Name:	Register Number:	Class:

4E 5N

BEDOK GREEN SECONDARY SCHOOL

4E

5N

Preliminary Examination 2018

SCIENCE (CHEMISTRY/BIOLOGY)

5078/01

Paper 1 Multiple Choice

21 August 2018

1 hour

Additional Material: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, register number and class on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C**, and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this Question Booklet.

A copy of the Data Sheet is printed on page 16.

A copy of the Periodic Table is given on page 17.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of 17 printed pages including the cover page.

© BGSS 2018

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Bedok Green Secondary School.

[Turn Over

1	Whic	h apparatus is most suitable to measure 21.20 cm³ of hydrochloric acid?
	Α	pipette
	В	burette
	С	measuring cylinder
	D	electronic top pan balance
2	Whic	h method is suitable for obtaining pure ethanol from wine?
	Α	filtration
	В	distillation
	С	crystallisation
	D	fractional distillation
3		nknown white substance was found on a murdered victim's body. A crime scene stigator conducted a series of tests on the substance.
	the s	, he dissolved the substance in water to form a colourless solution. Next, to a portion of colution, he added aqueous sodium hydroxide dropwise. A white precipitate was ed. The precipitate did not dissolve when excess sodium hydroxide was added.
	Wha	t is the white substance likely to be?
	Α	zinc nitrate
	В	zinc sulfate
	С	calcium nitrate

D

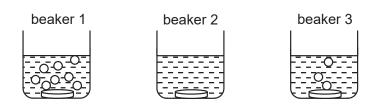
calcium sulfate

- 4 Which group of particles has eight electrons in their valence shells?
 - **A** Li⁺, Na⁺, C*l*⁻, S
 - **B** Li⁺, Na⁺, Cl⁻, Ne
 - **C** H⁺, Mg²⁺, F⁻, He
 - **D** S²⁻, Na⁺, O²⁻, Ar
- 5 An element has the electronic configuration, 2.8.4. What is the identity of the element?
 - A sulfur
 - B silicon
 - C carbon
 - **D** nitrogen
- 6 Two elements react to form a compound with the chemical formula X₂Y.

This compound is able to conduct electricity when dissolved in water.

Which of the following pairs is most likely to be elements **X** and **Y**?

	X	Y
Α	sodium	sulfur
В	magnesium	chlorine
С	oxygen	carbon
D	nitrogen	oxygen


7 Using the equation shown below, find the volume of oxygen needed to completely react with 36 dm³ of CH₄ at room temperature and pressure.

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

- **A** 24 dm³
- **B** 36 dm³
- **C** 48 dm³
- **D** $72 \, dm^3$

- 8 In a village, before using a cast iron wok, lemon juice is used to clean the surface of the wok. This is because
 - A the lemon juice is acidic and will react with iron surface to produce iron(II) salt.
 - B the lemon juice is acidic and will react with iron surface to produce iron(III) salt.
 - the lemon juice is acidic and will remove the iron(III) oxide that is found on the surface.
 - **D** the lemon juice is acidic and will add on to the iron(III) oxide that is found on the surface.
- 9 Aluminium oxide can react with both acid and alkali to form a salt. What type of oxide is it?
 - A basic
 - B acidic
 - C neutral
 - **D** amphoteric
- 10 What result is obtained when liquid bromine is added to aqueous potassium chloride?
 - **A** A brown vapour forms.
 - **B** A silvery solid is formed.
 - C A green gas is produced.
 - **D** There is no visible reaction.
- 11 Element **Z** has the electronic configuration of 2.8.8.1. A scientist dropped a piece of element **Z** in cold water. What would his observation be?
 - A Element **Z** sinks to the bottom of the container and no bubbles was seen.
 - **B** Element **Z** floats on the surface of the water and some bubbles were seen.
 - **C** Element **Z** sinks to the bottom of the container and effervescence was seen.
 - **D** Element **Z** darts around the surface of the water, effervescence and sparks were seen.

12

The diagrams above show the results obtained when three different metallic discs of the same shape and size were dropped into dilute hydrochloric acid separately.

Which metal is likely to have been placed in each beaker?

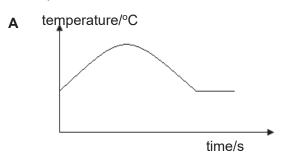
	beaker 1	beaker 2	beaker 3
Α	magnesium	copper	calcium
В	calcium	copper	magnesium
С	copper	magnesium	calcium
D	calcium	magnesium	copper

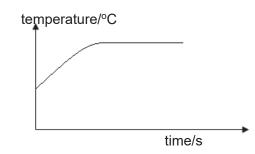
13 Nickel is between iron and lead in the reactivity series.

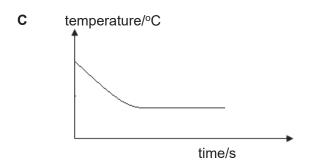
Which statement(s) can be deduced from its position in the reactivity series?

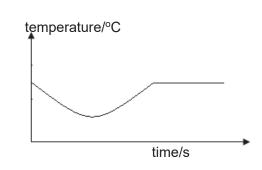
- I Nickel forms effervescence with cold water.
- II Nickel is obtained by heating nickel ore with carbon monoxide.
- III Nickel reacts with dilute hydrochloric acid to produce hydrogen gas.
- A I only
- B I and III
- C II and III
- D I, II and III
- Carbon monoxide, sulfur dioxide and oxides of nitrogen are all common pollutants of air.

 Which pollutant is shown with its correct source and its adverse effect on the environment?

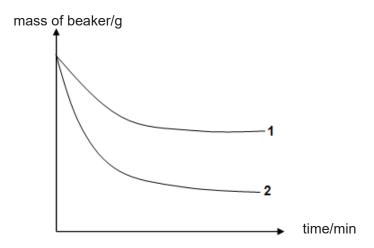

	pollutant	source	effect on the environment
Α	carbon monoxide	combustion of fossil fuels	acid rain
В	carbon monoxide	lightning	global warming
С	oxides of nitrogen	lightning	acid rain
D	sulfur dioxide	volcanoes	global warming


© BGSS 2018


15 Ammonium chloride was added to distilled water. Which graph correctly shows the change in temperature?


В

D



16 Acidified potassium manganate(VII) can be used to detect the presence of ethanol vapour in the breath of a person who has consumed alcohol.

If ethanol is present, a colour change is observed. What is the colour change observed?

- A colourless to brown
- **B** purple to colourless
- **C** colourless to purple
- **D** brown to colourless

17 Excess magnesium was added to a beaker of dilute hydrochloric acid on an electronic mass balance. A graph of the mass of the beaker and contents was plotted against time (curve 1).

What change in the experiment could give curve 2?

- I The same volume of a more concentrated solution of hydrochloric acid.
- II The same mass of magnesium but in smaller pieces.
- **III** A lower temperature.
- A I only
- B II only
- C I and II only
- **D** II and III only

A compound with molecular formula C₂H₄O₂ dissolves readily in water to form an aqueous solution. When this aqueous solution reacts with magnesium and limestone respectively, bubbles of colourless gas are observed. What is the structural formula of this compound?

© BGSS 2018

The diagram shows the structure of a monomer.

Which polymer can be made from this monomer?

What is the structure of the product formed when ethene gas is passed through aqueous bromine?

A

В

C

D

Name:	Register Number:	Class:

4E 5N

BEDOK GREEN SECONDARY SCHOOL

Preliminary Examination 2018

4E 5N

5076/03

5078/03

Paper 3 Theory

15 August 2018

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

SCIENCE (CHEMISTRY)

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in. You may use an HB pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 12.

A copy of the Periodic Table is printed on page 13.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's l	Jse
Section A [45 marks]	
Section B [20 marks]	
Total [65 marks]	

This document consists of 13 printed pages.

© BGSS 2018

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Bedok Green Secondary School

[Turn Over

Section A

Answer **all** the questions in the spaces provided.

1 Fig. 1.1 shows the particles in six substances.

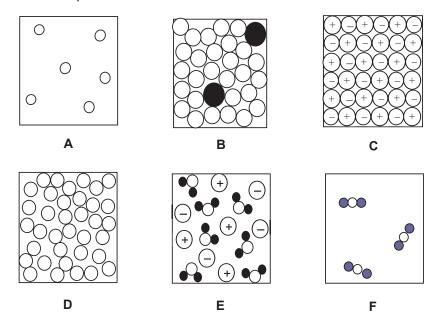


Fig 1.1

(a) Which diagram best represents

	(i)	carbon dioxide,		
	(ii)	molten copper,		
	(iii)	solid sodium chloride,		
	(iv)	helium,		
	(v)	brass.		 [5]
(b)	Which	n of the above substances, A – F , represents an elemen	nt?	
				.[1]

[Turn Over

2 Table 2.1 gives some information on the component gases of clean air in the atmosphere.

Table 2.1

gas	melting point / °C	boiling point / °C	
nitrogen	-210	-196	
oxygen	-218	-183	
argon	-189	-186	
other noble gases			
carbon dioxide	sublimes a	at –78 °C	
water vapour	0	100	

Separating air into its component gases is an important process in the industries. Air is first cooled to liquid at $-200\,^{\circ}$ C before it is gradually warmed up and separated into its component gases, as illustrated in Fig. 2.1.

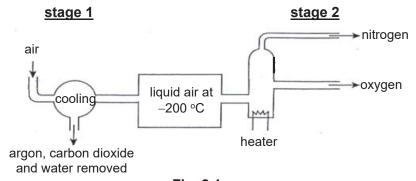


Fig. 2.1

(a)	Describe the arrangement and movement of the particles in the liquid air.
	rol
	[2]
(b)	Explain why argon, carbon dioxide and water can be removed when air is compressed and cooled to $-200\ ^{\circ}\text{C}$ in stage 1 .
	[1]
(c)	Name the method used to separate the components of liquid air in stage 2 .
	[1]

	(d)	Whi	ch component will be collected last in stage 2 ? Explain your answer.
			[2]
	(e)	Whi	ch component will have the largest volume collected in stage 2?
			[1]
_			
3	(a)		James Jeans, who was a great populariser of science, once described an atom of oon as being like six bees buzzing around a space the size of a football stadium.
		(i)	Suggest what were represented by the six bees in this description.
			[1]
		(ii)	What is missing from Jeans' description when applied to an atom of carbon?
			[1]
	(b)	Carl	bon has two isotopes which have the symbols $^{12}_{6}\mathrm{C}$ and $^{13}_{6}\mathrm{C}$.
		(i)	State, in terms of atomic structure, the difference between the two isotopes of carbon.
			[1]
		(ii)	Draw a diagram to show the arrangement of electrons in an atom of the ${}^{12}_{6}\mathrm{C}$ isotope.

[1]

4 Chromatography is often used to solve crimes involving forgery.

In an investigation of a case which involves a bank cheque issued with a forged signature, the sample of ink from the forged signature was tested together with inks from the pens of five suspects **V**, **W**, **X**, **Y** and **Z**. Fig. 4.1 shows the chromatogram that was obtained with the use of an organic solvent.

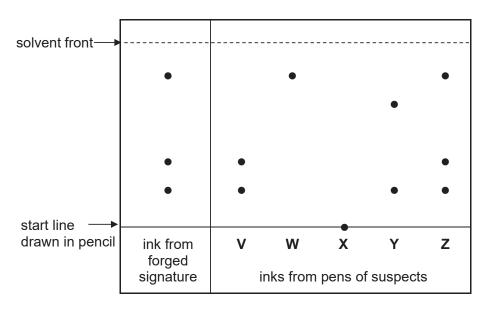
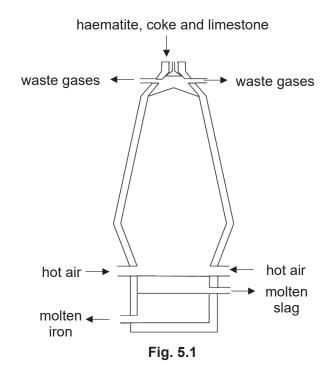



Fig. 4.1

(a)	Which suspect is most likely to have forged the signature in the bank cheque?
	[1]
(b)	Suggest why the ink from the pen of suspect ${\bf W}$ gives only one spot on the chromatogram.
	[1]
. ,	Explain why the start line is drawn in pencil but not in pen.
	[2]
(d)	Suggest a reason why water would probably not be a suitable solvent to use for this chromatography.
	[1]

© BGSS 2018 [Turn Over

5 Haematite, a common ore used for the extraction of iron, contains the compound, iron(III) oxide. Iron is produced in the blast furnace by heating a mixture of iron(III) oxide, coke and limestone with air. Fig. 5.1 gives the outline of a blast furnace in which iron is extracted from its ore.

(a)		cribe how carbon dioxide is produced under high heat in the blast furnace.
		[2
(b)	The	chemical equation for the production of iron in the blast furnace is shown.
		Fe_2O_3 (s) + 3CO (g) \rightarrow 2Fe (l) + 3CO ₂ (g)
	(i)	State the oxidation state of iron in iron(III) oxide.
		[1
	(ii)	Explain, in terms of oxidation states, whether iron(III) oxide is oxidised o reduced.
		[2]

6	(a)	A 500 cm³ aqueous sample contains 37.6 g of copper(II) nitrate. Calcula concentration of the copper(II) nitrate solution in mol/dm³.	te the
		[Relative atomic masses: A _r , Cu, 64; N, 14; O, 16]	
		concentration =mol/o	dm³ [2]
	(b)	When a piece of zinc is added to the copper(II) nitrate solution, a reddish brown is formed. Explain the observation	n solid
		is formed. Explain the observation.	
			[2]
7	Fig.	. 7.1 describes some of the properties and reactions of solution Z .	
		V	
	pr	white white recipitate silver nitrate dilute nitric acid aqueous solution Z green green precipitate, insoluble in excess aqueous sodium hydroxide	
		hydroxide	
	(a)	Fig. 7.1 Give the identities of X, Y and Z.	
	(-)	X	
		Υ	
		Z	
			[3]
	(b)	Write a balanced chemical equation for any one of the reactions in Fig. 7.1.	
		© BGSS 2018 [Tu	[2] rn Over

8 (a) Complete Table 8.1 by filling in the five blanks.

Table 8.1

name of substance	chemical formula	solubility in water
sodium carbonate		soluble
calcium nitrate	Ca(NO ₃) ₂	soluble
	K ₂ SO ₄	soluble
barium chloride		soluble
lead(II) chloride	PbCl ₂	
iron(III) carbonate		insoluble

	h	
	.)	
L	~	

(b) (i) Give the names of the two reagents in Table 8.1 that can be used to prepar white precipitate of calcium carbonate.	e a
1	
2	[1]
(ii) Describe the process of how you could prepare a pure dry sample of ca carbonate from the two reagents you have given in (b)(i).	lcium
	[3]

Section B

Answer any **two** questions in this section.

Write your answers in the spaces provided.

9		orine is an element found in Group VII. It would react vigorously with potassium, froup I, to form potassium fluoride. It would also react with hydrogen gas to form hydrog	
	fluoi	ride.	
	(a)	Write a balanced chemical equation for the reaction of fluorine and potassium.	
			[2]
	(b)	Draw and label the electronic structures of potassium fluoride and hydrogen fluorid	e.
		[Proton (atomic) numbers: H, 1;F, 9; K, 19]	
		potassium fluoride	
		hydrogen fluoride	
		nyarogon naonae	
			[4]
	(c)	Use these structures to explain why, at room temperature and pressure, potassium fluoride is a solid and hydrogen fluoride is a gas.	1
			• • • •
			[4]

© BGSS 2018 [Turn Over

10	Alco	hols	form a homologous series.	
	(a)	(i)	Give two general properties of a ho	mologous series.
		(ii)	Write the general formula of the ho	mologous series of alcohols
		(11)	-	[1]
	(b)	X is	an alcohol with two carbon atoms in	its molecule.
		(i)	Complete Table 10.1 by naming an	d drawing the full structural formula of X .
			т	able 10.1
			name of X	structural formula of X
				[2]
		(ii)	Give the chemical formula of the reacts with atmospheric oxygen.	organic substance that is formed when X
				[1]
		(iii)	A solution of X can be made by for process is completed in the laborat	ermentation of glucose. Describe how this ory.
				[3]
		(iv)	X is commonly used in Brazil as a can be used for this purpose.	fuel for vehicles. Suggest a reason why X
				[1]
			© BGSS 2018	[Turn Over

11	Whe	en hydrochloric acid reacts with strips of magnesium, a gas is given off.
	(a)	Draw a diagram to show how you would investigate the speed of the reaction between hydrochloric acid and magnesium in an experiment. Describe how you would find the speed of the reaction based on the data collected in this experiment.
		[4]
	(b)	State and explain one way of increasing the speed of this reaction. Use your knowledge of reacting particles in your explanations.
		[3]
	(c)	Give the name of the gas given off in this reaction.
		[1]
	(d)	G is the next member in the same group that magnesium belongs to.
		(i) State the chemical symbol of G .
		[1]
		(ii) Explain why G is placed in the same group as magnesium.

[Turn Over

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

BEDOK GREEN SECONDARY SCHOOL SCIENCE DEPARTMENT MARKING SCHEME

YEAR (2018)

SUBJECT: Science Chemistry 5076/5078 Paper 1

SETTER: Ms Nadiah

LEVEL: 4E5N

EXAM: Prelim

PAPER 1 (20 marks)

			1 1
1	В	1/1 ($\overline{\Phi}$
3	D	12) Par
	C	13	9)
4	D / N	14	
5	B //	15	D
6	(A) /	16	BUND
7	<i>D</i> / / /	17	$^{\wedge}$
8	c//V	18	Α
9	p	19	В
10	D 6	20	С
11	10//	1 50	

BEDOK GREEN SECONDARY SCHOOL SCIENCE DEPARTMENT MARKING SCHEME **YEAR (2018)**

SUBJECT: Science Chemistry 5076/5078 Paper 3 SETTER: Tang Hui Boon

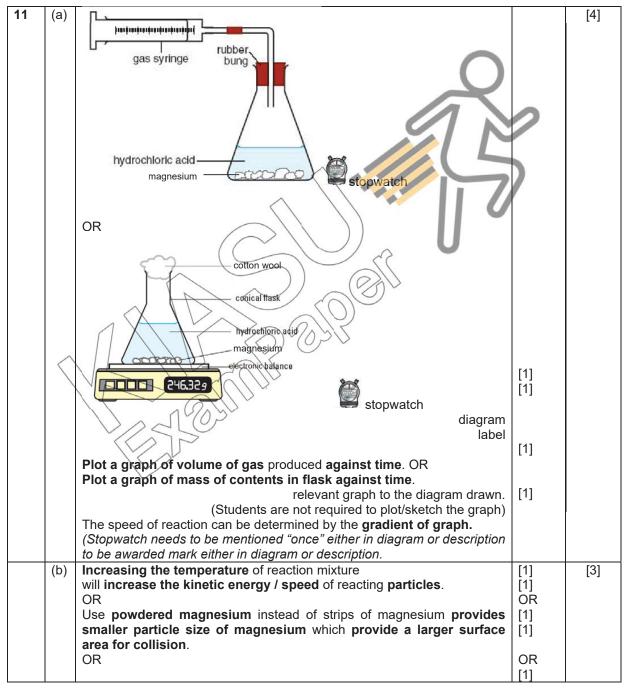
EXAM: Prelim

4E5N LEVEL:

PAPER 3

Section A: 45 marks

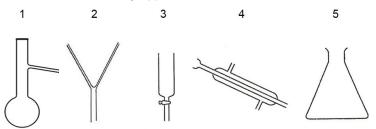
Qn. No.		Scoring Points	Marks	Max. Marks
1	(a)	(i) F	[1]	[5]
		(ii) D	[1]	
		(iii) C		
		(iv) A	[1]	
		(v) B	[1]	
	(b)	A and/or D	[1]	[1]
2	(a)	Particles are closely packed but not orderly arranged.	[1]	[2]
		Particles move freely and slide past each other throughout the liquid.	[1]	
	(b)	At –200°C, argon, carbon dioxide and water will be removed as solids.	[1]	[1]
	(c)	Fractional distillation	[1]	[1]
	(d)	Oxygen gas	[1]	[2]
		It has the highest boiling point.	[1]	
	(e)	Nitrogen gas	[1]	[1]
_				
3	(a)	(i) electrons	[1]	[1]
		(ii) protons or neutrons or nucleus	[1]	[1]
	(þ)\	(i) They have different number of neutrons. 12°C has 6 neutrons	[1]	[1]
		whereas 130 has 7 neutrons.		
		**	[1]	[1]
4	(a)	Suspect Z	[1]	[1]
	(b)	The ink from the pen of W is probably made from a pure substance .	[1]	[1]
	(c)	Unlike ink from a pen, pencil line will not dissolve in the solvent and	[1]	[2]
		will not interfere with the separation of the ink.	[1]	
		OR		
		Ink from a pen is a mixture and it will dissolve in the solvent and		
		will get separated in the solvent which will interfere with the separation of the ink.		
	(d)	The ink used for signing bank cheque would probably be insoluble in	[1]	[1]
	(4)	water.	[,]	ניו
L	L	Tracer.	l	


S (a) Carbon dioxide is formed when coke is burnt in hot air and when limestone is decomposed at high temperature. (ii) (iii) (ii					
Description Produced mainly by oxidation under this reaction. (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1] [2]	5	(a)			[2]
(b) (i) +3 (c) (ii) The oxidation state of iron has decreased and thus, it is reduced. Incris oxidation state has decreased from +3 in iron(III) oxide to 0 in iron. [1] [2] 6 (a) Number of moles of Cu(NO ₃) ₂ = 37.6/188 = 0.2 Concentration in mol / dm³ = 0.2/0.5 = 0.4 mol / dm³ [1] [1] [2] (b) Zinc is more reactive than copper. Zinc displaces copper in copper(III) nitrate to form copper metal which is the reddish brown solid. [1] [2] 7 (a) X: silver chloride / AgC/Y: iron(II) hydroxide / Fe(OH) ₂ Z: iron(III) chloride / Fe(OH) ₂ Z: iron(III) chloride / Fe(OH) ₂ Z: orrect formulae of reagents and products balanced squattor [1] [3] [3] 8 (a) name of substance sodium carbonate			(will not accept CO reducing Fe ₂ O ₃ equation given in part (b). CO ₂ is		
Iron's oxidation state has decreased from +3 in iron(III) oxide to 0 in iron. [1] [1] [2]		(b)		[1]	[1]
Concentration in mol / dm³ = 0.4 mol / dm³ (b) Zinc is more reactive than copper. Zinc displaces copper in copper(II) nitrate to form copper metal which is the reddish brown solid. 7 (a) X: silver chloride / AgC/ Y: iron(II) hydroxide / Fe(OH) ₂ Z: iron(II) chloride / Fe(CH) ₂ Z: iron(II) chloride / Fe(OH) ₂ Z: iron(II) chloride / Fe(OH) ₂ COR FeCI₂ + 2NaOH → Fe(OH)₂ + 2NaCI correct formulae of reagents and products [1] 8 (a) name of substance sodium carbonate Na₂CO₂ soluble		(c)	Iron's oxidation state has decreased from +3 in iron(III) oxide to 0		[2]
Concentration in mol / dm³ = 0.4 mol / dm³ [1] [2]					
(b) Zinc is more reactive than copper. Zinc displaces copper in copper(ii) nitrate to form copper metal which is the reddish brown solid. 7 (a) X: silver chloride / AgC/Y: iron(II) hydroxide / Fe(OH) ₂ Z: iron(II) chloride / Fe(OH) ₂ + 2AgC/OR FeC/ ₂ + 2NaOH → Fe(OH) ₂ + 2NaC/COPECT (COPPECT FOR COPPECT FOR COP	6	(a)	100		[2]
Zinc displaces copper in copper(II) nitrate to form copper metal which is the reddish brown solid. 7 (a) X: silver chloride / AgC/ Y: iron(II) hydroxide / Fe(OH) ₂ II [3]					
7 (a) X: silver chloride / AgC/Y: iron(II) hydroxide / Fe(OH) ₂ Z: iron(II) chloride / FeCl ₃ (b) FeCl ₂ + 2AgNO ₃ → Fe(NO ₃) ₂ + 2AgC/OR FeCl ₂ + 2NaOH → Fe(OH) ₂ + 2NaC/correct formulae of reagents and products balanced equation [1] 8 (a) name of substance sodium carbonate Na ₂ CO ₃ soluble [1] calcium nitrate Ca(NO ₃) ₂ soluble [1] barium chloride BaCl ₂ soluble [1] lead(II) chloride PbCl ₂ insoluble [1] (b) 1. sodium carbonate Fe ₂ (CO ₃) ₃ insoluble [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. [1] Wash the residue with distilled water and dry between pieces of filter [1]		(b)	Zinc displaces copper in copper(II) nitrate to form copper metal which		[2]
Y: iron(II) hydroxide / Fe(OH) ₂ Z: iron(II) chloride / Fe(Cl ₃ (b) FeC/ ₂ + 2AgNO ₃ → Fe(NO ₃) ₂ + 2AgC/OR FeC/ ₂ + 2NaOH → Fe(OH) ₂ + 2NaC/CORFEC/ ₂ + 2NaC/C			is the reddish brown solid.		
Y: iron(II) hydroxide / Fe(OH) ₂ Z: iron(II) chloride / Fe(Cl ₃ (b) FeC/ ₂ + 2AgNO ₃ → Fe(NO ₃) ₂ + 2AgC/OR FeC/ ₂ + 2NaOH → Fe(OH) ₂ + 2NaC/CORFEC/ ₂ + 2NaC/C	7	(2)	V: silver chloride / AgC/	_[1]	[2]
(b) FeC/₂ + 2AgNO₃ → Fe(NO₃)₂ + 2AgC/ OR FeC/₂ + 2NaOH → Fe(OH)₂ + 2NaC/ correct formulae of reagents and products balanced equation [1] 8 (a) name of substance chemical formula solubility in water substance sodium carbonate Na₂CO₃ soluble potassium sulfate Ca(NO₃)₂ soluble [1] Parium chloride PbC/₂ soluble [1] Insodium carbonate Doth 2 stated in 8(b)(i) together. Stated in 8(b)(i) together. Filter the mixture and collect the residue.	,	(a)	Y: iron(II) hydroxide / Fe(OH) ₂		[9]
FeCl₂ + 2NaOH → Fe(OH)₂ + 2NaCl correct formulae of reagents and products balanced equation [1] 8 (a) name of substance chemical formula solubility in water substance sodium carbonate Na₂CO₃ soluble potassium sulfate Ca(NO₃)₂ soluble potassium sulfate K₂SO₄ soluble [1] barium chloride BaCl₂ soluble [1] lead(II) chloride PbCl₂ insoluble [1] ifon(it) carbonate Fe₂(CO₃)₃ insoluble [1] (b) 1. sodium carbonate both 2. calcium nitrate [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Fitter the mixture and collect the residue. [1] Wash the residue with distilled water and dry between pieces of filter [1]	-	(b)	$FeCl_2 + 2AgNO_3 \rightarrow Fe(NO_3)_2 + 2AgCl$		[2]
8 (a) name of substance Solubility in water soluble				•	
8 (a) name of substance Soluble Solubl					
8 (a) name of substance Solubility in water substance Solubility in water substance Solubile Soluble S					
sodium carbonate sodium carbonate Sodium carbonate Sodium carbonate Sodium carbonate Soluble Sol			paranceu equation	[']	
sodium carbonate sodium carbonate Sodium carbonate Sodium carbonate Sodium carbonate Soluble Sol	8	(a)			[5]
calcium nitrate calcium nitrate calcium nitrate calcium nitrate calcium nitrate calcium nitrate Ca(NO ₃) ₂ soluble [1] barium chloride BaCl ₂ soluble [1] lead(II) chloride PbCl ₂ insoluble [1] [1] [1] [1] [1] [1] [1] [1					[0]
potassium sulfate K ₂ SO ₄ soluble [1] barium chloride BaCl ₂ soluble [1] lead(II) chloride PbCl ₂ insoluble [1] [1] ifon(ÎII) carbonate Fe ₂ (CO ₃) ₃ insoluble [1] [1] [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]			sodium carbonate Na ₂ CO ₃ soluble	[1]	
barium chloride BaCl ₂ soluble [1] lead(II) chloride PbCl ₂ insoluble [1] iron(III) carbonate Fe ₂ (CO ₃) ₃ insoluble [1] (b) 1. sodium carbonate 2. calcium nitrate (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1] [1] [1] [1] [1] [1] [1] [1			calcium nitrate Ca(NO ₃) ₂ soluble		
lead(II) chroride PbCl2 insoluble [1] [1]		\langle	potassium sulfate K ₂ SO ₄ soluble	[1]	
(b) 1. sodium carbonate both [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]			barium chloride BaCl ₂ soluble	[1]	
(b) 1. sodium carbonate both [1] 2. calcium nitrate [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]				[1]	
2. calcium nitrate [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]			iron(III) carbonate Fe ₂ (CO ₃) ₃ insoluble	[1]	
2. calcium nitrate [1] (c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]		(h)	1 sodium carbonate	both	[1]
(c) Mix sodium carbonate and calcium nitrate solution (or reagents stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]		(5)			[,,]
stated in 8(b)(i) together. Filter the mixture and collect the residue. Wash the residue with distilled water and dry between pieces of filter [1]		(c)			[3]
Wash the residue with distilled water and dry between pieces of filter [1]		` ′	stated in 8(b)(i) together.		' '
I I I DODOK				[1]	
рарет.			paper.		

