2016 Sec 4 Emath

Examguru

1	Raffles Institution
2	Nanyang Girls' High School
3	Dunman High School
4	CHIJ Saint Nicholas Girls' School
5	Catholic High School
6	Chung Cheng High School
7	Crescent Girls' School
8	Victoria School
9	Anglican High School
10	Methodist Girls' School
11	Tanjong Katong Girls' School
12	St. Margaret's Secondary School
13	Maris Stella High School
14	Holy Innocents' High School
15	Fuhua Secondary School
16	Holy Innocents' High School

\qquad () \qquad

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80 .

Table of Penalties		
Error	Penalty	Q No.
Significant figures	-1	
Units	-1	
Presentation/		
Missing statements/	-1	
Not using ink		

Parent's Signature : \qquad

This document consists of $\underline{20}$ printed pages.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2}
\end{gathered}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

$$
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians }
$$

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 Calculate $\frac{-6.23^{2} \div \sqrt[3]{-124.5}}{3.22(-5.003)^{2}}$.
(a) Write down the first six digits on your calculator display.

Answer (a)
[1]
(b) Write your answer to part (a) correct to 2 significant figures.

Answer (b)
$2 \quad$ Given that $\frac{\sqrt[4]{x^{-3}} \times x^{\frac{1}{2}}}{x^{-2}}=x^{\frac{2}{3} k}$, find the value of k.

Answer

3 A class of 30 students was randomly divided into two equal groups, A and B.
Each group was taught by 2 teachers with different years of experience.
Their marks in a common test are shown in the stem-and-leaf diagram.

Group A				2	Group B			
			8		7			
	6	0	0	3	2	8		
			2	4	5	6		
		5	1	5	5	9		
8	8	8	3	6	0	1	9	9
			0	7	2	7	8	
			9	8	0			
		9	6	9				
Key (Group A)						Key (Group B)		
8\|2 means 28						2\|7 means 27		

(a) Write down the mode of Group B's marks.

> Answer (a)
(b) Write down the median of Group A's marks.

> Answer (b)
(c) Explain briefly whether Group A or Group B performed better in the common test. Answer (c) Group .performed better because \qquad

Key (Group A)
8| 2 means 28

2|7 means 27
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (a) The population density of Singapore is 7697 people per square kilometre. The population density in Hong Kong is 17019 people per square mile. State, showing your working, the country that is more densely populated, given that 1 mile $=1.61$ kilometre.

Answer.
(b) Given that the land space in Singapore is $719 \mathrm{~km}^{2}$, calculate the total population residing in Singapore, leaving your answer in standard form.

5 A car travelled at an average speed of $80 \mathrm{~km} / \mathrm{h}$ on a recent journey to Malacca. Along the way, a 15 -minute rest stop was taken before continuing on the trip. The ratio of the times of the whole journey is $5: 3: 7$. Calculate the distance travelled.

Answer.
.km [2]

6 The diagram shows a sector $A O B$ with radius 6 cm . Angle $A O B$ is 75°.
(i) Express 75° in radians.

Answer (i)
(ii) Hence, find the arc length $A B$.

Answer (ii)
cm [1]

7 The diagram shows a triangle $A B C$, with $A B$ parallel to the x-axis.

A is $(-2,2), C$ is $(7,-10)$ and the equation of the line $B C$ is $y=-2 x+4$. Find
(i) the length of $A C$.

Answer (i) \qquad units [1]
(ii) the x-coordinate of B.

Answer (ii)
(iii) the area of triangle $A B C$.
\qquad square units [1]

8 Determine whether triangle $A B C$ is right-angled.

Answer \qquad
\qquad
\qquad
\qquad

9 Peter and Mary competed in a written Mathematics quiz that required them to answer twenty questions.

The table shows the number of questions they have answered correctly, wrongly or did not attempt.

	Correct	Wrong	Did not attempt
Peter	10	5	5
Mary	12	7	1

The table shows the number of points they will be awarded if they answer correctly, wrongly or did not attempt.

	Correct	Wrong	Did not attempt
Points Awarded	2	-1	0

Using matrix multiplication, find the number of points awarded to Peter and Mary respectively.

Answer

Peter is awarded \qquad .points and Mary is awarded \qquad

10 (a) Express in set notation, the set shaded in the Venn diagram.

Answer (a)
(b) $\quad A=\{$ letters from the word 'THRONES' $\}$
$B=\{$ letters from the word 'PHONES' $\}$
(i) State an element x such that $x \in A$ and $x \notin B$.

$$
\text { Answer } \quad(b)(i)
$$

(ii) List the elements in the set $A \cup B$.

Answer (b)(ii)
11 Given that $\frac{\frac{1}{x}+\frac{1}{y}}{\frac{2}{x}}=\frac{4}{3}$, find the value of $\frac{y}{x}$, where $x \neq 0$.

Answer.

12 (i) If x is directly proportional to y^{2}, and y is inversely proportional to z. Prove that $x y$ is inversely proportional to z^{3}.

Answer (i)
(ii) Given that when $x y=A$, a particular value of z is obtained. Find the percentage change in z when $x y$ is doubled.

Answer (ii)

13 Ian has written down six numbers $3,4,7, a, 3$ and b where $b>a$. If the mode of these numbers is 3 , the mean is 6 and the median is 5 , find the value of a and of b.

Answer a is and b is

14 Factorise $2 x^{2}-8 x y+8 y^{2}-18$ completely.

Answer.
$15 \quad P Q, Q R$ and $R S$ are adjacent sides of a regular polygon.
$15 \begin{aligned} & P Q, Q R \text { and } R S \text { are adjace } \\ & \text { Given that } \angle R P Q=18^{\circ} \text {, }\end{aligned}$
(a) calculate
(i) the exterior angle of the polygon,

$$
\begin{equation*}
\text { Answer } \quad(a)(i) \tag{1}
\end{equation*}
$$

(ii) the number of sides of the polygon,
Answer (a)(ii)
(iii) angle $P R S$.

Answer (a)(iii)
(b) Write down the name of this polygon.

Answer (b)

16 (a) Written as a product of its prime factors

$$
2200=2^{3} \times 5^{2} \times 11
$$

(i) Express 5880 as the product of its prime factors.

> Answer.
(ii) Hence write down the greatest integer that will divide both 2200 and 5880 exactly.

Answer.

(iii) Write down an integer k, such that $\sqrt{\frac{2200}{k}}$ will give a whole number.

Answer.
(b) A glass marble has a mass of 30 grams. If the volume of the marble is $13 \mathrm{~cm}^{3}$, correct to the nearest cubic centimetre. Find the greatest possible mass of 1 cubic centimetre of the marble.

17 The diagram shows the speed-time graph of a plane before taking off from the runway.

(i) Calculate the acceleration of the plane at 3 seconds.

Answer (i) \qquad $\mathrm{m} / \mathrm{s}^{2}[1]$
(ii) Calculate the total distance travelled by the plane before taking off from the
runway. \square
(iii) Use the grid below to sketch the acceleration-time graph of the plane during the first eight seconds.

18 Triangle $A B C$ is mapped onto triangle $D E F$.

(i) Write down the enlargement factor.

Answer (a)(i)
(ii) Given that the area of triangle $A B C$ is 20 square units, calculate the area of triangle $D E F$.

19 (a) Solve the inequality

$$
\frac{2-3 x}{-3} \geq \frac{x-5}{4}
$$

Illustrate the above solution on the number line given below.

Answer

(b) State, with reasons, one condition for a, such that the following simultaneous equations have a solution.

$$
\begin{aligned}
a x-2 y & =13, \\
2 x & =y+6 .
\end{aligned}
$$

Show your workings clearly.

Answer
\qquad
\qquad
\qquad

20 In the diagram below, A, B, C and D are points on the circumference of the circle. $A E C$ and $D E B$ are straight lines.

It is also given that $A E=4 \mathrm{~cm}, B C=3 \mathrm{~cm}$ and $A D=9 \mathrm{~cm}$.
(i) Show that triangles $A E D$ and $B E C$ are similar.

Answer (i)
In triangles $A E D$ and $B E C$
(ii) Find the length of $B E$.
$21 \quad D$ is the point $(-2,1)$ and E is $(h, 6)$ and $\overrightarrow{A B}=\binom{7}{1}$.
(i) Express $\overrightarrow{D E}$ as a column vector, in terms of h.

Answer (i)
[1]
(ii) If $\overrightarrow{D E}$ is parallel to $\overrightarrow{A B}$, find the value of h.

$$
\text { Answer (ii) } h=
$$

(iii) If instead, $|\overrightarrow{D E}|=|\overrightarrow{A B}|$, find the value(s) of h.

22 (a) A sketch of the graph $y=a x^{2}+b x+c$, where a, b and c are integers, is given in the diagram below. The line of symmetry is $x=2$, and the graph cuts the y-axis at 7 , and the x-axis at $\frac{1}{2}$. Find the values of a, b and c.

$$
\begin{aligned}
& \text { Answer } a= \\
& b= \\
& c=
\end{aligned}
$$

(b) Sketch the graph of $y=-x^{2}+3 x-5$, indicating clearly the coordinates of the turning point and intercepts.

Answer (b)

$23 \quad A B C D$ is a trapezium. $A B$ has already been drawn.
Answer (a) and (b).

A
B
(a) C is the point equidistant from A and B and angle $A B C$ is 50°. Construct and label the point C.
(b) Construct the trapezium $A B C D$ with $D C$ parallel to $A B$ and the point D equidistant from the lines $B C$ and $B A$.
(c) Measure and write down the value of reflex angle $B A D$.

Answer (c)

Marking Scheme for AHS 2016 EM Paper 1

1(a)	0.09644
1(b)	0.096 (2s.f)
2	$\begin{aligned} & \frac{7}{4}=\frac{2}{3} k \\ & k=2 \frac{5}{8}(o . e) \end{aligned}$
3(a)	69
3(b)	63
3(c)	Group A ... higher mean or median
4 (a)	$\frac{17019}{1.61^{2}}=6565.718915 \text { pop. } / \mathrm{km}^{2}$ Singapore is more densely populated.
4(b)	total population $=5.53 \times 10^{6}$
5	$\begin{aligned} \text { distance travelled } & =80 \times \frac{5}{4} \\ & =100 \mathrm{~km} \end{aligned}$
6(i)	$1.31 / \frac{5 \pi}{12}$ or o.e.
6(ii)	$6 \times \frac{5 \pi}{12}=7.85 \mathrm{~cm}$
7(i)	15 units \square
7(ii)	$x=1 \quad \square$
7(iii)	$\frac{1}{2} \times 3 \times 12=18$ sq units
8	According to Pythagoras' Theorem, triangle $A B C$ is not right-angled. $\begin{aligned} & 16^{2}+6^{2}=292 \\ & 17^{2}=289 \\ & A B^{2}+B C^{2} \neq A C^{2} \end{aligned}$
9	$\binom{15}{17}$

	Peter is awarded $\underline{15}$ points and Mary is awarded $\underline{17}$ points.
10 (a)	$A \cap B^{\prime}$
10(b)(i)	Any of the following answers. $x=T, R$
10(b)(ii)	$A \cup B=\{T, H, R, O, N, E, S, P\}$
11	$\frac{y}{x}=\frac{3}{5}$
12 (i)	$\begin{aligned} & x=k y^{2} \quad \& \quad y=\frac{l}{z} \\ & x y=\left(k y^{2}\right)\left(\frac{l}{z}\right) \\ &=k\left(\frac{l}{z}\right)^{2}\left(\frac{l}{z}\right) \\ &=\frac{k l^{3}}{z^{3}}, \text { where } k l^{3} \text { is a constant. } \\ & \therefore x y \propto \frac{1}{z^{3}} \quad \text { (shown) } \end{aligned}$
12 (ii)	Percentage change of $z=-20.6 \%$
13	$\begin{aligned} & a=6 \\ & b=13 \end{aligned}$
14	$2(x-2 y-3)(x-2 y+3)$
15(a)(i)	36°
15(a)(ii)	10
15(a)(iii)	Angle $P R S=126^{\circ}$
15(b)	Decagon
16(a)(i)	$5880=2^{3} \times 3 \times 5 \times 7^{2}$
16(a)(ii)	$H C F=2^{3} \times 5=40$
16(a)(iii)	Either $k=2 \times 11=22$ (minimum) Or $k=2200$ (maximum)
16(b)	greatest possible mass $=2.4 \mathrm{gram}$
17(i)	$12.5 \mathrm{~m} / \mathrm{s}^{2}$
17(ii)	330 m

\qquad
\qquad

ANGLICAN HIGH SCHOOL Preliminary Examination Secondary Four MATHEMATICS 4048/02

2 hours 30 minutes

Friday

22 July 2016
Additional Materials: 7 writing papers and 1 graph paper

READ THESE INSTRUCTIONS FIRST

Write your name and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
Write your answers on the writing papers provided.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, attach the entire set of question papers on top of your answer scripts.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is $\mathbf{1 0 0}$.

For Examiner's Use

Question	1	2	3	4	5	6	7	8	9	10
Marks										

Parent's Name/Signature/Date

Table of Penalties		Qn. No.
Presentation	-1	
Units	-1	
Significant Figures	-1	

This question paper consists of 9 printed pages.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

Answer all the questions.

1 (a) Simplify $2 x^{3} y^{2} \div \frac{6 x^{2}}{5 y}$.
(b) Express as a single fraction in its simplest form $\frac{3}{x-1}+\frac{6 x}{1-x^{2}}$.
(c) (i) Factorize $4 a b-10 c+6 a^{2} b-15 a c$ completely.
(ii) Given that $\frac{3 x-7 y}{4 x+y}=\frac{2}{5}$, find the value of $\frac{x}{8 y}$.

2 (a) In the diagram, $A B C D E$ is a regular pentagon and $A B Q R S T$ is a regular hexagon. Calculate
(i) $\angle B A E$,
(ii) $\angle B A X$,
(iii) $\angle E A X$,
(iv) $\angle E X R$,
(v) $\angle X A C$.

(b) Calculate the sum of the angles $a, b, c, d, e, f, g, h, i$ and j in the diagram below.

3 In this question, leave all your answers to 2 decimal places.
The table below shows the exchange rate in April 2016. To convert from the foreign currency to Singapore Dollars, we use the rate listed in the "Buy" column. To convert from Singapore Dollars to the foreign currency, we use the rate listed in the "Sell" column.

Currency	Amount	Buy (S\$)	Sell (S\$)
US Dollars	US\$1	1.363	1.38
Australian Dollars	AU\$1	1.050	1.10
Japanese Yen	$¥ 1000$	12.434	12.55
Hong Kong Dollars	HK\$100	17.576	18.25
Malaysian Ringgit	RM100	35.080	36.00

(a) John wants to tour Hong Kong and wants to bring HK\$2000. Calculate the amount of Singapore dollars he must pay to buy the foreign currency.
(b) By using the rate listed in the "Buy" column, calculate the exchange rate between US\$1 and the Malaysian Ringgit.
(c) Mr Lim was originally going on a business trip to Japan and converted S\$2000 to Japanese Yen. However, the trip was cancelled. He decided to convert the Japanese Yen he had back to Singapore dollars. Show that the amount he lost as a percentage of his original sum is less than 1%.
(d) Sharon went to Australia and bought a luxury watch at AU\$ 10079 . Calculate the amount of money (in Singapore dollars) she would need to exchange before the trip, if she paid in cash.

4 (a) Consider the pattern.

$$
\begin{aligned}
& 11-2=3^{2} \\
& 1111-22=33^{2} \\
& 111111-222=333^{2} \\
& \vdots \\
& x-y=333333333^{2}
\end{aligned}
$$

(i) Write down the $4^{\text {th }}$ line in the pattern.
(ii) Find the number of 1 s in x.
(iii) Find the value of y.
(b) The first four numbers of a sequence are 1, 4, 7, and 10 .
(i) Write down the $10^{\text {th }}$ term.
(ii) Find, in terms of n, a formula for the general term, T_{n}, of the sequence.
(iii) Show, with working, whether or not 45 is in this sequence.

5 (a) Express $y=x^{2}-7 x+12$ in the form of $y=(x-a)^{2}-b$.
(i) Write down the equation of the line of symmetry and the minimum value of y.
(ii) Find the solutions of $y-\frac{15}{4}=0$.
(b) Solve $\frac{15 x}{x-9}-3=0$.

6 The diagram (not drawn to scale) shows a badge designed by a student for his CCA. It is made up of a regular octagon and a circle with centre X.
The line segments $A C, C E, E G, G I, I K, K M, M O, O A$ are tangents to the circle at B, D, F, H, J, L, N, P respectively.
(a) Find, giving reasons for each answer,
(i) $\angle A X C$,
(ii) $\angle P X E$,
(iii) $\angle P N D$,
(iv) $\angle D N L$,
(v) $\angle P N L$,
[1]
(vi) $\angle P F L$.
[1]

(b) Another student drew a circle on paper by tracing the circumference of a cup.

Explain how he can obtain the centre of the circle after he drew 2 more chords on the circle.

7 The diagram shows the front view of the N.R.G. greenhouse which is vertical to the ground. PT and ST make up the roof which make angles of 15° with the horizontal.

Given that $S R=4 \mathrm{~m}, Q R=6 \mathrm{~m}$ and M is a point due south of Q on the ground such that $M Q=30 \mathrm{~m}$ and angle $M Q R=110^{\circ} . U$ and V are the mid points of $P S$ and $Q R$ respectively.
(a) Find
(i) the distance between T and V,
(ii) the angle of elevation of T from M,
(iii) the bearing of V from M.
(b) A student walks from M to V. Find the distance that he has to walk so that he is closest to Q.

8 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$
y=24 x^{2}-6 x^{3} .
$$

The table below shows some values of x and the corresponding values of y.

x	0	0.5	1	1.5	2	2.5	3	3.5	4
y	0	p	18	33.75	48	q	54	36.75	0

(a) Calculate the value of p and of q.
(b) Using a scale of 2 cm to 0.5 units, draw a horizontal x-axis for $0 \leq x \leq 4$.

Using a scale of 2 cm to 10 units, draw a vertical y-axis for $0 \leq y \leq 60$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) By drawing a tangent, find the gradient of the curve at $x=2$.
(d) By drawing a suitable straight line on your graph, solve $24 x-6 x^{2}-\frac{50}{x}=-55$.
(e) Using the graph, solve $y \geq 40$.

9 (a) The waiting time, in seconds, for 20 students queueing up to buy food in the canteen from 2 different stalls are recorded as follows.

