С	gas	soluble	7	no	no
D	solid	insoluble	-	yes	no
E	gas	soluble	2	no	yes

(a)	Which oxide(s) is/are:	
	(i) non-metallic?	
		[2]
	(ii) able to form an alkali?	
		[1]
	(iii) amphoteric?	
		[1]
(b)	Give an example for your answer in (a)(iii).	
		[1]
(c)	Suggest the identity of oxide A.	
		[1]

2 Phosphorus is an element that does not react with water, but will react readily in air, forming an oxide.

Fig. 2.1 below shows a piece of phosphorus fastened to a copper wire and left for a few days in the set up. The water slowly rises up the tube.

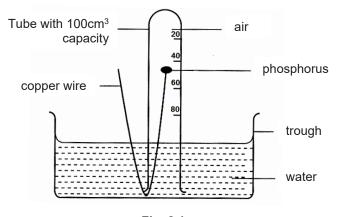
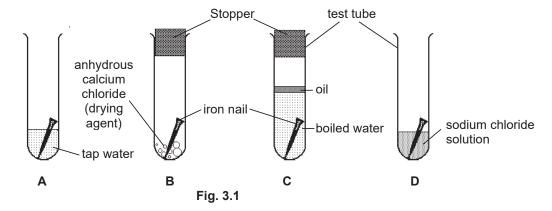


Fig. 2.1


(a)	State the gas in air that phosphorus has reacted with.	
		[1]
(b)	At which mark will the water level approximately be after a few days?	
		[1]
(c)	State two gases that are left in the tube after a few days.	
		[2]

When a mixture of aluminium powder and zinc oxide is heated, the mixture burns vigorously with a bright flame, and may even explode. The reaction is illustrated by the equation below.

$$2AI + ZnO \rightarrow AI_2O_3 + 3Zn$$

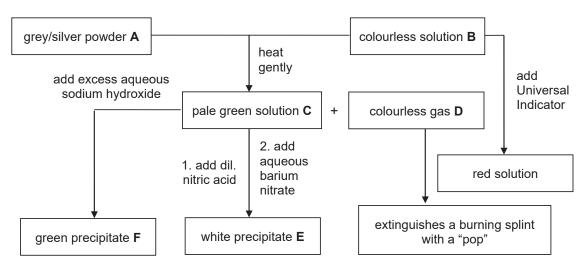
Is the reaction endothermic or exothermic? Explain your answer.
[2]
State whether zinc oxide is oxidised or reduced. Explain your answer in terms of electron transfer.
[2]

A common reaction iron undergoes is rusting. Fig. 3.1 below shows an experiment where some iron nails have been exposed to different conditions in four test tubes **A**, **B**, **C** and **D**.

(a)	In which test tube(s) will the iron nail not rust? Explain your answer.		
	[3]		
(b)	In which test tube will the iron nail rust the fastest?		
	[1]		

5 The electronic configurations of lithium, sodium and potassium are shown in Table 5.1.

Table 5.1


14010 011						
element	symbol	proton number	electronic configuration			
lithium	Li	3	2,1			
sodium	Na	11	2,8,1			
potassium	К	19	2,8,8,1			

(a)	Explain why these three elements are in the same group of the Periodic Table.	
(b)		-
		[2
(c)	Name one other element that is in the same group as the elements in Table 5.1.	
		[1]
(d)	Describe how the reactivity of the element in (c) would differ from the elements in Table 5.1.	
		[1

6	An i hea	unknown metal ${f M}$ forms the nitrate ${f M}{\sf NO}_3.$ The compound is stable, but decomposes upon stroug.	ong
	Whe	en a 17.0 g sample of MNO₃ was heated, it decomposed completely according to the equation:	
		$2MNO_3(s) \rightarrow 2MNO_2(s) + O_2(g)$	
	At th	ne end of the reaction, 2400 cm³ oxygen was collected.	
	(a)	Is the above decomposition reaction exothermic or endothermic one? Explain your answer.	
			[2]
	(b)	Calculate the number of moles of MNO ₃ that decomposed.	
			[2]
	(c)	Calculate the molar mass of MNO ₃ , and hence determine the identity of M.	
		Identity of M:	[3]
	(d)	Describe a test you would perform to confirm the identity of the oxygen produced.	