Section B: 30 marks

Qn. No.			Scoring	g Points	Marks	Max. Marks
9	(a)	2K +	- F ₂ → 2KF cı	orrect formulae of reagents and product balanced equation	[1]	[2]
	(b)	[***	K F	[1]	[4]	
			F	correct transfer of electron and charge correct number of electrons	[1]	
<				correct number of shared electrons rect number of electrons in the molecule	[1] [1]	
	(c)		ssium fluoride is an ionic com ttraction between its opposite	pound with strong electrostatic forces	[1]	[4]
		thus	it requires a large amount	of energy to overcome the attraction	[1]	
				ng point. compound with weak intermolecular	[1]	
		It re		f energy to overcome the attraction, ling point.	[1]	
10	(a)	(i)	properties and	gous series have similar chemical	[1]	[2]
			they display a gradual chan number of carbon atoms incr (will not accept same function question ask for properties a	[1]		
	(1.)	(ii)	C _n H _{2n+1} OH		[1]	[1]
	(b)	(i)	name of X	structural formula of X		[2]
			ethanol	H H H-C-C-O-H H H		
				[1] [1]		
		(ii)	CH₃COOH	correct structural formula	[1]	[1]
		(iii)	Yeast is added to a solution in a water bath.	of glucose in a conical flask and placed	[1]	[3]
			Temperature of the mixture 37°C.	in the water bath needs to be kept at	[1]	

BGSS 2018 Page **3** of **5**


		The conical flask is connected through a delivery tube to a test tube with limewater to prevent oxygen in air from entering the conical flask. *please emphasize to students that a brief mention of the 3 conditions with no proper description of experiment will be penalised one mark in the exams because the question asked for description of process.	[1]	
	(iv)	X can be burnt exothermically to produce heat to power the vehicles.	[1]	[1]

BGSS 2018 Page **4** of **5**

	Hig mag	a higher concentration of hydrochloric acid provides more H* ions unit volume for collision with magnesium particles. either of the above answers her frequency of effective collision between H* ions and gnesium particles increases the speed of reaction. e: Students need to mention the reacting particles, magnesium and particles (H* ions) at least once in the answers.		
(c)	hyd	rogen	[1]	[1]
(d)	(i)	Ca	[1]	[1]
	(ii)	They have the same number of valence electrons OR	[1]	[1]
		They both have two valence electrons.		

21 The diagram shows some laboratory apparatus.

Which apparatus are needed to produce and collect pure water from seawater?

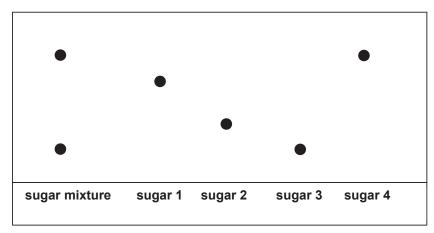
A 2 and 5

B 3 and 5

C 1, 2 and 4

- **D** 1, 4 and 5
- **22** Which substance, **A** to **D** undergoes changes in physical states from room temperature to 0°C?

	Melting point/°C	Boiling point / °C
Α	-2	65
В	-23	4
С	50	250
D	-187	-165


- 23 Which statements are true about compounds?
 - 1 They can be made from another compound.
 - 2 They can be made from metals alone.
 - 3 They can be made from non-metals alone.
 - 4 They can be made from a metal and a non-metal.
 - **A** 1, 2 and 3

B 1, 2 and 4

C 1, 3 and 4

D 2, 3 and 4

24 A sugar mixture was compared with four different simple sugars using chromatography. The results are shown in diagram below. What types of sugars does the mixture contain?

A sugar 1 and 2

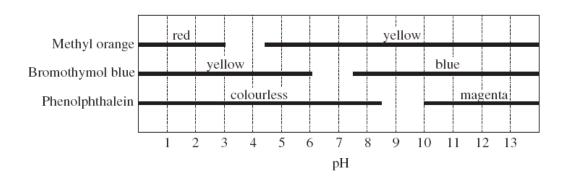
B sugar 1 and 4

C sugar 2 and 3

- **D** sugar 3 and 4
- 25 Which compound contains three atoms?
 - **A** H₂O

B HC/

C CaSO₄


- **D** NO
- 26 Which of the following compounds has the highest percentage of nitrogen by mass?
 - \mathbf{A} NH₄NO₃

B (NH₄)₂CO₃

 \mathbf{C} CO(NH₂)₂

- D NH₄C/
- **27** A student dissolved 14.9g of potassium chloride, KCl, in 100 cm³ of water. What is the concentration of the resulting potassium chloride solution in mol/dm³?
 - **A** 0.002 mol/dm³
 - **B** 0.01 mol/dm³
 - **C** 0.15 mol/dm³
 - **D** 2.0 mol/dm³

28 The graph below shows the colour ranges of the acid-base indicators methyl orange, bromothymol and phenolphthalein.

A solution, when placed in the three indicators separately, is yellow in methyl orange, yellow in bromothymol and colourless in phenolphthalein. What is the pH range of the solution?

A 2.5 to 3.5

B 4.5 to 5.5

C 7.5 to 8.5

- **D** 9.5 to 10.5
- 29 Which of the following elements burns in air to produce a substance which can react with both hydrochloric acid and sodium hydroxide?
 - A lead

B hydrogen

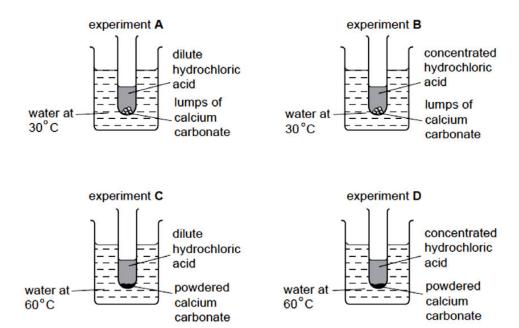
C iron

- **D** phosphorous
- **30** Which of the following reagents **cannot** be used to differentiate sodium hydroxide solution from sodium chloride solution?
 - A Aqueous iron(III) nitrate
 - B Aqueous copper(II) nitrate
 - C Aqueous lithium nitrate
 - **D** Aqueous ammonium nitrate

31 Separate samples of hydrogen peroxide are added to aqueous potassium iodide and to acidified potassium manganate(VII). It is known that hydrogen peroxide is both an oxidising agent and a reducing agent.

What colour changes are seen?

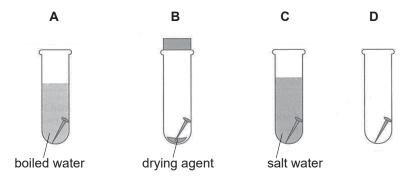
	aqueous potassium iodide	acidified potassium manganate(VII)
Α	colourless to brown	purple to colourless
В	brown to colourless	purple to colourless
С	colourless to brown	orange to green
D	brown to colourless	orange to green


32 X, **Y** and **Z** are elements in the same period of the Periodic Table.

X forms an acidic oxide, **Y** forms a basic oxide and **Z** forms an amphoteric oxide.

If **X**, **Y** and **Z** are placed in increasing order of atomic number (lowest atomic number first), which order is correct?

- 33 Rubidium is in the same group as sodium in the Periodic Table. What is a likely property of rubidium?
 - A It reacts with water to form hydrogen gas.
 - **B** It cannot be cut by knife.
 - **C** It reacts with chlorine gas to form a salt with the formula $RbCl_2$.
 - **D** It does not conduct electricity in the molten state.


34 Which of the following experiment will have the fastest speed of reaction?

35 The element chromium produces hydrogen from dilute hydrochloric acid but it does not react with cold water. When a piece of chromium is placed in lead(II) nitrate solution, solid of lead appear.

What is the order of decreasing reactivity of the metals lead, calcium and chromium?

- A calcium, chromium, lead B calcium, lead, chromium
- C chromium, calcium, lead D lead, chromium, calcium
- 36 In which tube is the iron nail **not** likely to rust?

37 Which of the following shows the correct percentage composition of oxygen, nitrogen and carbon dioxide found in dry unpolluted air?

	Oxygen	Nitrogen	Carbon dioxide
Α	78	21	1
В	1	78	21
С	21	78	1
D	78	21	78

38 Which of the following shows the correct use of the different fractions of petroleum?

	Fraction	Uses
Α	Petrol	used for making chemical feedstock
В	Bitumen	used for lubricating machine parts
С	Kerosene	used as fuel for aircraft
D	naphtha	used to pave road

- **39** Which of the following hydrocarbon undergoes substitution reaction?
 - A C_2H_4

B C₂H₆

C C₂H₅COOH

- D C_2H_5OH
- 40 Which of the following is the same for both ethanol and ethanoic acid?
 - A empirical formula
 - **B** functional group
 - **C** number of carbon
 - **D** homologous series

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	2	Ψ	helium 4	10	Ne	20	18	Ar	argon 40	36	굿	krypton 84	54	×e	131	86	R	radon				
	IIA				6	Œ.	fluorine 19	17	õ	chlorine 35.5	35	à	bromine 80	53	Н	iodine 127	85	At	astatine -				
					8	0	oxygen 16	16	တ	sulfur 32	34	Se	selenium 79	52	Te	tellurium 128	84	8	mninolod	116	_	livermorium	
	>				7	z	nitrogen 14	15	Ф	phosphorus 31	33	As	arsenic 75	51	S	antimony 122	83	ā	bismuth 209]
	Λ				9	O	carbon 12	14	Ö	silicon 28	32	Ge	germanium 73	20	တ်	± €	82	8 B	lead 207	114	Ή.	ferovium	
	≡				5	ш	boron 11	13	Ρſ	aluminium 27	31	Ga	gallium 70	49	H	indium 115	81	11	thallium 204				
					_						ı			ı		•			mercury 201	ı	ō	copernicium	
											58	2	copper 64	47	Pg	silver 108	79	ΡΠ	gold 197	111	Rg	roentgenium	
Group											28	Z	nickel 59	46	В	palladium 106	78	杠	platinum 195	110	Ds	darmstadtium	
Gro											27	ပိ	cobalt 59	45	R	rhodium 103	77	H	iridium 192	109	¥.	meitnerium	
		,	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	ő	osmium 190	108	£.	hassium	
											22	Mn	manganese 55	43	JC	technetium -	75	Re	rhenium 186	107	듄.	pohrum	
					number	<u>8</u>	mass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium	
				Key	proton (atomic) number	omic sym	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	μ α	tantalum 181	105	8	dubnium	
					proton	atc	relati				⊢			_			-		hafnium 178			Rutherfordium	
											21	Sc	scandium 45	39	>	yttrium 89	57 - 71	lanthanoids		89 - 103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	S	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium	
	_				က	5	lithium 7	1	Sa	sodium magnesium 23 24	19	¥	potassium 39	37	S	rubidium 85	55	ර	caesium 133	87	占	francium	

71	3	Intetium	175	103	ے	lawrencium	1	
22	2	ytterbium	173	102	S	nobelium	1	
69 F	Ε	thulium	169	101	Md	mendelevium)	
88 7	Ū	erbinm	167	100	F	fermium)	
67	Ç	holmium	165	66	Ë	einsteinium	J	
99	ŝ	dysprosium	163	86	ರ	californium	1	
28 t	Ω.	terbium	159	97	益	berkelium	1	
25 (5	gadolinium	157	96	S S	curium	J	
83 E		europium	152	95	Am	americium	ĵ	
62	E	samarium	150	94	Pu	plutonium	1	
61	E	promethium	į	93	d N	neptunium	1	
8 2	DZ.	neodymium	144	85	\supset	uranium	238	
88	ī	praseodymium	141	91	Ба	protactinium	231	
88 (3	cerium	140	90	드	thorium	232	
57	Z	lanthanum	139	88	Ac	actinium	1	
lanthanoids				actinoids				

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

4E/5NA

CANDIDATE NAME			
CLASS		REGISTER NUMBER	
SCIENCE Paper 3 Chemistry	(CHEMISTRY)		5076/03 & 5078/03 31 July 2018
Candidates answer o No additional materia	n the Question Paper. Is are required.		1 hour 15 minutes
READ THESE INSTR	RUCTIONS FIRST		

Write your name, register number and class on all work you hand in. You may use an 2B pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

You may lose marks if you do not show your working or if you do not use appropriate unites.

Section A (45 marks)

Answer all questions.

Write your answers in the space provided on the question paper.

Section B (20 marks)

Answer any two questions.

Write your answers in the space provided on the question paper.

A copy of Data Sheet is printed on page 15.

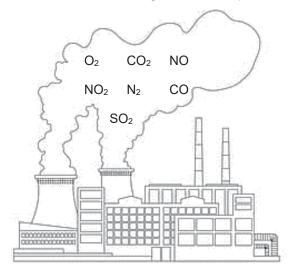
A copy of the Periodic Table is printed on page 16.

At the end of the exam, fasten all your work securely together.

The number of marks in given in brackets [] at the end of each question or part question.

For Exam	iner's Use
Section A	
Section B	
Section C	
Total	

Setter: Ms Cynthia Chong


This docu

ed pages.

Section A

Answer **all** questions in the spaces provided.

A1 The diagram below shows the formulae of some gases found in polluted air.

Choose formulae from the diagram to answer the following questions (a) to (d). Each may be use once, more than once or not at all.

(a)	Give the formula of a gas that is produced by incomplete combustion of fuels. State harmful health effect of this gas.	the
		[2]
(b)	Give the formulae of two gases that are produced by reactions in catalytic converters	s. [1]
(c)	Give the formulae of two gases that are involved in both respiration and photosynthe	sis. [1]
(d)	Give the formulae of two gases that produce acid rain. and	[1]
	[Total: 5 ma	ırks]

A2	Sulfur and	sulfur	compounds	are common	in	the	environme	nt.
----	------------	--------	-----------	------------	----	-----	-----------	-----

(b)

- A sample of sulfur from a volcano contained two different types of sulfur isotopes: sulfur-32 and sulfur-34.
 - Complete the table below to show the atomic structure of each isotope of sulfur. (i)

lastana		Number of	
Isotope	Proton	Neutron	Electron
Sulfur-32			
Sulfur-34			

	Sulfur-32			
	Sulfur-34			
				[2
(ii)		atomic mass of sulfur is ot a whole number.	32.2. Explain why does t	he relative atomic mass
				[2]
				[2]
		produced during volcani ous, colourless gas which	c eruptions is hydrogen smells of rotten eggs.	sulfide. H ₂ S. Hydroger
(i)		t-and-cross diagram to how outer electrons only	represent the bonding	in a hydrogen sulfide

[2]

(ii)	Explain, in terms of bonding and structure, why hydrogen sulfide gas does not coelectricity.	
		[2]
	[Total: 8 n	narks]

A3 The table below shows some salts and products that contain them.

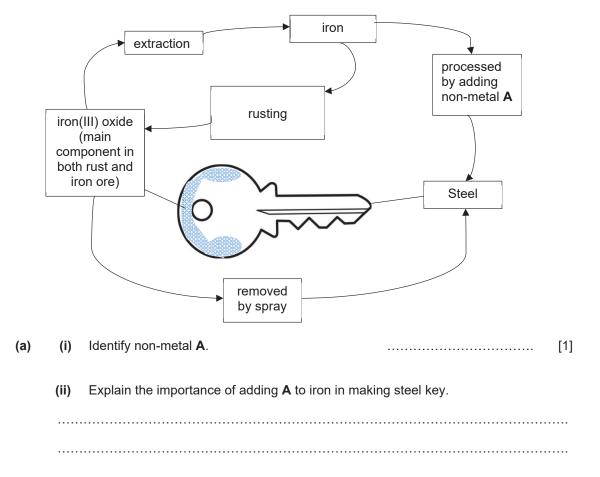
Salt	product
Silver chloride	Photographic film
Potassium nitrate	fertiliser
Zinc sulfate	Health supplement

(a)	(i)	Which salt in the table can be made Explain your reasoning.	by precipitation?	
	Salt:			
	Rea	son:		[2]
	(ii)	Which salt in the table can be made this salt.	by titration ? Suggest two reagents needed to m	ake
	Salt			
	Rea	gent 1:	Reagent 2:	[2]

(b) Other substances are used to make a range of useful products. Put a tick $(\sqrt{})$ in one box in each row to show a correct use of each substance.

	Use				
Substance	to make car battery	to make road surface	to reduce acidity in soil	to fill filament bulb	
Calcium silicate					
Calcium hydroxide					
Argon					
Sulfuric acid					

[2]


[Total: 6 marks]

A4	In an	oil refinery petroleum is	s separated into usefu	I fractions by fract	tional distilla	ation.	
	(a)	What is the physical	property that allows th	e various fractions	s in crude c	oil to be sepa	rated?
							[1]
	(b)		demand for petrol, heactions as shown in the		n as diesel	undergoes cı	racking
		C ₁₂ F	J_{26} \rightarrow C_6	H ₁₄ + C ₂ H ₄	produ	uct P	
		Give the chemical na	me and formula of the	product P .			
		Chemical name:					
		Chemical formula:					[2]
						[Total: 3	marks]
			•	olid aluminium oxid	de is made ate symbol	at the same s.	
	(b)	(i) The table show Complete the table	s some information abable.	oout oxidation stat	te changes	during the re	action.
		Element	Oxidation state at the start	Oxidation stat	te at Ox	kidised or red	uced?
		Oxygen	-2	-2		unchange	d
		Aluminium					
		iron					
		(ii) Hence, or other	rwise, explain why The	ermit reaction is a	redox reac	etion.	[2]

5076/03/BDS4E5N/Prelim/18

(c)	Is Thermit reaction an endothermic or exothermic reaction? Explain your answer.
	[2]
(d)	Predict if the melting point of aluminium oxide is high or low. Explain your answer in terms of structure and bonding.
	[2]
	[Total: 8 marks]

A6 Common keys are made from steel. One problem with using steel is that the iron in steel will rust. The diagram shows the cycle of changes that happens when iron in a steel key rust and then extracted.

5076/03/BDS4E5N/Prelim/18

			[2]
(b)		nop sells a spray-on rust treatment. The spray contains particles of zinc. Explain prevents rust from forming.	how
			[2]
(c)	Write	e a balanced chemical equation for the extraction of iron in the blast furnace.	
			[1]
(d)		ugh the extraction of iron from blast furnace is a relatively cheap process, steels arely recycled.	e stil
	Expl	lain the importance of recycling of metals such as iron.	
			[1]
		[Total: 7 m	arks
(a)		pane burns completely in oxygen to form carbon dioxide and water. equation for the reaction is	
		$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	
	(i)	Calculate the number of moles in 44 g of propane.	
			[1]
	(ii)	Hence, calculate the volume of carbon dioxide that is produced from 44 g of pro	pane

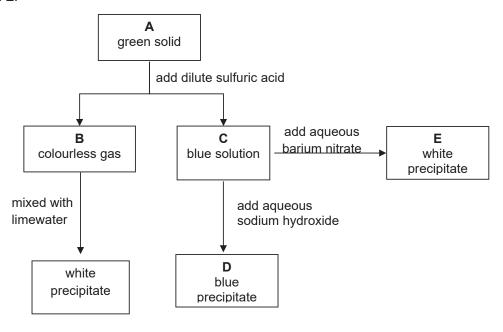
A7

												[2]
(b)	(i)	State why pro	pene ca	n be m	ade ir						annot.	
												[1]
	(ii) 	Describe a te	st to disti	nguish	betw	een p	roper	ne an	d pro	pane). 	
												[2]
	(iii) 	State one har										
												[1]
(c)	The	figure below sh	ows the	structu	ire for	mula	of par	rt of a	an ad	ditior	n polymer.	
				H F							Н	

Deduce and draw the structural formula of the **monomer** from which this polymer is made.

H H H

H H H


[Total: 8 marks]

Section B

Answer any **two** questions in this section. Write your answers in the spaces provided.

В8	(a)	Explain why sulfuric acid can act as an acid and why potassium hydroxide can act as an alkali. Give examples of chemical reaction that sulfuric acid and potassium hydroxide undergo.
		[4]
	(b)	Write the ionic equation that describes the reaction of an acid with an alkali
		[4]

(c) The diagram below shows some of the properties and reactions of the substances A, B, C, D and E.

Identify these substances.

(i)	green solid A,	
(ii)	colourless gas B ,	
(iii)	blue solution C ,	
(iv)	blue precipitate D .	 [4]

(d) The formation of white precipitate **E** shows the presence of sulfate ions.

Why does this **not** prove that sulfate ions are present in solid **A**?

[Total: 10 marks]

В9	(a)	The speed of a chemical reaction can be changed by • increasing the temperature of the reaction, • decreasing the concentrations of reacting solutions.
		(i) State the effect that each of these has on the speed of a reaction.
		(ii) Use your knowledge of reacting particles to explain your answer to (a)(i).

- **(b)** A student carried out an experiment to investigate how the speed of reaction between magnesium and hydrochloric acid will change with time.
 - (i) Draw a labelled diagram to show the experiment setup that the student use.
 - (ii) Describe how the student will carry out the experiment, clearly stating the physical quantity he will measure.
 - (iii) Describe how the speed of this reaction would change with time.

 	[5]											

[Total: 10 marks]

B10	(a)	What is the common name given to elements in Group VII? [1]
	(b)	Give the electronic structures of fluorine and chlorine and use these to explain why they are placed in Group VII.
		[2]
	(c)	Chlorine was discovered by Carl William Scheele in 1774 at Sweden. The origin of the name came from the Greek word "chloros" meaning "pale green".
		In 1886, a new element was discovered. Based on its electronic structure, colour and its reaction with zinc chloride, this new element was placed above chlorine in Group VII of the Periodic Table and given the name fluorine.
		(i) Predict the colour of fluorine.
		[1]
		(ii) Suggest how the colour of fluorine could help explain its position in the Periodic Table.
		(iii) Describe what would be observed when fluorine is bubbled into a solution of potassium bromide. Explain your observation.
		[2]

(d)

the n	aked numan eye.
(i)	Consider the properties of other elements in the same group as this element, predict one physical and one chemical property of the element with atomic number 85.
	[2]
(ii)	Give the chemical formula of the compound formed between magnesium and the element with atomic number 85.
	[1]
	[Total: 10 marks]

The element with an atomic number of 85 is so unstable that it has never been seen by

End of Paper

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

5076/03/BDS4E5N/Prelim/18

The Periodic Table of Elements

						Т			Γ			Г			г			Г			
	0	He He	4	10 A	neon C	18	Ar	argon 40	36	궃	krypton 84	54	×	xenon 131	98	R	radon				
	IIA			のμ	fluorine 10	17	Ö	chlorine 35.5	35	ă	bromine 80	53	Н	iodine 127	85	Αt	astatine -				
	ΙN			∞ C	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	e	tellurium 128	84	Ъ	polonium —	116	<u> </u>	livermorium	Ĭ,
	^			7 N	nitrogen 1.1	15	Д	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209				
	Ν			ω ()	carbon 12	1 4	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	8 B	lead 207	114	H	flerovium	I.
				s a	boron 11	- 62	ΡΙ	aluminium 27	31	Ğ	gallium 70	49	П	indium 115	81	Ë	thallium 204				
			.1						8	Zn	zinc 65	48	ප	cadmium 112	8	Ē	mercuny 201	112	ပ်	copernicium	ij
												г			П		gold 197	П		ᆮ	п
dn	994								28	Z	nickel 59	46	В	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium	Ē
Group									27	ပိ	cobalt 59	45	R	rhodium 103	77	H	iridium 192	109	¥	meitnerium	E
		1 H	1						26	Бe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	£	hassium	Ľ
									25	Mn	manganese 55	43	٦ _C	technetium -	75	Re	rhenium 186	107	윰	pohrium	ľ
			23	c) number	300	3			24	ပ်	chromium 52	42	Mo	nolybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium	Ĩ.
			Key	(atomic) ni	name name relative atomic r				23	>	vanadium 51	41	g	niobium 93	73	ط ھ	tantalum 181	105	음	dubnium	ŀ
				proton (atomic sy	ritolar Signature				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	弘	Rutherfordium	f
			, J			_			21	တ္တ	scandium 45	39	>	yttrium 89	57 - 71	lanthanoids	hafnium 178	89 - 103	actinoids		
	=			4 g	beryllium	12	Mg	magnesium 24	20	S	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium	Ť
	_			ი <u>:</u>	lithium 7	-	Na	sodium magnesium 23 24	19	メ	potassium 39	37	&	rubidium 85	55	රි	caesium 133	87	Ŀ	francium	Ĭ

7.1	3	lutetium	175	103	۲	lawrencium	1
70	Υp	ytterbium	173	102	2	nobelium	1
69	E	thulium	169	101	Md	mendelevium	1
98	ш	erbium	167	100	H	fermium	1
29	운	holmium	165	66	Es	einsteinium	d
99	ò	dysprosium	163	98	ひ	californium	1
93	Д	terbium	159	26	益	berkelium	1
64	рg	gadolinium	157	96	S	curium	ĵ
63	En	europium	152	92	Am	americium	ĵ
62	Sm	samarium	150	94	Pu	plutonium	1
61	Pm	promethium	Ī	93	ď	neptunium	1
09	PZ	neodymium	144	92	\supset	uranium	238
29	ሗ	praseodymium	141	91	Ба	protactinium	231
28	Ö	cerium	140	06	모	thorium	232
25	Б	lanthanum	139	89	Ac	actinium	1
lanthanoids				actinoids			

The volume of one mole of any gas is $24\,\text{dm}^3$ at room temperature and pressure (r.t.p.).