Stall A

Time (s)	$30<t \leq 35$	$35<t \leq 40$	$40<t \leq 45$	$45<t \leq 50$
Number of students	6	11	1	2

Stall B

Mean	36 s
Standard Deviation	5 s

(i) For Stall A, calculate an estimate of
(a) the mean waiting time,
(b) the standard deviation.
(ii) Make two comparisons between the waiting times for the two stalls.
(iii) Stall C has a standard deviation of 0 s for its waiting time, suggest a reason for this.
(b) A bag contains three identical red balls numbered 1 to 3 and two identical blue balls numbered 1 and 2 .
Two balls are taken from the bag at random without replacement.
(i) Draw a possibility diagram to show all the possible outcomes.

Using the possibility diagram or otherwise, find the probability that
(ii) the two balls bear the same number,
(iii) the two balls are of different colours.

A third ball is next chosen from the bag without replacement after the first two.
(iv) What is the probability that all are blue?
(v) What is the probability that only two red balls are chosen?

10

The diagram shows part of a circular table that is pushed into a corner of a room. A boy measures a point, X, on the circumference of the table to be 1 cm from the south wall and 50 cm from the west wall. Points A and B are the points where the table meets the walls.
(a) By the use of the Pythagoras' Theorem, verify that the radius of the table is 61 cm .
(b) Find the length of arc $X B$.
(c) Calculate the length of the chord $X B$.
(d) These tables are used by a restaurant as dining tables in a dining area of $100 \mathrm{~m}^{2}$.

Useful information		
	Casual dining	Fine dining
Minimum area of table space per diner	$1700 \mathrm{~cm}^{2}$	$2700 \mathrm{~cm}^{2}$
Number of tables	12	9
Recommended amount of dining space (in square metres) per diner	$1.4 \mathrm{~m}^{2} /$ diner	$1.8 \mathrm{~m}^{2} /$ diner

Determine if the restaurant should be a casual dining or fine dining establishment. Justify your decision with calculations.

2016 AHS Prelim Math P2 Worked Solution

1(a)	$\frac{5 x y^{3}}{3}$
(b)	$-\frac{3}{x+1}$
(c)(i)	$(3 a+2)(2 a b-5 c)$
(ii)	$\frac{x}{8 y}=\frac{37}{56}$
$\begin{aligned} & \mathbf{2} \\ & \text { (a)(i) } \\ & \hline \end{aligned}$	108°
(ii)	60°
(iii)	48°
(iv)	120°
2a(v)	24°
(b)	2160°
3(a)	S\$365.00
(b)	US\$1 \approx RM3.89
(c)	$\begin{aligned} \text { Percentage loss } & =0.924305 \% \\ & <1 \% \quad \text { (shown) } \end{aligned}$
(d)	She needed to exchange $\mathbf{S} \$ 11086.90$ before the trip.
4(i)	$11111111-2222=3333^{2}$
(ii)	18
(iii)	$y=222222222$
(b)(i)	$10^{\text {th }}$ term $=28$
(ii)	$3 n-2$
4b(iii)	$\begin{aligned} 3 n-2 & =45 \\ 3 n & =47 \\ n & =\frac{47}{3} \text { or } 15 \frac{2}{3} \end{aligned}$ Since n has to be a positive integer, 45 is not in the sequence.
5(a)	$\left(x-\frac{7}{2}\right)^{2}-\frac{1}{4}$
(i)	$x=\frac{7}{2}$ Minimum value of $y=-\frac{1}{4}$
(ii)	$x=5 \frac{1}{2} \text { or } 1 \frac{1}{2}$
(b)	

	$-\frac{9}{4} \text { or }-2 \frac{1}{4}$						
6(a)(i)	45°						
(ii)	112.5°						
(iii)	45°						
(iv)	90°						
(v)	135°						
(vi)	45°						
(b)	Draw perpendicular bisectors for the 2 chords The perpendiculars will intersect at the centre, since the perpendicular bisectors of a chord will pass through the centre						
7(a)(i)	4.80 m (3 sf)						
(ii)	$\angle T M V^{\circ}=8.767^{\circ} \ldots \approx 8.8^{\circ}(1 \mathrm{dp})$						
(iii)	Bearing is 005.2°						
(b)	29.9 m						
8(a)	$p=5.25, q=56.25$						
(b)							
(c)	Gradient $=24$						
(d)	From the graph, $x \approx 0.7$						
(e)	From the graph, $1.7 \leq x \leq 3.4$						
$\begin{aligned} & \begin{array}{l} 9(\mathbf{a}) \\ (\mathbf{i})(\mathbf{a}) \end{array} \\ & \hline \end{aligned}$	Mean $=37.25 \mathrm{~s}$						
(b)	s.d. $=4.32 \mathrm{~s}$						
(ii)	On average Stall A has a longer waiting time, due to a higher mean. The spread of the waiting time for $\operatorname{Stall} A$ is smaller as it has a smaller s.d.						
(iii)	All the students who bought from Stall C had the same waiting time						
9(b)(i)	$1{ }^{\text {ST }}$ DRAW						
			R1	R2	R3	B1	B2
		R1		R2R1	R3R1	B1R1	B2R1
		R2	R1R2		R3R2	B1R2	B2R2
		R3	R1R3	R2R3		B1R3	B2R3
		B1	R1B1	R2B1	R3B1		B2B1
		B2	R1B2	R2B2	R3B2	B1B2	

(ii)	$\frac{1}{5}$
(iii)	$\frac{3}{5}$
(iv)	0
(v)	$\frac{3}{5}$
10(a)	Let the radius be R $R^{2}=(R-50)^{2}+(R-1)^{2}$ $R^{2}-102 R+2501=0$ Solve to get $R=61$ only
(b)	11.1 cm
(c)	Number of diners the table can take for casual dining $=\pi \times 61 \times 61 \div 1700$ ≈ 6
10(d)	
	Number of diners the table can take for fine dining $=\pi \times 61 \times 61 \div 2700$ ≈ 4
	Since the number of diners the restaurant can host for casual dining is closer to the recommended number, it would appear that the restaurant is a casual dining establishment.

	Class	Index No.

FUHUA SECONDARY SCHOOL

Secondary Four Express/ Five Normal (Academic)

Preliminary Examination 2016
Fuhua Secondary Fuhua Secondary Fuhua Secondary Fuhua Secondary Fuhua Secondary Fuhua Secondary Fufua Secondary Fuhua Secondary Fufua Secondary Fuhua Secondary Fufua Secondary Fuhua Secondary Fufua Secondary Fuhua Secondary Fufua Secondary Fuhua Secondary Fufua Secondary

MATHEMATICS

PAPER 1

Additional Materials:
Construction Set \& Electronic calculator
DATE 30 August 2016
TIME 0900-1100
DURATION 2 hours

INSTRUCTIONS TO CANDIDATES

Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, correction tapes or correction fluid.
Answer all questions on the question paper itself.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result of loss of marks.
Calculator should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer correct to 3 significant figures. Give answers in degrees to 1 decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

PARENT'S SIGNATURE	FOR EXAMINER'S USE
	$/ 80$

This question paper consists of 18 printed pages including this page.

MATHEMATICAL FORMULAE

Compound Intetest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of cone $=\pi r l$ Surface area of a sphere $=4 \pi r^{2}$
> Volume of a cone $=\frac{1}{3} \pi r^{2} h$ Volume of sphere $=\frac{4}{3} \pi r^{3}$
> Area of triangle $A B C=\frac{1}{2} a b \sin C$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1
(a) Calculate $\frac{-1.3^{2}+2 \pi^{3}}{4-\sqrt{19}}$.
(b) Express 0.15% as a fraction in its simplest form.
(b)

2
(a) Express $\frac{3}{2(5-x)}-\frac{4-x}{(x+1)(x-5)}$ as a single fraction in its simplest form.
(b) A man bought $x \mathrm{~kg}$ rice at $\$ y$. He sold all the rice at p cents per 100 g .

Find an expression in terms of x, y and p for the profit he made in dollars.

Answer (a)
(b)
(a) Given that $8^{12} \div 4^{2 w}=\left(\frac{1}{2}\right)^{3 w-2}$, find the value of w.
(b) Simplify $\frac{2 a b^{2}}{\left(2 b c^{0}\right)^{-2}} \div \frac{8}{\sqrt{a b^{2}}}$, leaving your answer in positive index notation.

$$
\begin{align*}
& \text { Answer (a) w= } \\
& \text { [2] } \\
& \text { (b) } \tag{2}
\end{align*}
$$

4 Solve the simultaneous equations.

$$
\begin{gathered}
\frac{x}{3}=\frac{1}{6}-\frac{y}{2} \\
7 x-3 y+1=0
\end{gathered}
$$

\qquad
$5 \quad$ Written as the product of its prime factors, $4536=2^{3} \times 3^{4} \times 7$.
(a) Write 4410 as the product of its prime factors.
(b) Find the highest common factor of 4536 and 4410. Give your answer as the product of prime factors.
(c) Find the smallest positive integer k such that $4410 k$ is multiple of 4536 .
Answer (a) 4410= [1]
(b) [1](c) $k=$[1]

6 The temperature of a buffalo wing was $-15^{\circ} \mathrm{C}$ when taken out of a freezer. The buffalo wing was immediately heated up in an oven and after 15 minutes, its temperature was $120^{\circ} \mathrm{C}$.

Given that the temperature of the buffalo wing increased at constant rate, calculate,
(a) the number of minutes it had been heated up when its temperature reached $40^{\circ} \mathrm{C}$,
(b) its temperature when it had been warmed for 8 minutes.
\qquad minutes [2]
(b) ${ }^{\circ} \mathrm{C}$ [2]

7 A metal $\operatorname{rod} A$ has a length of 43 m , correct to the nearest m . A metal $\operatorname{rod} B$ has a length of 61 m , correct to the nearest m . Find
(a) the least possible length of metal $\operatorname{rod} A$,
(b) the greatest possible difference in their lengths.

8 An area of $9 \mathrm{~cm}^{2}$ on a map represents an actual area of $0.04 \mathrm{~km}^{2}$. Calculate
(a) the area on the map, in square centimetres, which represents an actual area of $2000 \mathrm{~m}^{2}$,
(b) the actual distance, in kilometres, represented by a length of 7.8 cm .

$$
\begin{aligned}
& \text { Answer (a) .. }{ }^{2} \text { [2] } \\
& \text { (b) } \\
& \text {.km [2] }
\end{aligned}
$$

9 A man bought a game for $\$ 86$. He made a profit of 25% of the cost price after selling the game at a discount of 30% of the selling price. Find the actual selling price of the game.

Answer \$.

10 An athlete walks a distance of 20 km at an average speed of $8 \mathrm{~km} / \mathrm{h}$ and takes a break for 15 minutes, and continue to run a further distance of 800 m in 3.4 minutes.
(a) Express $8 \mathrm{~km} / \mathrm{h}$ in m / s.
(b) Find the average speed of the athlete for the whole journey in m / s.

> Answer (a) m / s [1]
> (b) m / s [2]

11 One of the interior angles of a polygon is 120°. The remaining interior angles are each equal to 165°. Find the number of sides of the polygon.

Answer

12 Given that y varies inversely as the square root of x, and $y=3$ for a particular value of x. Find the value of y when this value reduced to 36%.

13 The length of a rectangular microchip is 1.8 micrometre and the width is 720 nanometres.
(a) Find the ratio of its length to its width.
(b) If the length is decreased by 50%, and the width is increased by 70%. Find the percentage change in the area of the microchip.
\qquad :

14 In the diagram below, $B C D$ is a straight line. It is given that $A B=8 \mathrm{~cm}, C D=3 \mathrm{~cm}$, $\angle A B C=90^{\circ}$ and $\tan \angle B C A=\frac{4}{3}$.
(a) Find the length of $B C$.
(b) Write down $\cos \angle A C D$.
(c) Find the area of triangle $A C D$.

Answer (a) .cm [1]
(b)
(c) cm^{2} [1]

15 There are 40 students in a class. 12 students are in the NCC and 24 students are in the NPCC. 8 students are neither members of the NCC nor the NPCC. Let

$$
\begin{aligned}
& \mathcal{E}=\{\text { Students in the class }\} \\
& N=\{\text { Students in the NCC }\} \\
& P=\{\text { Students in the NPCC }\}
\end{aligned}
$$

(a) Draw a Venn Diagram to illustrate the above information. Show on the Venn Diagram the number of elements in each distinct region.
(b) It is also given that

$$
\begin{aligned}
C & =\{\text { Chinese students in the class }\} \\
M & =\{\text { Malay students in the class }\} \\
I & =\{\text { Indian students in the class }\}
\end{aligned}
$$

(i) Describe in words the meaning of the set notation $M \cap N \neq\{ \}$.
(ii) Describe what you can deduce from the set notation $I \subset N$.
(iii) Express in set notation \{Chinese students who are neither in NCC nor NPCC $\}$.

\qquad
(bii) \qquad
\qquad

16 (a) Express $-x^{2}+2 x-4$ in the form $-(x-a)^{2}+b$, where a and b are constants.
(b) Hence, sketch the graph of $y=-x^{2}+2 x-4$. Label clearly in your sketch, the turning point and any intercepts with the axes.

17 Two similar claypots have volumes $240 \mathrm{~cm}^{3}$ and $810 \mathrm{~cm}^{3}$ respectively.
(a) Find the ratio of the depth of the smaller claypot to that of the larger claypot.
(b) If the base area of the larger claypot is $72 \mathrm{~cm}^{2}$, find the base area of the smaller claypot.

18 Every morning James takes either the bus or the taxi to school. The probability that he will take the bus is $\frac{2}{3}$. If he takes the bus, the probability of him being late is $\frac{2}{15}$.

If he takes the taxi, the probability of him being late is $\frac{3}{5}$. Find
(a) the probability that James will be late on any given day,
(b) the probability that he will not be late for three consecutive days.

> Answer (a)
> (b)

19 The diagram shows a speed-time graph of a motorist. Given that the total distance travelled in the 35 seconds is 450 metres.

Calculate

(a) the maximum speed $V \mathrm{~m} / \mathrm{s}$,
(b) the speed at 28 seconds,
(c) the acceleration of the motorist during the first 15 seconds.

Sketch the distance-time graph of the motorist for the 35 seconds in the spaces provided below.

Answer

(b) m / s [2]
(c) $\mathrm{m} / \mathrm{s}^{2}[1]$

20 Given $\mathbf{A}=\left(\begin{array}{cc}-3 & 1 \\ x & -2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-2 & y \\ -5 & -3\end{array}\right)$,
(a) Find $\mathbf{A B}$ in terms of x and y.
(b) If $\mathbf{A B}=\mathbf{I}$, where \mathbf{I} is the identity matrix, find the value of x and y.

21

The box and whisker above represent the mass of the fish caught in a group fishing competition. Compare and comment on the results between Group A and Group B.

Answer \qquad
\qquad
\qquad
\qquad

22 A simple survey was conducted with Secondary 1 students on the types of pets that they have at home using the survey form below.

Survey Form

Name:		Class:
Tick the type(s) of pets that you have in your house.		
Pets:	\square Dog	\square Rabbit

The results from the survey are summarised in the Pie Chart below

Results

(a) Explain why the Pie Chart is misleading.
(b) Suggest an improvement to better represent the data.

Answer (a) \qquad
\qquad
\qquad
\qquad
(b) \qquad

23 The diagram shows a trapezium $A B C D$ where $A B=8 \mathrm{~cm}$ and $C D=12 \mathrm{~cm}$. The diagonals $A C$ and $B D$ meet at E.

(a) Show that $\triangle A B E$ and $\triangle C D E$ are similar.
(b) Given that the area of $\triangle C D E$ is $36 \mathrm{~cm}^{2}$, find the area of trapezium, $A B C D$.
\qquad

24

The line l_{1} meets the line $2 y=x+5$ at $x=2$.
Find
(a) the equation of l_{1},
(b) the area of triangle $A B C$.
\qquad
(b) units ${ }^{2}$ [1]

25 A playground is in the shape of a triangle $A B C$. Construct the model of the playground $A B C$ such that $A B=9.6 \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$.
(a) In the triangle $A B C$, construct using only compasses and ruler, the bisector of angle $A B C$.
(b) In the triangle $A B C$, construct using only compasses and ruler the perpendicular bisector of the line $A B$.
(c) These two lines will intersect at a point P.

Measure and write down the length of $A P$.