7	Group VII and Group 0 are found at the right side of the Periodic Table.								
	(a)	What are the names given to elements in G	roup VII and Group 0?						
			[1]						
	(b)	Explain why the elements in Group 0 are un	nreactive.						
			[1]						
	(c)	A student is given four substances below.							
		aqueous bromine	aqueous chlorine						
		aqueous potassium bromide	aqueous potassium chloride						
			substances to perform an experiment to show that clude the observations you would expect her to make, n of the reaction.						
			[01						

8 Fig. 8.1 describes some of the reactions of two unknown substances **A** and **B**.

[6]
[2]
_

Section C

Answer all the questions in the spaces provided.

9 Iron is extracted from iron ore in the blast furnace, as shown in Fig. 9.1 below.

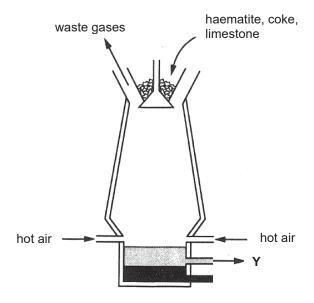


Fig. 9.1

(a) In the furnace, the coke is converted to carbon monoxide. A redox reaction then takes place between iron(III) oxide in haematite and carbon monoxide to produce iron and carbon dioxide.

(1)	white a palanced	chemicai	equation	101	me	reaction	petween	non(III)	oxide	and	carbor
	monoxide.										

(ii) Explain why the reaction in (i) is a redox reaction.

[2]

......[2]

(iii) Identify the reducing agent in reaction (a)(i).

[1]

(b)	Pure iron from the blast furnace is frequently mixed with other elements to form alloys. Give one example of this alloy, and explain why it is preferred to pure iron.					
	ro					
	[2]					
(c)	Identify substance \mathbf{Y} , and explain how it is formed. Include the relevant chemical equation(s) in your answer.					
	[A]					

10 Magnesium nitrate is commonly used as a dehydrating agent; it is also present in some fertilisers.

A student prepared a sample of magnesium nitrate by adding magnesium oxide to 200 cm³ of nitric acid of an unknown concentration. The equation is shown below:

$$2HNO_3$$
 (aq) + MgO (s) \rightarrow Mg(NO₃)₂ (aq) + H₂O (I)

In this particular reaction, 7.4 g of magnesium nitrate was collected at the end of the reaction.

(a) Given that the nitric acid reacted completely, calculate the moles of nitric acid that reacted and hence its concentration in mol/dm³.

(b)	Outline an experimental procedure to describe how pure crystals of zinc nitrate may be prepared using a similar method as above. State clearly the reagents that you use.
	[6]
(c)	Explain why sodium nitrate cannot be prepared with the method in (b) .
	[1]

[3]

End of Paper

West Spring Secondary School Science Department – Mid-Year Exam [2018] <u>Marking Scheme</u>

Name of Setter(s): <u>Joel Lee</u>
Title of Assessment: <u>Secondary 4 Express / 5 Normal (Academic)</u>
Subject: <u>Science (Chemistry) 5076/5078</u>
Duration: <u>1hr 45mins</u>

Section A [20 marks]									
1	2	3	4	5	6	7	8	9	10
Α	С	Α	Α	В	В	В	С	Α	В
11	12	13	14	15	16	17	18	19	20
С	В	В	С	D	D	D	D	Α	В

	Section B [45 marks]		
Q/No	Answer	Comments/ Suggestions to Markers	Marks
1(a)(i)	Oxides C and E	CAO	2
1(a)(ii)	Oxide A	CAO	1
1(a)(iii)	Oxide B	CAO	1
1(b)	lead(II)/aluminium/zinc oxide	CAO	1
1(c)	Any Group I oxide (sodium oxide, potassium oxide etc.)		1
2(a)	Oxygen	CAO	1
2(b)	It will be at approximately the 80cm² mark.	CAO	1
2(c)	Any 2: Nitrogen / Argon / Carbon dioxide / Water vapour	CAO	2
3(a)	The reaction is exothermic. It gives burns vigorously/may explode, signifying that a lot of heat is given out to the surroundings.	CAO OWTTE	1
3(b)	Zinc oxide is reduced. Zn gains 2 electrons from Zn ²⁺ in ZnO to Zn. (Students need to specify no. of electrons to get the mark.)	CAO	1
	(State in South Specify in State Specific in Specific		
	The nail will not rust in tubes B and C .	CAO	1
4(a)	There is <u>no moisture/water in tube B</u> , and	OWTTE	1
ı	There is no oxygen in tube C.	OWTTE	1