2018 Bedok South Secondary School Secondary 4 Science(Chemistry) PRELIM Marking Scheme

Paper 1: 30 Marks

		-							
21	22	23	24	25	26	27	28	29	30
D	В	С	D	Α	С	D	В	Α	С
31	32	33	34	35	36	37	38	39	40
Α	В	Α	D	Α	В	С	С	В	С

Answe	r					
A1	(a)	CO Prevents blood from absorbing oxygen which causes headaches, giddiness or may lead to death.				
	(b)	N ₂ and CO ₂ (both must be correct)	1			
	(c)	CO ₂ and O ₂ (both must be correct)	1			
	(d)	NO ₂ and SO ₂ (both must be correct)	1			
A2	(ai)	Sulfur-\$2 16 32 16 16 16	1			
	1	Sultur-34 16 = 18 16	1			
	(ali)	Each sulfur isotope has different relative abundance/ percentage/ amount When the average of the masses of the 2 sulfur isotope is taken, there is decimal (Jany phrase to the effect)	1			
	(bi)	Correct valence electron for sulfur and hydrogen Correct number of shared electrons (2 single bond)	1			
	(bii)	[structure] hydrogen sulfide is a <u>simple covalent molecule/compound</u> [charge carrier] there are <u>no free moving electrons/charge carrier</u> to conduct electricity. [bonding]				
		[Total: 8 marks]				

A3	(ai)	Salt: Silver chlo	ver chloride 1				1	
(salt pre)		Reason: It is an	insoluble sa	lt.				1
	(aii)	Salt: Potassium nitrate (SPA – titration (neustralisation))				1		
		Reagent 1: pota	ssium hydro	xide Reage		tric acid	(both correct)	1
	(b)				Use			
		Substance	to make car battery	to make road surface	to reduce		to fill filament bulb	2
		Calcium silicate (SLAG)		1		1		
		Calcium hydroxide(slaked lime)			,	V	\cap	
		Argon Sulfuric acid				1	X	
			√ orko 2/2 oor	reat 1 may	ole do	ot 0		
		All correct – 2 m	arks 3/2 con	rect – i mar	K CO		marks Total: 6 marks	s1
A4	(a)	Difference in boi	ling point		***			1
	(b)	Name: Butene			1274	-11	0	1
		formula: <u>C₄H₈</u>			2	U	Total: 2 marks	
A5	(a)	2 Al (s) + Fe ₂ O	$(\underline{\mathbf{s}}) \rightarrow 2 \overline{\mathbf{p}} \mathbf{e}$	(<u>I</u>) + Al ₂ (<u>S</u>	2		Total: 3 marks	1
AU	(a)	correct)	3 3 7 2 9		9) *	(all I	nust be	
	(bi)	Element	Oxidation start	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	on state e end		ised or uced?	
\langle		dxydeh	A) (1)	-2	2	unch	anged	
\		Aluminium	11/9	+:	3	Oxi	dised	1
		iran 700	+3	0)	red	uced	1
	(bii)	Aluminium is oxi reduction occur						1
	(c)		Exothermic reaction. (heat given out , hot) Temperature must be high for iron to be in liquid state. (any phrasing to the effect)					1
	(d)	[P1] Aluminium oxide has a <u>high</u> melting point				3 pt – 2 M		
		[P3] large amou	oxide is an <u>ionic</u> compound/ has <u>giant lattice</u> structure, <u>unt of heat</u> is needed to overcome the <u>strong</u> <u>orces of attraction</u> between the oppositely-charged				2 pt – 1M	
							Total: 8 marks	s]
A6	(ai)	carbon						1

	(aii) [P1] Carbon will <u>disrupt the orderly</u> arrangement of iron, (ALLOY) [P2] making it more <u>difficult</u> for the iron atoms to slide past each other,		3 pt – 2 M	
		[P3] thus <u>increasing the strength</u> of iron. (any phrasing to the effect)	2 pt – 1M	
	(b)	[P1] zinc is more reactive than iron / zinc has higher tendency to lose its electrons,	1	
		[P2] zinc will preferentially <u>corrode</u> <u>in place of iron</u> .	1	
	(c)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	1	
	The earth's mineral ores are limited and are non-renewable. Recycling helps to conserve the limited resources in our earth and make them las longer.			
	With a decrease of mining for ores, land will be free for other uses eg, agriculture.			
	Recycling means saves the environment from pollution as unsightly scrap metals is removed from the environment.			
		[any one, reject any answer about saving cost] [Total: 7 marks]		
A7	(ai)	Number of moles of propane: 44/44 = 1 mole	1	
	(aii)	Number of moles of CO ₂ : 3 moles	1	
	` ′	Volume of CO ₂ : 3 x 24 = 72 dm³ (must include correct units, no ecf)	1	
	(bi)	Propene is <u>unsaturated/ contains C=C double bond</u> , thus it is able to undergo <u>addition reaction</u> . OR Propane is saturated, contains all single covalent bond, thus unable to undergo addition reaction. (any phrasing with similar meaning)	1	
	(bii)	[test] Add (aqueous) bromine solution to propane and propene.	1	
		[result] reddish brown colour of bromine will become colourless in propene but remains unchanged in propene	1	
	(biii)	Polymer is non-biodegradable and thus will [effect] remain in the environment for a long time, thus causing land pollution/ constantly in need to find land to bury them. Polymer, when burnt, will release toxic gases to the environment thus,	1	
	1	causing air pollution. [any one]		
	(9)	F	1	
		monomer (alkene)		
		[Total: 8 marks]		
В8	(a)	[P1] An acid is a substance which <u>produces hydrogen ions when it is dissolved in water.</u>	1	
		[P2] Example: Sulfuric acid reacts with reactive metal to produce salt and hydrogen gas/ sulfuric acid reacts with carbonates to produce salt,	Any	

		water and carbon dioxide gas. Sulfuric acid react with base/alkali to produce salt and water.			
		[P3] An alkali is a substance which <u>produces hydroxide ions when it is</u> <u>dissolved in water</u> .			
		[P4] Example: sodium hydroxide reacts with ammonium salt to form salt, water and ammonia gas. (full credit if formulae/ chemical equation given)			
	(b)	H^+ (aq) + OH^- (aq) $\rightarrow H_2O$ (I)	1		
	(c)	Green solid A: copper(II) carbonate	1		
		colourless gas B: <u>carbon dioxide</u>	1		
		blue solution C: Copper(II) sulfate	1		
		blue precipitate D: copper(II) hydroxide	1		
	(d)	Sulfuric acid was added to the green solid, thus the sulfate ion might have come from sulfuric acid instead.	1		
		[Total: 10 marks]			
В9	(a)	[Etemp] when temperature is increases, speed of chemical reaction increases.			
		[Econc] when concentration decreases, speed of chemical reaction decreases.			
		[Rtemp] when temperature increases, particles gains kinetic energy and move faster. Frequency of effective collision will increases.			
		[Rconc] when concentration decreases, number of particles per unit			
		volume decrease. Frequency of effective collision will decreases.			
		[collision theory – 1 mark]			
	(b)	Measurement of volume of Measurement of decrease in mass			
		hydrogen gas Cotton Wool	Appar atus 1M		
		gas syringe [1] Hydrochloric Acid Magnesium Ribbon	Set up 1M		
		reaction mixture [1]			
		Student will record the volume of hydrogen gas [1] produced at regular interval. [1] Student will record the decrease in mass of reaction mixture [1] at regular interval [1].	2		
		Speed of reaction will decrease with time.	1		

		[Total: 10 marks]	
B10	(a)	halogen	1
	(b)	[electronic configuration] E.C of Fluorine: 2.7, E.C of chlorine is 2.8.7 (state both to get 1 mark)	1
		Since they both have 7 valence electron , thus they are placed in group VII.	1
	(ci)	Yellow	1
	(cii)	It is <u>lighter</u> in colour than chlorine, thus Fluorine is placed <u>above</u> <u>chlorine</u> in group VII.	1
	(ciii)	[observation] colourless solution turns reddish brown.	1
	1	[explanation] fluorine is more reactive than bromine, thus it will displace bromine from potassium bromide and produce bromine.	1
	(di)	[physical] cannot conduct electricity/ black colour/ solid at room temperature [any one] to NOT write "high/low" melting point)	1
,		[chemical] gain 1 electron to form anion/ least reactive in group VII/ reacts with metal to form ionic compound/ reacts with non-metal to form covalent compounds. [any one]	1
	(dii)	MgAtz	1
		[Total: 10 marks]	

	Register No.	Class	
Name			

Bendemeer Secondary School Bendemeer Secondary S Bendemeer S emeer Secondary School Bendemeer Secondary School BENDEMEER GONDARY SCHOOL Bendemeer Secondary Sch Bendeme Benden meer Secondary School Bendemeer Secondary School 20.18 PRELIMINARY EXAMINATION endemeer Secondary School Bendemeer Secondary Bende Bende SECONDARY EXPRESS 5 NORMAL (ACADEMIC) ondary School Bende Bende Bende Bendamer Secondary School Bendamer Secondary Bender Bendem Bendemeer Secondary School Bendemeer Secondary School 15076/Odary School Bendemeer Secondary School Be Bendemee Bendemeer Secondary School School Bendemeer Secondary S

DATE: 29th August 2018

DURATION: 1 hour

READ THESE INSTRUCTIONS FIRST

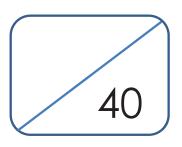
Write in soft pencil.

Write your name, class and register number on the work you hand in.

Do not use paper clips, glue or correction fluid.

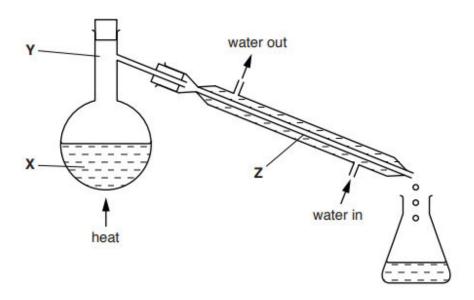
There are **forty** questions on this paper. Answer **all** questions. For each question, there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in 2B pencil on the OTAS sheet.


Read the instructions on the OTAS sheet very carefully.

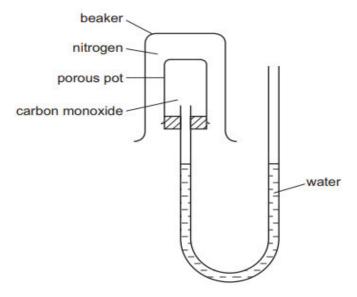
Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done on the question paper.

A copy of the Data Sheet is printed on page 20.


A copy of the Periodic Table is printed on page 21.

The use of an approved scientific calculator is expected, where appropriate.

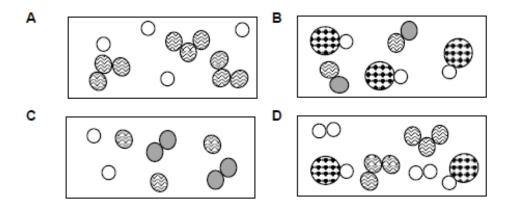
This document consists of 21 printed pages.


21 The diagram shows the apparatus used to distil seawater.

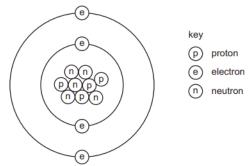
While water is being collected, at which point(s) is the temperature 100°C?

- A X
- B Y
- **C** X and Z
- **D** X,Y and Z

22 Gases can diffuse through porous pots. The diagram shows a beaker full of nitrogen inverted over a porous pot containing carbon monoxide.



The water level does not move.


Which statement explains this?

- A Both gases have two atoms in a molecule.
- **B** Neither gas is soluble in water.
- C Nitrogen is almost inert.
- **D** The two gases have equal molecular masses.
- 23 Which statement(s) best explain(s) that air is a mixture, not a compound?
 - I Air does not have a fixed composition.
 - II It is a colourless and odourless gas.
 - III It is made up of more than two elements.
 - IV The gases making up air can be separated by fractional distillation.
 - A I only B II only C I and IV D III and IV

24 Which diagram correctly represents a mixture of element(s) and compound(s)?

25 The diagram shows the atomic structure of an element X.

What is X?

- **A** aluminium
- **B** beryllium
- C boron
- **D** fluorine
- What happens when a bond is formed between a green gaseous element and a soft metallic element?
 - **A** The gaseous atoms gain an electron.
 - **B** The gaseous atoms lose an electron.
 - C The metal atoms gain an electron.
 - **D** The two elements share a pair of electrons.

		_				
27	Which salt c	an be prep	ared by an	acid-alkali	titration	method?

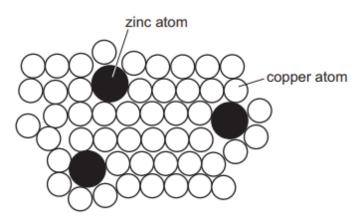
- A aluminium carbonate
- B ammonium chloride
- C calcium nitrate
- D iron(II) sulfate

The oxide of element X dissolves in water to form a solution which when tested with Universal Indicator paper gives a pH of 14. The oxide does not react with potassium hydroxide. Where is X mostly likely to be found in the Periodic Table?

- A Group I
- **B** Group VI
- C Group VII
- **D** Group 0

25 cm³ of 0.1 mol / dm³ hydrochloric acid exactly neutralise 20 cm³ of aqueous sodium hydroxide. The equation for this reaction is:

What is the concentration of the sodium hydroxide solution?

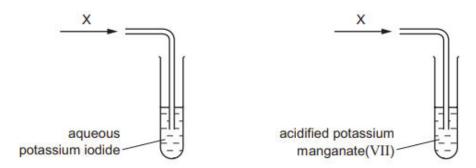

- **A** 0.080 mol / dm³
- **B** 0.125 mol / dm³
- C 0.800 mol / dm³
- **D** 1.250 mol / dm³

- **30** W, X and Y are metals, one of which is copper and one of which is iron.
 - W has a coloured oxide which can be reduced by carbon.
 - X has a black oxide and is also found in nature as a pure metal.
 - Y has an oxide which cannot be reduced by carbon.

Which metal is the most reactive and what is the possible identity of W?

	most reactive metal	possible identity of W
Α	Х	Cu
В	X	Fe
С	Υ	Cu
D	Υ	Fe

31 The diagram shows the structure of brass.

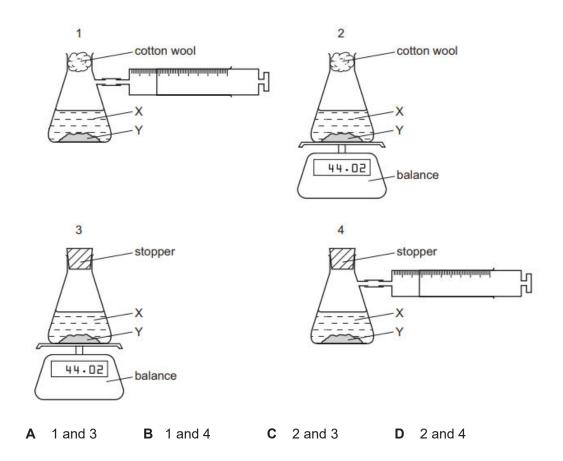


Why is brass harder than pure copper?

- A The zinc atoms form strong covalent bonds with copper atoms.
- **B** The zinc atoms have more electrons than the copper atoms.
- **C** The zinc atoms prevent the 'sea of electrons' from moving freely in the solid.
- **D** The zinc atoms prevent the layers of copper atoms from sliding over each other.

32	The following statements are about elements in the Periodic Table.								
	 Their atoms have a full outer shell of electrons. They are found in Group 0. They are present in small quantities in the air. They form basic oxides. 								
	Wh	nich statements are correct for the noble gases?							
	Α	I, II and III B I, II and IV C I, III and IV D II, III and IV							
33	sol	e labels on two bottles fell off. One bottle was known to contain sodium chloride ution and the other bottle contained sodium nitrate solution. nich test would most likely identify the solutions?							
	VVI								
	Α	addition of aqueous ammonia							
	В	addition of aqueous silver nitrate							
	С	C addition of blue litmus paper							
	D	addition of dilute sulfuric acid							
34	Which reagent when reacted with ammonium sulfate, liberates ammonia?								
	Α	acidified potassium dichromate(VI)							
	В	aqueous bromine							
	С	dilute hydrochloric acid							
	D	limewater							

35 Gaseous compound X is an oxidising agent. X is bubbled through separate solutions of aqueous potassium iodide and acidified potassium manganate(VII).



Which row shows the colour changes when X is bubbled through these two solutions?

	aqueous potassium iodide	acidified potassium manganate(VII)	
Α	brown to colourless	no change	
В	brown to colourless	purple to colourless	
С	colourless to brown	no change	
D	colourless to brown	purple to colourless	

A liquid X reacts with solid Y to form a gas. 36

> Which two diagrams show suitable methods for investigating the rate (speed) of the reaction?

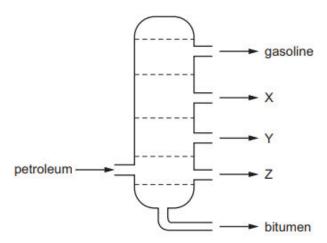
37 A thermometer is placed in water and the temperature is measured to be 43.0 °C. An endothermic change takes place as a solid is dissolved in the water. The temperature changes by 4.5 °C.

What is the thermometer reading now?

38 °C

B 38.5 °C

C 47 °C **D** 47.5 °C


38 A new planet has been discovered and its atmosphere has been analysed.

The table shows the composition of its atmosphere.

gas	percentage by volume / %
carbon dioxide	4
nitrogen	72
oxygen	24

Which gases present in the atmosphere of the new planet are in a higher percentage than they are in the Earth's atmosphere?

- A carbon dioxide and nitrogen
- B carbon dioxide and oxygen
- C carbon dioxide, nitrogen and oxygen
- **D** nitrogen and oxygen
- **39** The diagram shows the separation of petroleum into fractions.

What could X, Y and Z represent?

	X	Y	Z
Α	diesel oil	lubricating fraction	paraffin
В	lubricating fraction	diesel oil	paraffin
С	paraffin	lubricating fraction	diesel oil
D	paraffin	diesel oil	lubricating fraction

40 The diagram shows a molecule of an organic compound W.

Which statement is not correct?

- **A** A solution of W in water has a pH greater than 7.
- **B** A solution of W in water reacts with sodium hydroxide solution.
- **C** When copper(II) carbonate is added to a solution of W, a gas is produced.
- **D** When magnesium is added to a solution of W, a gas is produced.

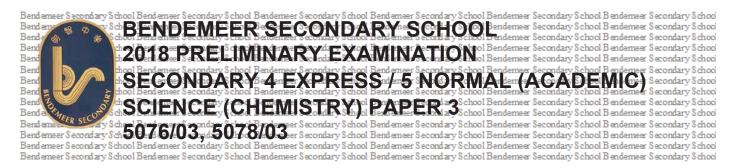
Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	2 He helium 4	N = 10	neon 20	18	A	argon 40	36	궃	krypton	84	54	×e	xenon	131	0 0	radon	1				
	 		6 Ц	fluorine 19	17	Cl	chlorine 35.5	35	à	bromine	80	53	Н	iodine	171	? ♦	actatine	1				
83	5		∞ O	oxygen 16	16	ဟ	sulfur 32	34	Se	selenium	6/	52	<u>ө</u>	tellurium	971	† 6	minolon	1	116	^	ivermorium	E
23	>		≻ Z	nitrogen 14	15	Д	phosphorus 31	33	As	arsenic	7.5	51	S	antimony	771	3 ä	hismith	209			_	
83	2		<u>့ ပ</u>	carbon 12	14	S	silicon 28	32	ge	germanium	73	20	S	tin .	61.6	2 년	2 Pea	207	114	FI	flerovium	E
Group	=		5 B	boron 11	13	Al	aluminium 27	31	Ga	gallium	70	49	딤	indium	CI 1	- L	thallium	204				
	3 -0							30	Zn	zinc	65	48	8	cadmium	71.1	2 7	Di-I	201	112	Cu	copernicium	Į.
								1										197	l l		-	- 1
								-			_	_			-			195	_		=	\neg
	160																	192				
*		1 H hydrogen						26	Pe	iron	99	44	æ	ruthenium	101	2 6	Smilmso	190	108	Hs	hassium	Ě
000			k ii					25	Mn	manganese	55	43	ည	technetium	7.5	2 0	henim	186	107	Bh	pohrium	E
			umber	nass				-		1.50				Ξ				184			-	_1
83	8	Key	proton (atomic) number atomic symbol	name relative atomic mass	92			23	>	vanadium	51	41	2	miopin	93	C F	tantalım	181	105	Db	dubnium	l)
26			proton	relativ				22	F	titanium	48	40	Z	zirconium	1.0	2 5	hafniim	178	104	¥	Rutherfordium	į.
83	3											39							89 - 103			
5	=		₽ P	beryllium 9	12	Mg	magnesium 24								-			137			radium	Ě
85	_						sodium 23													ů.		


7.1	P	Intetium	175	103	L	lawrencium	ſ
70	χp	ytterbium	173	102	No	nobelium	ï
69	Tm	thulium	169	101	Md	mendelevium	Ţ
89	ய்	erbium	167	100	Fm	fermium	Ĩ
19	운	holmium	165	66	Es	einsteinium	Į
99	٥	dysprosium	163	86	₽	californium	î
65	Tb	terbium	159	26	益	berkelium	Î
64	Bg	gadolinium	157	96	Cm	curium	1
					Am	-	
62	Sm	samarium	150	94	Pu	plutonium	ŧ
		_			o N		Ĩ
09	N	neodymium	144	92	>	uranium	238
69	ď	praseodymium	141	91	Pa	protactinium	231
58	o	cerium	140	06	드	thorium	232
22	La	lanthanum	139	89	Ac	actinium	Ĩ

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

	Register No.	Class
Name		

DATE : 20th August 2018 DURATION : 1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the work you hand in. You may use a 2B pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen.

Do not use paper clips, glue or correction fluid.

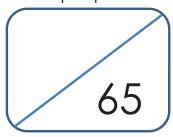
The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B


Answer any two questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 14. A copy of the Periodic Table is printed on page 15.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 15 printed pages.

Section A

Answer **all** the questions in the spaces provided.

1 The structures of some substances containing chlorine are shown in Fig. 1.1.

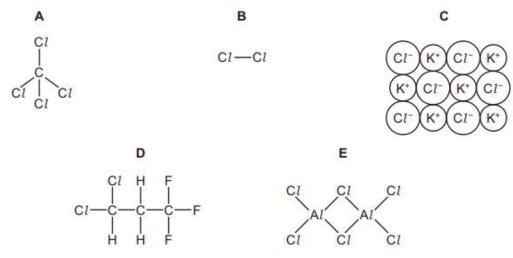


Fig. 1.1

Answer the following questions about these substances. Each of these letters A to E can be used once, more than once or not at all.

(a)	Which substance conducts electricity in molten or aqueous state only?	
		[1]
(b)	Which substance is a diatomic molecule?	
		[1]
(c)	Which substance is an element?	
	Explain your answer.	
		[2]
(d)	Which substance is the product of substitution of methane?	
		[1]

2 Table 2.1 gives the composition of three particles.

(a)

(b)

Table 2.1

particle	number of protons	number of electrons	number of neutrons
А	15	15	16
В	15	18	16
С	15	15	17

what is the evidence in Table 2.1 for each of the following?	
(i) Particle A is an atom.	
(ii) A, B and C are all particles of the same element.	[1]
	[1]
(iii) Particles A and C are isotopes of the same element.	
	[2]
(i) What is the electronic structure of particle C?	[1]
(ii) Is element C a metal or a non-metal? Give a reason for your choice.	ניו
	[1]

3	to co	l-burning power stations generate a large amount of heat from the combustion of coal provert steam which in turn drives turbine generators to produce electricity. Flue gas that roduced contains sulfur dioxide and oxides of nitrogen. These two gases cause acid
	(a)	Oxides of nitrogen generally consist of a mixture of nitrogen monoxide and nitrogen dioxide. In flue gas, nitrogen monoxide is the main component in the oxides of nitrogen produced.

Explain how nitrogen monoxide causes acid rain even though it is a neutral oxide.	
	[2]

(b) Acid rain impacts farming greatly as it often causes the soil to be overly acidic and results in leaching of nutrients. In order to alleviate the effects of acid rain, a farmer has been advised to treat the soil to reduce the acidity.

Table 3.1 gives the solubility of some calcium compounds.