Answer (c)

No	Solution	Marks
1a	$\frac{-13.37^{2}-\pi^{3}}{6.574-\sqrt{133.7}}=42.046 \approx 42.0$	B1
1b	$3.75 \%=\frac{3.75}{100}=\frac{3}{80}$	B1
2a	$\begin{aligned} & -\frac{2 a(2+a)}{4-a^{2}}-\frac{a}{a-2} \\ & =\frac{2 a(2+a)}{(a-2)(a+2)}-\frac{a}{a-2} \\ & =\frac{2 a}{a-2}-\frac{a}{a-2} \\ & =\frac{a}{a-2} \\ & \text { Accept }-\frac{a}{2-a} \end{aligned}$	M1 A1
2b	$\begin{aligned} & 2 a b+b x^{2}-b^{2}-2 a x^{2} \\ & =2 a b-b^{2}-2 a x^{2}+b x^{2} \\ & =b(2 a-b)-x^{2}(2 a-b) \\ & =\left(b-x^{2}\right)(2 a-b) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
3a	$\begin{aligned} & 2^{2013} \div \frac{1}{2^{-2007}}=2^{2013+(-2007)}=2^{6} \\ & k=6 \end{aligned}$	B1
3b	$\begin{aligned} & \frac{12 a^{-3} b}{\left(2 b c^{0}\right)^{-2}} \div \frac{3}{\sqrt{a^{6} b^{-6}}}=\frac{2^{2}(3) a^{-3} b}{2^{-2} b^{-2}} \times \frac{a^{3} b^{-3}}{3} \\ & =2^{4} a^{0} b^{0}=2^{4} \end{aligned}$	B2 (Subtract 1 for each wrong term)
4	$\begin{aligned} & \frac{x}{3}-\frac{y}{2}=\frac{1}{8} \\ & 2 x-3 y=\frac{3}{4} \\ & 8 x-12 y=3----(1) \\ & 5 x-2 y+5=0 \\ & 2 y=5+5 x----(2) \end{aligned}$ Subst (2) in (1)	M1

	$\begin{aligned} & 8 x-6(5+5 x)=3 \\ & 8 x-30-30 x=3 \\ & 22 x=-33 \\ & x=-\frac{33}{22}=-\frac{3}{2}=-1 \frac{1}{2} \\ & y=-\frac{5}{4}=-1 \frac{1}{4} \end{aligned}$	A2
5a	$3528=2^{3} \times 3^{2} \times 7^{2}$	B1
5b	$\begin{aligned} & 18144=2^{5} \times 3^{4} \times 7 \\ & \mathrm{HCF}=2^{3} \times 3^{2} \times 7 \end{aligned}$	B1
5c	$k=2^{2} \times 3 \times 7=84$	B1
6a	density $\begin{aligned} & =\frac{1.7 \times 10^{11} \mathrm{~g}}{21 \mathrm{~m} \times 21 \mathrm{~m} \times 21 \mathrm{~m}}=\frac{1.7 \times 10^{8} \mathrm{~kg}}{21 \mathrm{~m} \times 21 \mathrm{~m} \times 21 \mathrm{~m}} \\ & =18356 \mathrm{~kg} / \mathrm{m}^{3} \\ & =1.84 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$	M1 A1
6b	Total value of Gold $\begin{aligned} & =1.7 \times 10^{11} \mathrm{~g} \times \$ 6.2 \times 10^{2} / \mathrm{g} \\ & =\$ 1.054 \times 10^{14} \\ & =\$ 105.4 \times 10^{12} \\ & \approx \$ 1.05 \times 10^{2} \text { trillion } \end{aligned}$	M1 A1
7a	$\begin{aligned} & 24-(-9.5)=33.5 \\ & 25-(-5)=30 \\ & 23.5-(-11)=34.5 \end{aligned}$ Largest Difference is $34.5^{\circ} \mathrm{C}$ Accept $36^{\circ} \mathrm{C}$	B1
7b	$\begin{aligned} & 25-\frac{x}{3000} \times 30=0 \\ & 25-\frac{x}{100}=0 \\ & x=2500 \mathrm{~m} \end{aligned}$	M1 A1
8	$\begin{aligned} & -1-x<\frac{9-7 x}{4} \\ & -4-4 x<9-7 x \\ & 3 x<13 \\ & x<4 \frac{1}{3} \end{aligned}$	M1

15b		B1 (No double penalty eg. For labelling)
16a	Mode = 36 marks	B1
16b	Median $=29.5$ marks	B1
16c	Probability $=\frac{6}{20} \times \frac{1}{4}=\frac{3}{40}$	B2 (1 for boy, 1 for girl)
16d	Disagree. The number of boys (20) and girls (12) are not equal. As there are more boys than girls, the boys interquartile range will naturally be higher and are more spread out. It doesn't imply that they are less consistent.	B1
17a		B2 (Negative Marking)
17b	$\mathrm{P}(2$ Blacks $)=\frac{5}{8} \times \frac{4}{7}=\frac{5}{14}$	B1
17c	$\begin{aligned} & \mathrm{P}(\text { At least } 1 \text { Red })=1-\frac{5}{14}=\frac{9}{14} \\ & \mathrm{P}(\mathrm{Win})=\left(\frac{9}{14}\right)^{3}=\frac{729}{2744} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

Qn	Solution	Marks	Marker's Report
1(a)	-168	B1	Most students were able to get this question correct.
1(b)	$\frac{3}{2000}$	B1	Most students were able to get this question correct.
2(a)	$\begin{aligned} & =\frac{3(x+1)+2(2(4-x)}{2(5-x)(x+1)} \\ & =\frac{x+1}{2(5-x)(x+1)} \end{aligned}$	M1 A1	Do not accept half factorisation Eg: $\frac{x+1}{(10-2 x)(x+1)}$
2(b)	$\$\left(\frac{p x}{10}-y\right)$	B1	Most students were not able to do this question.
3(a)	$\begin{aligned} & 36-4 w=2-3 w \\ & w=34 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Most students were able to get this question correct.
3(b)	$\begin{aligned} & =\frac{2 a b^{2}}{2^{-2} b^{-2}} \times \frac{a^{\frac{1}{2}} b}{2^{3}} \\ & =a^{\frac{3}{2}} b^{5} \end{aligned}$	M1 A1	Most students were able to get this question correct.
4	$\begin{aligned} & 2 x=1-3 y \\ & x=0 \\ & y=1 / 3 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Most students were able to get this question correct.
5(a)	$4410=2 \times 3^{2} \times 5 \times 7^{2}$	B1	Most students were able to get this question correct.
5(b)	HCF $=2 \times 3^{2} \times 7$	B1	Some students did not leave the answer in index prime notation.
5(c)	$\mathrm{K}=36$	B1	Some students were not able to do this question.
6(a)	$\begin{aligned} \text { Number of minutes } & =15 / 135 \times 55 \\ & =6 \frac{1}{9} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Do not accept 3sf or improper fraction. Quite a number of students took the temperature starting from $0^{\circ} \mathrm{C}$ instead of $-15^{\circ} \mathrm{C}$
6(b)	$\begin{aligned} \text { Temperature } & =8 / 15 \times 135-15 \\ & =57 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Quite a number of students took the change in temperature as $120^{\circ} \mathrm{C}$ instead of $135^{\circ} \mathrm{C}$
7(a)	42.5	B1	Some students do not understand the question

7(b)	$\begin{aligned} \text { Greatest difference } & =61.5-42.5 \\ & =19 \end{aligned}$	A1	Most students were not able to do this question. Some students did not realise that $61.49=61.5$. Many students got the answer by rounding up 18.9999 to 3 sf. BOD was given as the question was poorly answered.
8(a)	$\begin{aligned} \text { Area ratio } & =9 \mathrm{~cm}^{2}: 40000 \mathrm{~m}^{2} \\ & =9 / 20 \mathrm{~cm}^{2}: 2000 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Some students were not able to convert km^{2} to m^{2}
8(b)	$\begin{aligned} \text { Length ratio } & =3 \mathrm{~cm}: 0.2 \mathrm{~km} \\ & =7.8 \mathrm{~cm}: 0.52 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Well answered.
9	$\begin{aligned} \text { Actual selling price } & =\frac{86 \times 1.25}{0.7} \\ & =\$ 153.57 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Some students were not able to differentiate the old selling price with the discounted selling price.
10(a)	$2 \frac{2}{9}$	B1	Do not accept 3sf or improper fraction.
10(b)	$\begin{aligned} \text { Average speed } & =\frac{(20+0.8) \times 1000}{\frac{20}{8} \times 3600+15 \times 60+3.4 \times 60} \\ & =2 \frac{74}{1263} \end{aligned}$	M1 A1	Do not accept 3sf or improper fraction.
11	$\begin{aligned} & 60+15(n-1)=360 \\ & n=21 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	Poorly answered.
12	$\begin{aligned} \text { ynew } & =\frac{k}{0.6 \sqrt{x}} \\ & =5 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Need to emphasize on "reduced to 36% " and "reduced by 36% " -1 if students substitute values into x / y to calculate
13(a)	5:2	B1	Do not accept 2.5:1
13(b)	$\begin{aligned} \text { Percentage change } & =\frac{0.5 x(1.7 y)-x y}{x y} \times 100 \% \\ & =-15 \% \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Quite a number of students give 15% as answer as they thought percentage change do not have negative sign.

14(a)	$\mathrm{BC}=6 \mathrm{~cm}$	B1	Well answered.
14(b)	Cos ACD $=-0.6$	B1	Well answered.
14(c)	$\begin{aligned} \text { Area } & =0.5 \times 10 \times 3 \sin \mathrm{ACD} \\ & =12 \end{aligned}$	B1	Well answered.
15(a)		B2	Poorly answered. Students were not able to find the number of students that join NPCC and NCC.
15(b)(i)	There are malay students from the class that join NCC.	B1	Some students were not able to interpret the set notation.
15(b)(ii)	All the indian students from the class joined NCC.	B1	Well answered.
15(b)(iii)	C n (NUP)'	B1	Poorly answered.
16(a)	$-(x-1)^{2}-3$	B1	Most students able to complete the square.
16(b)		B2	1 m for shape 1 m for turning point and y-intercept Poorly answered. Students were not able to identify the turning point and some were struggling to find the x intercept.
17(a)	2:3	B1	Well answered.
17(b)	32	B1	Well answered.
18(a)	$\mathrm{P}(\text { late })=\frac{2}{3}\left(\frac{2}{15}\right)+\frac{1}{3}\left(\frac{3}{5}\right)$	M1	Well answered.

	$=\frac{13}{45}$	A1	
18(b)	$\begin{aligned} P(\text { not late for } 3 \text { consecutive days }) & =\left(1-\frac{13}{45}\right)^{3} \\ & =\frac{32768}{91125} \end{aligned}$	M1 A1	Do not accept 3sf. Poorly answered. Many students wrote probability more than 1. Some just multiply the P (not late) by 3 .
19(a)	$\begin{aligned} V & =\frac{450}{0.5(10+35)} \\ & =20 \end{aligned}$	M1 A1	Well answered.
19(b)	$\frac{v}{20}=\frac{7}{10}$ $v=14$	M1 A1	Well answered.
19(c)	$\text { Acceleration }=1 \frac{1}{3} \mathrm{~ms}^{-2}$	B1	Do not accept 3sf and improper fraction.
		B2	1M for shapes 1 M for Distance $150 \mathrm{~m}, 350 \mathrm{~m}$ and 450 m .

20(a)	$\left(\begin{array}{cc}1 & -3-3 y \\ 10-2 x & x y+6\end{array}\right)$	B1	Poorly answered. Many students make careless mistakes.
20(b)	$\mathrm{x}=5 \quad \mathrm{y}=-1$	A2	0 m for those who got their answer from wrong working
21	Generally, the mass of the fish caught by Group A is heavier than the mass of the fish caught by Group B because Group A median is higher than Group B. The mass of the fish caught by Group B is more wide spread compared to the mass of the fish caught by Group A because the interquartile range for Group B is higher than Group A.	B1 B1	Students need to be more specific in explaining.
22(a)	Some students might have more than 1 type of pets.	B1	Poorly answered.
22(b)	Venn Diagram	B1	Poorly answered.
23(a)	$\begin{aligned} & \angle \mathrm{AEB}=\angle \mathrm{CED} \text { (vert. opp) } \\ & \angle \mathrm{EBA}=\angle \mathrm{EDC} \text { (alt } \angle, \mathrm{AB} \text { parallel } \mathrm{DC} \text {) } \\ & \angle \mathrm{EAB}=\angle \mathrm{ECD} \text { (alt } \angle, \mathrm{AB} \text { parallel } \mathrm{DC} \text {) } \end{aligned}$	B2	Any two reasons. Well answered.
23(b)	$\begin{aligned} \text { Height of trapezium } & =\frac{36}{0.5 \times 12}+\frac{8}{12} \times \frac{36}{0.5 \times 12} \\ & =10 \\ \text { Area of trapezium } & =0.5(8+12)(10) \\ & =100 \end{aligned}$	M1 A1	Some students used length ratio to find the area of triangle $A B E$.
24(a)	$\begin{aligned} & \text { Gradient }=-1.75 \\ & y=-1.75 x+7 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Well answered.
24(b)	Area of triangle $=4.5$	B1	Do not accept improper. Well answered.
25			Poorly answered. Students need to learn how to construct a triangle, perpendicular bisector and angle bisector.

Fuhua Secondary Fuhua Secondary Fufua Secondary Fufua Secondary Fufua Secondary Fufua Secondary Fuhua Secondary Fuhua Secondary Fufua Fufua Secondary Fuhua Secondary Fufua Secondary Fufua Secondary Fufua Secondary Fuhua Secondary Fuhua Secondary Fuhua Secondary Fuhua Fufua Secondary Fufua Secondary Fufua Secondary Fufua Secondary Fufua Secondary Fuhua Secondary Fufua Secondary Fufua Secondary Fufua Fuhua Secondary Fuhua Secondary Fufua Secondary Fufua Secondary Fuhua Secondary Fuhua Secondary Fuhua Secondary Fuhua Secondary Fufua

MATHEMATICS

PAPER 2

Additional Materials:
Writing paper, Graph paper \& Electronic calculator

DATE 25 August 2016
 TIME 0750-1020
 DURATION 2 h 30 min

INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
Write your answers on the separate writing paper provided.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

PARENT'S SIGNATURE	FOR EXAMINER'S USE	
		$/ 100$

This question paper consists of $\underline{12}$ printed pages including this page.

MATHEMATICAL FORMULAE

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) The diagram below shows a segment $A M B C$ of a circle centre O with diameter 86 cm . Given that $C M=68 \mathrm{~cm}$, find the area of the segment.

(b) In the diagram given below, $A B C D$ is a parallelogram and E is a point on $A B$ such that $D A=D E$. The lines $B D$ and $E C$ intersect at F. Prove that
(i) $\triangle D E C \equiv \triangle C B D$,
(ii) $\triangle D E F \equiv \triangle C B F$.

2 (i) Johnny borrowed $\$ 50000$ from Joyful Bank to pay for the renovation of his new flat. The bank offered him two interest schemes.

Scheme A:

Year	Interest Rate (\% per annum)
1	1.5
2	2
3 onwards	2.5

The interest would be computed on the original principal amount.

Scheme B:

The interest is computed on the amount owed at the beginning of the year at 2% per annum.

If Johnny clears the loan at the end of 5 years, which scheme should he take up? Justify your answer with working.
(ii) The tables below show the exchange rates between Singapore dollars (SGD) and US dollars (USD) given by Unity Bank and Dedicated Bank.

Unity Bank

	Singapore Dollars (SGD)	
US Dollars (USD)	Selling	Buying
USD 1	1.342	1.327

Dedicated Bank

	Singapore Dollars (SGD)	
US Dollars (USD)	Selling	Buying
USD 1	1.361	1.340

Unity Bank charges no commission and Dedicated Bank charges a commission of $\frac{1}{2} \%$ for each transaction, subject to a minimum charge of S\$12.
(a) Mary is planning a trip to US and wants to buy USD650. Calculate, in SGD, the least amount of money she needs so that she can buy the USD from either bank.
(b) At the end of the trip, she went to Dedicated Bank and changed the remaining USD150 back to Singapore dollars. Calculate the amount of Singapore dollars she received.

3 (a) The coordinates of points A and B are $(6,2)$ and $(-3,8)$ respectively.
(i) Find $|\overrightarrow{A B}|$.
[2]
(ii) Given that $\overrightarrow{B C}=\binom{5}{-7}$, express $\overrightarrow{O C}$ as a column vector.
[1]
(iii) If $\overrightarrow{A D}=\binom{-7}{1}$, name the quadrilateral $A B D C$.

Justify your answer using vectors.
(b) The following table shows the number of boxes of ice-cream bought by April and May.

	Chocolate	Strawberry	Vanilla
April	5	8	3
May	6	4	5

The price of each box of chocolate, strawberry and vanilla ice-cream is $\$ 9.80, \$ 6.20$ and $\$ 8$ respectively.
(i) Represent the data in the table by a 2×3 matrix \mathbf{P}.
(ii) Write down a matrix \mathbf{Q} such that $\mathbf{P Q}$ will give the amount spent by April and May respectively. Evaluate PQ. Explain what the elements in $\mathbf{P Q}$ represent.
(iii) Write down another matrix such that the product with $\mathbf{P Q}$ will give the total amount spent by both of them. Evaluate this product.

4 Matchsticks are used to form shapes of squares. The table below shows the square number (N), the number of matchsticks on each side (n), the total number of matchsticks used to form the square (T) and the area of the square formed (A).

Square number (N)	1	2	3	\cdots	9
No. of matchsticks per side (n)	1	3	5	\cdots	p
Total number of matchsticks (T)	4	12	20	\cdots	q
Area (A) units 2		1	9	25	\cdots

(i) Write down the value of p, of q and of r.
(ii) Express n, T and A in terms of N.
(iii) Find the value of N if $A=169$ units 2.
(iv) Find the largest possible area of the square that can be formed with 168 matchsticks.

5
(a) (i) Factorise $6 x^{2}+22 x-40$.
(ii) Hence, find the value(s) of $2 a-2 b$ given

$$
\begin{equation*}
3 a^{2}+3 b^{2}+11 a-11 b-6 a b-20=0 \text { and } a<b . \tag{3}
\end{equation*}
$$

(b) (i) Express $\frac{4 x-2}{x+1}-\frac{6 x+12}{2 x^{2}-2}$ as a single fraction in its simplest form.
(ii) Using the result in (b) (i), solve $\frac{2 x-1}{x+1}-\frac{3 x+6}{2 x^{2}-2}=3$, giving your answers correct to two decimal places.

6 The diagram below shows a circle with diameter $B D$ passing through the points A, B, C and D. $A T$ and $B T$ are tangents to the circle at A and B respectively. $B D$ and $A C$ intersect at X. Given that $\angle B A C=55^{\circ}$ and $\angle A B C=75^{\circ}$,
(a) calculate, stating your reasons clearly,
(i) $\angle C B X$,
(ii) $\angle A D C$,
(iii) $\angle A T B$.
(b) Find the diameter of the circle given that $B T=8 \mathrm{~cm}$.

7 Answer the whole of this question on a sheet of graph paper.

The value of car, currently estimated at $\$ 140000$, depreciates at 15% each year.
The value of the car, $\$ V$, in terms of n, is given by $V=140000(0.85)^{n}$ where n is the number of years from now.

The table below shows some corresponding values of n and V where values of V are corrected to the nearest whole number.

n	0	1	2	3	4	5	6	7
V	140000	119000	101150	85977	p	62119	q	44881

(a) Find the value of p and of q.
(b) Using a scale of 2 cm to 1 year, draw a horizontal axis for $0 \leq n \leq 7$ and a scale of 2 cm to $\$ 10000$, draw a vertical axis for $40000 \leq V \leq 140000$. On your axis, plot the points and join them with a smooth curve.
(c) The owner decides to sell his car if the cost incurred is not more than 40% of the original value. Use your graph to estimate the value of n when he can sell his car.
(d) By drawing a tangent, find the gradient of the curve at $n=2$. Explain the significance of this gradient.

8 In the diagram below, A, B, C and D are four points on level ground with A due west of B.

Given that $A C=50 \mathrm{~m}, C D=30 \mathrm{~m}, A D=70 \mathrm{~m}, \angle C A B=50^{\circ}$ and $\angle A B C=60^{\circ}$, calculate
(a) (i) the length of $A B$,
(ii) $\angle C A D$,
(iii) bearing of D from A.
(b) A vertical building of height 30 m is at A. A man of height 1.75 m walks from D to C. Find the largest angle of depression from the top of the building to the top of the man's head.
(c) A boy walks due east from A until he reaches a point P which is equidistant from B and from C. Calculate the distance of $P B$.

9 The Mathematics test scores of 25 students are presented in the following stem-andleaf diagram.

Stem	Leaf
4	s 556
5	0124668
6	01346789
7	01112
8	2

Legend: $4 \mid 5$ means 45 marks
(a) Find the value of s given that the range is 39 .
(b) Find the median mark.
(c) A Distinction grade is awarded for students who score x marks and above.