4(b)	Tube D .	CAO	1
E(a)	They have the <u>same number of valence electrons</u> .	CAO	4
5(a)		CAO	1
5(b)	<u>Lithium/sodium/potassium hydroxide</u> and <u>hydrogen gas</u> .	CAO	2
5(c)	Rubidium/caesium/francium	CAO	1
5(d)	It is more reactive.	CAO	1
6(a)	The reaction is <u>endothermic</u> , because <u>heat needs to be</u> <u>supplied/heat is taken in</u> for the reaction to start	OWTTE	2
6(b)	Moles of oxygen = $2400 / 24000$ = 0.10 mol. Moles of MNO ₃ = 0.10×2	cAO	1
	= 0.20 mol.		
6(c)	Molar mass of one mol. of $MNO_3 = 17.0 / 0.2$ = 85 g/mol A_r of M = 85 – [14 + (3x16)]	GAO	1
	= 23 Therefore M is sodium.	(ecf allowed)	1
6(d)	Insert a glowing splint into a test tube containing the gas. If it relights, the gas is oxygen.	CAO	1
7(a)	Halogens (Group VII) and noble gases (Group 0)	CAO	1
7(b)	They have a fully filled valence shell, which confers stability.	CAO	1
7(c)	Mix aqueous chlorine and aqueous potassium bromide. The mixture of solutions will turn from colourless to brown as bromine is displaced. 2 KBr + Cl ₂ × 2 KCl + Br ₂	CAO	1 1 1
8(a)	A: iron B: sulfuric acid C: iron(II) sulfate D: hydrogen E: barium sulfate F: iron(II) hydroxide	1m each	6
8(b)	Fe + H ₂ SO ₄ \rightarrow FeSO ₄ + H ₂ FeSO ₄ + 2NaOH \rightarrow Na ₂ SO ₄ + Fe(OH) ₂ FeSO ₄ + Ba(NO ₃) ₂ \rightarrow Fe(NO ₃) ₂ + BaSO ₄ (Any one)	CAO 1m for correct formula, 1m for balanced equation.	2

Section C [20 marks]							
9(a)(i)	$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3CO_2$		1				
9(a)(ii)	It is a redox reaction as Fe_2O_3 is reduced to Fe, and CO is oxidised to CO_2 . Fe_2O_3 loses oxygen while CO gains oxygen.	1m for stating oxidised and reduced species 1m for explanation	2				
9(a)(iii)	CO is the reducing agent.	CAO	1				
9(b)	(Stainless) steel is one iron-based alloy. It is preferred as it is stronger / more corrosion resistant than pure iron.	CAO	1				
9(c)	Y is slag. The limestone added to the furnace decomposes to form calcium oxide and carbon dioxide. The calcium oxide reacts with acidic impurities / silicon dioxide in the haematite to form slag. (1m can be given for the role of limestone in removing acidic	CAO	1 1 1				
	impurities, without mention of its decomposition) CaO + SiO₂ → CaSiO₃	CAO	1				
10(a)	Moles of Mg(NO ₃) ₂ = 7.4 / 148 = 0.050 mol. Moles of HNO ₃ = 0.050 x 2 = 0.10 mol.	CAO	1				
	Cons. of HNO ₃ = 0.10 / (200/1000) = 0.50 mol/dm ³		1				
10(b)	 The reagents used are <u>nitric acid</u> and zinc metal/carbonate/oxide. Add excess zinc metal/carbonate/oxide to nitric acid. After the reaction is complete, <u>filter</u> to obtain zinc nitrate solution as the filtrate. Heat the solution to obtain a saturated solution. Cool the saturated solution to crystallise zinc nitrate. 	OWTTE	1 1 1				
	5. <u>Filter</u> to obtain crystals of zinc nitrate, <u>wash</u> with cold distilled water <u>and dry</u> .		1				
10(c)	Sodium carbonate, the starting material, is <u>soluble in water</u> .	OWTTE	1				