Table 3.1

	calcium hydroxide	calcium oxide	calcium carbonate
solubility in water	0.173	immediately reacts with	6.17 x 10 ⁻⁴
(g per 100 ml of		water on contact to form	
water)		an alkaline solution	

	Using the information in Table 3.1, suggest why calcium carbonate is less effective at reducing acidity than calcium hydroxide and calcium oxide.	
		[2]
(c)	Another source of oxides of nitrogen is from car engines.	
	Explain how the oxides of nitrogen are formed in car engines.	
		[2]

	(d)	Besides acid rain, name two other harmful effects of oxides of nitrogen and sulfur dioxide.	
			[2]
4	Solu	ble salts can be made by using a base and an acid.	
	(a)	Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride from the insoluble base cobalt(II) carbonate.	
		step 1 Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.	
		step 2	
		step 3	
		step 4	
		step 5	
			[3]
	(b)	5.95 g of solid cobalt(II) carbonate is added to 40 $\rm cm^3$ of hydrochloric acid, concentration 2.0 mol / $\rm dm^3$.	
		(i) Write a balanced chemical equation, including state symbols, for the above reaction.	
			[2]
		(ii) Show that the cobalt(II) carbonate is added in excess.	

[3] [Turn over] **5** The reactivity of different metal oxides was compared by heating them with metals in a crucible. This is shown in Fig. 5.1.

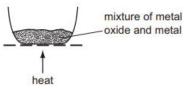


Fig. 5.1

The results are shown in Table 5.2.

Table 5.2

mixture	observations
iron(III) oxide + metal X	reacts
lead(II) oxide + iron	reacts
magnesium oxide + metal X	no reaction

(a)	Use the results in Table 5.2 to suggest the order of reactivity of the metals iron, lead, magnesium and X, starting with the most reactive metal.	
		[1]
(b)	Predict whether iron will react with zinc oxide.	
	Explain your answer.	
		[1]
(c)	Write down two observations when lead(II) oxide reacts with iron.	
		[2]
(d)	In the mixture, iron(III) oxide reacts with metal X.	
	Which element is reduced in the reaction? Use ideas about oxidation state to explain your answer.	
		[2]

6 Fig. 6.1 shows how the ions present in solution A are separated.

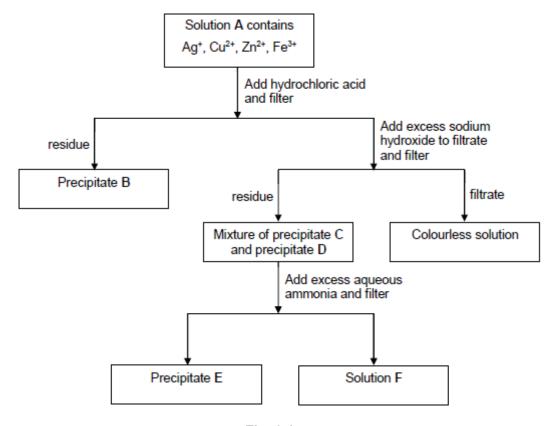


Fig. 6.1

a)	(i)	It is known that solution A contains one anion. Suggest the identity of this anion. Give a reason for your answer.	
			[2]
	(ii)	Describe a test to confirm the anion named in (a)(i).	
			[1]
b)	Sug	gest the identity of substances B and C.	
	В.		
	С.		[2

		δ	
	(c)	Describe the movement and arrangement of particles in precipitate E which has been dried.	
			[0]
			[2]
7		7.1 shows a molecule of cyclohexane, C_6H_{12} , which is a cycloalkane and a saturocarbon. Cycloalkanes react in a similar way to alkanes.	rated
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Fig. 7.1	
	(a)	(i) Define the term saturated.	
			[1]
			[,]
		(ii) Define the term hydrocarbon.	
			[1]
	(b)	Construct the equation for the complete combustion of cyclohexane.	
	(6)	Constitute the equation for the complete combustion of dydionexane.	
			[1]
	(c)	Cyclohexane reacts with chlorine in the presence of ultraviolet light. This is a substitution reaction. Write the molecular formulae of two products of this	

[Turn over]

[2]

reaction.

Section B

Answer **any two** questions in this section. Write your answer in the spaces provided.

- 8 Metals undergo different chemical reactions to produce different products.
 - (a) The rate of reaction between a metal and an acid is investigated.

A piece of zinc foil is added to 50 cm³ of hydrochloric acid, of concentration 2.0 mol / dm³. The acid is in excess. The hydrogen evolved is collected in the gas syringe and its volume measured every minute. The results are plotted and labelled as graph 1. This is shown in Fig. 8.1.

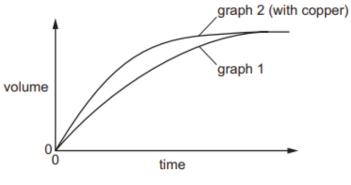


Fig. 8.1

The experiment is repeated to show that the reaction between zinc metal and hydrochloric acid is catalysed by copper. A small volume of aqueous copper(II) chloride is added to the acid before the zinc is added. The results of this experiment are plotted on the same grid and labelled as graph 2 in Fig. 8.1.

(a)	(i)	Explain why the reaction mixture in the second experiment contains copper metal. Include an equation in your explanation.	
			[2]

	(ii)	If the first experiment is repeated using ethanoic acid, CH ₃ COOH, instead of hydrochloric acid, explain how and why the graph would be different from graph 1. Indicate the speed of this reaction on Fig. 8.1 and label it as graph 3.	
			[3]
(b)		en lithium reacts with water, it moves about on the surface of the water. oles are seen and the lithium disappears slowly.	
		lict how the reaction of potassium with water compares with the reaction of m with water.	
	In yo	our answer, include	
	• the	three differences in observations, and potassium react with ter.	
			[5]

In the laboratory, scientists are always doing research and conducting experiments to make

9

useful products for mankind.

(a)		such useful product is phosphine, PH_3 , which is used as a fumigant. It has smell of garlic and is effective in pest control.	
	(i)	Predict two physical properties of phosphine at room conditions.	
		Explain your answer.	
	•••••		
			[5]
	(ii)	Draw the electronic structure of phosphine. Show outer electrons only.	
			[2]
(b)		ntists also make margarine from vegetable oils. List the conditions and ain how vegetable oils are used to make margarine for use in foods.	
			[3]

236

- 10 Thermal decomposition of compounds breaks them down into smaller substances when sufficient heat is applied.
 - (a) Air bags are used to protect passengers in a car during an accident. When the crash sensor detects an impact, it causes a mixture of chemicals to be heated to a high temperature. Reactions take place which produce nitrogen gas. The nitrogen fills the air bag. This is shown in Fig. 10.1.

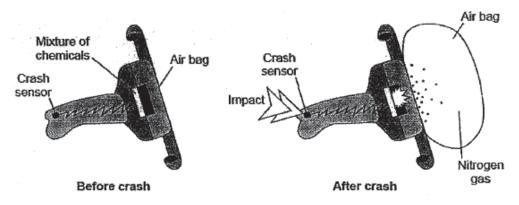


Fig. 10.1

The mixture of chemicals contains solid sodium azide, NaN₃ which decomposes to form sodium and nitrogen as follows.

.....
$$NaN_3$$
 (......) \rightarrow Na (......) + N_2 (......)

- (i) Balance the chemical equation and complete the state symbols in the chemical equation above.
- (ii) Draw the electronic structure of nitrogen gas. Show outer electrons only.

[2]

[2]

(iii) An air bag consists of 130 g of sodium azide. When the sodium azide decomposed, 60 dm³ of nitrogen was obtained at room temperature and pressure.

Show, using calculations, if the thermal decomposition of sodium azide has been efficient in producing nitrogen to fill up the air bag.

[3]

[3]

(b) A student used the apparatus in Fig. 10.2 to investigate what happens when liquid paraffin is heated to a high temperature.

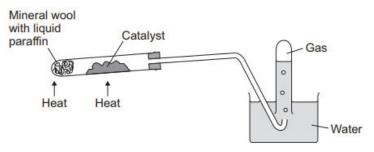


Fig. 10.2

Liquid paraffin contains alkanes. The most abundant alkane has a chemical formula of $C_{20}H_{42}$.

Name the reaction shown in Fig. 10.2. Describe, with the aid of a chemical equation, what happens to the alkane molecules in the reaction.

END OF PAPER

14
Data Sheet
Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

je I	0	2 He	helium 4	10	Ne	neon 20	18	A	argon 40	36	호	krypton	84	54	×	nonex	131	98	R	radon	1				
25	IIA			6 L	L	fluorine 19	17	C	chlorine 35.5	35	ä	bromine	80	53	Н	iodine	127	85	A	astatine	ì				
100	I		3	∞ (0	oxygen 16	16	ဟ	sulfur 32	34	Se	selenium	62	52	o	tellurium	128	8	Po	polonium	1	116	^	livermorium	E
23	>			7	Z.	nitrogen 14	15	Д	phosphorus 31	33	As	arsenic	75	51	Sp	antimony	122	83	ä	bismuth	209	100000000000000000000000000000000000000			
\$3	N			9 (. ر	carbon 12	14	S	silicon 28	32	ge G	germanium	73	20	S	tin	119	82	8 B	lead	207	114	Fl	flerovium	0
55	Ш			5	Δ.	boron 11	13	Al	aluminium 27	31	Ga	gallium	70	49	I	mnipui	115	81	11	thallium	204	1879 1970 1970			
10	8						Co.			30	Zn	zinc	65	48	8	cadmium	112	80	Hg	mercury	201	112	5	copernicium	1
	8																					111		=	
Group	8									28	Z	nickel	59	46	Pd	palladium	106	78	古	platinum	195	110	Ds	darmstadtium	6
Gro										27	ပိ	cobalt	59	45	윤	modium	103	11	1	iridium	192	109	Mt	meitnerium	100
	8	- I	hydrogen 1							26	Fe	iron	56	44	R	ruthenium	101	9/	S	osmium	190	108	Hs	hassium	E
	8									25	Mn	manganese	55	43	٦ ۲	technetium		75	Re	rhenium	186	107	Bh	pohrium	IS.
905	4			umber	00	nass				24	ပ်	chromium	52	42	Mo	molybdenum	96	74	>	tungsten	184	106	Sg	seaborgium	íš.
20	20		Key	proton (atomic) number	atomic symbol	name relative atomic mass	2			23	>		51		2						181			dubnium	I S
				proton	arc	relativ				22	F	titanium	48	40	Zr	zirconium	91	72	Ξ	hafnium		104	圣	Rutherfordium	ř
· · · · · · · · · · · · · · · · · · ·			1	2						21	သွ	scandium	45	39	>			57-71	lanthanoids			89 - 103	actinoids		
=	=			4 6	De .	beryllium 9	12	Mg	magnesium 24	20	Ca			38	ഗ്	strontium	88	99	Ba	barium	137	88	Ra	radium	Ĕ
			3	£ :	-	lithium 7	11	Na	sodium 23		×	potassium	39	37	윤	rubidium	85	55	ပိ	caesium	133	87	<u>ئ</u>	francium	E

7.1	Lu	Intetium	175	103	ב	lawrenciu	1
70	Yb	ytterbium	173	102	2	nobelium	Ī
69	Tm	thulium	169	101	Md	mendelevium	į
89	ய்	erbium	167	100	Fm	fermium	Ĩ
29	운	holmium	165	66	Es	einsteinium	1
99	٥	dysprosium	163	86	ŭ	californium	Î
65	Tp	terbium	159	26	益	berkelium	Ĭ,
64	Bg	gadolinium	157	96	Cm	curium	ı
63	Ш	europium	152	96	Am	americium	ï
62	Sm	samarium	150	94	Pu	plutonium	ŧ
61	Pm	promethium	i	93	o N	neptunium	ĺ
09	N	neodymium	144	92	>	uranium	238
59	Ā	praseodymium	141	91	Ра	protactinium	231
58	o	cerium	140	06	드	thorium	232
22	La	lanthanum	139	89	Ac	actinium	Ĩ

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Prelim Exam 2018 4E/5N Sc(Chem) Marking Scheme

Section A [1 mark each; 20 marks total]

2	3	4	5	6	7	8	9	10
D	С	D	В	Α	В	Α	В	D
		,	,	,	,	,		
12	13	14	15	16	17	18	19	20
Α	В	D	С	D	В	В	D	A
	2 D 12 A	D C	D C D	D C D B	12 13 14 15 16	12 13 14 15 16 17	D C D B A B A 12 13 14 15 16 17 18	12 13 14 15 16 17 18 19

Section B [45 marks total]

OII D	[45 marks total]	
(a)	C	[1]
(b)	В	[1]
(c)	B [1]	
	It has only one type of atom. [1]	[2]
(d)	A	[1]
(a)		[1]
	(ii) All have the same number of protons (15) / same proton number /	
	same atomic number	[1]
		ניו
/	(iii) same number of protons (15) / same proton number / same atomic	
	number [4];	
	Different number of neutrons / different nucleon number / different mass	
	number[1]	[0]
		[2]
(b)	(i) 2.8.5	
	(ii) non-metal because it accepts electrons / needs 3 electrons to	
	complete valence electron shell / because it is in Group V or 5 electrons	
	in valence shell [1]	
	Note: need both non-metal and reason for one mark	[2]
	(a) (b) (c) (d)	(c) B [1] It has only one type of atom. [1] (d) A (a) (i) It has the same number of protons and electrons; 15 each. (ii) All have the same number of protons (15) / same proton number / same atomic number (iii) same number of protons (15) / same proton number / same atomic number [1]; Different number of neutrons / different nucleon number / different mass number [1] (b) (i) 2.8.5 2,8,5 [1] (ii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell / because it is in Group V or 5 electrons in valence shell [1]

3	(a)	NO will be oxidised by oxygen in air to form nitrogen dioxide. [1]	
		Nitrogen dioxide will then dissolve in rainwater to form nitric acid which caused acid rain. [1]	[2]
	(b)	Calcium carbonate is very much less soluble than calcium hydroxide and calcium oxide. [1]	
		Thus, CaCO ₃ reacts slowly with acid / effective only in reducing acidity of soil / surface in contact / cannot penetrate soil to neutralize acid deeper down. [1]	
			[2]
	(c)	The high temperatures of the car engines causes[1]	
		nitrogen in the air to react with oxygen in the air producing oxides of nitrogen. [1]	[2]
	(d)	riritates the eyes and lungs and cause breathing difficulties [1]	
		high levels lead to inflammation of the lungs (bronchitis) [1]	[2]
4	(a)	Step 2 Filter to remove excess cobalt(II) carbonate; [1]	
		Step 3 Heat the filtrate till saturation; [1]	
		Step 4 Cool to allow crystals to form, [0.5]	
		Step 5 Rinse crystals with a little distilled water to remove impurities and dry between sheets of filter paper; [0.5]	[3]
	(b)	(i) CoCQ ₃ (s) + 2HCl (aq) - CoCh (aq) + CO ₂ (g) + H ₂ O (l)	
		State symbols [1]; balanced chemical equation [1]	[2]
		(ii) no of moles of HCl = cv = 2 * (40/1000) = 0.08 mol [1]	
		Mole ratio CoCO₃ : HCl Fm egn 1 : 2	
		Fm data 0.04 : 0.08 [1]	
		Mass of CoCO ₃ = mol * molar mass = 0.04 * (59+12+48) = 0.04 * 119 = 4.76 g [1] 4.76 g of CoCO ₃ needed but 5.95 g was used. Hence, CoCO ₃	
		was in excess.	
			[3]

5	(a)	$magnesium \to X \to iron \to lead / \qquad \qquad Mg > X > Fe > Pb$	[1]
	(b)	no / it will not react and zinc is more reactive / iron is less reactive; [1] ignore: zinc is reactive / iron is unreactive	[1]
	(c)	A greenish ppt/solid [1] and a grey/silver solid are formed. [1]	[2]
	(d)	Iron is reduced.[1] The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in iron. [1]	[2]
6	(a)	(i) Nitrate [1] All nitrates are soluble. [1] or Sulfate [1] All Ag ⁺ , Cu ²⁺ , Zn ²⁺ and Fe ³⁺ sulfates are soluble. [1]	[2]
		(ii) Add sodium hydroxide, aluminium foil and warm. [0.5] Gas produced turns moist red litmus paper blue. [0.5] or Add barium nitrate barium chloride. [0.5] A white precipitate is seen. [0.5]	[1]
	(b)	B: silver chloride / AgCl [1] C: copper(II) hydroxide / Cu(OH) ₂ / iron(II) hydroxide / Fe(OH) ₂ [1]	[2]
	(c)	The particles are in solid state. They vibrate at their fixed positions. [1] They are closely packed in a orderly manner. [1]	[2]
7	(a)	(i) Contains only carbon-carbon single bonds	[1]
		(ii) Contains only carbon and hydrogen atoms	[1]
	(b)	$C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$	[1]
	(c)	HCI (1) C ₆ H ₁₁ CI (1)	[2]

Section C (20 marks)

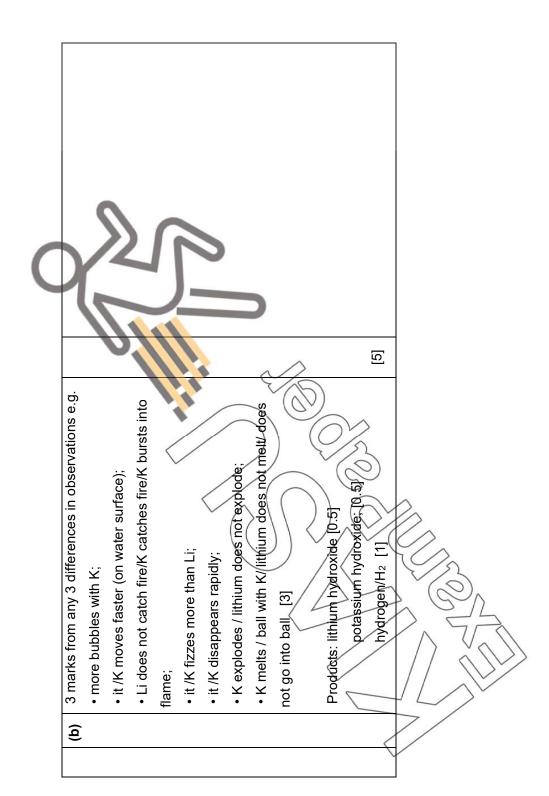
000		(2) marks)						
8	(a)	(i) zinc displaces copper / zinc more reactive than copper; [1]						
		$Zn + CuCl_2 \rightarrow ZnCl_2 + Cu / Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$; [1]						
		(ii) less steep (line) or lower gradient / (because of) decreased rate; [1]	•					
		ethanoic is a weak(er) acid / only partially ionised / dissociated / lower						
		concentration of hydrogen ions; [1];						
		graph 3 is below graph 1 and ends at the same volume as graph 1 [1]	[6]					
			[5]					
	(b)	3 marks from any 3 differences in observations e.g.						
		• more bubbles with K;						
		• it /K moves faster (on water surface);						
		 Li does not catch fire/K catches fire/K bursts into flame; 						
		• it /K fizzes more than Li;						
	<	•it /K disappears rapidly;-						
		•K explodes Lithium does not explode;						
		K melts / ball with killithium does not melt/ does not go into ball [3]						
		Products: lithium hydroxide [0.5]						
		potassium hydroxide; [0.5]						
		hydrogen/H ₂ [1]	[5]					

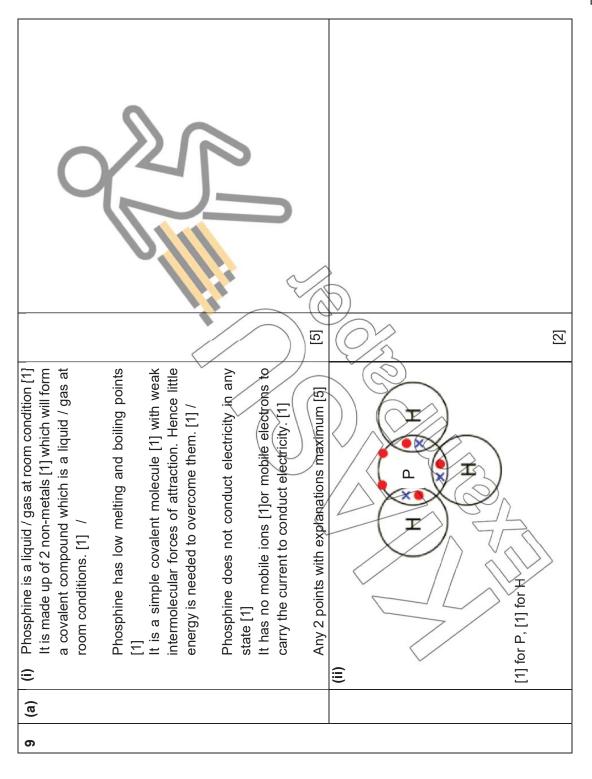
	(-)	(i)	Phosphine is a liquid / gas at room condition [1]						
9	(a)	(')	It is made up of 2 non-metals [1] which will form a covalent compound						
			which is a liquid / gas at room conditions. [1] /						
			willon is a liquid / gas at room conditions. [1]						
			Phosphine has low melting and boiling points [1]						
			It is a simple covalent molecule [1] with weak intermolecular forces of						
			attraction. Hence little energy is needed to overcome them. [1] /						
			Phosphine does not conduct electricity in any state [1]						
			It has no mobile ions [1]or mobile electrons to carry the current to						
			conduct electricity. [1]						
			Any 2 points with explanations maximum [5]	[5]					
		(ii)	Tary 2 points with explanations measured to						
			(H)PH						
	\wedge		[1] for P, [1] for H	[2]					
		100	et with hydrogen or hydrogenation [1]	[-]					
	(b)	1	he presence of a nickel catalyst at 60 °C (allow 50-200 °C) [1]						
			ecause vegetable oils are unsaturated or have carbon-carbon double						
		1.1.5	ecause vegetable oils are unsaturated or have carbon-carbon double onds (vegetable oils are hardened) to make them solid at room						
			nperature or to make them useful as spreads/spreadable [1]	[3]					
		(011	The area of the marke them applied and able and applied applied applied and applied and applied applied applied and applied applied applied applied and applied applie						
<u> </u>									

10	(a)	(i) 2, 2, 3 [1] (s), (s), (g) [1]	[2]
		(ii) N N N N N N N N N N N N N N N N N N	101
		[1] for 3 pairs of bonds, [1] for 2 unshared electrons per N atom (iii) Mole of NaN ₃ = mass / molar mass	[2]
		= 130 / (23+ (14*3)) = 2 [1] Mole ratio NaN3: N2 Fm eqn 2 3 Fm data 2 : 3 [0.5] Vol of N2 = mol x 24 = 3 * 24 = 72 dm ³ [1]	
		It was not efficient as only 60 dm ³ of N ₂ was produced. [0.5]	[3]
	(b)	Cracking [1]	
		Big alkane \rightarrow smaller alkanes + smaller alkene (+ hydrogen) $C_{20}H_{42} \rightarrow C_{12}H_{26} + C_8H_{16}$ (any appropriate balanced equation) [1]	
		It undergoes cracking to produce small(er) molecules / alkanes hydrocarbons and alkenes or a named alkene [1]	[3]

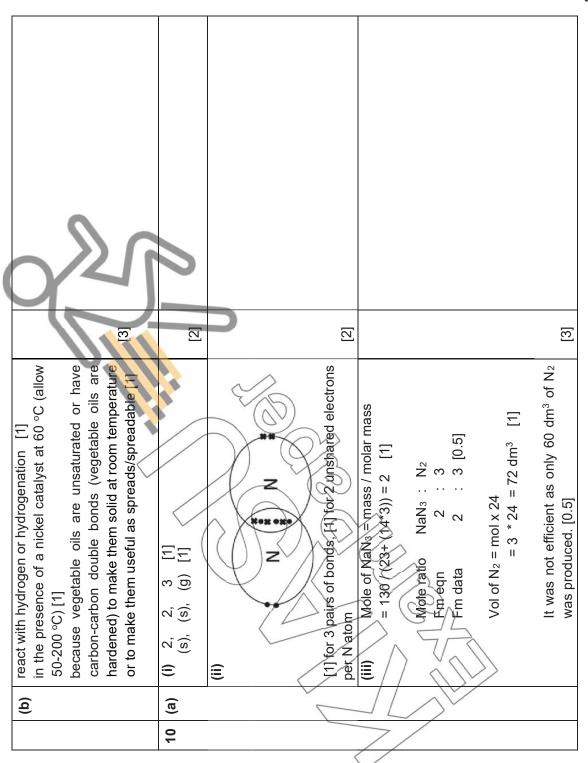
Prelim Exam 2018 4E/5N Sc(Chem) Marking Scheme

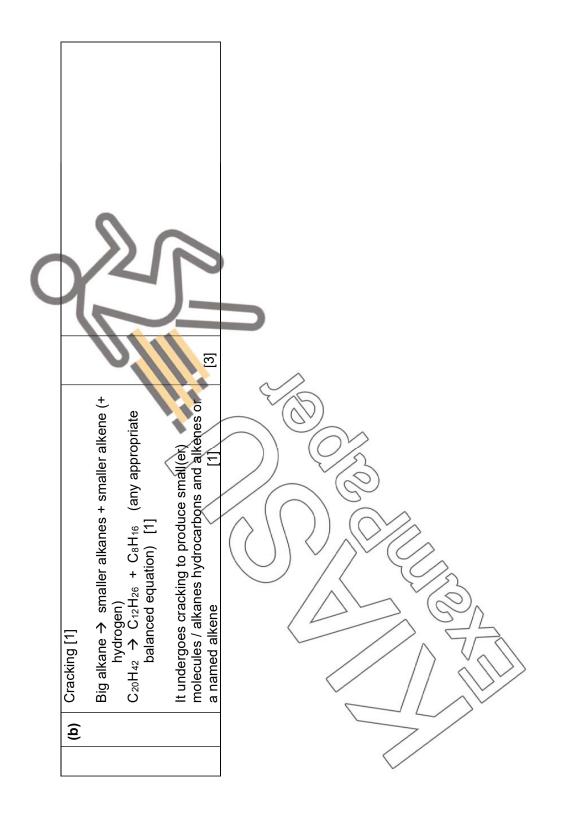
Sect	tion B	Section B [45 marks total]	ŀ	\Box
				Marker's Comments
~	(a)	С	[1]	
	(q)	В	[1]	
	(3)	B[1]		
		It has only one type of atom. [1]	[2]	
	(p)	//	[1]	<i>7</i>
7	(a)	(i) It has the same number of protons and		
	,		\leq	>
		(ii) All have the same number of protons (15)+	/	
		same proton number/same atomic number		
		(iii) same number of protons (15) / same proton)	
		number / same atomic number [N]:		
	•	Different number of neutrons / different nucleon		
		number / different mass number M	[2]	
	(q)	(i) 2.8.5 / 2,8,5 /H		
		(iii) non-metal because it accepts electrons / needs 3 electrons to complete valence electron shell /		
		because it is in Group V or 5 electrons in valence		
		shell [1]		
		Note: need both non-metal and reason for one mark	[2]	


က	(a)	NO will be oxidised by oxygen in air to form nitrogen dioxide. [1]	
		Nitrogen dioxide will then dissolve in rainwater to	
		form nitric acid which caused acid rain. [1]	
	(q)	Calcium carbonate is very much less soluble than calcium hydroxide and calcium oxide. [1]	0
		Thus, CaCO ₃ reacts slowly with acid / effective only in reducing acidity of soil / surface in contact / cannot	
		penetrate soil to neutralize acid deeper down. [1]	
	(၁)	The high temperatures of the car engines causes[1]	
		nitrogen in the air to react with exygen in the air producing oxides of nitrogen. [1]	
	(p)	irritates the eyes and lungs and cause breathing	
		difficulties [1]	
		b high levels lead to intammation of the lungs (bronchitis) [4]	
		(2) (0) (0) (1)	
4	(a)	Step 2 Filter to remove excess cobalt(II) carbonate;	
	7/	Step-3 Heat the filtrate till saturation; [1]	
		Step 4 Cool to allow crystals to form; [0.5]	
		Step 5 Rinse prystals with a little distilled water to remove impurities and dry between sheets of filter	
		papek. [0.5]	


9		SE.								
[2]	•		<u> </u>		[3]	[1]	[7]	[2]		[2]
 (i) CoCO₃ (s) + 2HCl (aq) → CoCl₂ (aq) + CO₂ (g) + H₂O (l) State symbols [1]; balanced chemical equation [1] 	(ii) no of moles of HCl = $cv = 2*(40/1000) = 0.08$ mol [1]	Mole ratio CoCO ₃ : HCI Fm eqn 1 : 2 Fm data 0.04 : 0.08	Mass of CoCO ₃ = mol * molar mass = 0.04 * (59+12+48)	[1] 4.76 g of CoCO3 needed but 5.95 g was		magnesium → X ← iron → Jead 1	no / it will not react and Zinc is more reactive / iron is less reactive; [1]	Agreenish pot/solid [1] and a grey/silver solid are formed. [1]	Iron is reduced.[1]	The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in iron. [1]
(g)						(a)	(q)	(c)	(p)	
						ro /		•	•	

က


(a) (i) Nitrate [1] All nitrates are soluble. [1] or Sulfate [1] All Ag¹, Cu²¹, Zn²¹ and Fe³¹ sulfates are soluble [1] All Ag¹, Cu²¹, Zn²¹ and Fe³¹ sulfates are soluble [1] All Ag¹, Cu²¹, Zn²¹ and Fe³¹ sulfates are soluble [1] (ii) Add sodium hydroxide, aluminium foil and warm [0.5] Add barium nitrate / barium chloride. [0.5] A white precipitate is seen. [0.5] A w
--


Section C (20 marks)	(i) zinc displaces copper / zinc more reactive than copper; [1] $Zn + CuCl_2 \rightarrow ZnCl_2 + Cu / Zn + Cu^{2+} \rightarrow Cu + Zn^{2+};$	(ii) less steep (line) or lower gradient / (because of) decreased rate; [1] ethanoic is a weak(er) acid / only partially ientsed /	dissociated / lower concentration of hydrogen ions; [1]: 3 is below graph 1 and ends at the same volume as graph 1 [1].	
; (20 mark	(i) zinc copper; Zn + Cu((ii) less decrease ethanoic	dissociat [1]; 3 is belov	
Section C	(a)			
37				•

 ∞

Bukit Batok Secondary School PRELIMINARY EXAMINATIONS 2018 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

SCIENCE (PHYSICS / CHEMISTRY)

Paper 1 Multiple Choice

5076 / 01 24 August 2018 0745 – 0845 1 hour

Additional materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

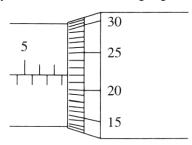
Do not use staples, paper clips, glue or correction fluid.