Given that 20% of the students obtained a Distinction grade, find x.
(d) Find the mean and standard deviation of the test scores.
(e) A moderation is to be done and 4 marks are to be added across all scores. Explain how the median and standard deviation of the marks would be affected by the moderation.
(f) Two students are chosen at random. Find the probability that both students have obtained different scores in the test.

10 Figure 1 shows a simplified model of a trophy consisting a sphere, a bifrustum and two cylinders. A bifrustum is made up of two frustums. Each frustum is made by slicing the top off a right circular cone as shown in Figure 2.

The cylindrical bases are made of oak and the bifrustum and sphere are made of teak.

Fig 1

Fig 2
(i) Calculate the amount of teak needed to make a frustum.
(ii) The trophy will be unstable if the mass of the bifrustum and the sphere is 10% greater than the mass of the cylindrical bases. Given that the densities of oak and teak are $2.7 \mathrm{~g} / \mathrm{cm}^{3}$ and $0.63 \mathrm{~g} / \mathrm{cm}^{3}$ respectively, will the trophy be unstable? Justify your answer with calculations.

End of paper

Answers

1
(a) $4930 \mathrm{~cm}^{2}$
(b)
(i)
SAS test
(ii) ASA test
(i) Scheme B because the total amount payable is lesser than that of Scheme A
(ii)
(a) SGD 896.65
(b) SGD 189

3
(a)
(i) 10.8 units
(ii) $\binom{2}{1}$
(iii) Trapezium
(b)
(i) $\quad P=\left(\begin{array}{lll}5 & 8 & 3 \\ 6 & 4 & 5\end{array}\right)$
(ii) $Q=\left(\begin{array}{c}9.80 \\ 6.20 \\ 8\end{array}\right), P Q=\binom{122.60}{123.60}$
(iii) $\quad\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{122.60}{123.60}=(246.20)$
(i) $p=17, q=68, r=289$
(ii) $\quad n=2 N-1, T=4(2 N-1), A=(2 N-1)^{2} \quad$ (iii) $\quad N=7$
(iv) 1681 units 2

5
(a)
(i) $\quad 2(3 x-4)(x+5)$
(ii) -10
(b)
(i) $\frac{4 x^{2}-9 x-4}{x^{2}-1}$
(ii) 0.21 or -4.71

6
(a)
(i) 35°
(ii) 105°
(iii) 80°
(b) 13.4 cm

7 (a) $\quad p=73081$ (nearest whole number), $q=52801$ (nearest whole number)
(c) $0<n<3.2$
(d) -16250
(a) (i) 54.3 m
(ii) 21.8°
(iii) 018.2°
(b) $\quad 33.1^{\circ}$
(c) $\quad 44.2 \mathrm{~m}$

9
(a) 3
(b) 61 marks
(c) 71
(d) Mean $=60.44$ marks, standard deviation $=10.2$ marks
(e) Median will increase by 4, no change in standard deviation
(f) $\frac{59}{60}$

10
$\begin{array}{ll}\text { (a) } 2150 \mathrm{~m}^{3} & \text { (b) It will not be unstable. }\end{array}$

Marking Scheme [EM P2]

1 (a) Let the midpoint of $A B$ be M.
$A O=B O=43 \mathrm{~cm}, O M=25 \mathrm{~cm}$
$\cos \left(\frac{1}{2} \angle A O B\right)=\frac{25}{43}$
$\angle A O B=108.902^{\circ}$ (to 3 dec pl) -- M1 [find angle]

$$
\text { Area of } \begin{aligned}
\triangle A O B & =\frac{1}{2}(43)^{2} \times \sin 108.902^{\circ} \\
& =874.6427 \mathrm{~cm}^{2}(7 \mathrm{sf})-\text { M1 [find area of triangle] }
\end{aligned}
$$

Area of segment $=874.6427+\frac{360^{\circ}-108.902^{\circ}}{360^{\circ}} \times \pi(43)^{2}-$ M1 [find total]
$=4926.25 \ldots \mathrm{CBD}$
$=4930 \mathrm{~cm}^{2}(3 \mathrm{sf})-\mathrm{A} 1$ [final answer with units]
(b) (i) Given that $A B C D$ is a parallelogram, $D A=C B$.

$$
\begin{aligned}
& \text { Given } D A=D E \text {, therefore } C B=D E .-\mathrm{M} 1 \\
& \angle D A B=\angle B C D \text { (opposite angles of parallelogram) } \\
& \angle D A B=\angle E D C(\triangle D A B \equiv \triangle E D C) \\
& \therefore \angle B C D=\angle E D C-\mathrm{M} 1
\end{aligned}
$$

In $\triangle D E C$ and $\triangle C B D$,
$C B=D E(\mathrm{~S})$
$\angle B C D=\angle E D C$ (A)
$D C=C D($ common $)(\mathrm{S})$
$\therefore \triangle D E C \equiv \triangle C B D$ (SAS) -- M1
(ii) In $\triangle D E F$ and $\triangle C B F$,
$\mathrm{DE}=\mathrm{CB}($ from bi) (S)
$\angle D F E=\angle C F B$ (vertically opposite angles) (A)
$\angle D E F=\angle C B F \quad \Rightarrow \angle E D F=\angle B C F(\mathrm{~A})$
$\therefore \triangle D E F \equiv \triangle C B F$ (ASA) -- M2

Interest at the end of year $1=\frac{1.5}{100} \times 50000=\$ 750$
Interest at the end of year $2=\frac{2}{100} \times 50000=\$ 1000$
Total amount payable $=\$ 50000+5000 \times 3 \times \frac{2.5}{100}+750+1000-$ M1

$$
\text { = \$ } 55500 \text {-- A1 }
$$

Scheme B:

Total amount payable $=50000 \times\left(1+\frac{2}{100}\right)^{5}$

$$
=\$ 55204.04(2 \mathrm{dp})--\mathrm{B} 1
$$

He should take up Scheme B because the total amount payable at the end of 5 years is lesser than that of Scheme A. - A2
(ii) (a) Unity Bank:

$$
\text { Amount needed }=\text { SGD } 650 \times 1.342
$$

$$
=\text { SGD } 872.30-\text { - B1 }
$$

Dedicated Bank:

Amount needed without commission $=$ SGD 650×1.361

$$
=\text { SGD } 884.65
$$

0.5% of SGD $884.65=$ SGD $4.42(<$ SGD 12) --
Total amount needed $=$ SGD $884.65+$ SGD $12=$ SGD896.65 - M1
Thus, the least amount needed $=$ SGD $896.65-$ A1
(b) Amount received $=$ SGD $150 \times 1.340-12 \quad-$ M1

$$
\text { = SGD } 189 \text {-- A1 }
$$

(a) (i) $\overrightarrow{O A}=\binom{6}{2}, \overrightarrow{O B}=\binom{-3}{8}, \overrightarrow{A B}=\binom{-9}{6}$

$$
\begin{aligned}
|\overrightarrow{A B}|=\sqrt{(-9)^{2}+6^{2}} & =\sqrt{117} \quad-\mathrm{M} 1 \\
& =10.8 \text { units (to } 3 \text { sf) -- A1 }
\end{aligned}
$$

(ii) $\overrightarrow{B C}=\binom{5}{-7}$

$$
\overrightarrow{B O}+\overrightarrow{O C}=\binom{5}{-7}
$$

$$
\overrightarrow{O C}=\binom{5}{-7}-\binom{3}{-8}
$$

$$
=\binom{2}{1}--\mathrm{B} 1
$$

(iii) $\overrightarrow{O D}=\binom{-1}{3}, \overrightarrow{C D}=\binom{-3}{2}$

$$
\text { Since } \overrightarrow{A B}=3 \overrightarrow{C D} \text {, so } A B / / C D .-\mathrm{M} 1
$$

$$
\overrightarrow{B D}=\binom{2}{-5}, \overrightarrow{A C}=\binom{-4}{-1} \quad-\mathrm{M} 1
$$

Since $\overrightarrow{B D} \neq k \overrightarrow{A C}$, where k is a constant, so $B D$ is not parallel to $A C$.
Given that there is only one pair of parallel sides, $A B C D$ is a trapezium. - A1
(b)
(i) $\quad P=\left(\begin{array}{lll}5 & 8 & 3 \\ 6 & 4 & 5\end{array}\right)$-- B1
(ii) $Q=\left(\begin{array}{c}9.80 \\ 6.20 \\ 8\end{array}\right)-$ B1 and $P Q=\binom{122.60}{123.60}-$ B1
(iii) Matrix is (1 1). - B1

$$
\text { Product }=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{122.60}{123.60}=(246.20)--\mathrm{B} 1
$$

The total amount spent on the three types of ice-cream by April and May respectively.
(i) $p=17, q=68, r=289-\mathrm{B} 2$ for 3 correct, B 1 for 2 correct
(ii) $n=2 N-1 \quad-$ B1

$$
\begin{aligned}
& T=4(2 N-1) \quad-\mathrm{B} 1 \\
& A=(2 N-1)^{2}--\mathrm{B} 1
\end{aligned}
$$

(iii) If $A=169,(2 N-1)^{2}=169$

$$
\begin{aligned}
& 2 N-1= \pm 13 \quad-\mathrm{M} 1 \\
& N=7 \text { or } N=-6 \text { (rejected) -- A1 }
\end{aligned}
$$

(iv) $\quad 4(2 N-1) \leq 168$-- M1
$2 N-1 \leq 42$
$2 N \leq 43$
$N \leq 21.5$-- A1
Largest possible value of $N=21$
Hence, largest possible area $=1681$ units 2-- A1

5
(a) (i) $6 x^{2}+22 x-40=2(3 x-4)(x+5)-$ B2
(ii) $3 a^{2}+3 b^{2}+11 a-11 b-6 a b-20=0$

$$
\begin{aligned}
& 6\left(a^{2}-2 a b+b^{2}\right)+22(a-b)-40=0--\mathrm{M} 1 \\
& 6(a-b)^{2}+22(a-b)-40=0 \\
& 2[3(a-b)-4][(a-b)+5]=0 \\
& a-b=\frac{4}{3} \text { (rejected) or } a-b=-5-\text { A1 }
\end{aligned}
$$

Hence, $2 a-2 b=2(a-b)=2(-5)=-10$-- A1
(b)
(i) $\frac{4 x-2}{x+1}-\frac{6 x+12}{2 x^{2}-2}=\frac{4 x-2}{x+1}-\frac{6(x+2)}{2(x+1)(x-1)}-$ M1 [factorisation]

$$
\begin{aligned}
& =\frac{(4 x-2)(x-1)-3(x+2)}{(x+1)(x-1)} \\
& =\frac{4 x^{2}-6 x+2-3 x-6}{x^{2}-1}-\text { M1 [simplification] } \\
& =\frac{4 x^{2}-9 x-4}{x^{2}-1}-\text { A1 [answer] }
\end{aligned}
$$

(ii) $\frac{2 x-1}{x+1}-\frac{3 x+6}{2 x^{2}-2}=3$

$$
\begin{aligned}
& 2\left(\frac{2 x-1}{x+1}-\frac{3 x+6}{2 x^{2}-2}\right)=6 \\
& \frac{4 x^{2}-9 x-4}{x^{2}-1}=6-- \text { M1 }
\end{aligned}
$$

$$
4 x^{2}-9 x-4=6 x^{2}-6
$$

$$
2 x^{2}+9 x-2=0 \quad--\mathrm{M} 1
$$

$$
x=\frac{-9 \pm \sqrt{9^{2}-4(2)(-2)}}{2(2)}--\mathrm{M} 1
$$

$$
=0.21 \text { or }-4.71 \text { (answers to } 2 \mathrm{dp} \text {) -- A1 }
$$

(a) (i) $\angle B A D=90^{\circ}$ (angle in semi-circle)

$$
\begin{aligned}
& \angle C A D
\end{aligned}=90^{\circ}-55^{\circ}=35^{\circ}-\mathrm{M} 1 \mathrm{ACBX}=\begin{aligned}
\angle C A D & \text { (angles in same segment) } \\
& =35^{\circ}-\mathrm{A} 1
\end{aligned}
$$

(ii) $\angle A D C=180^{\circ}-75^{\circ}$ (angles in opposite segment)

$$
=105^{\circ}-\mathrm{A} 1
$$

(iii) $\angle A B D=75^{\circ}-35^{\circ}=40^{\circ}$
$\angle D B T=90^{\circ}$ (tangent perpendicular to radius) -- M1
$\therefore \angle A B T=90^{\circ}-40^{\circ}=50^{\circ} \quad-\mathrm{M} 1$
$\angle A T B=180^{\circ}-2\left(50^{\circ}\right)($ angles sum of triangle)

$$
=80^{\circ} \quad-\mathrm{A} 1
$$

(b) $\tan 40^{\circ}=\frac{O B}{8}$
$O B=8 \tan 40^{\circ}$
Diameter $=2\left(8 \tan 40^{\circ}\right)--$ M1

$$
=13.4 \mathrm{~cm}(\text { to } 3 \mathrm{sf})--\mathrm{A} 1
$$

7
(a) $\quad p=73081$ (nearest whole number), $q=52801$ (nearest whole number) - B1
(b) Graph - Plotted points A1

Smooth curve A1
Axes + Eqn + Scale A1
(c) $\quad V \geq \frac{60}{100} \times 140000$
$V \geq 84000$-- M1
From graph, $0 \leq n \leq 3.2$-- A1
(d) Gradient $=\frac{125000-60000}{0.5-4.5}=-16250 \quad-\mathrm{M} 1+\mathrm{A} 1$

The value of the car is depreciating at a rate of $\$ 16250$ at $n=2$. - A1
[The rate of depreciation of the car at $\mathrm{n}=2$.]
(a) (i) $\angle A C B=180^{\circ}-50^{\circ}-60^{\circ}$ (angles sum of triangle)

$$
\begin{aligned}
& =70^{\circ} \\
& \frac{A B}{\sin 70^{\circ}}=\frac{50}{\sin 60^{\circ}}-\mathrm{M} 1 \\
& \begin{aligned}
A B=\frac{50}{\sin 60^{\circ}} \times \sin 70^{\circ} & =54.25317 \ldots \\
& =54.3 \mathrm{~m}(\text { to } 3 \mathrm{sf})-\mathrm{A} 1
\end{aligned}
\end{aligned}
$$

(ii) $30^{2}=50^{2}+70^{2}-2(50)(70) \cos \angle C A D-\mathrm{M} 1$

$$
\begin{aligned}
& \cos \angle C A D=\frac{-6500}{-7000} \\
& \angle C A D=\cos ^{-1}\left(\frac{13}{14}\right)=21.7867 \ldots
\end{aligned}
$$

$$
=21.8^{\circ}(\text { to } 1 \mathrm{dp})-\mathrm{A} 1
$$

(iii) Bearing of D from $A=090^{\circ}-050^{\circ}-021.7867^{\circ}$

$$
\left.=018.2^{\circ} \text { (to } 1 \mathrm{dp}\right) \text {-- A1 }
$$

(b) Let the shortest distance from A to $C D$ be x.

$$
\begin{aligned}
& \frac{1}{2}(30) x=\frac{1}{5}(50)(70) \sin 21.7867^{\circ} \\
& x=43.3011 \text { (to 6sf) -- M1 }
\end{aligned}
$$

Let the largest angle of depression be θ.
$\tan \theta=\frac{30-1.75}{43.3011}--$ M1
$\theta=33.1^{\circ}$ (to 1 dp) -- A1
The largest angle of depression is 33.1°.
(c) Triangle $B C P$ is an equilateral triangle.

$$
\begin{aligned}
& \angle A P C=180^{\circ}-60^{\circ} \quad \text { (angles on a straight line) } \\
& =120^{\circ} \\
& \begin{aligned}
\frac{A P}{\sin 10^{\circ}} & =\frac{50}{\sin 120^{\circ}}--\mathrm{M} 1
\end{aligned} \\
& \begin{aligned}
A P= & 10.02558 \mathrm{~m}(\text { to } 7 \mathrm{sf})--\mathrm{A} 1
\end{aligned} \\
& P B=54.25317-10.02558 \\
& =
\end{aligned}
$$

9 (a) Lowest score $=82-39=43$
So, $s=3$-- B1
(b) Median $=61$ marks -- B1
(c) Number of students awarded Distinction $=\frac{20}{100} \times 25=5 \quad--$ M1

$$
\text { So, } x=71 \text {-- A1 }
$$

(d) Mean $=\frac{1511}{25}=60.44$ marks -- B1

$$
\begin{aligned}
\text { Standard Deviation } & =\sqrt{\frac{93919}{25}-60.44^{2}} \quad-\text { M1 } \\
& =10.2 \text { marks (to } 3 \text { sf) }- \text { A1 }
\end{aligned}
$$

(e) The median will increase by 4 marks to become 65 marks. - A1 There will be no change in the standard deviation. - A1
(f) $\quad \mathrm{P}$ (both with different scores)
$=1-\mathrm{P}$ (both with same scores)
$=1-[\mathrm{P}(45,45)+\mathrm{P}(56,56)+\mathrm{P}(71,71)]$
$=1-\frac{2}{25} \times \frac{1}{24}-\frac{2}{25} \times \frac{1}{24}-\frac{3}{25} \times \frac{2}{24} \quad-$ M1
$=\frac{59}{60}-\mathrm{A} 1$
(a) By similar triangles,

$$
\begin{aligned}
& \frac{x}{x+12}=\frac{6}{9} \\
& 9 x=6 x+72 \\
& 3 x=72 \\
& x=24 \quad-- \text { M1 }
\end{aligned}
$$

Volume of teak used $=\frac{1}{3} \pi(9)^{2}(36)-\frac{1}{3} \pi(6)^{2}(24) \quad-$ M1

$$
\begin{aligned}
& =2148.849 \mathrm{~cm}^{3}(7 \mathrm{sf}) \\
& \left.=2150 \mathrm{~cm}^{3} \text { (to } 3 \mathrm{sf}\right)-\mathrm{A} 1
\end{aligned}
$$

(b) Total volume of teak needed $=2 \times 2148.849+\frac{4}{3} \pi(2)^{3}$

$$
=4331.208 \mathrm{~cm}^{3}(7 \mathrm{sf})
$$

Mass of teak needed $=4331.208 \times 0.63=2728.661 g(7 \mathrm{sf})--\mathrm{M} 1$

Total volume of oak needed $=\pi(3)^{2}(15)+\pi(9)^{2}(5)$

$$
=1696.46 \mathrm{~cm}^{3} \text { (to } 6 \mathrm{sf} \text {) -- M1 }
$$

Mass of oak needed $=1696.46 \times 2.7=4580.44 \mathrm{~g}$ (to 6 sf) -- M1

$$
\left.\frac{\text { Mass of teak }}{\text { Mass of oak }}=\frac{2728.661}{4580.44}=0.596 \text { (to } 3 \mathrm{sf}\right)(<1.1)--\mathrm{M} 1
$$

The trophy will not be unstable. - A1

End of marking scheme

\square

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2016 Secondary 4

INSTRUCTIONS TO CANDIDATES

Write your name, class and index number on the question paper.
Write in dark blue or black ink on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answer in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{\mathrm{r}}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of a triangle $=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

Answer all the questions.
1 (a) Calculate $7 \frac{1}{3}-\sqrt[3]{\frac{5.25+13.5^{2}}{\sin 28^{\circ}}}$.
Write down the first six digits on your calculator display.
(b) Write your answer to part (a) correct to 2 significant figures.