Write your name, index number and class on the Answer Sheet in the spaces provided.

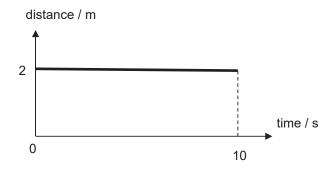
There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

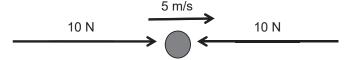
Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

Electronic calculators may be used.

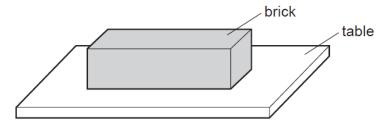

A copy of the Data Sheet is printed on page 15.

A copy of the Periodic Table is given at the end of the paper.

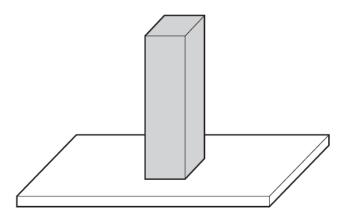

1 What is the reading shown by the micrometer screw gauge?

- **A** 5.272 mm
- **B** 5.72 mm
- C 7.22 mm
- **D** 7.72 mm
- 2 Which of the following best describes the distance-time graph below?

- A An object at rest.
- **B** An object moving with a constant speed of 2.0 m/s.
- **C** An object moving with a constant velocity of 2.0 m/s.
- **D** An object moving with a constant acceleration of 2.0 m/s².
- 3 Which of the following consist of only vector quantities?
 - A mass, distance, time
 - **B** friction, velocity, electromotive force
 - C tension, speed, energy
 - D weight, displacement, electrostatic force
- **4** A particle moving at constant speed of 5 m/s is being acted on by two 10 N forces as shown.



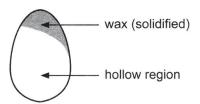
The particle will


- A continue to move at 5 m/s in a straight line.
- B increase its speed gradually.
- **C** slow down gradually and stop.
- **D** stop immediately.

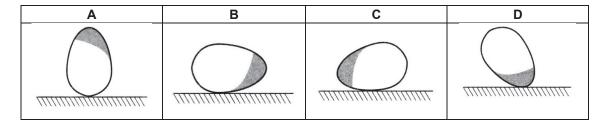
2

5 A brick with flat, rectangular sides rests on a table.

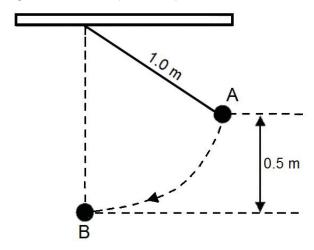
The brick is now turned so that it rests on the table on its smallest face.



How has this affected the force and the pressure exerted by the brick on the table?


	force	pressure
Α	increased	increased
В	increased	unchanged
С	unchanged	increased
D	unchanged	unchanged

- **6** When solid A of mass 15 g is immersed in a displacement can filled with water, it displaced the same volume of water as solid B of mass 10 g. Which of the following best describes the densities of solid A and solid B?
 - A Solid A and solid B have the same density.
 - **B** Density of solid A is 0.667 times the density of solid B.
 - **C** Density of solid A is 1.5 times the density of solid B.
 - **D** Density of solid A is 5 times the density of solid B.


7 An empty egg shell has molten wax solidified inside it as shown in the figure below.

In which position is the egg shell most stable when placed on a flat, horizontal surface?

8 A pendulum with length of 1.0 m is displaced to position A and released as shown.

Ignoring air resistance, what is the speed of the pendulum bob as it passes its lowest point B?

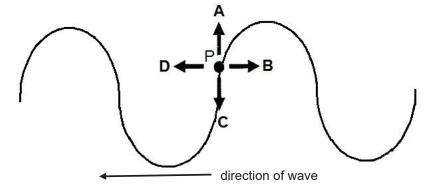
- **A** 1.5 m/s
- **B** 2.3 m/s
- **C** 3.2 m/s
- **D** 4.1 m/s
- **9** A cube of ice is heated to water, then to steam. Which of the following is true?
 - **A** The molecules expand as ice changes to steam.
 - **B** The molecules move slower as ice changes to steam.
 - **C** The molecules move further apart as the ice changes to steam.
 - **D** The molecules move closer to one another as ice changes to steam.

4

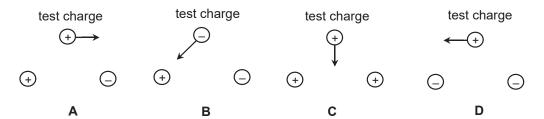
- **10** A beaker of water is heated at the bottom to form a convection current in the water. An explanation on how convection occurs contains four statements.
 - 1 Density of expanded water decreases.
 - 2 Warm water that is less dense rises and cold water moves in to replace it.
 - 3 Water at the bottom gains heat and becomes warmer.
 - 4 Water expands.

What is the correct order of these four statements?

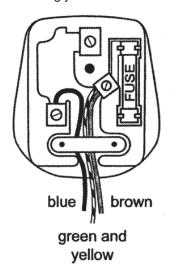
- A $3 \rightarrow 1 \rightarrow 2 \rightarrow 4$
- **B** $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$
- C $3 \rightarrow 4 \rightarrow 1 \rightarrow 2$
- **D** $3 \rightarrow 4 \rightarrow 2 \rightarrow 1$
- **11** The diagram shows an electric flask. Which of the following statement is true?


- A The plastic lid is a good conductor of heat.
- **B** The plastic lid increases heat loss through convection.
- **C** The white colour exterior reduces rate of heat loss by radiation.
- **D** The transparent water level marking increases heat loss by radiation.

12 A light ray is parallel to the floor and strikes a plane mirror as shown.


What is the angle of incidence?

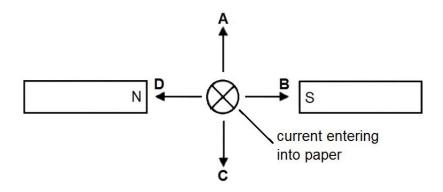
- **A** 40°
- **B** 50°
- **C** 90°
- **D** 140°
- **13** A rope is set to oscillate up-and-down to create a transverse wave that moves to the left. At the particular instant below, what is the direction of movement of point P?



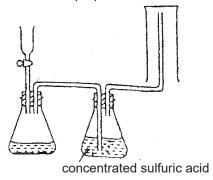
- **14** What is the speed of X-rays in a vacuum?
 - **A** 380 m/s
 - **B** $3.0 \times 10^8 \text{ m/s}$
 - C Slightly less than 3.0 x 10⁸ m/s
 - **D** Slightly more than 3.0 x 10⁸ m/s
- 15 Which of the following is **not** an application of gamma rays?
 - A checking welds
 - **B** intruder alarm
 - C sterilizing equipment
 - **D** treatment of cancer

16 Which of the following diagrams correctly shows the direction of the resultant electrostatic force acting on a small test charge?

17 The plug of the vacuum cleaner is wrongly wired as shown.

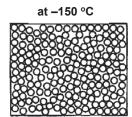

What is the effect of using the plug wired this way?

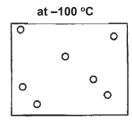
- A The fuse in the plug blows.
- B The metal case becomes live.
- **C** The vacuum cleaner catches fire.
- **D** The vacuum cleaner does not work.
- 18 Which material is used to make the needle of a plotting compass?
 - **A** aluminium
 - **B** brass
 - **C** iron
 - **D** steel


19 One kilowatt-hour of electricity costs \$0.20.

How much does it cost to switch on a heater marked "120 V, 3 A" for 90 minutes.

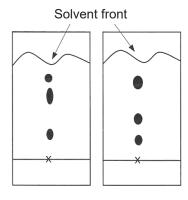
- **A** \$0.11
- **B** \$2.70
- **C** \$64.80
- **D** \$108.00
- **20** The figure below shows a current-carrying conductor between two magnets. Which of the arrows indicates the direction of the force acting on the conductor?




- 21 Which of the following is a compound?
 - A fluorine
 - **B** lithium
 - C petroleum
 - **D** sugar
- 22 Which of the following gases can be prepared and collected using the apparatus shown?

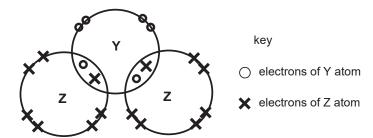
- A ammonia
- B carbon dioxide
- C hydrogen
- **D** oxygen

23 The diagrams show the arrangement of molecules in a substance at a pressure of 1 atm and at two different temperatures.



Which substance could the diagrams represent?

Substance	Melting point / °C	Boiling point / °C
Α	-183	-89
В	-182	-162
С	-169	-104
D	-114	-85

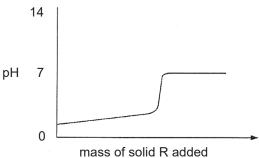

24 Two students carried out chromatography experiments to examine the dyes in a black ink. They used the same ink. The chromatograms obtained by the students are shown below.

Why were the chromatograms different?

- **A** One student used the wrong solvent.
- **B** One student did not use enough solvent.
- **C** The two students used different solvents.
- **D** The solvent moved up the paper at different speeds.

25 The diagram shows the arrangement of electrons in the outer shells of the atoms in the compound YZ_2 .

Which pair of elements could be Y and Z?


	Y	Z
Α	calcium	fluorine
В	carbon	sulfur
С	oxygen	hydrogen
D	sulfur	chlorine

- 26 Which ion has the same number of protons as the hydroxide ion?
 - **A** O²⁻
 - B F
 - C Na⁺
 - **D** Mg²⁺
- **27** Rubidium is in Group I of the Periodic Table. Which of the following are properties of rubidium chloride?

	formula	melting point	solubility in water
Α	RbC/	70°C	insoluble
В	RbC/	700°C	soluble
С	RbCI ₂	70°C	soluble
D	$RbC\mathit{I}_2$	700°C	insoluble

- 28 Which of the following is unlikely to react with aqueous sodium hydroxide?
 - A carbon dioxide
 - B aluminium oxide
 - C zinc oxide
 - D copper (II) oxide

29 Solid R is gradually added to aqueous solution S. The changes in pH are shown in the graph below.

What are R and S?

	R	S
Α	insoluble metal oxide	hydrochloric acid
В	insoluble non-metal oxide	sodium hydroxide
С	soluble metal oxide	hydrochloric acid
D	soluble non-metal oxide	sodium hydroxide

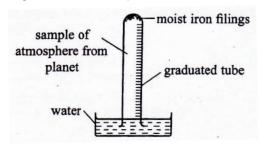
30 Test on a sample of polluted water from a factory gives the following results.

Reagent	Result
Hydrochloric acid and aqueous barium chloride	White precipitate
Aqueous ammonia	White precipitate soluble in excess

Which compound is present in the water?

- A lead (II) chloride
- B lead (II) sulfate
- C zinc chloride
- **D** zinc sulfate
- 31 Magnesium reacts with hydrochloric acid.

$$Mg_{(s)} + 2HCI_{(aq)} \rightarrow MgCI_{2(aq)} + H_{2(g)}$$

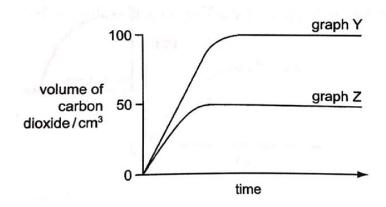

Which volume of hydrogen at room temperature and pressure is produced if 6g of magnesium reacts with an excess of the acid?

- **A** 1 dm³
- \mathbf{B} 6 dm³
- C 12 dm³
- \mathbf{D} 24 dm³

- 32 Which statement about the production of iron from haematite is correct?
 - A Coke is used to oxidize the slag.
 - **B** Limestone is used to remove basic impurities.
 - C Molten iron floats on slag at the furnace base.
 - **D** The haematite is reduced by carbon monoxide.
- **33** The atmosphere of a newly discovered planet contains the following gases.

carbon dioxide	20%
nitrogen	40%
oxygen	30%
noble gases	10%

The apparatus below was set up with a 100 cm³ sample of the atmosphere of the planet in the graduated tube. The volume of the sample was measured at intervals until no further change in volume took place.



What volume of the sample would remain?

- **A** 30 cm³
- **B** 40 cm³
- **C** 60 cm³
- **D** 70 cm³
- **34** Which process is endothermic?
 - A The formation of a hydrogen-chlorine bond.
 - **B** The formation of rust.
 - **C** The formation of water from ice.
 - **D** The formation of water molecule from oxygen and hydrogen atoms.

- **35** Which of the following statement described the conversion of a sodium atom, Na, to a sodium ion. Na⁺?
 - **A** The change is reduction; there is a gain of electron.
 - **B** The change is reduction; there is a loss of electron.
 - **C** The change is oxidation; there is a gain of electron.
 - **D** The change is oxidation; there is a loss of electron.
- **36** Some crystals of magnesium carbonate were added to an excess of sulfuric acid at room temperature. The volume of carbon dioxide gas produced was measured over a period of time. The results are shown in graph Y.

The experiment was repeated and graph Z was obtained.

Which change was used to obtain the results shown in graph Z?

- A Acid of the same volume and half the original concentration was used.
- **B** Half the mass of magnesium carbonate was used.
- **C** Larger crystals of magnesium carbonate was used.
- **D** Using a lower temperature.
- **37** The table below shows the boiling point ranges of fractions collected from the distillation of a sample of crude oil.

Which fraction contained the smallest molecules?

Fraction	Boiling point range / °C
Α	20 – 50
В	50 – 100
С	100 – 150
D	150 - 250

38 'Meta-fuel', $C_8H_{16}O_4$, is a fuel used in camping stoves. What is the equation for its complete combustion?

A
$$C_8H_{16}O_4 + 2O_2$$
 \longrightarrow $8C + 8H_2O$
B $C_8H_{16}O_4 + 5O_2$ \longrightarrow $8CO + 8H_2O$
C $C_8H_{16}O_4 + 10O_2$ \longrightarrow $8CO_2 + 8H_2O$
D $C_8H_{16}O_4 + 8O_2$ \longrightarrow $4CO_2 + 4CO + 8H_2O$

- 39 Which of these reactions does not produce carbon dioxide?
 - A combustion of methane
 - **B** fermentation of sugar
 - C oxidation of ethanol to ethanoic acid
 - **D** reaction of ethanoic acid with calcium carbonate
- 40 A compound, Z, has the molecular structure as shown. How can Z be described?

- A an alkane and an acid
- B an alkene and an acid
- C an alkane and an alcohol
- D an alkene and an alcohol

- End of Paper 1 -

DATA SHEET Colours of some common metal hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

DATA SHEET
The Periodic Table of Elements

0	2	He	Helium 4	10	Ne	Neon	20	18	Αľ	Argon	40	36	Ž	Krypton 9.4	1 1	54	Xe	Xenon	131	98	Ru	Radon	_				
IIN				6	ш	Fluorine	19	17	7	Chlorine	35.5	35	Ŗ	Bromine	0 0	53	_	lodine	127	85	¥	Astatine	_				
IN				8	0	Oxygen	16	16	တ	Sulfur	32	34	Se	Selenium	2 (25	<u>е</u>	Tellurium	128	8	Ъ	Polonium	_	116	_	Livermorium	1
^				7	z	Nitrogen	14	15	_	Phosphorus	31	33	As	Arsenic 75	2 1	51	Sp	Antimony	122	83	Ö	Bismuth	209				
Ν				9	ပ	Carbon	12	14	Si	Silicon	28	32	Ge	Germanium 73	2 (20	Sn	Ē	119	82	Pp	Lead	207	114	Ε/	Flerovium	1
=				2	Δ	Boron	11	13	₹	Aluminium	27	31	Ga	Gallium	2 9	49	드	Indium	115	81	1	Thallium	204				ı
												30	Zu	Zinc	3 5	48	ဦ	Cadmium	112	80	Η̈́	Mercury	201	112	S	Copernicium	ı
												59	Cn	Copper	5!	47	Ag	Silver	108	79	Αn	Gold	197	111	Rg	Roentgenium	1
												28	Z	Nickel	9 9	46	Pd	Palladium	106	78	£	Platinum	195	110	Ds	Darmstadtium	1
												27	ဝိ	Cobalt	3 ;	45	몺	Rhodium	103	77	<u>-</u>	Iridium	192	109	ğ	Meitnerium	1
	-	I	Hydrogen 1									26	Ьe	lron R	3 :	44	R.	Ruthenium	101	92	s _O	Osmium	190	108	Hs	Hassium	1
				1								25	Z	Manganese	3 5	43	ည	Technetium		75	Re	Rhenium	186	107	B	Bohrium	ı
				er	_		s					24	ပ်	Chromium	30	42	о М	Molybdenum	96	74	>	Tungsten	184	106	Sg	Seaborgium	1
			Key	tomic) numk	ic symbo	name	atomic mas					23	>	Vanadium 5.1	5 ;	41	Q N	Niobium	93	73	Та	Tantalum	181	105	Op	Dubnium	1
				proton (a	atom	:	relative					22	F	Titanium	5 5	40	ZĽ	Zirconium	91	72	Ŧ	Hafnium	178	104	¥	Rutherfordium	ı
			l									21	လွင	Scandium	2 6	36	>	Yttrium	88	57 – 71	lanthanoids			89 – 103	actinoids		
=				4	Be	Beryllium	6	12	Mg	Magnesium	24	20	Ca	Calcium	P 8	38	ഗ്	Strontium	88	26	Ва	Barium	137	88	Ra	Radium	1
_				3	=	Lithium	7	11	Na	Sodium	23	19	¥	Potassium 20	0 0	37	윤	Rubidium	85	22	Cs	Caesium	133	87	ř	Francium	1
				1			II	II	III	II	II	III	II	II	II	II	II	II	II	II IV V V V V V V V	II	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1	Harmonian Harm

	22	28	29	09	61	62	63	49	65	99	29	89	69	20	71
lanthanoids	Ľ	S	Pr	P	Pm	Sm	Еu	В	Д	D	운	Д	Tm	Υb	Ľ
	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	139	140	141	144	147	150	152	157	159	162	165	167	169	173	175
	88	06	91	62	66	94	92	96	26	98	66	100	101	102	103
actinoids	Ac	Т	Ра)	dN	Pu	Am	CB	B	ర	ВS	Fm	Md	8	ڌ
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	ı	232	231	238	ı	1	ı	ı	ı	I	ı	I	ı	ı	I
6	J - -			١		L	+/	\ 1/							

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Name:	Class register no	Class:
-------	-------------------	--------

Bukit Batok Secondary School PRELIMINARY EXAMINATIONS 2018 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

SCIENCE (PHYSICS / CHEMISTRY)

Paper 2 Physics

5076/02 17 August 2018 0745 – 0900 1 hour 15 minutes

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces provided at the top of this page.

Write in dark blue or black pen

You may use a pencil for any diagrams, graphs or rough working

Do not use staples, paper clips, highlighters, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions in the spaces provided.

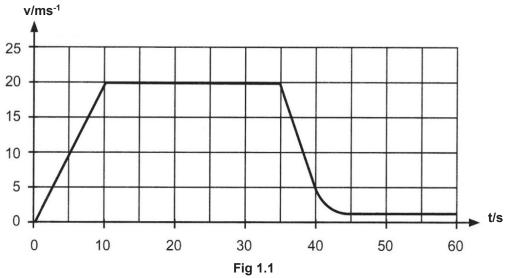
Write your answers in the spaces provided on the Question Paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the Question Paper.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
Section A	
Section B	
Total	

This document consists of 17 printed pages (including cover page).

SECTION A [45 MARKS] Answer all the questions in the spaces provided.

1 Fig.1.1 below shows the velocity-time graph of a 900 kg car travelling on a straight horizontal road for the first sixty seconds of its journey.

- (a) Calculate, for the first 10 seconds,
 - (i) the acceleration of the car,

(ii) the resultant force acting on the car.

resultant force = N [2]

	2018 / Sec 4E5N(A)	5076 Science	(Physics)	/ Preliminary	/ Exam Pap	er 2
--	--------------------	--------------	-----------	---------------	------------	------

(b)		from t = 35 s to t = 45 s and
	()	
	(ii)	between $t = 45 s$ to $t = 60 s$.
		[2]
(c)	De	termine the total distance travelled by the car during the first 30 s of its journey.
		total distance = m [2]

2 Fig. 2.1 shows a stone supported by two strings that hang from a rod. The tensions in the two strings are 1.3 N and 2.0 N.

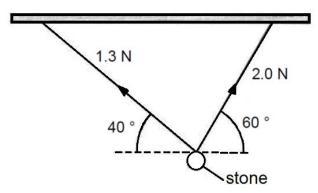


Fig. 2.1 (not drawn to scale)

In the space below, draw a labelled diagram to show the resultant force of the two tensions. Determine the size of the resultant force and the angle between the resultant force and the horizontal.

scale = 1 cm to		N
resultant force =		N
angle = .	[5]

3 Fig 3.1 shows a barrier found in most carparks. The barrier is in equilibrium. The weight of the pole is 450 N and the centre of gravity of the pole is 1.30 m away from the pivot.

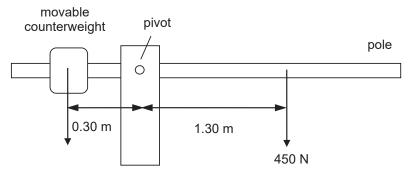


Fig. 3.1

- (a) The centre of gravity of the movable counterweight is 0.30 m away from the pivot.
 - (i) Calculate the weight of the counterweight.

(ii) Hence, calculate the mass of the counterweight.

(b) Calculate the amount of force acting on the pivot.

(c) Describe and explain how the gate can be opened.

[0]

Apply past knowledge to new situations

4 Fig. 4.1 shows a toy car of mass 1.00 kg on a smooth track. The toy car which is given a slight push starts to move with an initial speed of 2.00 m/s down a smooth track.

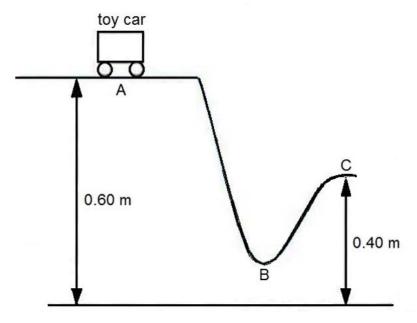


Fig 4.1

(a)	State the Principle of Conservation of Energy.
	[2]
(b)	State and explain at which point on the track would the speed of the toy car be at its maximum.
	[2]

		2018 / Sec 4E5N(A) / 50/6	Science (Physics) / Preliminary Exam Paper 2
(c)	(i)	Calculate the gravitational potential energy of the t	toy car at point C .
		gravitational potential	energy = J [1]
	(ii)	Hence, determine the speed of the toy car at C .	
			speed = m/s [2]

5 (a) Fig. 5.1 shows how the temperature of an unknown solid substance varies when heated over a Bunsen flame.

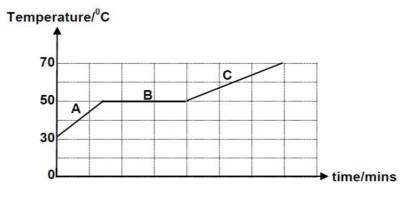


Fig. 5.1

	(i) Name the process taking place during stage b .	[1]
	(ii) Describe the movement of the particles at stage C.	
	(iii) Describe the arrangement of the particles at stage A.	
(b)	Explain why a pot of water boils faster with a covered lid.	

6	Fig. 6.1 shows a rectangular glass block, PQRS , with a refractive index of 1.50. A light ray is incident on the side PS of the glass block as shown.
	(a) What is meant by the phrase refractive index of 1.50?
	(b) A ray of light is incident on the side PS at 75° and is refracted into the glass block at 40°.
	Fig. 5.1 (i) Show that the refractive index of the glass block is 1.50. [1]
	critical angle =° [2]
	(iii) Complete the path of the light ray until it emerges into the air again.
	Label all the angles clearly. [2]

Apply past knowledge to new situations

7 (a) A beam of light is travelling parallel to the axis of a thin lens, as shown in Fig. 7.1. Point **F** is the focal point of the lens.

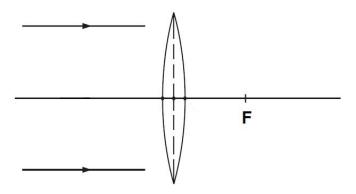


Fig. 7.1

On Fig. 7.1, complete the paths of the two rays after passing through the lens.

[2]

(b) In this part of the question, you are required to draw an accurate ray diagram using the grid on Fig. 7.2 for the lens in part (a).

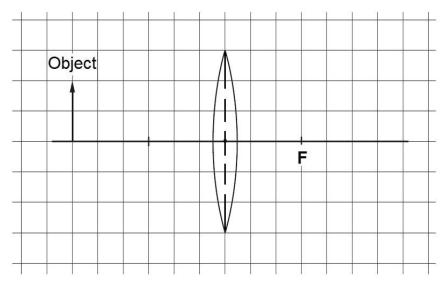


Fig. 7.2

(i) On the diagram, draw two rays from the top of the object through the lens to locate the position of the image. Label the image "I" beside it. [2]

(ii) From your diagram, state one similarity about the image and the object.

8 Fig. 8.1 shows an arrangement that is used to remove dust particles from the smoke in a factory chimney.

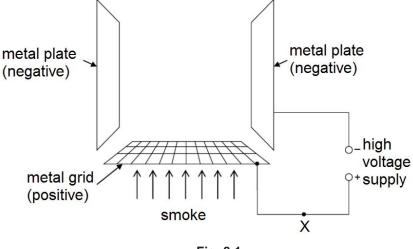


Fig. 8.1

When smoke passes through the metal grid, this results in the dust particles having a net positive charge.

(a)	Explain what happened to the dust particles as they pass through the metal grid.
	[2]
(b)	If 6.0 C of charges flow past point X in 1.0 minute, calculate the current flowing through X .

current = A [1]

SECTION B [20 MARKS]

Answer ANY TWO questions from this section.

9 Fig. 9.1 shows a metal cylinder which contains 0.000 46 m³ of oil. The total mass of the cylinder and the oil is 1.2 kg. The mass of the cylinder is 0.800 kg and the space above the oil is air. The gravitational field strength is 10 N/kg.

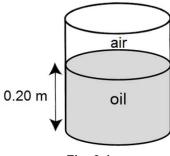


Fig. 9.1

	<u> </u>
(a)	State two differences between the mass and the weight of a substance.
	Difference 1:
	Difference 2:
	[2]
(b)	Calculate the weight of the oil.
	weight =[1]
(c)	Calculate the density of the oil in SI unit.

(d) Calculate the pressure exerted by the oil on the base of the cylinder in SI unit.
pressure =[2]
(e) State and explain how the values of each of the following quantities would change when the cylinder and the oil is brought to the Moon, where the gravitational field strength is reduced.
(i) density of oil.
[1]
(ii) pressure exerted by the oil on the base of the cylinder.
[2]

10 (a) A boy holds the loose end of a long rope which is fixed to a pole.He moves it up and down at a rate of 20 complete oscillations in every 50 seconds.Fig. 10.1 shows a section of the wave moving along the rope.

vertical displacement / cm

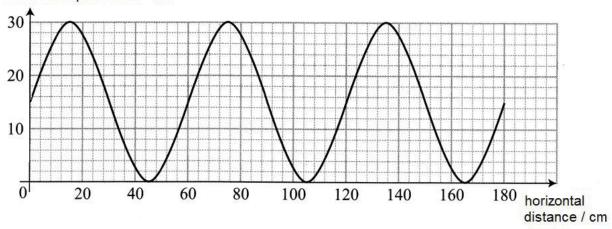
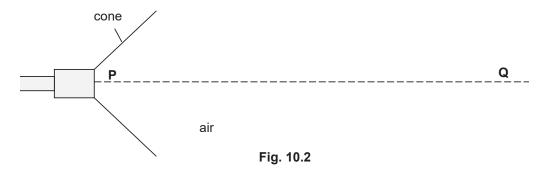


Fig. 10.1


(i) State the value of the amplitude of the wave.

(ii) Calculate the frequency of the wave.

(iii) Calculate the speed of the wave.

(b) Fig. 10.2 shows the cone of a loudspeaker that is producing sound waves in air.

At any given moment, a series of compressions and rarefactions exist along the line PQ.

The sound wave experience a rarefaction at **P**.

(i)	On Fig 10.2, draw the wave lines to represent two wavelengths of compressions and rarefactions between P and Q . Use the letter C to mark two compressions and the letter R to mark two rarefactions along PQ .	
(ii)	With reference to the sound wave travelling along PQ in Fig. 10.2, explain what is meant by a <i>longitudinal</i> wave.	
		[1]

(iii) To the right of **Q**, there is a large vertical wall 50 m in front of the loudspeaker. The speed of sound in air is 340 m/s.

Calculate the time taken for the echo to return to **P**.

time taken =[2]

11 (a) Fig. 11.1 below shows an electrical circuit with a lamp and two resistors

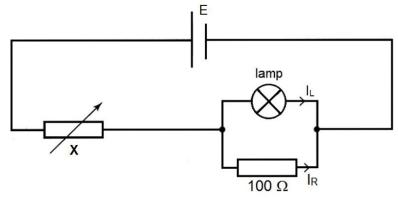


Fig. 11.1

(i) Name the component X.

_____[1]

Fig. 11.2 shows the graph of current against potential difference for the lamp **alone**. The potential difference across the lamp is 4.0 V.

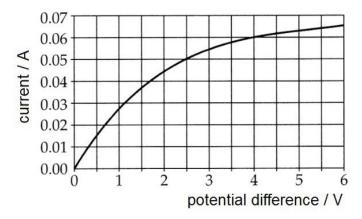


Fig. 11.2

Determine

(ii) the current in the lamp, I_L.

$$I_L = \dots [1]$$

(iii) the current in the 100 Ω resistor, I_R.

$$I_R =$$
 [2]

(iv) the current in component X.

Apply past knowledge to new situations

16

(b) Fig. 11.3 shows a type of electromagnetic lock in a door.

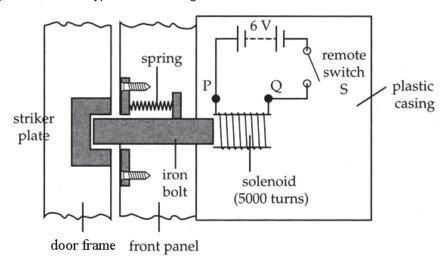


Fig. 11.3

When switch S is closed, the iron bolt moves to the right and out of the striker plate, allowing the door to be opened.

(i)	Explain why the iron bolt moves to the right and into the solenoid when the switch is closed.
	[3
(ii)	After using the electric lock for a year, the 6 V battery goes "flat" and its e.m.f. drops to 4 V.
	Why the electromagnetic lock does not work now?
	[∠

**** END OF PAPER 2 ****

2018 Preliminary Examination Marking Scheme [Sec. 4 Express / 5 Normal (Academic) 5076 Science Physics Paper 2]

SECTION A [45 MARKS]

1 (a) (i) acceleration,
$$a = \frac{v - u}{t} = \frac{20 - 0}{10}$$

[1 for working]

[1 for ans]

(ii) resultant force,
$$F_R = ma = (900)(2.0)$$

[1 for working]

[1 for ans]

(b) (i) From
$$t = 35$$
 s to $t = 45$ s, the braking force is greater than the forward driving force.

[1]

(ii) Between
$$t = 45$$
 s to $t = 60$ s, the braking force is equal to the forward driving force.

[1]

(c) Total distance =
$$\frac{1}{2}(10)(20) + (20)(20)$$

= $100 + 400$

[1 for working]

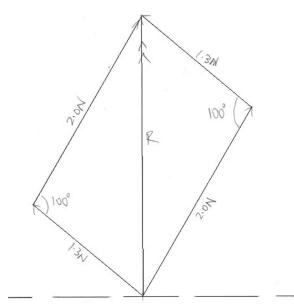
[1 for ans]

2 [Maximum = 2 for correct length of arrows]

[To deduct 1 mark for lack of arrows or wrong arrow]

[To deduct 1 mark for lack of angles or wrong angle between arrows]

Suitable scale = 1 cm to 0.2 N


[1]

resultant force = <u>2.56 ± 0.02 N</u>

[1 for value within range]

angle of resultant with horizontal = 90° ± 1°

[1 for angle within range]

3 (a) Using Principle of Moments,

(i) W x 0.30 m = 450 N x 1.30 m [1 for working]
W =
$$\frac{450 \times 1,30}{0.30}$$

= $\underline{1950 \text{ N}}$ [1 for ans]

(ii) Using W = mg

$$m = \frac{W}{g}$$

$$= \frac{1950}{10}$$

$$= 195 \text{ kg}$$
 [1 for working & ans]

(c) The gate can be opened by shifting the counterweight further away from the pivot.
 (OR shift to the left). [1]
 so the counterclockwise moment produced by the force of the counterweight is larger

than the clockwise moment produced by the weight of the pole. [1]

4 (a) Energy cannot be created or destroyed.

It can only be converted from one form to another; [1] the total energy of an isolated system is constant. [1]

(b) At <u>point B</u>. [1]

At this point the **change in height of the toy car is the greatest** and the largest amount of GPE would have been converted to KE and thus the car would be at the greatest speed.

[1]

(c) (i) GPE at point C = mgh
=
$$(1.00)(10)(0.40) = 4.0 \text{ J}$$
 [1 for working & ans]

(ii) Total energy at point **A** = KE at point **A** + GPE at point **A**
=
$$\frac{1}{2}$$
 mv² + mgh
= $\frac{1}{2}$ (1.00) (2.00)² + (1.00)(10)(0.60)
= 2.0 + 6.0 = **8.0** J [1 for working & ans]

Total energy at point **A** = GPE at point **C** + KE at point **C**

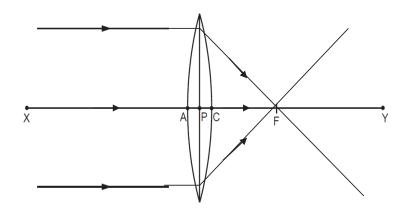
$$8.0 = \text{mgh} + \frac{1}{2} \text{ mv}^2$$

 $8.0 = (1.00)(10)(0.40) + \frac{1}{2} \text{ mv}^2$
 $8.0 - 4.0 = \frac{1}{2} (1.00) \text{ v}^2$
 $\text{v} = (\sqrt{8.0})$
 $= 2.83 \text{ m/s}$ [1 for ans & unit]

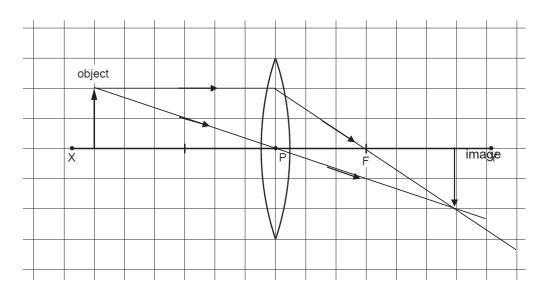
[allow ecf from (c)(i)]

Apply past knowledge to new situations

- **5** (a) (i) melting [1]
 - (ii) During stage **C**, the molecules are <u>sliding past one another</u>. [1]
 - (iii) The molecules at stage A are <u>closely packed together</u>. [1]
 - (b) With a covered lid, it reduces heat loss to the surroundings by:
 - o prevents convection current from forming.
 - o reducing evaporation from the water surface,
 - <u>reducing conduction through the layer of trapped air</u> between the water and the lid.
 [any TWO answers, 1 mark each, max = 2]
- (a) "refractive index of 1.50" shows that
 the <u>ratio</u> of the <u>sine of the incident angle</u> to the <u>sine of the refracted angle is 1.50</u> OR
 <u>Ratio</u> of the <u>speed of light in vacuum</u> to the <u>speed on light in the medium is 1.50</u>. [1
 - **(b) (i)** Refractive index, $n = \frac{\sin i}{\sin r} = \frac{\sin 75^{\circ}}{\sin 40^{\circ}}$


(ii)
$$n = \frac{1}{\sin c}$$

$$1.50 = \frac{1}{\sin c}$$
 [1 for working]


$$c = \sin^{-1}\left(\frac{1}{1.50}\right)$$

$$= 41.8^{\circ}$$
 [1 for ans]

- (b) (iii) [1 for Total Internally Reflected ray, angle 50°, at side **PQ**] [1 for emergent ray at side **QR**, angle = 75°]
- 7 (a) [1 mark for each ray converging onto F on the right after passing through the lens] [max = 2 marks]

(b) (i) [1 mark for each ray, max = 2 marks]

- (ii) The <u>object distance is the same as the image distance</u>. OR

 The <u>size of the image is the same as the size of the object</u>. [1]
- 8 (a) When the dust particles come into contact with the grid, they lose electrons to the grid
 [1]. Thus the particles will have less negative charges than positive charges and end up with a net positive charge and this cause it to be attracted to the metal plate. [1]

(b) Using
$$I = Q / t$$

= 6.0 / (1 x 60) = **0.10 A**

[1 for working & ans]

SECTION B [2 X 10 = 20 MARKS]

9 (a) [Any TWO answers. 1 mark each. Maximum = 2]

Mass	Weight
A measure of the amount of matter in	The force of gravitational attraction on
an object.	an object.
SI unit: kilogram (kg)	SI unit: newton (N)
Measured with a beam balance.	Measured with a spring balance.
Mass remains unchanged when it is	Weight changes when it is moved to
moved to another place with different	another place with different gravitational
gravitational attraction.	attraction.

(b) Using W = mg =
$$(1.2 - 0.800)(10)$$

[1 for working, ans & unit]

(c) Using density =
$$\frac{m}{V} = \frac{0.400}{0.00046}$$

$$= 870 \text{ kg/m}^3$$

[1 for ans & unit]

[1 for working]

(d) Using P =
$$\frac{F}{A} = \frac{4.0}{\left(\frac{0.00046}{0.20}\right)}$$

[1 for ans & unit]

- (e) (i) Density <u>does not change</u>. Since <u>Density = Mass / Volume</u>, both the <u>mass and volume of the liquid does not change</u>. [1]
 - (ii) Pressure will be reduced.

[1]

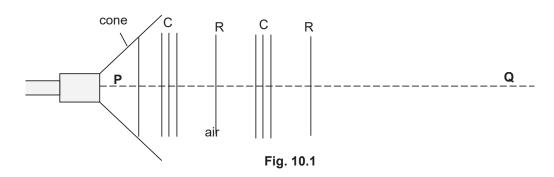
According to P = F/A, weight W (= F) of the liquid is smaller on Moon with base area remains constant. [1]

[1]

[1 for working]

[1 for ans & unit]

(iii) Using
$$v = f \lambda$$


$$v = 0.40 \times 60$$

[1 for working]

[1 for ans & unit]

[allow ecf from (a)(ii) for value of frequency]

(b) (i) lines = 1 mark
Labelling of C and R = 1 mark

(ii) The sound wave <u>travels in the direction</u> (along PQ)<u>parallel to the direction of the vibration</u> of the air molecules. (along PQ). [1]

(iv) Time =
$$\frac{2 \times \text{distance}}{\text{speed}} = \left(\frac{2 \times 50}{340}\right)$$
 [1 for working]
= $\frac{0.29 \text{ s (accept 0.294 s)}}{(1 \text{ for ans & unit)}}$

11 (a) (i) Rheostat or variable resistor

[1]

(ii) (From the graph) current $I_L = 0.060 \text{ A}$

[1 for ans & unit]

(iii) Using V = IR

current
$$I_R = \frac{V}{R} = \frac{4.0}{100}$$
 [1 for working]

= <u>0.040 A</u> [1 for ans & unit]

(iv) current
$$I_X = 0.06 + 0.04$$

= 0.10 A

0.10 A [1 for ans & unit]

(b) (i) When the switch is closed, the <u>solenoid becomes an electromagnet</u>. [1]
 The iron bolt is then <u>attracted to the solenoid due to magnetic induction</u>. [1]
 This <u>strong attractive force will overcome the force of the spring</u> and cause the lock to be unlocked. [1]

(ii) At 4 V, there is <u>little current flowing through the solenoid</u>. [1]

Therefore <u>the magnetic field strength of the solenoid is too weak to attract the iron bolt</u>. [1]

Name:	Index No	Class:

BUKIT BATOK SECONDARY SCHOOL

GCE O LEVEL PRELIMINARY EXAMINATION

SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC

SCIENCEPaper 3 Chemistry

5076/03 15 August 2018 1030 – 1145 h 1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces provided at the top of this page. Write in dark blue or black pen

You may use a pencil for any diagrams, graphs or rough working Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions in the spaces provided.

Write your answers in the spaces provided on the Question Paper.

Section B

Answer any **two** questions.

Write your answers in the spaces provided on the question paper.

Electronic calculators may be used.

A copy of the Data Sheet is printed on page 18.

A copy of the Periodic Table is given at the end of the paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
Section A			
Section B			
Total			

This document consists of 19 printed pages

Section A [45 marks]

Answer all the questions.

Write your answers in the spaces provided on the question paper.

- 1 Fig. 1.1 shows the composition of unpolluted, dry air.
 - (a) Write in the missing name of the gas which occupies 78% of air.

[1]

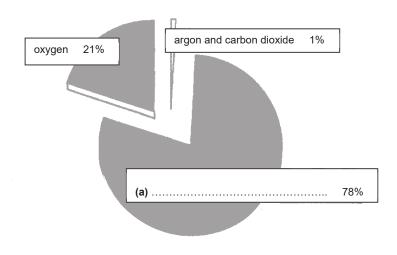


Fig. 1.1

(b) Name two gases that pollute the atmosphere and name the chemical source of each.

Gas 1

Source

-- 0

Source

.....[4]

2	A student collected some water from a polluted river.
	The water contains some soluble solids and insoluble clay.
	(a) State a method that can separate the clay from the rest of the water.

.....[1]

(b) The student then boiled the river water to obtain the soluble solids. Fig. 2.1 shows how she heated the water.

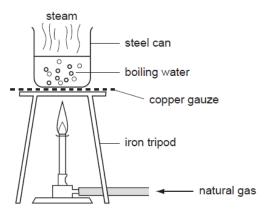


Fig. 2.1

The student wrote in her practical sheet that "the boiled river water is pure because the universal indicator remains green when it is added to the boiled river water."

	Do you agree with her statement? Explain.
	[1]
(c)	On cooling, steam will condense. Describe what happens to the spacing and movement of the particles of steam during condensation.
	changes to spacing
	changes to movement
	[2]

							oric acid, water, um hydroxide		
	(a)			st of chemical aking a cold p			et a pair of chem tory.	icals that can b	е
									[1]
	(b)		-				energy change.		
4	A s	olutio	on of niti	ric acid, HNO	₃, has a con	centration o	of 126 g/dm³.		
	(a)	(i)		ate the relative re atomic mas					
					relative ı	molecular n	nass =		[1]
		(ii)	Calcula	ate the conce	ntration of th	e solution i	n mol/dm³.		
						concentra	ation =		[1]

3 Cold packs are used to reduce swelling, inflammation and pain by removing the heat.

A list of chemicals from a science laboratory is shown below:

4

(b)	Ма	gnes	ium carbonate reacts with this solution of nitric acid as follows: $MgCO_3 + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O + CO_2$
		(i)	What mass of magnesium carbonate react with 500 cm ³ of nitric acid?
			Mass of magnesium carbonate =[2]
		(ii)	Find the volume of carbon dioxide gas produced in this reaction.
			Volume of carbon dioxide =[1]
	(c)		other nitric acid solution is made by diluting 1.0 mol to make 2.0 dm ³ of solution. at is the concentration of this solution in mol/dm ³ ?
			concentration[1]

5 Fig. 5.1 shows the properties of some elements in Group VII.

Properties	Х	Y	lodine
melting point / °C	- 7.2	- 101.0	114.0
boiling point / °C	58.8	- 35.0	184.0
reaction with aqueous potassium iodide	colourless solution turns brown	colourless solution turns brown	
reaction with cold aqueous sodium hydroxide	reacts quickly and less vigorously to form a colourless solution	reacts rapidly and vigorously to form a colourless solution	reacts slowly to form a colourless solution

Fig. 5.1

(a)	Sta	te the physical state and colour of Y at room temperature and pressure.	
			[1]
(b)	Usi	ng evidence from Figure 5.1, explain and deduce the identity of X .	
(c)	lodi	ine reacts with cold aqueous sodium hydroxide according to the equation: 2NaOH + $I_2 \rightarrow$ Na I + NaO I + H $_2$ O	
	(i)	Explain why both element ${\bf X}$ and ${\bf Y}$ undergoes similar reaction with cold aqueous sodium hydroxide.	
	(ii)	Hence, construct a chemical equation for the reaction between element X and cold aqueous sodium hydroxide.	
			[1]

6 Equal masses of lumps of lead (II) carbonate were reacted with three different acids of the same concentration in three separate experiments I, II and III. The acids were in excess and all other conditions were kept the same.

Experiment	Reagents								
I	Lead (II) carbonate	Nitric acid							
II	Lead (II) carbonate	Sulfuric acid							
III	Lead (II) carbonate	Ethanoic acid							

The mass of the lead (II) carbonate was measured and calculated at regular time intervals and the results for experiments I and II are shown in Figure 6.1.

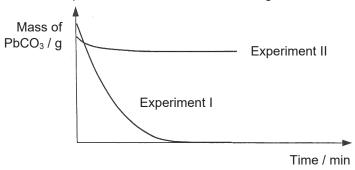
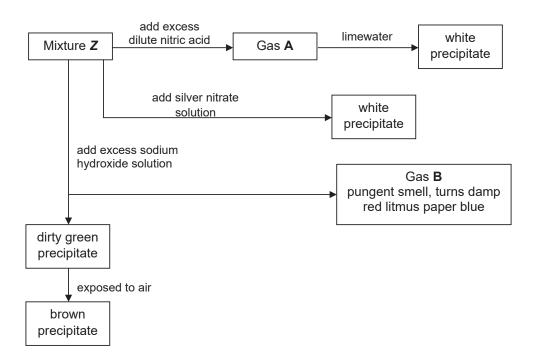


Fig. 6.1

(a) Using Fig. 6.1, determine if lead (II) carbonate react completely with sulfuric acid. Explain your answer.

.....[1]

(b) (i) In experiments I and III, would ethanoic acid react faster than nitric acid? Explain your answer in terms of hydrogen ions in the acids.


	 ٠.	٠.	 	 ٠.	٠.	 ٠.	 	 	 	 	 		 														
	 		 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 [2	2]

(ii) Lead (II) ethanoate is a white, crystalline substance with a sweetish taste and is soluble in water.

Sketch on the same axes above, the result for experiment III. [1]

	(c)	Briefly outline how a pure and dry sample of lead (II) nitrate can be made from lead (II) carbonate.	
			[4]
7	Pro	pane and propene are both organic compounds.	
	(a)	Compare how they react, if at all, with (i) oxygen, (ii) hydrogen.	
			[5]
	(b)	Write a chemical equation for any one of these reactions.	
			[1]

8 A mixture **Z** was made by dissolving two salts, **X** and **Y**, in water. A series of reactions was carried out on mixture **Z** as shown below.

(a) Identify the **four** ions that are present in mixture **Z**. Justify your answers.

lons	Formula	Reasons
1		
2		
3		
4		

[4]

	Predict what would be observed if excess ammonia solution was added to a sample of mixture Z .
	[1]
(c)	No reaction was observed when ammonia solution was added to aqueous solution of salt ${\bf Y}$.
	Give the names of salts X and Y .
	x :
	V· [2]

- End of Section A -

Section B [20 marks]

Answer any two questions.

Write your answers in the spaces provided on the question paper.

9 Fig. 9.1 shows the structures of calcium chloride and chlorine gas.

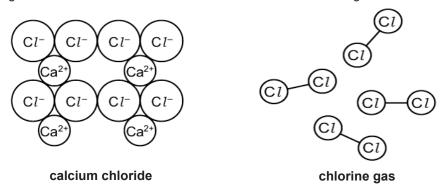


Fig. 9.1

(a)	Chlorine exists as two isotopes, ³⁵ C <i>l</i> and ³⁷ C <i>l</i> .
	Describe the similarities and differences between these two isotopes.
	[3]

(b) Calcium reacts with chlorine atoms to form calcium chloride.Fig. 9.2 shows the physical properties of calcium chloride and chlorine.

	conductivity	boiling point/ °C
calcium chloride	conducts in molten state but not in solid state	1935
chlorine gas	does not conduct electricity	-34

Fig. 9.2

(i)	Predict and explain the electrical conductivity of strontium chloride.
	[2

(11)	chloride. Your answer should include: • electronic structures of atoms
	force of attraction in the compound
	[3]
(iii)	Give a reason why chlorine gas has such a low boiling point.
	[2]
	[Total : 10 marks]

10 (a) Duralumin is an alloy made up mainly of aluminium and copper atoms.

Fig. 10.1 shows how the strength of duralumin changes with the different percentage of copper added.

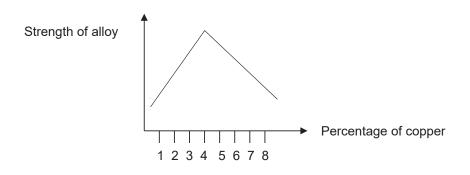


Fig. 10.1

(i) Using the information from Figure 10.1, estimate the percentage of copper that will produce the strongest duralumin mixture.

.....[1]

(ii) Explain, with the aid of a well-labelled diagram of duralumin, why it is stronger than pure aluminium.