Answer (a)
(b)

2 (a) Arrange the following numbers in ascending order:

$$
\frac{1}{20}, \quad 5 \frac{1}{4} \%, \quad 5.22 \times 10^{-3}, \quad 0.0 \dot{5}
$$

Answer (a)
(b) State which of the following number(s) is / are irrational:

$$
0 . \dot{3}, \quad \frac{\pi}{5}, \quad \sqrt{7} \times 2 \sqrt{7}, \quad 3 \sqrt{3} .
$$

Answer (b)

3 The length of each side of a cube is increased by 40%.
Find the percentage increase in the total surface area of the cube.

4 Given that $(2 x-5)(x+a)=2 x^{2}+b x-5$ for all values of x, find the values of a and b.

$$
\begin{equation*}
\text { Answer } a=\ldots \ldots \ldots \ldots ., b= \tag{2}
\end{equation*}
$$

5 Two numbers p and q, written as the products of their prime factors, are $p=2^{2} \times 3^{5} \times 5^{6}$ and $q=2^{2} \times 3^{3}$ 。
(a) Find the HCF of p and q.
(b) Find the smallest positive integer k such that $(p \times q \times k)$ is a perfect cube.

Answer (a)
(b) $k=$

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 1916 London time. The flight arrived at Singapore on Tuesday at 1551 Singapore time. Calculate how long the flight took, giving your answer in hours and minutes.

Answer \qquad hours \qquad minutes [2]

7 The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres, of the micro-organism, giving your answer in standard form.

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016 .

Explain why the graph is misleading.
Answer \qquad
\qquad
\qquad
\qquad

9 Two of the interior angles of a hexagon are $2 x^{\circ}$ and ($\left.5 x-200\right)^{\circ}$. The remaining interior angles are 90° each. By forming an equation in x, find the value of x.

$$
\text { Answer } x=
$$

10 In the diagram, the points B, C, D and E lie on a circle with centre $O . P Q$ is a tangent to the circle at $D . A B C$ and $A E O D$ are straight lines. $\angle O C B=54^{\circ}$ and $\angle O A B=30^{\circ}$.

Find, giving reasons for each answer,
(a) $\angle A D C$,
(b) $\angle C D Q$,
(c) $\angle A C E$,
(d) $\angle C B E$.
\qquad
(b)
(c) \qquad ${ }^{\circ}$
(d) \qquad。[1]
$11 A B C D$ is a quadrilateral. $A B C$ and $C D E$ are equilateral triangles. Using a pair of congruent triangles, show that $A D=B E$. State your reasons clearly.

Answer In triangles \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12 Janet has $\$ 50000$ to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months.
Calculate the amount of interest she will get at the end of 3 years.

Page 8 of 18

13 (a) Given that $\left(\frac{1}{4}\right)^{p} \times 8=1$, find the value of p.
(b) Simplify $\left(\frac{2^{y+1} \sqrt{2}}{2^{y}}\right)^{-2}$.
\qquad
Answer (a) $p=$ [2]
(b)

14 The equations of the three graphs shown below are in the form $y=n+x^{n-1}$. State the value of n for each of the following graph.
(a)

(b)

(c)

Answer (a) $n=$
(b) $n=$
(c) $n=$

15 In the answer space, sketch the graph of $y=5-(x+1)^{2}$, indicate clearly the turning point and the intercepts on the x and y-axes (if any).

Answer

Page 10 of 18

16 (a) $\varepsilon=\{x: x$ is an integer and $1 \leq x<24\}$
$A=\{x: x$ is a perfect square $\}$
$B=\{x: x$ is a factor of the number 24 $\}$
$C=\{x: x+1$ is divisible by 6$\}$
(i) List the elements in $A \cap C$.
(ii) Find $n\left(B^{\prime} \cup C\right)$.
\qquad
(ii)
(b) State the set notation of the shaded region in following Venn Diagram.

Answer (b)

17 Given that point $A(4,2)$ and $\overrightarrow{A C}=\binom{-7}{3}$.
(a) Find $|\overrightarrow{C A}|$.

Answer (a)
units [1]
(b) The point P lies on $C A$ such that $\overrightarrow{P A}=k \overrightarrow{C A}$.
(i) Show that $\overrightarrow{O P}=\binom{4-7 k}{2+3 k}$.

Answer (b)(i)
(ii) Given that point P lies on the y-axis, find the coordinates of P.

$$
\text { Answer (b)(ii) } \quad P(\ldots \ldots \ldots, \ldots \ldots \ldots)
$$

18 Consider the number patterns in the table below. The first three terms of each column have been given.

Row, n	S	T	U
1	4	16	16
2	8	32	30
3	12	48	44
7	p	q	r
n			

(a) Find values of p, q and r.
(b) Write down the equation connecting S and T.
(c) Write down the equation connecting U and n.
(d) Betty said that 256 can be found in column U.

Write whether you agree or disagree with Betty. Give reason(s) for your answer.
Answer (a) $p=$

\qquad
$q=$
\qquad

\qquad
(b) [1]
(c) [1]
(d) I \qquad .with Betty. This is because \qquad
\qquad
\qquad
\qquad
\qquad

Page 13 of 18

19 The frequency table shows the number of countries that a group of students had visited.

Number of countries	0	1	2	3	4
Number of students	2	8	6	x	4

(a) Given that the mode is 1 , state the largest possible value of x.
(b) Given that the median number of countries visited is 2, find the largest possible value of x.
(c) Given that the mean number of countries is more than 2 , find the smallest possible value of x.

Answer (a) $x=$
(b) $x=$
(c) $x=$

20 (a) The air resistance, R, is directly proportional to the square of the speed, V, of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.
(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?
(b) men [2]

Page 15 of 18

21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.
(b) Calculate
(i) the total distance travelled by the train in the first 3 minutes,
(ii) the average speed of the train, in km / h, in the first 3 minutes.
Answer (a) $\mathrm{m} / \mathrm{s}^{2}$
(b)(i) \qquad m [1]
(ii)
km/h
[2]
(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c)
Distance (m)

Page 16 of 18

$22 \quad P$ and R are points on the x-axis. $T Q R$ is a straight line parallel to the y-axis. Area of $\triangle P Q R=30$ units 2.

(a) Find the coordinates of
(i) $\operatorname{point} R$,
(ii) point P.
(b) Find the length of $P Q$.
(c) Find $\cos \angle P Q T$, giving your answer as a fraction.
(d) Given that $P R=T R$, find the equation of $P T$.

Answer (a)(i) $R(\ldots \ldots . ., \ldots \ldots .$.$) [1]$
(ii) $P($.
(b) \qquad units
(c)
(d)

Page 17 of 18

23 Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.
(a) Complete the following probability tree diagram.

Answer (a)

(b) Find
(i) the probability that one disc is odd and the other is even,
(ii) the probability that both numbers drawn are smaller than 4.
(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.

Answer (b)(i)
(ii)
(c)

Page 18 of 18

24 The diagram below shows a horizontal field $A B C$.
A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m , show all the constructions clearly.
(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
(i) By construction, mark and label clearly the position of the lamp post L. [1]
(ii) Measure and write down the bearing of the lamp post L from point C.
(b) A gate, G, is located along the path of $B C$, equidistant from B and C. By construction, mark and label clearly the position of the gate G.
(c) A circular flower bed is built such that it touches each side of the field at one point.
(i) By constructing two angle bisectors, draw the circular flower bed and label its centre O.
(ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(i)
(b)
(c)(i)

Answer (a)(ii) ${ }^{\circ}$ [1]
(c)(ii) m [1]

End of Paper 1

\square

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2016 Secondary 4

Thursday
MATHEMATICS
4048/01
4 August 2016
Paper 1 (Solutions)
2 h

INSTRUCTIONS TO CANDIDATES

Write your name, class and index number on the question paper.
Write in dark blue or black ink on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answer in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{\mathrm{r}}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of a triangle $=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

Answer all the questions.
1 (a) Calculate $7 \frac{1}{3}-\sqrt[3]{\frac{5.25+13.5^{2}}{\sin 28^{\circ}}}$.
Write down the first six digits on your calculator display.
(b) Write your answer to part (a) correct to 2 significant figures.

$$
\begin{align*}
& \text { B1 } \\
& \text { Answer (a) } \tag{1}\\
& \text { (b) } \ldots \ldots . .0 .031 \tag{1}\\
& \text { B1 } \\
& \text { (b) }
\end{align*}
$$

2 (a) Arrange the following numbers in ascending order:

$\frac{1}{20}$,	$5 \frac{1}{4} \%$,	5.22×10^{-3},	$0 . \ddot{0} \dot{5}$.
$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 5 2 5}$	$\mathbf{0 . 0 0 5 2 2}$	$\mathbf{0 . 0 5 0 5 0 5}$

$$
5.22 \times 10^{-3}, \frac{1}{20}, 0.0 .05,5 \frac{1}{4} \%
$$

(b) State which of the following number(s) is / are irrational:
$0 . \dot{3}, \quad \frac{\pi}{5}, \quad \sqrt{7} \times 2 \sqrt{7}, \quad 3 \sqrt{3}$.
Answer (b)

3 The length of each side of a cube is increased by 40%.
Find the percentage increase in the total surface area of the cube.

$$
\begin{aligned}
\% \text { increase in surface area } & =\frac{6(1.4 l)^{2}-6 l^{2}}{6 l^{2}} \times 100 \% \\
& =\frac{11.76-6}{6} \times 100 \% \\
& =96 \%
\end{aligned}
$$

$$
\frac{\tau}{5}, 3
$$

		A1
Answer	96	\% [2]

4 Given that $(2 x-5)(x+a)=2 x^{2}+b x-5$ for all values of x, find the values of a and b.

$$
\begin{aligned}
& 2 x^{2}+2 a x-5 x-5 a=2 x^{2}+b x-5 \\
& -5 a=-5 \\
& a=1
\end{aligned} \begin{aligned}
& 2 a-5=b \\
& b=2(1)-5 \\
&=-3
\end{aligned}
$$

B1
B1
Answer $a=1 \ldots \ldots \ldots . \quad b=\ldots \ldots \ldots \ldots$ [2]

5 Two numbers p and q, written as the products of their prime factors, are $p=2^{2} \times 3^{5} \times 5^{6}$ and $q=2^{2} \times 3^{3}$.
(a) Find the HCF of p and q.
(b) Find the smallest positive integer k such that $(p \times q \times k)$ is a perfect cube.
(a) $\mathrm{HCF}=2^{2} \times 3^{3}=108$
(b) $(p \times q \times k)=2^{4} \times 3^{5} \times 5^{6} \times k$

$$
\begin{aligned}
k & =2^{2} \times 3 \\
& =12
\end{aligned}
$$

> Answer (a)
(b) $k=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$,

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 1916 London time. The flight arrived at Singapore on Tuesday at 1551 Singapore time. Calculate how long the flight took,
giving your answer in hours and minutes.

Departure time from London (Singapore time)
$=0216$ Tuesday M1

Arrival time at Singapore (Singapore time)
$=1551$ Tuesday

Duration of Journey
$=13 \mathrm{~h} 35 \mathrm{~min}$

h	\min
15	51
-02	16
13	35

A1

7 The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres, of the micro-organism, giving your answer in standard form.

$$
\begin{aligned}
\text { Radius } & =\frac{1}{2} \times 9.04 \times 10^{-6} \mathrm{~m} \\
& =4.52 \times 10^{-6} \times 10^{3} \mathrm{~mm} \\
& =4.52 \times 10^{-3} \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Surface area } & =4 \pi\left(4.52 \times 10^{-3}\right)^{2} \\
& =2.57 \times 10^{-4} \mathrm{~mm}^{2}
\end{aligned}
$$

Answer

$$
2.57 \times 10^{-4}
$$

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016 .

No. of computer notebooks sold

Explain why the graph is misleading.
The scale of the vertical axis is not consistent.
Answer
This distorts the graph, making the sales from May to June (16-4 = 12 units)
seemed to be less than the sales from March to April ($8-0=8$ units).
\qquad

9 Two of the interior angles of a hexagon are $2 x^{\circ}$ and $(5 x-200)^{\circ}$. The remaining interior angles are 90° each. By forming an equation in x, find the value of x.

$$
\begin{aligned}
2 x+(5 x-200)+4(90) & =(6-2) \times 180 \\
7 x+160 & =720 \\
7 x & =560 \\
x & =80
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } x=\ldots 80 \tag{2}
\end{equation*}
$$

10 In the diagram, the points B, C, D and E lie on a circle with centre $O . P Q$ is a tangent to the circle at $D . A B C$ and $A E O D$ are straight lines. $\angle O C B=54^{\circ}$ and $\angle O A B=30^{\circ}$.

Find, giving reasons for each answer,
(a) $\angle A D C$,
(b) $\angle C D Q$,
(c) $\angle A C E$,
(d) $\angle C B E$.
(a) $\left.\begin{array}{rl}\angle C O D & =54^{\circ}+30^{\circ}(\operatorname{Ext} \angle \text { of } \Delta) \\ & =84^{\circ}\end{array}\right\} \mathrm{M} 1$

$$
\left.\begin{array}{rl}
\angle A D C & =\frac{180^{\circ}-84^{\circ}}{2}(\text { Base } \angle \mathrm{s} \text { of isos. } \Delta) \\
& =48^{\circ}
\end{array}\right\} \mathbf{A 1}
$$

(b) $\left.\begin{array}{rl}\angle C D Q & =90^{\circ}-48^{\circ}(\tan \perp \mathrm{rad}) \\ & =42^{\circ}\end{array}\right\} \mathrm{A} 1$
(c) $\angle D C E=90^{\circ}$ (Rt. \angle in semi-circle) $\mathbf{M 1}$ or $\angle C O E=48^{\circ} \times 2$ (\angle at centre $=2 \angle$ at circumference $)$

$$
\left.\begin{array}{rl}
\angle A D C=180^{\circ}-90^{\circ}-48^{\circ}-30^{\circ}(\angle \text { sum of } \Delta) \\
=12^{\circ}
\end{array}\right\} \mathbf{A 1} \quad=96^{\circ} \quad\left\{\begin{aligned}
\angle A C E & =\frac{180^{\circ}-96^{\circ}}{2} \\
& =42^{\circ} \\
\angle A D C & =54^{\circ}-42^{\circ} \\
& =12^{\circ}
\end{aligned} \quad \text { Base } \angle \text { s of isos. } \Delta\right)
$$

(d) $\angle C B E=180^{\circ}-48^{\circ}(\angle \mathrm{s}$ in opp segments are supp $\left.)\right\}$

$$
\left.\begin{array}{l}
=180^{\circ}-48^{\circ}(\angle \mathrm{s} \text { in opp segments are supp }) \\
=132^{\circ}
\end{array}\right\} \begin{aligned}
& \text { Answer } \\
& \text { (a) } \ldots \ldots \ldots \ldots . \ldots \ldots \ldots \tag{1}
\end{aligned}
$$

(b).
42
${ }^{\circ}$
(c). \qquad
(d). \qquad
(d) 132 - [1]
$11 A B C D$ is a quadrilateral. $A B C$ and $C D E$ are equilateral triangles. Using a pair of congruent triangles, show that $A D=B E$. State your reasons clearly.

$\begin{aligned} & \text { Answer In triangles } A C D \text { and } B C E, \ldots \ldots \ldots \ldots \\ & C D \text { and } C E \quad(\text { sides of equil. } \triangle C D E) \end{aligned}$
$A B$ and $B C$ (sides of equil. $\triangle A B C$)	
$\angle A C D=60^{\circ}-\angle A C E \quad(\angle \text { of equil. } \triangle C D E)$	(.....all criteria must be correct)
$\angle B C E=60^{\circ}-\angle A C E \quad(\angle$ of equil. $\triangle A B C$)	
$\therefore \angle A C D=\angle B C E$	
$\therefore \triangle A C D=\triangle B C E \quad$ (SAS) (criteria must	y with test)
Hence, $A D=B E$	

\qquad

12 Janet has $\$ 50000$ to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months.
Calculate the amount of interest she will get at the end of 3 years.

$$
\begin{aligned}
\text { Amount } & =50000\left(1+\frac{0.02}{4}\right)^{12} \\
& =\$ 53083.8905 \\
\text { Interest } & =\$ 53083.8905-\$ 50000 \\
& =\$ 3083.89 \text { (to } 2 \mathrm{dp})
\end{aligned}
$$

Page 8 of 18

13 (a) Given that $\left(\frac{1}{4}\right)^{p} \times 8=1$, find the value of p.

$$
\begin{aligned}
& \left(2^{-2}\right)^{p} \times 2^{3}=2^{0} \\
& 2^{-2 p+3}=2^{0} \\
& -2 p+3=0 \\
& p=1 \frac{1}{2}
\end{aligned}
$$

(b) Simplify $\left(\frac{2^{y+1} \sqrt{2}}{2^{y}}\right)^{-2}$.

$$
\begin{aligned}
& \left(\frac{2^{y+1} \sqrt{2}}{2^{y}}\right)^{-2} \\
& =\left(2^{y+1+\frac{1}{2}-y}\right)^{-2} \\
& =\left(2^{\frac{3}{2}}\right)^{-2} \\
& =2^{-3} \\
& =\frac{1}{8}
\end{aligned}
$$

14 The equations of the three graphs shown below are in the form $y=n+x^{n-1}$. State the value of n for each of the following graph.
(a)

(b)

(c)

Answer (a) $n=\ldots \ldots \ldots \ldots \ldots .$.
(b) $n=\ldots \ldots \ldots \ldots \ldots \ldots$ [1]
(c) $n=\ldots \ldots \ldots \ldots \ldots \ldots$ [1]

15 In the answer space, sketch the graph of $y=5-(x+1)^{2}$, indicate clearly the turning point and the intercepts on the x and y-axes (if any).