.....

......[

(b) Fig. 10.2 shows the results of an experiment in which four metals are placed in solutions of other metal nitrates.

Solu	ition		Metals a	dded	
Metal nitrate	Colour	Calcium	Chromium	Cobalt	Copper
Calcium nitrate	Colourless	No reaction	No reaction	No reaction	No reaction
Chromium (III) nitrate	Green	Colourless solution and grey solid	No reaction	No reaction	No reaction
Cobalt (II) nitrate	Pink	Colourless solution and grey solid	Green solution and grey solid	No reaction	No reaction
Copper(II) nitrate	blue	Colourless solution and reddish- brown solid		Pink solution and reddish- brown solid	No reaction

Fig. 10.2

(i)	Arrange the four metals in order of their reactivity starting with the most reactive.
	[1]
(ii)	Predict two observations when chromium is added to copper(II) nitrate solution.
	[2]

(c)	One possible chemical reaction	n between	metal	r and	the	solution	of	salt 2	X is	as
	follows:									

$$Y + X(NO_3)_2 \rightarrow X + Y(NO_3)_2$$

(i) Complete the table below with the missing information.

formula	oxidation state of Y
Y	
Y (NO ₃) ₂	

[2]

(ii)	Using the data above, explain whether $old Y$ is an oxidizing or a reducing agent.
	[2

[Total : 10 marks]

11 Poly(methyl methacrylate) is formed by addition polymerisation. Its structure is shown below.

(a) (i) Draw the structure of the monomer of poly(methyl methacrylate).

(ii) Explain why and how the monomer drawn in (a)(i) can undergo addition polymerisation to form poly(methyl methacrylate).

- (b) Ethanol can be obtained from glucose through the process of fermentation. One of the conditions of this process is having an anaerobic environment. Otherwise, substance X will be produced instead.
 - (i) Write the chemical equation for fermentation of glucose. [1]
 - (ii) Draw the structural formula of substance X.

[1]

[1]

(111)	Describe a laboratory experiment to differentiate ethanol and substance X .
	[3]
(iv)	A student carries out fermentation in a laboratory. To speed up the process, he heats up the mixture to 100 °C. Explain why he will not obtain ethanol.
(v)	State one use of ethanol.
(v)	[1]

- End of Paper -

DATA SHEET

Colours of some common metal hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

DATA SHEET
The Periodic Table of Elements

0	2	<u>4</u>	elium 4	10	Ne	Veon	02 9	9	۸r	Vrgon	40	36	ڄ ح	ypton	84	54	e Ke	enon	131	98	٦	adon	ı				
	'	_	T																								_
IIΛ				6	ш	Fluorine	<u>1</u> <u>@</u>	17	ပ	Chlorine	35.5	35	፴	Bromine	80	23	-	lodine	127	85	Αt	Astatine	I				
IN				80	0	Oxygen 16	2 5	16	ഗ	Sulfur	32	8	Se	Selenium	79	52	Те	Tellurium	128	84	Po	Polonium	ı	116	^	Livermorium	I
^				7	z	Nitrogen	± ',	12	<u></u>	Phosphorus	31	33	As	Arsenic	75	51	Sb	Antimony	122	83	Ö	Bismuth	209				
N				9	ပ	Carbon	7 ;	4	Si	Silicon	28	32	ge	Germanium	73	20	Sn	Ξ	119	82	Pb	Lead	207	114	F.	Flerovium	ı
Ш				5	М	Boron 4.4	- (5	₹	Aluminium	27	31	Ga	Gallium	70	49	므	Indium	115	81	F	Thallium	204				ı
												30	Zu	Zinc	65	48	Sq	Cadmium	112	80	Hg	Mercury	201	112	S	Copernicium	ı
												29	Cn	Copper	64	47	Ag	Silver	108	62	Αu	Gold	197	111	Rg	Roentgenium	ı
												28	Z	Nickel	59	46	Pd	Palladium	106	78	퐙	Platinum	195	110	Ds	Darmstadtium	ı
												27	ပိ	Cobalt	59	45	Rh	Rhodium	103	77	<u>-</u>	Iridium	192	109	Mt	Meitnerium	ı
	-	I	Hydrogen 1									56	Ьe	Iron	56	44	Ru	Ruthenium	101	9/	Os	Osmium	190	108	Hs	Hassium	-
				•								25	Mn	Manganese	55	43	ည	Technetium		75	Re	Rhenium	186	107	Bh	Bohrium	-
				oer .								24	ပ်	Chromium	52	42	ω	Molybdenum	96	74	>	Tungsten	184	106	Sg	Seaborgium	I
			Key	atomic) numb	_	ic symbo						23	>	Vanadium	51	41	qN	Niobium	93	73	Тa	Tantalum	181	105	Op	Dubnium	ı
				proton (a		atom						22	F	Titanium	48	40	Zr	Zirconium	91	72	Ξ	Hafnium	178	104	¥	Rutherfordium	ı
			Ĺ				J					21	Sc	Scandium	45	39	>	Yttrium	88	57 – 71	lanthanoids			89 – 103	actinoids		
=				4	Be	Beryllium	D (12	Mg	Magnesium	24	20	Ça	Calcium	40	38	Š	Strontium	88	99	Ва	Barium	137	88	Ra	Radium	I
_				3	:=	Lithium	- ;	11	Ra	Sodium	23	19	¥	Potassium	39	37	Rb	Rubidium	82	22	S	Caesium	133	87	Ļ	Francium	ı
				1	II	II	II	II	II	II	II	III	II	II	II	III IV V V V V V V V	II IV V V V V V V V	II	II II II II II II II I	1 1 1 1 1 1 1 1 1 1	III IV V VII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII	1 1 1 1 1 1 1 1 1 1	Harmonian Harm	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	II	Harmoniary Har

	22	28	69	09	61	62	63	64	65	99	29	89	69	70	71
anthanoids	Га	Ce	ŗ	PZ	Pm	Sm	En	gq	Тр	۵	유	ш	Ш	Yb	Γn
_	_anthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	139	140	141	144	147	150	152	157	159	162	165	167	169	173	175
	68	06	91	92	93	94	92	96	26	98	66	100	101	102	103
inoids	Ac	드	Ра	-	ď	Pu	Am	CB	æ	Ç	Es	Fm	Md	2	۲
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Ourium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	ı	232	231	238	ı	ı	ı	ı	ı	ı	ı	I	ı	ı	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Bukit Batok Secondary School Sec 4 Express, 5 Normal (Academic) Science (Chemistry)

PRELIMINARY EXAMINATIONS 2018 ANSWERS

Paper 1: Multiple Choice Questions (20 marks)

21	D	Sugar = C ₆ H ₁₂ O ₆ where carbon, hydrogen and oxygen atoms are chemically bonded together		
22	С	Conc sulfuric acid H ₂ SO ₄ dries acidic gases (so they don't react). Upward delivery is used to collect gases which are less dense than air. NH ₃ will react with conc H ₂ SO ₄ though it can be collected via upward delivery. CO ₂ , H ₂ and O ₂ will not react with conc H ₂ SO ₄ thus can be dried & collected. Only H ₂ is less dense than air to be collected via upward delivery method.		
23	С	Melting point of substance is to be <-150°C and boiling point <-100°C.		
24	С	Different substances have different solubility in different solvents.		
25	D	Y – from Group VI because it has 6 valence electrons Z – from Group VII because it gas 7 valence electrons		
26	В	Hydroxide ion = OH ⁻ There are 8 protons in oxygen and 1 proton in hydrogen atoms = 9 protons F- ion has 9 protons (each fluorine atom has 9 protons, it takes in 1 electron to form a fluoride ion, proton number is not affected thus remains the same).		
27	В	Rubidium chloride is made up of Rb and Ct ions thus RbCl. Group I metals have low melting point and are soluble in water.		
28	D	Acidic oxide (CO ₂) and amphoteric oxides (Al ₂ O ₃ and ZnO) can react with NaOH which is a base.		
29	M	R is a solid which can react with solution S in a neutralisation reaction. Thus R = insoluble metal oxide (le/a solid) and S = acid (solution)		
30	D	BaCl ₂ gives white precipitate = SO ₄ ² present White precipitate soluble in excess aq NH ₃ = Zn ²⁺ ion present		
31	В	No of moles of Mg = mass = molar mass = 6g ÷ 24 = 0.250 mol 1mol Mg produces 1mol H ₂ Volume of H ₂ = no of moles x molar volume = 0.250 mol x 24 dm ³ = 6 dm ³		
32	D	Fe ₂ O ₃ + 3CO \rightarrow 2Fe + 3CO ₂ Answer is NOT (B) because LIME is used to remove acidic impurities, not limestone . LIME is produced of heat limestone. CaCO ₃ \rightarrow CaO + CO ₂ CaO + SiO ₂ \rightarrow CaSiO ₃		
33	D	30% of O ₂ will be used up, 70% of air left.		
34	С	(A) formation of bond = exothermic (B) rusting = exothermic (C) melting (ice absorb heat) = endothermic (D) H ₂ combust in O ₂ to form H ₂ O = exothermic		
35	D	Na atom (2.8.1) loses 1 electron to form Na ⁺ ion (2.8). Loss of electrons = oxidation		
36	В	$\frac{1}{2}$ volume of CO ₂ produced , thus $\frac{1}{2}$ mass of limiting reactant (MgCO ₃) used.		

37	Α	Smallest molecules = lowest boiling point range	
38	С	Complete combustion produce carbon dioxide and water.	
39	С	Oxidation of ethanol to ethanoic acid produces water.	
40	В	It has C=C and carboxyl group (COOH).	

Paper 3 Section A: Short Answer Questions (45 marks)

1a. Nitrogen 1_m Gas: Sulfur dioxide (sulfur trioxide) 1b. Source: Burning of coal in power stations / factories Gas: Carbon monoxide Source: Incomplete combustion of carbon-containing fuels in vehicles Gas: Oxides of nitrogen gas 1m Source: Produce when oxygen and nitrogen react at high temperate when fuel is burned/combusted in vehicle engines ource 1m 2a. filtration 2b. no mark The purity of the liquid is determined by the fixed boiling point. The universal indicator remains green can only prove that the liquid has a neutral pH (pH 7). The universal indicator can only prove whether the solution is acidic or alkaline, but cannot show whether the water is pure. either 1m Changes to spacing 2c. The spacing decreases, from moving far apart to closely packed. 1m Changes to movement _/ The movement slows down, from moving randomly at high speeds to sliding past one another in random motion. 1m Ammonium nitrate and water 3a. 1_m Endothermic. 3b. 1m When ammonium salts react with water, the reaction take in / absorb energy from surrounding, causing surrounding temperature to drop / decrease. 1m $M_{\rm r}$ of HNO₃ = 1 + 14 + 3(16) = 63 4ai. 1_m Concentration of HNO₃ = concentration in g/mol ÷ molar mass 4aii. $= 126 \text{ g/mol} \div 63$

1_m

 $= 2.00 \, mol/dm^3$

4bi. No of moles of HNO₃ = concentration x volume = $2.00 \text{ mol/dm}^3 \text{ x } (500/1000) \text{ dm}^3$ = 1.00 mol1_m 2 mol of HNO3 reacts with 1 mol of MgCO3 1.00 mol of HNO3 reacts with 0.500 mol of MgCO3 Mass of MgCO₃ = no of moles x molar mass 1m = 0.500 mol x [24 + 12 + 3(16)]ecf if 1st 1m = 42 gwrong overall -1 if any answer not in 3sf 2 mol of HNO $_3$ produces 1 mol of CO $_2$ 4bii. 1.00 mol of HNO₃ produces 0.500 mol of CO₂ Volume of CO₂ = no of moles x molar volume $= 0.500 \text{ mol } \times 24 \text{ dm}^3$ = <u>12 dm³</u> 1m Concentration = no of moles ÷ volume 4c. = 1.0 mol ÷ 2 dm³ = <u>0.500 mol/dm³</u> 1_m Pale yellow / yellowish-green gas 5a. 1m X could be bromine since it is a liquid. 5b. It is more reactive than iodine since it is able to displace iodine 1_m But it is less reactive than Y since it reacts less vigorous sodium hydroxide. 1m 5ci. All of them have seven valence electrons. 1m 5cii. $2NaOH + X_2 \rightarrow NaX + NaOX + H_2O$ (or use Br for X) 1m 6a. No. Lead (II) sulfate produced is an insoluble salt / there is mass of lead 1m (II) sulfate left. 6bi. No. Ethanoic acid is weak acid but nitric acid is a strong acid. 1m It has produces lesser H+ ions per unit volume compared to nitric acid. 1m (Frequency of collisions is lesser thus reaction is slower) 6bii. Mass of PbCQ3 Experiment II Experiment III Experiment I 1m

3

6c.	(1) Add excess lead (II) carbonate to nitric acid. (2) Filter to remove excess lead (II) carbonate.	1m
	Obtain the filtrate, lead (II) nitrate. (not necessary) (3) Heat lead (II) nitrate solution till saturation.	1m
	Leave to cool for crystals to form.	1m
	(4) Filter out the crystals. Pat dry between filter papers	1m
7a.	Both propane and propene reacts with excess oxygen to produce carbon dioxide and water.	e 1m
	Both undergoes incomplete combustion to produce carbon mono and water.	xide 1m
	Propane does not react with hydrogen.	1m
	Propene reacts with hydrogen at (200 °C with nickel catalyst) to produce propane.	1m have () 1m
7b.	$ 2C_{3}H_{6} + 9O_{2} \rightarrow 6CO_{2} + 6H_{2}O $ $ 2C_{3}H_{8} + 10O_{2} \rightarrow 6CO_{2} + 8H_{2}O $ $ 2C_{3}H_{6} + 6O_{2} \rightarrow 6CO + 6H_{2}O $ $ 2C_{3}H_{8} + 7O_{2} \rightarrow 6CO + 8H_{2}O $ $ 2C_{3}H_{6} + H_{2} \rightarrow C_{3}H_{8} $	either eqn 1m
8a.	Ions Formula Reasons	
	green precipitate formed after adding	
	1 Fe ²⁺ sodium hydroxide which turned brown over time	
	2 NH ₄ ⁺ ammonia gas produced when sedjum hydroxide is added	
	3 CO ₃ carbon dioxide produced after adding nitric acid	each formula + reason 1m
	white precipitate formed after adding silver hitrate	total 4m
Oh	Distriction of the following which is insolvible in every	
8b. \	Dirty green precipitate formed which is insoluble in excess aquec	ous 1m
	Turns brown on standing / when exposed to air	bonus 1m
8c.	X = iron (II) chloride Y = amnonium carbonate	1m 1m

Explanation:

Possible answers are

- (a) iron (II) chloride and ammonium carbonate
- (b) iron (II) carbonate and ammonium chloride

However, iron (II) carbonate is an insoluble salt (both X and Y dissolve). Also, no reaction when aq NH_3 added to Y so Y is an ammonium salt.

Paper 3 Section B : 3 Questions choose 2 (20 marks)

9a.	Both have 17 protons.	1m
	They have different number of neutron / atomic mass.	1m
	35 C <i>l</i> has 18 neutrons/ mass number of 35. 37 C <i>l</i> has 20 neutrons/mass number of 37.	1m
9bi.	Strontium chloride conducts in molten state but not in solid state. The ions $(Sr^{2+}$ and Cl) are mobile in molten state. But they cannot move (and are fixed in positions) when in solid state.	no marks 1m 1m
9bii.	Calcium atom has an electronic configuration of 2.8.8.2. Chlorine has an electronic configuration of 2.8.7.	1m
	Each calcium atom transfers two valence electrons to 2 chlorine atoms.	1m
	Ca ²⁺ and Cl ⁻ ions are formed which are attracted by electrostatic forces of attraction.	1m
9biii.	Weak intermolecular force between chlorine molecules required little amount of energy to overcome.	1m 1m
10ai.	4%	1m
10aii.	copperatoms	
	aluminium atoms	1m
^	Copper atoms is bigger than aluminium atoms thus they disrupt the	1111
	orderly arrangement of aluminium atoms and prevent them from sliding.	1m
10bi	Calcium > chromium > coball > copper	1m
10bii. `	Blue solution turns green. Brown solids formed.	1m 1m
10ci.	Y: 0 Y(NO ₃) ₂ : +2	1m 1m
10cii.	It is a reducing agent.	no marks
	Y is oxidised as the oxidation state of Y increases from 0 in Y to +2 in $Y(NO_3)_2. \\$	1m
	Y reduces $X(NO_3)_2$ by decreasing the oxidation state of X from +2 to 0 in X.	1m

11ai. _H

- 1m
- 11aii. At **high temperature and pressure** (and in the presence of a catalyst), the **carbon-carbon double bonds** of the monomer **break** / the monomer has C=C bonds which break.

Each monomer forms single bonds and joins with two other monomers form the polymer, poly(methyl methacrylate).

1m

1m

- 11bi. $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2CO_2$
- 11bii.

$$\begin{array}{c|c} H & O \\ \mid & \parallel \\ H-C-C-C-OH \\ \mid \\ H \end{array}$$

1m

1m

- 11biii. Add potassium manganate(VII) to both substances.

 If it turns from purple to colourless, it is substance is ethanol.
- 1m 1m

If it remains purple, it is substance X

Also accept

Use of blue litmus paper

X turns blue litmus paper red

Blue litmus paper remains blue if its ethanol:

Add suitable metal / metal carbonate If susbstance X, effervescence seen.

H₂ produced with caused lighted splint to extinguish with pop sound (if use metal)

CO₂ produced which formed white precipitate in limewater (if use metal carbonate)

11biv. When the mixture is heated, the yeast denatures and stops the reaction.

1m

11bv. Solvent in paints and varnishes

Manufacture of perfumes, detergent, deodorants etc. Found in alcoholic drinks like beer, wines and spirits

Used in preparation of ethanoic acid

(Any one)

1m

Bukit Batok Secondary School Sec 4 Express, 5 Normal (Academic) Science (Chemistry)

PRELIMINARY EXAMINATIONS 2018 ANSWERS

Paper 3 Section A: Short Answer Questions (45 marks)

1a.	Nitrogen	1m
1b.	Gas : Sulfur dioxide (sulfur trioxide) Source : Burning of coal in power stations / factories	
	Gas : Carbon monoxide Source : Incomplete combustion of carbon-containing fuels in vehicles	$\overline{}$
	Gas : Oxides of nitrogen Source : Produce when oxygen and nitrogen react at high temperature when fuel is burned/combusted in vehicle engines	gas 1m source 1m
2a.	filtration	1m
2b.	No. The purity of the liquid is determined by the fixed boiling point. OR The universal indicator remains green can only prove that the liquid has	no mark
	a neutral pH (pH 7). OR	
	The universal indicator can only prove whether the solution is acidic or alkaline, but cannot show whether the water is pure.	either 1m
2c.	Changes to spacing The spacing decreases, from moving far apart to closely packed.	1m
\langle	Changes to movement The movement slows down, from moving randomly at high speeds to sliding past one another in random notion.	1m
3a.	Ammonium nitrate and water	1m
3b.	Endothermic. When ammonium salts react with water, the reaction take in / absorb	1m
	energy from surrounding, causing surrounding temperature to drop / decrease.	1m
4ai.	M_r of HNO ₃ = 1 + 14 + 3(16) = 63	1m
4aii.	Concentration of HNO ₃ = concentration in g/mol ÷ molar mass = 126 g/mol ÷ 63	
	= <u>2.00 mol/dm</u> ²	1m
4bi.	No of moles of HNO ₃ = concentration x volume = $2.00 \text{ mol/dm}^3 \text{ x } (500/1000) \text{ dm}^3$ = 1.00 mol	1m

1

2 mol of HNO $_3$ reacts with 1 mol of MgCO $_3$ 1.00 mol of HNO $_3$ reacts with 0.500 mol of MgCO $_3$

Mass of MgCO₃ = no of moles x molar mass = 0.500 mol x [24 + 12 + 3(16)]= 42 g

1m ecf if 1st 1m wrong overall -1 if any answer not in 3sf

4bii. 2 mol of HNO $_3$ produces 1 mol of CO $_2$ 1.00 mol of HNO $_3$ produces 0.500 mol of CO $_2$

Volume of CO_2 = no of moles x molar volume = 0.500 mol x 24 dm³ = **12** dm³

1m

4c. Concentration = no of moles \div volume = 1.0 mol \div 2 dm³ = 0.500 mol/dm^{3}

1m

1_m

1m

1m

- 5a. Pale yellow / yellowish-green gas
- 5b. X could be bromine since it is a liquid.

It is more reactive than iodine since it is able to displace iodine.

But it is less reactive than Y since it reacts less vigorously with sodium hydroxide.

1m

1m

- 5ci. All of them have seven valence electrons
- 5cii. $2NaOH + X_2 \rightarrow NaX + NaOX + H_2O$ (or use Br for X)

1m

6a. No. Lead (II) sulfate produced is an insoluble salt? there is mass of lead (II) sulfate left.

1m

6bi. No. Ethanoic acid is weak acid but nitric acid is a strong acid.

1m

It has / produces lesser H+ ions per unit volume compared to nitric acid. (Frequency of collisions is lesser thus reaction is slower)

1m

6bii.

Mass of PbCO₃

- Experiment II

T

Experiment III

Experiment I

1m

- 6c. (1) Add excess lead (II) carbonate to nitric acid.
 - (2) Filter to remove excess lead (II) carbonate.

 Obtain the filtrate, lead (II) nitrate. (not necessary)

(3) Heat lead (II) nitrate solution till saturation. Leave to cool for crystals to form.

(4) Filter out the crystals.

Pat dry between filter papers

1m 1m

1m

1m

2

7a. Both propane and propene reacts with excess oxygen to produce carbon dioxide and water.

1m

Both undergoes incomplete combustion to produce carbon monoxide and water.

1m

Propane does not react with hydrogen.

1m

Propene reacts with hydrogen at (200 $^{\circ}$ C with nickel catalyst) to produce propane.

1m have () 1m

7b. $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$ $2C_3H_8 + 10O_2 \rightarrow 6CO_2 + 8H_2O$

 $2C_3H_6 + 6O_2 \rightarrow 6CO + 6H_2O$

 $2C_3H_8 + 7O_2 \rightarrow 6CO + 8H_2O$

 $C_3H_6 + H_2 \rightarrow C_3H_8$

either eqn 1m

8a.

Ions	Formula	Reasons
1	Fe ²⁺	green precipitate formed after adding sodium hydroxide which turned brown over time
2	NH_4^+	ammonia gas produced when sodium hydroxide is added
3	CO ₃ ²⁻	carbon dioxide produced after adding nitric acid
4	Cl ⁻	white precipitate formed after adding silver/nitrate

each formula + reason 1m

total 4m

8b. Dirty green precipitate formed which is insoluble in excess aqueous ammonia.

Turns brown on standing / when exposed to all

1m bonus 1m

8c. X = iron (N) chloride

1m

Y = ammonium carbonate

1m

Explanation:

Possible answers are

(a) Iron (II) chloride and ammonium carbonate

(b) iron (II) carbonate and ammonium chloride

However, iron (II) carbonate is an insoluble salt (both X and Y dissolve). Also, no reaction when aq NH₃ added to Y so Y is an ammonium salt.

Paper 3 Section B: 3 Questions choose 2 (20 marks)

9a.	Both have 17 protons.	1m
	They have different number of neutron / atomic mass.	1m
	35 C l has 18 neutrons/ mass number of 35. 37 C l has 20 neutrons/mass number of 37.	1m
9bi.	Strontium chloride conducts in molten state but not in solid state. The ions $(Sr^{2+} \text{ and } Cl^{-})$ are mobile in molten state. But they cannot move (and are fixed in positions) when in solid state.	no marks 1m 1m
9bii.	Calcium atom has an electronic configuration of 2.8.8.2. Chlorine has an electronic configuration of 2.8.7.	1m
	Each calcium atom transfers two valence electrons to 2 chlorine atoms	1m
	Ca ²⁺ and Cl ⁻ ions are formed which are attracted by electrostatic forces of attraction.	1m
9biii.	Weak intermolecular force between chlorine molecules required little amount of energy to overcome.	1m 1m
10ai.	4%	1m
10aii.	copper atoms aluminium atoms	
		1m
	Copper atoms is bigger than aluminium atoms thus they disrupt the orderly arrangement of aluminium atoms and prevent them from sliding.	1m
10bi	Caldium > chromium > cobalt > copper	1m
10bii.	Blue solution turns green. Brown solids formed:	1m 1m
10ci.	Y: 0 Y(NO ₃) ₂ : +2	1m 1m
10cii.	It is a reducing agent.	no marks
	Y is oxidised as the oxidation state of Y increases from 0 in Y to +2 in $Y(NO_3)_2$.	1m
	Y reduces $X(NO_3)_2$ by decreasing the oxidation state of X from +2 to 0 in X.	1m

11ai.

1m

At high temperature and pressure (and in the presence of a catalyst), 11aii. the carbon-carbon double bonds of the monomer break / the monomer has C=C bonds which break.

1m

Each monomer forms single bonds and joins with two other monomers form the polymer, poly(methyl methacrylate).

1m

11bi. $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2CO_2$ 1m

11bii.

1m

Add potassium manganate(VII) to both substances. 11biil. If it turns from purple to colourless, it is substance is ethanol.

1m 1m

If it remains purple, it is substance X.

1m

Also accept

Use of blue litmus paper X turns blue litmus paper red

Blue litmus paper remains blue if its ethanol.

Add suitable metal / metal carbonate

If susbstance X, effervescence seen.

H₂ produced with caused lighted splint to extinguish with pop sound (if use metal)

CO₂ produced which formed white precipitate in limewater (if use metal carbonate)

11biv. When the mixture is heated, the yeast denatures and stops the reaction.

1m

11bv. Solvent in paints and varnishes

Manufacture of perfumes, detergent, deodorants etc.

Found in alcoholic drinks like beer, wines and spirits

Used in preparation of ethanoic acid

(Any one)

1m

Geylang Methodist School (Secondary) Preliminary Examination 2018

5076/01

SCIENCE (PHYSICS/CHEMISTRY)

Paper 1 Multiple Choice Sec 4 Express Sec 5 Normal (A)

Additional materials: Optical Answer Sheet 1 hour

Setter: 24 August 2018

Mr Iskander

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, index number and class on the Optical Answer Sheet in the spaces provided.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Read the instructions on the Optical Answer Sheet very carefully.