Answer

Page 10 of 18

16 (a) $\varepsilon=\{x: x$ is an integer and $1 \leq x<24\}=\{\mathbf{1}, 2,3, \ldots 23\}$
$A=\{x: x$ is a perfect square $\}=\{1,4,9,16\}$
$B=\{x: x$ is a factor of the number 24$\}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, 4, \mathbf{6}, 8,12\}$
$C=\{x: x+1$ is divisible by 6$\}=\{5,11,17,23\}$
(i) List the elements in $A \cap C$.
(ii) Find $n\left(B^{\prime} \cup C\right)$.
(a) (ii) $B^{\prime}=\{5,7,9,10,11,13,14,15,16, \ldots 23\}$

$$
\begin{aligned}
n\left(B^{\prime} \cup C\right) & =n\left(B^{\prime}\right) \\
& =n(\varepsilon)-n(B) \\
& =23-7
\end{aligned}
$$

(b) State the set notation of the shaded region in following Venn Diagram.

$$
\begin{gathered}
L^{\prime} \cup M \quad \text { B1 } \\
\text { Answer (b).. }
\end{gathered}
$$

17 Given that point $A(4,2)$ and $\overrightarrow{A C}=\binom{-7}{3}$.
(a) Find $|\overrightarrow{C A}|$.

$$
\begin{aligned}
\overrightarrow{C A} & =\binom{7}{-3} \\
|\overrightarrow{C A}| & =\sqrt{7^{2}+(-3)^{2}} \\
& =7.62 \text { (to } 3 \mathrm{sf})
\end{aligned}
$$

Answer (a) B1
(b) The point P lies on $C A$ such that $\overrightarrow{P A}=k \overrightarrow{C A}$.
(i) Show that $\overrightarrow{O P}=\binom{4-7 k}{2+3 k}$.

Answer (b)(i)

$$
\begin{align*}
& \overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A} \\
& \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\
& =\binom{4}{2}+k \overrightarrow{A C} \\
& =\binom{4}{2}+k\binom{-7}{3} \tag{A1}\\
& =\binom{4-7 k}{2+3 k} \quad \text { (shown) }
\end{align*}
$$

(ii) Given that point P lies on the y-axis, find the coordinates of P.

$$
\begin{gathered}
4-7 k=0 \\
k=\frac{4}{7} \\
2+3\left(\frac{4}{7}\right)=3 \frac{5}{7}
\end{gathered}
$$

Page 12 of 18

18 Consider the number patterns in the table below. The first three terms of each column have been given.

Row, n	S	T	U
1	4	16	16
2	8	32	30
3	12	48	44
7	p	q	r
n			

(a) Find values of p, q and r.
(b) Write down the equation connecting S and T.
(c) Write down the equation connecting U and n.
(d) Betty said that 256 can be found in column U.

Write whether you agree or disagree with Betty. Give reason(s) for your answer.
(d) $14 n+2=256$

$$
14 n=254
$$

$$
n=\frac{254}{14}
$$

$$
=18 \frac{1}{7}
$$

B1

(All 3 must be correct)
Answer (a) $p=\ldots \ldots \ldots, q=\ldots \ldots \ldots, r=\ldots \ldots \ldots$ [1]

(d) I

\qquad

Page 13 of 18

19 The frequency table shows the number of countries that a group of students had visited.

Number of countries	0	1	2	3	4
Number of students	2	8	6	x	4

(a) Given that the mode is 1 , state the largest possible value of x.
(b) Given that the median number of countries visited is 2, find the largest possible value of x.
(c) Given that the mean number of countries is more than 2 , find the smallest possible value of x.
(b) $2+8+(6-1)=x+4$

$$
\begin{aligned}
15 & =x+4 \\
x & =11
\end{aligned}
$$

(c) Mean $=\frac{0(2)+1(8)+2(6)+3 x+4(4)}{2+8+6+x+4}>2$

$$
\begin{aligned}
\frac{3 x+36}{x+20} & >2 \\
3 x+36 & >2(x+20) \\
3 x+36 & >2 x+40 \\
x & >4
\end{aligned}
$$

smallest $x=5$
Answer
(a) $x=$
7
B1
(b) $x=$
11 B1 \qquad
(c) $x=\ldots \ldots \ldots \ldots \ldots \ldots$

Page 14 of 18

20 (a) The air resistance, R, is directly proportional to the square of the speed, V, of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.
(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?
(a) $R=k V^{2}, \quad k$ constant

$$
\begin{aligned}
24 & =k V^{2} \Rightarrow k=\frac{24}{V^{2}} \quad \text { M1 } \\
R_{\text {new }} & =k(1.5 V)^{2} \\
& =\frac{24}{V^{2}} \times 2.25 V^{2} \\
& =54 \text { newtons }
\end{aligned}
$$

(b) No. of men required to build 3 huts in 72 h

$$
\begin{aligned}
& =\frac{3}{2} \times \frac{60}{72} \times 48 \\
& =60
\end{aligned}
$$

\therefore Extra no. of men needed $=60-48$

$$
=12
$$

| OR | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |

\therefore Extra no. of men needed $=60-48$

$$
=12
$$

Answer (a)............................$~ n e w t o n s ~[2] ~$
(b)....................................$~ m e n ~[2] ~$

Page 15 of 18

21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.
(b) Calculate
(i) the total distance travelled by the train in the first 3 minutes,
(ii) the average speed of the train, in km / h, in the first 3 minutes.
(a) Acceleration $=\frac{40-0}{0-90}=-\frac{4}{9} \mathrm{~m} / \mathrm{s}^{2} \quad \therefore$ Deceleration $=\frac{4}{9} \mathrm{~m} / \mathrm{s}^{2}$
(b) (i) Total distance $=\frac{1}{2}(90)(40)+\frac{1}{2}(30)(80)$

$$
\begin{aligned}
& =1800+1200 \\
& =3000 \mathrm{~m}
\end{aligned}
$$

(ii) Average speed $=\frac{3000 \mathrm{~m}}{3 \mathrm{~min}} \quad$ M1

$$
\begin{aligned}
& =\frac{3 \mathrm{~km}}{\left(\frac{3}{60} \mathrm{~h}\right)} \\
& =60 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c)

> (ii) $. \ldots \ldots .$. km/h [2]

Page 16 of 18

$22 \quad P$ and R are points on the x-axis. $T Q R$ is a straight line parallel to the y-axis.
Area of $\triangle P Q R=30$ units 2.

(a) Find the coordinates of
(i) $\operatorname{point} R$,
(ii) point P.
(b) Find the length of $P Q$.
(c) Find $\cos \angle P Q T$, giving your answer as a fraction.
(d) Given that $P R=T R$, find the equation of $P T$.
(a)(i) $R(4,0)$
(b) $\quad P(-8,0)$
$Q(4,5)$
(ii) $\frac{1}{2} \times P R \times 5=30$

M1

$$
P Q=\sqrt{[4-(-8)]^{2}+(5-0)^{2}}
$$

$P R=\frac{2 \times 30}{5}=12$ units
$=\sqrt{144+25}$
$=13$ units
$\therefore P(-8,0)$
(c) $\cos \angle P Q T=-\cos \angle P Q R$

$$
=-\frac{5}{13}
$$

(d) $\quad P(-8,0) \quad T(4,12)$

$$
m=\frac{12-0}{4-(-8)}=1
$$

Equation of $P T$ is
Answer (a)(i) $R(\ldots, \ldots, \ldots, \ldots)$ [1] B1

$$
\begin{aligned}
y-0 & =1[x-(-8)] \\
y & =x+8
\end{aligned}
$$

(ii) $P(\ldots-8$.$) [2] A1$
(b) $\ldots \ldots \ldots \ldots \ldots \ldots$ units [1] B1
(c) $\ldots \ldots \ldots \ldots$
(d) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

Page 17 of 18

23 Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.
(a) Complete the following probability tree diagram.

Answer (a)

(b) Find
(i) the probability that one disc is odd and the other is even,
(ii) the probability that both numbers drawn are smaller than 4 .
(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.
(b) (i) $\mathrm{P}($ odd, even $)+\mathrm{P}($ even, odd $)=\frac{3}{5} \times \frac{1}{2}+\frac{2}{5} \times \frac{3}{4} \quad$ or $=2 \times \frac{3}{5} \times \frac{1}{2}$

$$
=\frac{3}{5}
$$

(ii) $\mathrm{P}($ both nos. $<4)=\frac{2}{5} \times \frac{1}{4}$

$$
=\frac{1}{10}
$$

(c)

B1 | + | 1 | 3 | 4 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | 4 | 5 | 7 | 8 |
| 3 | 4 | | 7 | 9 | 10 |
| 4 | 5 | 7 | | 10 | 11 |
| 6 | 7 | 9 | 10 | | 13 |
| 7 | 8 | 10 | 11 | 13 | |

$$
\begin{aligned}
\mathrm{P}(\text { sum }=\text { prime no. }) & =\frac{10}{20} \\
& =\frac{1}{2}
\end{aligned}
$$

Answer (b)(i) $\frac{3}{5} \ldots \ldots \ldots \ldots \ldots$
(ii) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
(c) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

Page 18 of 18

24 The diagram below shows a horizontal field $A B C$.
A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m , show all the constructions clearly.
(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
(i) By construction, mark and label clearly the position of the lamp post L. [1]
(ii) Measure and write down the bearing of the lamp post L from point C.
(b) A gate, G, is located along the path of $B C$, equidistant from B and C. By construction, mark and label clearly the position of the gate G.
(c) A circular flower bed is built such that it touches each side of the field at one point.
(i) By constructing two angle bisectors, draw the circular flower bed and label its centre O.
(ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(i)
(b)
(c)(i)

Answer (a)(ii) - [1]
(c)(ii) m [1]

End of Paper 1

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2016 Secondary 4

Tuesday

MATHEMATICS
Paper 2
4048/02
16 August 2016
2 h 30 mins

INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{gathered}
\text { Mean }=\frac{\sum f x}{\sum f} \\
\text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{gathered}
$$

Answer all the questions.
1 (a) Given that $8 \quad x \quad 4$ and $3 \quad y \quad 2$, find
(i) the least value of $x y$,
(ii) the greatest value of $x^{2} y^{2}$.
(b) Express as a single fraction in its simplest form
(i) $\frac{x y}{x y}+\frac{y z}{y z}$,
(ii) $\frac{2 x^{3}}{x+y+z} \frac{(x+y)^{2} z^{2}}{6 x}$.
(c) It is given that $2 p q=\sqrt{\frac{4 q^{2}+p^{2}}{2}}$.

Express q in terms of p.

2 In the diagram, $O A B C D$ is a semicircle with centre at O.
$A D / / B C$, angle $C D A=$ angle $B A D=\frac{3}{10} \quad$ radians and $O A=20 \mathrm{~mm}$.

(a) Show that angle $B O A=\frac{2}{5}$ rad.
(b) Find the length of arc $A B$, leaving your answer in terms of
(c) Find angle $B O C$.
(d) Calculate the area of the shaded region.
(e) Find angle BOA in degrees.
(f) The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, $A D=60 \mathrm{~mm}$. Find the area of the enlarged logo.

Page $\mathbf{4}$ of $\mathbf{1 3}$

3 The cash price of a car is $\$ 74000$. Mr Smith is introduced to two types of payment schemes.

	Scheme \boldsymbol{A}	Scheme \boldsymbol{B}
Down payment	40%	60%
Simple interest rate (per annum)	3.28%	$R \%$
Loan period (years)	5	5

(a) Find the total amount that Mr Smith has to pay for the car, if he chose Scheme A.
(b) If Mr Smith chose Scheme \boldsymbol{B}, the monthly instalment he has to pay over 5 years is $\$ 572.76$. Calculate the value of R.
(c) One day the exchange rate between US dollar (US\$) and Singapore dollars (S\$) was US\$1 = S 1.27 .

On the same day, the exchange rate between British pound (£) and US dollar was $£ 1=$ US $\$ 1.33$.

Calculate the cash price of the car in pounds, correct to the nearest pound.

4 In the diagram, $W X Y Z$ is a trapezium and $W X$ is parallel to $Z Y$. The point P on $X Z$ is such that $Z P: P X=1: 3$ and $W X: Z Y=3: 4$. It is given that $\overrightarrow{W X}=9 \mathbf{a}$ and $\overrightarrow{W Z}=\mathbf{b}$.

(a) Express, as simply as possible, in terms of \mathbf{a} and \mathbf{b},
(i) $\overrightarrow{Z X}$,
(ii) $\overrightarrow{W P}$,
(iii) $\quad \overrightarrow{Y W}$.
(b) Show that the line $X Y$ is parallel to the line $W P$.
(c) Find, as a fraction in its simplest form,
(i) $\frac{\text { area of } W Z P}{\text { area of } W X P}$,
(ii) $\frac{\text { area of } W Z P}{\text { area of } Y X Z}$.

Page 6 of 13

5 Answer the whole of this question on a sheet of graph paper.

A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

Week (x)	0	1	2	3	4	5	6	7
Total number of members (y)	5	15	35	p	90	145	230	400

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for $0 \quad x 7$. Using a scale of 2 cm to 50 members, draw a vertical y-axis for 0 y 400 . On your axes, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to estimate
(i) the value of p,
(ii) the week that the total number of members reaches 300 .
(c) (i) By drawing a tangent, find the gradient of the curve at $x=4$.
(ii) What does this gradient represent?
(d) The group of friends wish to estimate what the total number of members will be in one year's time. They propose to extend the graph line up to week, $x=52$.

Explain why is it not possible to estimate the total number of members in this way.

6 The distance between two houses, P and Q, is 200 km . Joe travelled by car from P to Q at an average speed of $x \mathrm{~km} / \mathrm{h}$.
(a) Write down an expression, in terms of x, for the number of hours he took to travel from P to Q.
(b) He returned from Q to P at an average speed of which was $5 \mathrm{~km} / \mathrm{h}$ more than the first journey.
Write down an expression, in terms of x, for the number of hours he took to travel from Q to P.
(c) The difference between the two times was 24 minutes.

Write down an equation in x to represent this information, and show that it reduces to

$$
\begin{equation*}
x^{2}+5 x \quad 2500=0 \tag{3}
\end{equation*}
$$

(d) Solve the equation $x^{2}+5 x \quad 2500=0$, giving each answer correct to three decimal places.
(e) Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second.

7 (a) Jim exercises on Monday and Wednesday.

Page 8 of 13

On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes.

On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes.
This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{ccc}J & C & S \\ 10 & 20 & 30 \\ 20 & 10 & 15\end{array}\right)$ Wed.
(i) Evaluate the matrix $\mathbf{P}=60 \mathbf{Q}$.
(ii) Jim's exercising speeds are the same for Monday and Wednesday.

His jogging speed is $4 \mathrm{~m} / \mathrm{s}$, cycling speed is $5.5 \mathrm{~m} / \mathrm{s}$ and swimming speed is $1.3 \mathrm{~m} / \mathrm{s}$.

Represent his exercising speeds in a $3 \quad 1$ column matrix \mathbf{S}.
(iii) Evaluate the matrix $\mathbf{R}=\mathbf{P S}$.
(iv) State what the elements of \mathbf{R} represent.
(b) The cost of a shirt is $\$ C$. If the shirt is sold at $\$ 60$, a shop makes a profit of $x \%$ on the cost price.
(i) Write down an equation in C and x to represent this information and show that it simplifies to

$$
6000-100 C=C x
$$

If the shirt is sold at $\$ 24$, the shop makes a loss of $2 x \%$ on the cost price.
(ii) Write down an equation in C and x to represent this information.
(iii) Solve these two equations to find the value of C and the value of x.
(iv) Solve x.
(iv) Calculate the selling price of the shirt if the profit is 45% of the cost price.

Page 9 of $\mathbf{1 3}$

8 The diagram shows a triangular park $B C D$ and the route that Ali has cycled. Ali cycles from his home, A, on a bearing of 220° towards point B of the park. The distance from A to B is 4.8 km . From B, he cycles to C, which is 6 km away, and he continues to D.
C is due north of B. Reflex angle $A B D=210^{\circ}$ and angle $B D C=35^{\circ}$.

(a) Show that $B C D$ is an isosceles triangle.
(b) Calculate the
(i) distance of $A C$,
(ii) area of the park $B C D$,
(iii) angle $B A C$,
(iv) shortest distance from B to $C D$.
(c) A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building.

9120 visitors took a survey on the number of hours they spent at the Gardens by the Bay in February 2016.
The cumulative frequency curve below shows the distribution of the time spent.

(a) Use the curve to estimate
(i) the median time,
(ii) the interquartile range of the times,
(iii) the percentage of visitors who spent at least 4 hours at the Gardens by the Bay.
(b) It was discovered that the number of hours has been recorded incorrectly. The correct number of hours was all 1 hour less than those recorded. The box-and-whisker plot shows the correct distribution of hours.

Find the value of
(i) c,
(ii) $e-a$.
(c) The table below shows the results of the survey conducted on another 120 visitors on the number of hours they spent at the Gardens by the Bay in June 2016.
$\left.\begin{array}{|c|c|}\hline \text { Number of hours spent }(\boldsymbol{x} \mathbf{~ h)} & \text { Number of visitors } \\ \hline 2<x \quad 4 & 33 \\ \hline 4<x & 6 \\ 6<x & 8\end{array}\right] 46$

Calculate an estimate of the
(i) mean time that the visitors spent in June,
(ii) standard deviation.
(d) The programme management team at the Gardens by the Bay commented that the visitors generally spent longer hours in February 2016 than in June 2016. Justify if the comment is valid.

10 A solid cone is cut into 2 parts, X and Y, by a plane parallel to the base.
The length of $A B=$ the length of $B C$.

Diagram I

(a) Given that the volume of the solid cone is $\frac{64}{3} \mathrm{~m}^{3}$, find the volume, in terms of , of the frustum, Y.
(b) In Diagram II, a rocket can be modelled from a cylinder of height, $h, 94.2 \mathrm{~m}$ with a cone, X, on top and a frustum, Y, at the bottom. The cone, X, has a diameter, d_{2}, of 4 m and the frustum, Y, has a base diameter, d_{l}, of 8 m . The parts X and Y are taken from Diagram I above.

Diagram II
(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter.
(ii) Calculate the volume, in cubic metres, of the rocket.
(iii) The rocket is designed to launch to the moon.

Useful information

- Distance of moon from earth: 384400 km
- Speed of rocket: $800 \mathrm{~km} /$ minute
- $1 \mathrm{~m}^{3}=264$ gallon
- The rocket is filled with liquid fuel to a maximum of 95% of its volume.
- Rate of fuel consumption: 20000 gallons /minute
- Capacity of each external fuel tank: $3.2 \quad 10^{6}$ gallons

How many external fuel tanks will the rocket require to sustain its journey to the moon?

Justify your answer with calculations.

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2016 Secondary 4

Tuesday

MATHEMATICS
Paper 2
4048/02
16 August 2016
2 h 30 mins

INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{gathered}
\text { Mean }=\frac{\sum f x}{\sum f} \\
\text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{gathered}
$$

Answer all the questions.

1	(a)	Given that $8 \quad x \quad 4$ and $3 \quad y \quad 2$, find		
		(i)	the least value of $x y$, -16	[1]
		(ii)	the greatest value of $x^{2} y^{2}$. 64	[1]
	(b)	Express as a single fraction in its simplest form		
		(i)	$\frac{x-z}{x z}$	[2]
		(ii)	$\frac{x^{2}(x+y-z)}{3}$	[2]
	(c)	It is given that $2 p q=\sqrt{\frac{4 q^{2}+p^{2}}{2}}$. Express q in terms of p. $q= \pm \sqrt{\frac{p^{2}}{4\left(2 p^{2}-1\right)}} \quad$ or $\quad q= \pm \frac{p}{2 \sqrt{2 p^{2}-1}}$ or $q= \pm \sqrt{\frac{p^{2}}{8 p^{2}-4}}$		[3]
2	In the diagram, $O A B C D$ is a semicircle with centre at O. $A D / / B C$, angle $C D A=$ angle $B A D=\frac{3}{10} \quad$ radians and $O A=20 \mathrm{~mm}$.			
	(a)		that angle $B O A=\frac{2}{5} \quad \mathrm{rad}$. is an isosceles triangle	[1]

	(b)	Find the length of $\operatorname{arc} A B$, leaving your answer in terms of $8 \pi \mathrm{~mm}$	[1]
	(c)	Find angle $B O C$. $\frac{\pi}{5} \mathrm{rad}$	[1]
	(d)	Calculate the area of the shaded region. $69.2 \mathrm{~mm}^{2}$	[3]
	(e)	Find angle $B O A$ in degrees. 72°	[1]
	(f)	The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, $A D=60 \mathrm{~mm}$. Find the area of the enlarged logo. $1260 \mathrm{~mm}^{2}$	[2]
3	The sche	cash price of a car is $\$ 74000$. Mr Smith is introduced to two types of payment mes.	
	(a)	Find the total amount that Mr Smith has to pay for the car, if he chose Scheme \boldsymbol{A}. $\$ 81281.60$	[2]
	(b)	If Mr Smith chose Scheme \boldsymbol{B}, the monthly instalment he has to pay over 5 years is $\$ 572.76$. Calculate the value of R. $R=3.22$	[3]
	(c)	One day the exchange rate between US dollar (US\$) and Singapore dollars (S\$) was US\$1 = S\$1.27 . On the same day, the exchange rate between British pound (£) and US dollar was $£ 1=$ US $\$ 1.33$.	

Page 5 of 15

	Calculate the cash price of the car in pounds, correct to the nearest pound. $£ 43810$	$[2]$

5 Answer the whole of this question on a sheet of graph paper.

A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

Week (x)	0	1	2	3	4	5	6	7
Total number of members (y)	5	15	35	p	90	145	230	400

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for $0 x 7$. Using a scale of 2 cm to 50 members, draw a vertical y-axis for 0 y 400 . On your axes, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to estimate
(i) the value of p,
(ii) the week that the total number of members reaches 300 .
(c) (i) By drawing a tangent, find the gradient of the curve at $x=4$.
(ii) What does this gradient represent?
(d) The group of friends wish to estimate what the total number of members will be in one year's time. They propose to extend the graph line up to week, $x=52$.

Explain why is it not possible to estimate the total number of members in this way.

6	The distance between two houses, P and Q, is 200 km . Joe travelled by car from P to Q at an average speed of $x \mathrm{~km} / \mathrm{h}$.		
	(a)	Write down an expression, in terms of x, for the number of hours he took to travel from P to Q. $\text { time }=\frac{200}{x} h$	[1]
	(b)	He returned from Q to P at an average speed of which was $5 \mathrm{~km} / \mathrm{h}$ more than the first journey. Write down an expression, in terms of x, for the number of hours he took to travel from Q to P. $\text { time }=\frac{200}{x+5} h$	[1]
	(d)	Solve the equation $x^{2}+5 x \quad 2500=0$, giving each answer correct to three decimal places. $47.562 \text { or }-52.562$	[3]
	(e)	Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second. 4 h 12 min 18 sec (nearest sec)	[2]

7	(a)	Jim exercises on Monday and Wednesday. On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes. On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes. This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{ccc}10 & 20 & 30 \\ 20 & 10 & 15\end{array}\right) \begin{aligned} & \text { Mon } \\ & \text { Wed }\end{aligned}$.		
		(i)	Evaluate the matrix $\mathbf{P}=60 \mathbf{Q}$. $\left(\begin{array}{ccc} 600 & 1200 & 1800 \\ 1200 & 600 & 900 \end{array}\right)$	[1]
		(ii)	Jim's exercising speeds are the same for Monday and Wednesday.	

(b)	The cost of a shirt is $\$ C$. If the shirt is sold at $\$ 60$, a shop makes a profit of $x \%$ on the cost price.		
	(i)	Write down an equation in C and x to represent this information and show that it simplifies to $6000-100 C=C x .$	[1]
	If the shirt is sold at $\$ 24$, the shop makes a loss of $2 x \%$ on the cost price.		
	(ii)	Write down an equation in C and x to represent this information. $100 C-2400=2 C x$	[1]
	(iii)	Solve these two equations to find the value of C and the value of x. $\begin{aligned} & C=48 \\ & x=25 \end{aligned}$	[3]
	(iv)	Calculate the $1+8$ lling price of the shirt if the profit is 45% of the cost price. $\$ 69.60$	[2]

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| | The comment is invalid as median is in February (5.9 hours) is within the median
 class in June $\left(\begin{array}{ll}4<x & 6\end{array}\right)$. | |
| :--- | :--- | :--- | :--- |

10	A so The	id cone is cut into 2 parts, X and Y, by a plane parallel to the base. ength of $A B=$ the length of $B C$. Diagram I	
	(a)	Given that the volume of the solid cone is $\frac{64}{3} \quad \mathrm{~m}^{3}$, find the volume, in terms of , of the frustum, Y. $\frac{56}{3} \pi \mathrm{~m}^{3}$	[3]
	(b)	In Diagram II, a rocket can be modelled from a cylinder of height, $h, 94.2 \mathrm{~m}$ with a cone, X, on top and a frustum, Y, at the bottom. The cone, X, has a diameter, d_{2}, of 4 m and the frustum, Y, has a base diameter, d_{l}, of 8 m . The parts X and Y are taken from Diagram I above. Diagram II	
		(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter. $1305 \mathrm{~m}^{2}$ (to nearest square metre) M2	[3]

O－Level Centre／Index Number	Class	Name
／		

MARIS STELLA HIGH SCHOOL PRELIMINARY EXAMINATION TWO SECONDARY FOUR

MATHEMATICS

4048／1
Paper 1

15 August 2016 2 hours

Candidates answer on the Question Paper．

READ THESE INSTRUCTIONS FIRST

Write your class，index number and name on all the work you hand in．
Write in dark blue or black pen．
You may use a pencil for any diagrams or graphs．
Do not use staples，paper clips，glue or correction fluid．
Answer all the questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientifc calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give your answers in degrees to one decimal place． For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．
The total number of marks for this paper is 80 ．

For Examiner＇s Use	
Subtotal	
Presentation	
Accuracy	
Units	
Deduction	

This document consists of 18 printed pages．

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=p\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 The Basal Metabolic Rate (BMR) is the number of calories one would burn with NO activity. It is given by the following formula:

BMR for males $=66+13.7 \times m+5.0 \times h-6.8 \times a$,
where m is mass in kg, h is height in cm and a is age in years.
Given that $m=65.5, h=170$ and $a=29$,
(a) Calculate the BMR and write down the first five digits on your calculator display.

Answer
Calories [1]
(b) Write your answer to part (a) correct to 3 significant figures.

AnswerCalories [1]

2 (a) Write down the next two terms in the sequence

$$
21,18 \frac{2}{3}, 16 \frac{1}{3}, 14,11 \frac{2}{3}, \ldots
$$

Answer

(b) Write down an expression, in terms of n, for the nth term of the sequence

$$
8,3,-2,-7,-12, \ldots
$$

Answer

3 (a) Given that $243 \div 9^{-x}=3^{8}$, find the value of x.

> Answer
(b) A StarHub Smart TV Digital Video Storage Device has a capacity of 1 terabyte. If a drama television series episode takes up 2.94 gigabytes of storage space, how many episodes can be recorded on the storage device? Give your answer in standard form.

4 In the diagram, $A B=A C, \angle A B C=51^{\circ}, A B$ is parallel to $D C$ and $A C$ is parallel to $E D$.

(a) Find x.

$$
\text { Answer } x=
$$

(b) Find y.

Answer $y=$

5 A True Fitness Branch Manager reported that there has been a marked improvement in the monthly sales of gym membership from May to July by presenting the following graph.

Explain why the graph is misleading and how the graph can be rectified.
Answer \qquad
\qquad
\qquad
\qquad

6 Simplify $\left(p^{2}-4\right)^{2}-\left(p^{2}+4\right)^{2}$.

Answer

7 (a) Identify the set shaded in the Venn diagram below.

Answer
(b) Shade $\left(C \cap D^{\prime}\right)^{\prime}$ in the Venn diagram below.

(c) If $P \subset Q$ and $Q \cap R=\{ \}$, illustrate this information on the Venn diagram below and shade $P \cup Q$.

8 By Coulomb's law, the electric force, $F \mathrm{~N}$, between two balloons is inversely proportional to the square of the distance, $d \mathrm{~m}$, between them.
(a) If $F=0.626$, when $d=2$, find an equation for F in terms of d.

$$
\text { Answer } F=
$$

(b) Calculate the distance between the balloons when the electric force is 1 N .

Answer
m [1]

9 The Soup Spoon Restaurant sells soup in geometrically similar bowls of different sizes. The regular sized bowl has a height of 8 cm and capacity 250 ml . The large sized bowl has a height of 12 cm and a base diameter of 21 cm .
(a) Calculate the base diameter of the regular sized bowl.

> Answer
.cm [1]
(b) Calculate the capacity of the large sized bowl.

Answer

10 (a) Factorise completely $2.25 x^{2}-0.64 y^{2}$.

> Answer
(b) Factorise completely $9 x^{2}-4 x y-18 x y z+8 y^{2} z$.

Answer

11 The angles, in degrees of a quadrilateral $A B C D$ are represented by these expressions: Angle $A=3 y+40$, angle $B=5 y-10$, angle $C=6 y-20$, and angle $D=2 y+30$.
(a) Calculate the value of y.

Answer $y=$.
(b) What is the name of the quadrilateral?

Answer

12 Calculate the sum of the angles $a, b, c, d, e, f, g, h, i, j, k, l$ and m in this diagram.

$13 W, X, Y, \mathrm{Z}$ are points on the circumference of a circle with centre O. Given that $\angle X Y Z=135^{\circ}$ and $\angle O X W=27^{\circ}$,

(a) Find $Z \hat{W} X$. Give a reason for your answer.

Answer $Z \hat{W} X=$ \qquad because \qquad
\qquad
(b) Find $Z \hat{W} O$.

Answer

14 Two fair dice are tossed. Calculate the probability that
(a) both numbers obtained are even,

> Answer
(b) the product of the two numbers obtained is a prime number,

> Answer
(c) the sum of the two numbers obtained is a prime number.

Answer

15 In the diagram, $A B=C D=12 \mathrm{~cm}, B C=C E=z \mathrm{~cm}$ and $A B$ is parallel to $E C$.

Name the triangle that is congruent to triangle $A B C$. Justify your answer.
Answer \qquad because
\qquad
\qquad
\qquad

16 (a) Sketch the graph of $y=-(2 x+1)(x-3)$.
Answer

(b) Write down the equation of the line of symmetry of the graph $y=-(2 x+1)(x-3)$.

17 In order to maintain a healthy lifestyle, 5 students in a certain neighbourhood cycle to the same school.
(a) Below are four graphs and accounts by 4 students. Match each of the graphs to the student's name that best fit each of the accounts.

Aloysius: I was on my way to school when a cat suddenly cut into my path! Luckily, I managed to brake on time. After I got over the shock, I realized I was going to be late. So, I sped up!

Benedict: My teacher warned me not to be late again, so this time round, I cycled faster and I was among the first few to reach school.

Charles: I just left home and discovered that I did not bring my wallet! So I went home again but I still managed to reach school on time.

Dominic: I cycled to school as usual and reached school before morning assembly.

Answer Graph I
Graph III
\qquad Graph II \qquad
Graph IV
(b) Write down what Edward might say based on the sketch of his travel graph below.

Answer \qquad
\qquad
\qquad
\qquad

18 The cumulative frequency curve and box plot show the distributions of marks scored by 320 students in a Mathematics examination and 300 students inr an Additional Mathematics examination respectively.

Marks of 300 students for an Additional Mathematics Examination in 2016

(a) Find the interquartile range for the Mathematics examination.

> Answer
(b) Here are two statements comparing the marks for the two examinations.

For each one, write whether you agree or disagree.
Give a reason for each answer, stating clearly which statistic you use to make your decision.
(i) On average, students performed better for the Additional Mathematics examination than the Mathematics examination.

Answer \qquad because \qquad
\qquad
\qquad
(ii) A smaller proportion of the students scored less than 35 marks at the Mathematics examination than at the Additional Mathematics examination.

Answer \qquad because
\qquad
\qquad

19 (a) Express $-x^{2}+7 x-5$ in the form $-(x-a)^{2}+b$.

> Answer
(b) Hence solve the equation $-x^{2}+7 x-5=0$, giving your answers correct to two decimal places.

20 In the diagram, $\angle Q P S=\angle Q R P=90^{\circ}, P Q=24 \mathrm{~cm}, Q S=25 \mathrm{~cm}, P S T$ and $Q R S$ are straight lines.

Calculate
(a) $P S$
\qquad
(b) $P R$

Answer
(c) $\cos \angle Q S T$

21 Challenger offers discounts to customers who pay $\$ 30$ for a 2-year ValueClub membership.

Item	Members' discount
11 " Apple MacBook Air	5% off
Seagate Backup Plus Slim Portable Drive 2TB	15% off
Valore Bluetooth Speaker	25% off

Dory wants to buy a MacBook Air which costs $\$ 1188$. The salesperson suggests that she joins as a member.
(a) How much less does she pay in total if she joins as a member and buys the MacBook Air?

Answer \$

After she joined as a member and bought the MacBook, the salesperson offers Dory a further 10% discount on the members' price for a portable drive and Bluetooth speaker in view of the Great Singapore Sale.
(b) Write down and simplify a formula for the total amount, T, that she needs to pay for a portable drive and Bluetooth speaker. Use d and s to represent the original price of a portable drive and a Bluetooth speaker respectively.

22 A pill box is in the shape of a regular heptagon with sides of length 3 cm and has a hole in the centre in the shape of a regular heptagon with sides of length 1 cm .

The height of the pill box is 2 cm . Calculate the volume of the pill box.

23 (a) Solve the equation $\frac{4(7 a-3)}{5}+\frac{5(2 a+7)}{3}=\frac{5(5 a-2)}{2}$.
(b) Given that 2 is a solution of the quadratic equation $6(x-5)^{2}+k=38$, where k is a constant, find the
(i) value of k,

Answer $k=$
(ii) other solution.

Answer $x=$

24 In the diagram, D is the point $(8,3)$ and the line passing through the points D and F intersects the x-axis at the point E. Point G is on the x-axis such that the line $D G$ is perpendicular to the x-axis. Given that the area of the triangle $D E G$ is 6 units 2, find

(a) the coordinates of E,
(b) the equation of line $F D$,
(c) the coordinates of F.

25 In 2008, the International Court of Justice (ICJ) awarded the sovereignty of the island, Pedra Branca (P) to Singapore. There are two maritime features near the island: Middle Rocks (M) and South Ledge (S). Middle Rocks is due west of Pedra Branca. The bearing of S from P is 200° with a distance of 1.0 Nautical Miles (nm) between them.
(a) (i) Construct a scaled drawing of the Triangle MPS using the scale 1 cm to represent 0.1 nm . Line $M P$ has been drawn for you.
(ii) Construct the perpendicular bisector of line $M P$.
(iii) Construct the angle bisector of $\angle S M P$.
(b) A ship in distress sends a SOS signal for help at a location within the Triangle MPS. The ship is known to be located in the triangle at a point that is nearer to $M S$ than $M P$ and equidistant from M and P. Mark a possible point with a cross and label the point as W.

O－Level Centre／Index Number	Class	Name
$/$		Solution

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊）	新加坡海星中学
Tolc	MARIS STELLA HIGH SCHOOL
	PRELIMINARY EXAMINATION TWO

MATHEMATICS

4048／1
Paper 1

Candidates answer on the Question Paper．

READ THESE INSTRUCTIONS FIRST

Write yo＇ir class，index number and name on all the work you hand in．
Write in dark blue or black pen．
You may use a pencil for any diagrams or graphs．
Do not use staples，paper clips，glue or correction fluid．
Answer all the questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientifc calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give your answers in degrees to one decimal place．
For π ，us 3 either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

At the er．d of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question． The total number of marks for this paper is 80 ．

For Examiner＇s Use	
Subtotal	
Presentation	
Accuracy	
Units	
Deduction	

This document consists of 18 printed pages．

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=p\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\text { Curved surface area of a cone }=\pi r l
$$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin c} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

1 The Basal Metabolic Rate (BMR) is the number of calories one would burn with NO activity. It is given by the following formula:

BMR for males $=66+13.7 \times m+5.0 \times h-6.8 \times a$,
where m is mass in kg, h is height in cm and a is age in years.
Given that $m=65.5, h=170$ and $a=29$,
(a) Calculate the BMR and write down the first five digits on your calculator display.

Answer 1616.1
Calories [1]
(b) Write your answer to part (a) correct to 3 significant figures.