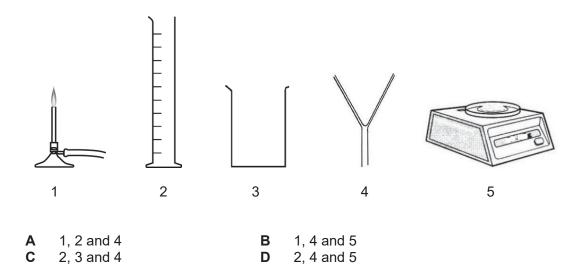
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

Gravitational field strength is assumed to be 10 N/kg unless otherwise specified.

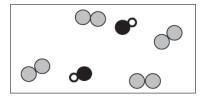
A copy of the Periodic Table is printed on page .

This document consists of printed pages.


[Turn over

1 Silver chloride is insoluble in water.

Silver chloride is made by adding 20.0 cm³ of aqueous silver nitrate to 20.0 cm³ of dilute hydrochloric acid.


2

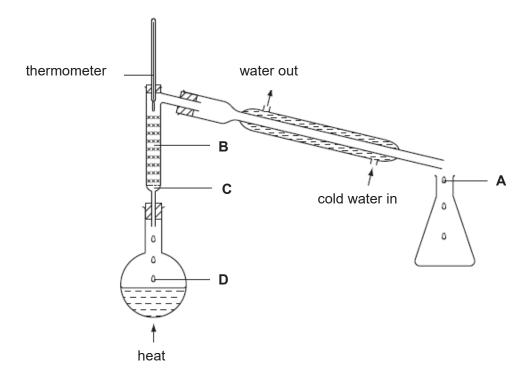
Which pieces of apparatus are needed to obtain solid silver chloride from aqueous silver nitrate and dilute hydrochloric acid?

2 The diagram below shows the arrangement of gases in a balloon.

Which pair of gases could be in the balloon?

- A argon and hydrogen chloride
- **B** argon and nitrogen
- **C** hydrogen and nitrogen
- **D** hydrogen chloride and nitrogen

3 Salt can be separated from sand by using the processes shown.


What is the correct order for the processes?

	first			last
Α	filter	dissolve	evaporate	crystallise
В	dissolve	evaporate	crystallise	filter
С	dissolve	evaporate	filter	crystallise
D	dissolve	filter	evaporate	crystallise

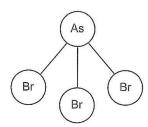
3

4 A mixture containing equal volumes of two liquids that mix completely but do not react together is placed in the apparatus shown and heated until the thermometer first shows a steady reading.

At which position will there be the highest proportion of the liquid with the lower boiling point?

- 5 Which of the following changes will result in the particles moving at a higher speed?
 - **A** $l_2(g) \rightarrow l_2(s)$
 - **B** $CO_2(s) \rightarrow CO_2(g)$
 - $\textbf{C} \quad \text{H}_2\text{O} \ (\textit{I}) \rightarrow \ \text{H}_2\text{O} \ (s)$
 - **D** $N_2(g) \rightarrow N_2(I)$

6 An imaginary element Gemsium(Gm) contains 111 protons and 141 neutrons.


Which one of the following represents an atom of Gemsium?

- **A** ¹⁴¹₃₀Gm
- **B** 141 Gm
- **C** 111 Gm
- **D** 252 Gm
- 7 The nucleon number and proton number of an atom of P and atom of Q are shown.

	Р	Q
nucleon number	85	80
proton number	37	35

Which statement about P and Q is correct?

- A An atom of P has fewer electrons than an atom of Q.
- **B** An atom of P has more neutrons than an atom of Q.
- **C** P is above Q in the same group of the Periodic Table.
- **D** P is in the same period in the Periodic Table as Q.
- 8 A molecule of arsenic bromide, AsBr₃, has the structure shown.

Which properties could be correct for arsenic bromide?

	melting point/°C	electrical conductivity at room temperature
Α	31	does not conduct
В	39	conducts
С	650	conducts
D	755	does not conduct

9 A student thinks that element Q is a metal because it has a high melting point and a high boiling point.

What other properties could element Q have if it is a metal?

- 1 Q conducts electricity when solid.
- 2 Q forms an acidic oxide, QO₂.
- 3 Q is malleable.

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3

10 In the Periodic Table, caesium, lithium and sodium are in the same group.

Which statement about caesium is likely to be correct?

- A It forms a nitrate, Cs(NO₃)₂.
- **B** It forms an insoluble hydroxide.
- **C** It has a density greater than potassium.
- **D** It reacts slowly with water at room temperature.
- **11** Astatine is at the bottom of Group VII in the Periodic Table.

Which of the following is a property of astatine?

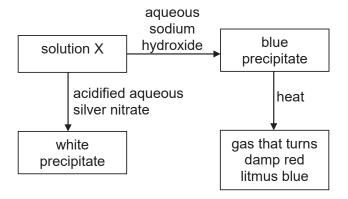
- A It forms a basic oxide.
- **B** It is a good conductor of electricity.
- C It forms a covalent compound of formula NaAt.
- **D** It is displaced by chlorine from aqueous potassium astatide.
- 12 When two aqueous solutions are mixed in a test-tube, a reaction occurs and the test-tube feels hot.


Which statement is correct?

- A An exothermic reaction takes place as the reacting chemicals gain energy.
- **B** An exothermic reaction takes place as the reacting chemicals lose energy.
- **C** An endothermic reaction takes place as the reacting chemicals gain energy.
- **D** An endothermic reaction takes place as the reacting chemicals lose energy.
- 13 2.0 g of magnesium are completely burnt in pure oxygen.

$$2Mg + O_2 \rightarrow 2MgO$$

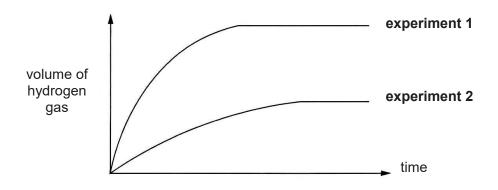
Which volume of oxygen is used in this reaction at room temperature and pressure?


14 Iron is produced in a blast furnace as shown in the diagram below.

6

Which statement about this process is correct?

- A Carbon is oxidised to carbon dioxide.
- **B** Carbon monoxide is produced by the thermal decomposition of calcium carbonate.
- **C** Haematite is reduced by calcium carbonate.
- **D** Impurities are removed by the hot air blast.
- 15 The diagram below shows some of the reactions of solution X.



Which of the following the substance(s) is/are present in solution X?

- A copper(II) nitrate only
- **B** ammonium chloride only
- **C** zinc nitrate and copper(II) nitrate
- **D** ammonium chloride and copper(II) chloride

16 Zinc powder was added to excess dilute sulfuric acid at room temperature. The volume of hydrogen gas produced was measured over a period of time.

The graph labelled **experiment 1** shown below was obtained.

Which change was made to obtain the results shown in **experiment 2**?

- A Half the mass of zinc granules was used.
- **B** Half the concentration of dilute sulfuric acid was used.
- **C** Larger zinc strip of the same mass was used.
- **D** Dilute sulfuric acid at lower temperature was used.
- 17 Crude oil is fractionally distilled into useful fractions.

Which option matches the fraction to its use?

	fraction	use
Α	bitumen	feedstock for the petrochemical industry
В	diesel oil	fuel for aircraft engines
С	petrol	fuel for engines in buses, lorries and trains
D	petroleum gas	fuel for cooking and heating

18 Many countries have taken measures to ensure that the amount of sulfur in unleaded petrol and diesel fuels are kept low.

Which of the following could be the reason for such measures?

- **A** To cut down the amount of fuel used in vehicles.
- **B** To reduce the acidity of the rain.
- **C** To reduce incomplete combustion.
- **D** To prevent the pH of soil from increasing.

19 Which reaction describes the following equation?

 $C_{15}H_{32} \rightarrow C_{10}H_{22} + C_3H_6 + C_2H_4$

A additionB crackingC oxidationD substitution

20 The table shows the observations made when an organic compound X reacts with aqueous bromine and acidified potassium manganate (VII).

reagent	observation
aqueous bromine	no change
acidified potassium manganate(VII)	purple solution turns colourless

What is compound X?

A ethane B ethanoic acid C methanol D propene

End of paper

DATA SHEET
The Periodic Table Of Elements

		0	ш	_	ď	<u> </u>			<u>ـ</u> _			uo		ď	۲ ک		_	L.				7
	0	¥ 5	heliu 4	10	Ž	neo 20	18	Ā	argo 40	36	궃	krypt 84	54	×	xenc 131	86	쪼	rado				
	II/								chlorine 35.5													
	I			8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъо	polonium -	116	_	livermorium -	ı
	^			7	Z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209				
	N			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	LΊ	flerovium -	
	≡			5	М	boron 11	13	Ϋ́	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>/</i> L	thallium 204				
			l												0			mercury 201		ပ်	8	
										29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -	
Group										28	Z	nickel 59	46	Pd	palladium 106	78	₽	platinum 195	110	Ds	darmstadtium -	
Ō										27	ဝိ	cobalt 59	45	Rh	rhodium 103	2.2	Ir	iridium 192	109	Ħ	meitnerium	
		- エ	hydrogen 1												_			osmium 190	l			
			·							25	Mn	manganese 55	43				Re	rhenium 186	107	B	bohrium	1
				number	loqu	mass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium 	
			Key	proton (atomic) number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41		niobium 93		Д	tantalum 181	105		dubnium	
				proton	ato	relati				22	F	titanium 48	40	Zr	zirconium 91		Ξ	hafnium 178	104	꿉	Rutherfordium —	
			ı							21	Sc	scandium 45	39		yttrium 89	57 – 71	lanthanoids		89 – 103	actinoids		
	=			4	Be	beryllium 9	12	Md	magnesium 24	20	Ca		38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium	I
	_			3	:-	lithium 7		Na	_	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ъ	francium	I

71	Γn	Iutetium	175	103	_	lawrencium	ı
70	Υp	ytterbium	173	102	S	nobelium	ı
69	Tm	thulium	169	101	Ž	mendelevium	I
89	Д	erbium	167	100	Ш	fermium	ı
29	운	holmium	165	66	υ	einsteinium	I
99	ò	dysprosium	162	86	ن 3	californium	I
65	ТР	terbium	159	26	쭚	berkelium	ı
64	В	gadolinium	157	96	Cn	curium	1
63	Еn	europium	152	95	Am	americium	ı
62	Sm	samarium	150	64	Pu	plutonium	ı
61	Pm	promethium	I	66	S	neptunium	ı
09	PΝ	neodymium	144	65	_	uranium	238
29	Pr	praseodymium	141	91	Д	protactinium	I
28	Ö	Ö	140	06	Ļ	thorium	ı
22	Гa	lanthanum	139	89	Ac	actinium	I
	lanthanoids				actinoids		

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).

Geylang Methodist School (Secondary) End of Year Examination 2018

Candidate Name					
Class	Index Number				
SCIENCE 5076/03, 5078/03					
Paper 3 Chemistry	Sec 4 Express Sec 5 Normal (A)				
Additional Materials : Writing Paper	1 hour 15 minutes				
Setter: Miss Ng Sio Ying	17 August 2018				

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer all questions.

Write your answers in the spaces provided on the question paper.

A copy of the Periodic Table is printed on page 14.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Section A	/45			
Section B				
	/10			
	/10			
Total	/65			

This document consists of 13 printed pages and 1 blank page.

[Turn over

Section A

2

Answer all the questions in this section. Write your answers in the spaces provided on the question paper.

1 The diagram shows part of the Periodic Table. Only some of the elements are shown.

			Н								
				-			С	Ν		F	
							Si	Р	S	CI	
	Ti		Fe		Cu	Zn		As		Br	

(a) Answer each of the following questions using only those elements shown in the diagram. Each element may be used once, more than once or not at all.

Give one element which

(i)	oxidises in the presence of water and air to form rust,
(ii)	forms an ion of \mathbf{Y}^- which has only three completely filled shells of electrons,
(iii)	forms an oxide which is amphoteric,
(iv)	is a colourless diatomic gas,
(v)	is found as an impurity in fossil fuels and burns in air to produce an air pollutant that causes acid rain.
	[5]

(b) Element X is a noble gas with two electron shells. Label this element as X in the Periodic Table above. [1]

2 Fig. 2.1 shows some reactions of copper(II) nitrate, Cu(NO₃)₂.

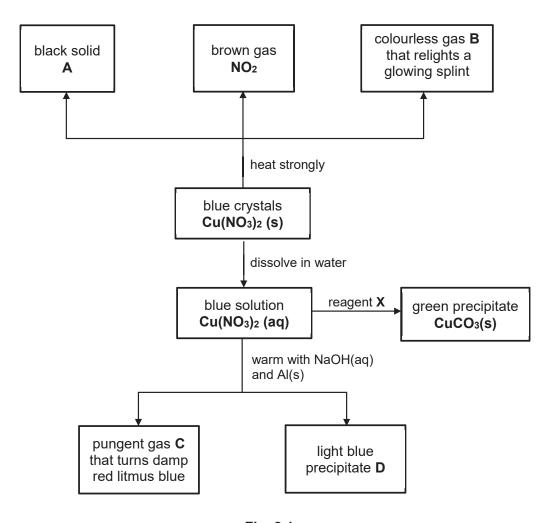


Fig. 2.1

(a) Identify the substances A - D.

A	
В	
С	
D	

[4]

		4 GMS(S)/Sci(Chem)/P3/EOY2018/3E
(b)	Coppe	er(II) nitrate solution reacts with reagent ${\bf X}$ to form copper(II) nate.
	(i)	Suggest the name of reagent X .
		[1]
	(ii)	Construct the balanced chemical equation, with state symbols, for the reaction between copper(II) nitrate solution with reagent ${\bf X}$ to form copper(II) carbonate.
		[2]
	(iii)	Describe the steps used in a laboratory to prepare a pure sample of powdered copper(II) carbonate from copper(II) nitrate solution and reagent ${\bf X}$.
		[3]
(c)		ribe how hydrochloric acid and limewater can be used to show that nate ions are present in copper(II) carbonate.
		[2]

Titanium, Ti, is a metal used in the aerospace industry. It exists naturally as titanium-iron oxide, FeTiO₃, in a mineral called ilmenite. To extract titanium, the compound is first converted to titanium tetrachloride, TiCl₄, which is being heated to 2000°C with magnesium in an atmosphere of a noble gas, argon.

The extraction of titanium from its chloride is represented by the following equation.

(a) What is the mass of magnesium chloride formed when 12 kg of titanium is extracted?[Relative atomic masses: A_r: Ti, 48; Mg, 24; Cl, 35.5]

mass of magnesium chloride = kg [2]

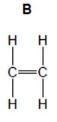
(b) Calculate the smallest mass of titanium-iron oxide, FeTiO₃, needed to produce 12 kg of titanium.

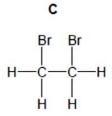
[Relative atomic masses: Ar: Ti, 48; Fe, 56; O, 16]

mass of titanium-iron oxide =kg [2]

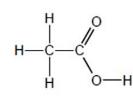
Fig. 4.1 shows the materials used to make ballpoint pen.




Fig. 4.1


(a)	steel are used as materials in the pen, instead of pure metals.	as
		 [2]
		[4]
(b)	Give one advantage and one disadvantage of recycling the material from this ballpoint pen.	als
		 [2]

		7 GMS(S)/Sci(Chem)/P3/EOY2018/3E
5 (a)		your knowledge of electronic structures to explain the following ments.
	(i)	Elements in Group II have similar chemical properties.
	(ii)	Elements in Group 0 lack chemical reactivity.
		[2]
(b)	Eleme	ent Z with an atomic number of 85 is a highly unstable radioactive ent.
	(i)	Suggest two ways in which chlorine differs in properties from element ${\bf Z}.$
		[2]
	(ii)	Excess chlorine is bubbled through a solution of Na Z .
		Write a chemical equation for the reaction. State symbols are not required.
		[1]
		r.1


6 The structures of five organic compounds are shown below.

H H H H H H H H H H H H H H H

H | H—C—H | H

E

- (a) Answer each of the following questions using the letters that represent each compound.
 - (i) Which two compounds are in the same homologous series?

.....

(ii) Which compound is formed when ethanol reacts with atmospheric oxygen?

(iii) Which compound reacts with steam to form ethanol?

[3]

(b) A solution of ethanol can be made by fermentation of glucose.

(i) Draw the structural formula of ethanol.

[1]

(ii) State two conditions required for the fermentation of glucose.

[2]

(iii) Calculate the relative molecular mass of ethanol and the percentage by mass of carbon in each molecule of ethanol. [Relative atomic masses: A_r: H, 1; C, 12; O, 16]

9

[2]

7 Cinnamic acid is found in plants called balsams.

The structure of cinnamic acid is shown below.

$$C = C$$
 $C = C$
 $C =$

(a) Cinnamic acid is an unsaturated compound.

chemical test

(i) What is meant by the term *unsaturated*?

[1]

(ii) Describe a chemical test to show that cinnamic acid is unsaturated.

result with cinnamic acid

.....

[2]

(b) Balsam flowers contain a mixture of pigments.

A student uses chromatography to separate the pigments in balsam flowers. He puts the pigment mixture on a sheet of chromatography paper as well as five spots of pure pigments $\bf A$, $\bf B$, $\bf C$, $\bf D$ and $\bf E$.

The results are shown as a chromatogram in Fig. 7.1.

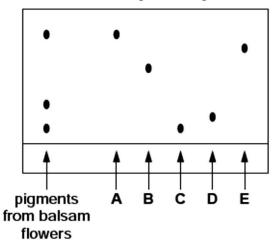


Fig. 7.1

- (i) Which of the pigments are present in balsam flowers?

 [1]
- (ii) Draw the apparatus that could be used to produce this chromatogram.

[2]

Answer any two questions in this section.

Section B

Write your answers in the writing papers provided.

- Fluorine is the lightest halogen and exists as a highly reactive pale yellow diatomic gas at room temperature and pressure. Fluorine is found in nature in the form of calcium fluoride crystals, called fluorite.
 - (a) The following equation describes the reaction between fluorine gas and water.

$$2F_2(g) + 2H_2O(I) \rightarrow O_2(g) + 4HF(aq)$$

Given that 48 cm³ of fluorine gas reacts with excess water, calculate the **volume** and **mass** of oxygen gas produced at room temperature and pressure. [2]

- (b) Draw and label the electronic structures of fluorine gas and calcium fluoride.

 [Proton numbers: F, 9; Ca, 20]

 [4]
- (c) Use these structures to explain why, at room temperature and pressure, calcium fluoride is a solid and fluorine is a gas. [4]
- 9 (a) The reaction of metal **X** with water places it between calcium and iron in this order of reactivity. Explain why **X** would displace copper if added to a solution of copper(II) sulfate. [2]
 - (b) Aluminium does not react with cold water. Does this give a true indication of the reactivity of this element? Explain your answer. [2]
 - (c) Iron is produced in the blast furnace by heating a mixture of iron(III) oxide, coke and limestone with air.

Describe the reactions involved in this extraction.

Include an equation of a redox reaction.

[6]

- 12
- **10** Dilute hydrochloric acid reacts with calcium carbonate to produce carbon dioxide.
 - (a) (i) With the aid of a diagram, design and describe an experiment in a laboratory to show how the rate of reaction between these two substances depends on the particle size of calcium carbonate.

[4]

- (ii) Describe the measures you would take to ensure that your experiment is fair. [2]
- (iii) State and explain how the rate of reaction between two substances is affected by the particle size of one substance. Use your knowledge of reacting particles in your explanation. [2]
- (b) Increasing the concentration of acid can change the speed of a reaction. State and explain how it affects the speed of the reaction. Use your knowledge of reacting particles in your explanation. [2]

End of Paper

BLANK PAGE

Geylang Methodist School (Secondary)

Preliminary Examination 2018

Secondary 4E5N Science (Chemistry) Answer Scheme

Paper 1

1	2	3	4	5	6	7	8	9	10
С	D	D	Α	В	D	В	Α	С	С
_									
	12							4000000	
D	В	В	Α	D	Α	D	В	В	С

Paper 3 Section A

Question		n	Marking Point	Marks
1	(a)	(i)	Fe	1
		(ii)	CI	1
		(iii)	Zn	1
		(iv)	H or N	1
		(v)	S	1
	(b)		Position of X: Group 0, 2nd element (Ne)	1
			Total:	6
2	(a)		A - copper(II) oxide B - oxygen gas C - ammonla gas D - copper(II) hydroxide	4 (1M each)
	(b)	(i)	Any soluble carbonate e.g. sodium carbonate / potassium carbonate	1
		(ii) <	Cu(NO₃)₂ (aq) + Na₂CO₃ (aq) → CuCO₃ (s) + 2 NaNO₃ (aq) Balanced chemical equation – 1 State symbols – 1	2
		(iii)	Mix the solutions together and stir.	1
			Filter the mixture to obtain copper(II) carbonate as the residue.	1
			Wash the residue with distilled water.	1
	(c)		Add hydrochloric acid to copper(II) carbonate.	1
			Effervescence observed, gas produced forms white precipitate when passed into limewater.	1
			Total:	12

Qu	estio	stion Marking Point			
3	(a)		No. of moles of titanium = 12 000 / 48 = $\underline{250}$ moles No. of moles of MgCl ₂ = 250 x 2 = 500 moles	1	
			Mass of MgCl ₂ = 500 x (24 + 35.5 x 2) = 47500 g = 47.5 kg	1	
	(b)		% mass of Ti in FeTiO ₃ = 48 / (56+48+16x3) x 100% = 31.57894 %	1	
			Mass of FeTiO₃ to produce 12kg of Ti = 12/31.57894 x 100 = <u>38</u> kg	1	
			Total:	4	
4	(a)		Alloys are <u>harder</u> than pure metals.	1	
			The different sized atoms disrupt the orderly arrangement of	1	
			atoms, Hence making it <u>difficult</u> for the metal atoms to <u>slide over</u> one another.	2	
	(b)		Advantage: Conserves finite resources of crude oil/metal ores. Reduces use of landfill. Less problems caused from disposal. Materials used are non-biodegradable. Less expensive than producing from raw materials.	Any 1	
			Disadvantage: Difficulty / high cost to separate the materials. Not all materials can be recycled.	Any 1	
		1	Total:	4	
5	(a)	() /	They all have 2 valence electrons.	1	
		(ii)	They all have complete/full valence shell.	1	
	(b)	(i)	 Chlorine has lower boiling/melting point than astatine/Z. OR Chlorine is a gas at room temperature but astatine/Z is a solid at room temperature. Chlorine is greenish yellow in colour but astatine/Z is black in colour. Chlorine is more reactive than astatine/Z. 	Any 2	
	(b)	(ii)	$Cl_2 + 2 NaZ \rightarrow Z_2 + 2 NaCl$	2	
			Total:	6	
6	(a)	(i)	A and D	1	
		(ii)	Е	1	
		(iii)	В	1	

Qu	estio	n	Marking Point	Marks
	(b)	(i)	H H H-C-C-O-H H H	1
		(ii)	37°C, absence of oxygen, presence of yeast	Any 2
		(iii)	Mr of ethanol = 2x12 + 6 + 16 = <u>46</u> (no units)	1
			%mass of carbon = 24/46 x 100% = <u>52.2%</u> (3sf)	1
			Total:	8
7	(a)	(i)	Compound consists of at least one C=C bond	1
		(ii)	Add compound to aqueous bromine/ bromine solution/ bromine water.	1
			Reddish brown aqueous bromine decolourises.	1
	(b)	(i)	A and C (both must be correct)	1
		(ii)	chromategraphy paper starting line Proportional drawing – 1 Appropriate labels – 1	2
			Total:	6

Section B

Qu	estio	n Marking Point	Marks
8	(a)	Volume of oxygen = $48/2 = 24 \text{ cm}^3$	1
		No. of moles of oxygen = 0.024 / 24 = 0.001 Mass of oxygen = 0.001 x 32 = <u>0.032</u> g.	1
	(b)	Fluorine gas Correct sharing – 1 Correct number of valence electrons – 1 Calcium fluoride Correct calcium ion – 1 Correct/fluoride ion – 1	4
	(c)	Fluorine is a covalent molecule. It has weak intermolecular forces of attraction	1
		which requires small amount of energy to overcome/ has low boiling point hence it is a gas at r.t.p.	1
		Calcium fluoride is an ionic compound. It has strong electrostatic forces of attraction between the ions	1
		which requires <u>large amount of energy</u> to overcome/ Has <u>high melting point</u> hence is a solid at room temperature.	1
		Total:	10

Qu	estio	n	Marking Point	Marks
9	(a)		X is more reactive than iron, which is more reactive than copper.	1
			Hence X is more reactive than copper.	1
	(b)		No. Aluminium reacts with oxygen to form a layer of aluminium oxide	1
			which is <u>unreactive</u> and hence <u>prevents the aluminium metal</u> <u>from reacting with water.</u>	1
	(c)		Coke burns in air to form carbon dioxide	1
			Carbon dioxide reacts with more coke to form carbon monoxide.	1
			Carbon monoxide reacts with iron(III) oxide to form iron and carbon dioxide.	1
		1	Limestone decomposes to form calcium oxide and carbon dioxide.	1
	$\langle \rangle$		Calcium oxide reacts with sand (silicon dioxide) to form calcium silicate/molten slag.	1
			Equation of Redox reaction • $C + O_2 \rightarrow CO_2$ • $CO_2 + C \rightarrow 2 CO$ • $Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$	Any 1
			Total:	10

Question Marking Point	Mar	Marks
weigh 2.0 g of calcium carbonate. Weigh 2.0 g of calcium carbonate lumps and place in a conical flask. Add 50cm³ of 1mol/dm³ dilute pydrochloric acid into a flask. Record the time taken for effervescence to stop / time taken to collect 10 cm³ of gas Repeat experiment with powdered calcium carbonate a compare the time taken for both experiments. Marking points (1M each): Appropriate diagram with suitable labels Use of appropriate mass of calcium carbonate and voor acid Use of different particle size of calcium carbonate (lumpowdered or large lumps vs small lumps) in two experiments. Observation or change that is measured to compare the of reaction (time taken for effervescence to stop / time taken to collect fixed volume of gas)	the e nd blume nps vs	
Concentration of dilute hydrochloric acid used is the set Mass of calcium carbonate used is the same. Temperature of both experiments is the same. Reject: Equal volume of dilute hydrochloric acid Shake the acid to ensure reaction is complete Repeat experiment and obtain average of results.		
(iii) The <u>smaller the particle size, the larger the total surface</u> for particles to collide, resulting in <u>increased number of effective collisions</u> and		
higher speed of reaction. (opposite is true)	TICHOE I	
(b) The higher the concentration of acid, the higher the speed reaction	ed of 1	
The more concentrated the acid, the more <u>acid particles</u> <u>unit volume</u> , resulting in increased number of effective collisions	per 1	
	Total: 10)