Answer!6.20...........Calories [1]

2 (a) Write down the next two terms in the sequence

$$
21,18 \frac{2}{3}, 16 \frac{1}{3}, 14,11 \frac{2}{3}, \ldots
$$

Answer $9 \frac{1}{3}, 7$
(b) Write down an expression, in terms of n, for the nth term of the sequence

$$
8,3,-2,-7,-12, \ldots
$$

$$
\text { Answer } 13-5 n
$$

3 (a) Given that $243 \div 9^{-x}=3^{8}$, find the value of x.

$$
\begin{align*}
& 3^{5} \div 3^{-2 x}=3^{8} \\
& 3^{5+2 x}=3^{8} \\
& \therefore 5+2 x=8 \\
& x=\frac{3}{2}=1 \frac{1}{2} \tag{1}
\end{align*}
$$

Answer $.1 \frac{1}{2}$
(b) A StarHub Smart TV Digital Video Storage Device has a capacity of 1 terabytes. If a drama television series episode takes up 2.94 gigabytes of storage space, how many episodes can be recorded on the storage device?
Give your answer in standard form.
Numben of episodes $=1 \times 10^{12} \div 2.94 \times 10^{9}$

$$
\begin{align*}
& =340.14(5 \text { sig fig. }) \\
& =3.40 \times 10^{2}(3 \text { sig fig }) \\
& \text { Answer } 3.40 \times 10^{2} \tag{1}
\end{align*}
$$

4 In the diagram, $A B=A C, \angle A B C=51^{\circ}, A B$ is parallel to $D C$ and $A C$ is parallel to $E D$.

(a) Find x.

$$
\begin{align*}
& x^{\circ}=180^{\circ}-2 \times 51^{\circ}(\operatorname{sum} \text { of } \angle S \text { in } \Delta x) \\
&=78^{\circ} \\
& \therefore x=78 \quad \text { Answer } x=\ldots 7 .
\end{align*}
$$

(b) Find y.

$$
\begin{align*}
\angle D C A & =x^{\circ}=78^{\circ}(94+\angle 5, A B \| C D) \\
y^{\prime} & =180^{\circ}-78^{\circ}(\text { int } \angle 5, A C \| E D) \\
& =102^{\circ} \\
y & =102 \quad \text { Answer } y=102 \tag{1}
\end{align*}
$$

5 A True Fitness Branch Manager reported that there has been a marked improvement in the monthly sales of gym membership from May to July by presenting the following graph.

Explain why the graph is misleading and how the graph can be rectified.
Answer The graph is misleading as the vertical axis does not start at zero. From this graph it may show..... marked improvement in the sales but if the graph were to start from zero, the improvement will not be significant. The [2] graph con be rectified if the vertical axis s tarts from zero.

6 Simplify $\left(p^{2}-4\right)^{2}-\left(p^{2}+4\right)^{2}$.

$$
\begin{aligned}
& =\left(p^{2}-4-p^{2}-4\right)\left(p^{2}-4+p^{2}+4\right) \\
& =(-8)\left(2 p^{2}\right) \\
& =-16 p^{2}
\end{aligned}
$$

- Answer $-16 p^{2}$

7 (a) Identify the set shaded in the Venn diagram below.

$$
\begin{equation*}
\text { Answer . }(A \cap B)^{\prime} \cap(A \cup B) \tag{1}
\end{equation*}
$$

(b) Shade $\left(C \cap D^{\prime}\right)^{\prime}$ in the Venn diagram below.

Answer

(c) If $P \subset Q$ and $Q \cap R=\{ \}$, illustrate this information on the Venn diagram below and shade $P \cup Q$.

Answer

8 By Coulomb's law, the electric force, $F \mathrm{~N}$, between two balloons is inversely proportional to the square of the distance, $d \mathrm{~m}$, between them.
(a) If $F=0.626$, when $d=2$, find an equation for F in terms of d.
$F=\frac{k}{d^{2}}$, where k is a constant
$0.626=\frac{k}{2^{2}}$
$k=2.504$
$F=\frac{2.504}{d^{2}}$
Answer $F=\frac{2.504}{d^{2}}$
(b) Calculate the distance between the balloons when the electric force is 1 N ,

$$
\begin{align*}
& \text { When } F=1, \\
& 1=\frac{2.504}{d^{2}} \\
& d^{2}=2504 \\
& d=1.58 \mathrm{~m}(3 \text { sig fig }) \quad \text { Answer } 1.58 . . . \tag{1}
\end{align*}
$$

9 A Soup Spoon regular size bowl has a height of 8 cm and capacity 250 ml . A geometrically similar Soup Spoon large size bowl has a height of 12 cm and a base diameter of 21 cm .
(a) Calculate the base diameter of the regular size bowl.

$$
\begin{align*}
& \text { let } r \text { be regular and } 2 \text { be large } \\
& \frac{d_{r}}{d_{r}}=\frac{h_{r}}{h_{2}} \\
& \frac{d_{r}}{21}=\frac{8}{12} \\
& d_{r}=14 \mathrm{~cm} \quad \text { Answer } 14
\end{align*}
$$

(b) Calculate the capacity of the large size bowl.

$$
\begin{aligned}
\frac{V_{r}}{V_{l}} & =\left(\frac{h_{r}}{h_{l}}\right)^{3} \\
\frac{250}{V_{l}} & =\left(\frac{2}{3}\right)^{3} \\
V_{l} & =\frac{250 \times 27}{8} \\
& =843.75 \mathrm{ml}
\end{aligned}
$$

Answer .843.7.7.7
ml [2]

10 (a) Factorise completely $2.25 x^{2}-0.64 y^{2}$.

$$
\begin{aligned}
& =\frac{9}{4} x^{2}-\frac{16}{25} y^{2} \\
& =\left(\frac{3}{2} x-\frac{4}{5} y\right)\left(\frac{3}{2} x+\frac{4}{5} y\right) \quad(1.5 x-0.8 y)(1.5 x+0.8 y)[1] \\
& =(1.5 x-0.8 y)(1.5 x+0.8 y)
\end{aligned}
$$

(b) Factorise completely $9 x^{2}-4 x y-18 x y z+8 y^{2} z$.
$9 x^{2}-4 x y-18 x y z+8 y^{2} z$
$=x(9 x-4 y)-2 y z(9 x-4 y)$
$=(x-2 y z)(9 x-4 y)$

$$
\begin{equation*}
\text { Answer }(x-2 y z)(9 x-4 y) \tag{2}
\end{equation*}
$$

11 The angles, in degrees of a quadrilateral $A B C D$ are represented by these expressions: Angle $A=3 y+40$, angle $B=5 y-10$, angle $C=6 y-20$, and angle $D=2 y+30$.
(a) Calculate the value of y.

$$
\begin{align*}
& (3 y+40)^{\circ}+(5 y-10)^{\circ}+(6 y-20)^{2}+\left(2 y+30^{\circ}\right)=360^{\circ} \text { (sum of } \angle \text { s in quad.) } \\
& 16 y^{\circ}+40^{\circ}=360^{\circ} \\
& 16 y^{\prime}=320^{\circ} \\
& y^{\circ}=20^{\circ} \\
& \therefore y=20 \quad \text { Answer } y=\ldots
\end{align*}
$$

(b) What is the name of the quadrilateral?

$$
\begin{aligned}
& \angle A=100^{\circ} \\
& \angle B=90^{\circ} \\
& \angle C=100^{\circ} \\
& \angle D=70^{\circ}
\end{aligned}
$$

Answer ...kite.

12 Calculate the sum of the angles $a, b, c, d, e, f, g, h, i, j, k, l$ and m in this diagram.

Sum of \angle s at 12 points $=360^{\circ} \times 12$

$$
=4320^{\circ}
$$

Sum of interior \angle of Decagon $=(10-2) \times 180^{\circ}$

$$
=1440^{\circ}
$$

Sum of interior \angle of triangle $=180^{\circ}$

$$
\hat{a}+\hat{b}+\hat{c}+\hat{d}+\hat{e}+\hat{f}+\hat{g}+\hat{h}+\hat{i}+\hat{j}+\hat{k}+\hat{i}+\hat{n}=4320^{\circ}-1440^{\circ}-180^{\circ}
$$

$$
=2700^{\circ}
$$

Answer ...2700.
$13 W, X, Y, Z$ are points on the circumference of a circle with centre O. Given that $\angle X Y Z=135^{\circ}$ and $\angle O X W=27^{\circ}$,

(a) Find $Z \hat{W} X$. Give a reason for your answer.
 ark supplementary:
(b) Find $Z \hat{W} O$.

$$
\begin{aligned}
\angle O W X & \left.=27^{\circ} \text { (base } \angle \text { of } \triangle\right) \\
Z \hat{W O} & =45^{\circ}-27^{\circ} \\
& =18^{\circ}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } .18^{\circ} \tag{2}
\end{equation*}
$$

14 Two fair dice are tossed. Calculate the probability that
(a) both numbers obtained are even,

$$
\text { Req' }{ }^{\prime} \text { prob }=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

$$
\begin{equation*}
\text { Answer } \frac{1}{4} \tag{1}
\end{equation*}
$$

(b) the product of the two numbers obtained is a prime number,

$$
\text { Req'd prob }=\frac{6}{36}=\frac{1}{6}
$$

$$
\begin{equation*}
\text { Answer } \frac{1}{6} \tag{1}
\end{equation*}
$$

(c) the sum of the two numbers obtained is a prime number.

$$
\begin{equation*}
R_{\text {Rey }}{ }^{\prime} d \text { prob }=\frac{15}{36}=\frac{5}{12} \tag{1}
\end{equation*}
$$

Answer $\frac{5}{12}$

15 In the diagram, $A B=C D=12 \mathrm{~cm}, B C=C E=z \mathrm{~cm}$ and $A B$ is parallel to $E C$.

Name the triangle that is congruent to triangle $A B C$. Justify your answer.

- B1

Answer Triangle $D C E$.... because $A B=D C=12 \mathrm{~cm}(\mathrm{~s})$

$$
\angle A B C=\angle D C E(\operatorname{corr} \angle S, C E / / B G)(A)
$$

$$
B C=C E=Z \mathrm{~cm}(s)
$$

$\therefore \triangle A B C \equiv \triangle D C E(S A S)$

16 (a) Sketch the graph of $y=-(2 x+1)(x-3)$.
Answer
when $x=0$,

$$
y=-(1)(-3)
$$

$$
=3
$$

y-intercept: $(0,3)$
when $y=0$
$-(2 x+1)(x-3)=0$
$x=-\frac{1}{2}$ or 3
x-intercept:
$\left(-\frac{1}{2}, 0\right)$ and $(3,0)$

(b) Write down the equation of the line of symmetry of the graph

$$
\begin{align*}
& y=-(2 x+1)(x-3) \text {. } \\
& \text { eqn of line symmetry: } x=\frac{3-\left(-\frac{1}{2}\right)}{5^{2}}-\frac{1}{2} \\
& =\frac{5}{4}=1 \frac{1}{4} \\
& \text { Answer } \\
& x=1 \frac{1}{4} \tag{1}
\end{align*}
$$

17 In order to maintain a healthy lifestyle, 5 students in a certain neighbourhood cycle to the same school.
(a) Below are four graphs and accounts by 4 students. Match each of the graphs to the student's name that best fit each of the stories.

Aloysius: I was on my way to school when a cat suddenly cut into my path! Luckily, I managed to brake on time. After I got over the shock, I realized I was going to be late. So, I sped up!

Benedict: My teacher warned me not to be late again, so this time round, I cycled faster and I was among the first few to reach school.

Charles: I just left home and discovered that I did not bring my wallet! So I went home again but I still managed to reach school on time.

Dominic: I cycled to school as usual and reached school before morning assembly.

Answer Graph I .Dominic. \qquad Graph II ...harles............
Graph III ...Benedict
Graph IV Aloyssius
(b) Write down what Edward might say when given a sketch of his travel graph below.

Answer .I was cycling to school when my tyre was punctured.
.I walked to school there after pulling along my bicycle as...
. quickly as I could so that I will not be late schoo!.

18 The cumulative frequency curve and box plot show the distributions of the marks of 320 students for a Mathematics examination and 300 students for an Additional Mathematics examination respectively.

Marks of 300 students for an Additional Mathematics Examination in 2016

(a) Find the interquartile range for the Mathematics examination.

$$
\begin{align*}
& \text { interquartile range } \\
& =74-48 \\
& =26 \text { marks } \quad \text { Answer } 26 \text { marks. }
\end{align*}
$$

(b) Here are two statements comparing the marks for the two examinations.

For each one, write whether you agree or disagree.
Give a reason for each answer, stating clearly which statistic you use to make your decision.
(i) On average, students performed better for the Additional Mathematics examination than the Mathematics examination.

Answer ...disagree
Mathematics examination I lower than the median for the
Mathematics examination.
(ii) A smaller proportion of the students scored less than 35 marks at the Mathematics examination than at the Additional Mathematics examination.

Answer Agree because ...the lower. quartile for Mathematics examination is higher than the lower.... quartile for the Additional Mathematics examination [1]

19 (a) Express $-x^{2}+7 x-5$ in the form $-(x-a)^{2}+b$.

$$
\begin{aligned}
& =-\left(x^{2}-7 x\right)-5 \\
& =-\left(x^{2}-7 x+\left[\frac{7}{2}\right]^{2}\right)-5+\left(\frac{7}{2}\right)^{2} \\
& =-\left(x-\frac{7}{2}\right)^{2}+\frac{29}{4}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer }-\left(x-\frac{7}{2}\right)^{2}+\frac{29}{4} \tag{2}
\end{equation*}
$$

(b) Hence solve the equation $-x^{2}+7 x-5=0$, giving your answers correct to two decimal places.
$-x^{2}+7 x-5=0$
$-\left(x-\frac{7}{2}\right)^{2}+\frac{29}{4}=0$
$-\left(x-\frac{7}{2}\right)^{2}=-\frac{29}{4}$
$\left(x-\frac{7}{2}\right)^{2}=\frac{29}{4}$
$x-\frac{7}{2}= \pm \sqrt{\frac{24}{4}}$
Answer ...0.81...... and19 $x=0.81$ and 6.19 (2 dec. pl.)

20 In the diagram, $\angle Q P S=\angle Q R P=90^{\circ}, P Q=24 \mathrm{~cm}, Q S=25 \mathrm{~cm}, P S T$ and $Q R S$ are straight lines.

Calculate
(a) $P S$

By Pythagoras' Theorem,

$$
P S^{2}=25^{2}-24^{2}
$$

$P S=7 \mathrm{~cm}$
Answerm [1]
(b) $P R$

Area of $\triangle P Q S=\frac{1}{2} \times P Q \times P S$
$\frac{1}{2} \times 25 \times P R=\frac{1}{2} \times 24 \times 7$
$P R=\frac{168}{25}$

$$
=6.72 \mathrm{~cm}
$$

Answer . 6.72
(c) $\cos \angle Q S T$

$$
\begin{aligned}
\cos \angle Q S T & =-\cos \angle Q S P \\
& =-\frac{7}{25}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer }-\frac{7}{25} \tag{1}
\end{equation*}
$$

21 Challenger offers discounts to customers who pay $\$ 30$ for a 2-year ValueClub membership.

Item	Members' discount
11" Apple MacBook Air	5% off
Seagate Backup Plus Slim Portable Drive 2TB	15% off
Valore Bluetooth Speaker	25% off

Dory wants to buy a MacBook Air which costs $\$ 1188$. The salesperson suggests that he joins as a member.
(a) How much less does she pay in total if he joins as a member and buys the MacBook Air?

$$
\begin{aligned}
\text { Total Amount Payable } & =\$ 30+\frac{\$ 1188 \times 95}{100} \\
& =\$ 1158.60
\end{aligned}
$$

Amount less she paid as a nember
$=\$ 1188-\$ 1158.60$
$=\$ 29.40$
Answer $\$ 29.40$
After he joined as a member and bought the MacBook, the salesperson offers Dory a further 10% discount on the members' price for a portable drive and Bluetooth speaker in view of the Great Singapore Sale.
(b) Write down and simplify a formula for the total amount, T, that she needs pay for a portable drive and Bluetooth speaker. Use d and s to represent the original price of a portable drive and a Bluetooth speaker respectively.

$$
\begin{aligned}
T & =0.9(0.85 d+0.75 s) \\
& =0.7(5 d+0.675 s
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } T=. .765 d+0.675 s \tag{2}
\end{equation*}
$$

22 A pill box is in the shape of a regular heptagon with sides of length 3 cm and has a hole in the centre in the shape of a regular heptagon with sides of length 1 cm .

The height of the pill box is 2 cm . Calculate the volume of the pill box.
size of an interior L of heptagon
$=\frac{(7-2) \times 180^{\circ}}{7}$
$=\frac{900^{\circ}}{7}$

$$
\theta=\frac{900^{\circ}}{7} \div 2
$$

$$
=\frac{450^{\circ}}{7}
$$

let h be height of trapezium
$\tan \theta=\frac{h}{1}$
$h=\tan \frac{450^{\circ}}{7} \mathrm{~cm}$
Area of trapezium $=\frac{1}{2}(1+3) \tan \frac{450^{\circ}}{7}$

$$
=2 \tan \frac{450^{\circ}}{7} \mathrm{~cm}^{2}
$$

Area of cross $-\operatorname{section}=7 \times 2 \tan \frac{450^{\circ}}{7}$
$=14 \tan \frac{450^{\circ}}{7} \mathrm{~cm}^{2}$
Volume of pill box $=2 \times 14 \tan \frac{450^{\circ}}{7}$

$$
=58.1 \mathrm{~cm}^{3} \text { (3 sig fig.) }
$$

Answer . 58.1 $\mathrm{cm}^{3}[5]$

23 (a) Solve the equation $\frac{4(7 a-3)}{5}+\frac{5(2 a+7)}{3}=\frac{5(5 a-2)}{2}$.

$$
\begin{aligned}
& 24(7 a-3)+50(2 a+7)=75(5 a-2) \\
& 168 a-72+100 a+350=375 a-150 \\
& 107 a=428 \\
& a=4
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } a=4 \tag{3}
\end{equation*}
$$

(b) Given that 2 is a solution of the quadratic equation $6(x-5)^{2}+k=38$, where k is a constant, find the
(i) value of k,

$$
\begin{aligned}
& \text { when } x=2, \\
& \begin{array}{l}
6(2-5)^{2}+k=38 \\
k=38-54 \\
=-16
\end{array}
\end{aligned}
$$

Answer...-16
(ii) other solution.

$$
\begin{aligned}
x & =5+(5-2) \\
& =5+3 \\
& =8
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad x=8 \tag{1}
\end{equation*}
$$

24 In the diagram, D is the point $(8,3)$ and the line passing through the points D and F intersects the x-axis at the point E. Point G is on the x-axis such that the line $D G$ is perpendicular to the x-axis. Given that the area of the triangle $D E G$ is 6 units 2, find

(a) the coordinates of E,

$$
\text { Area of } \begin{aligned}
& \triangle D E G=\frac{1}{2} \times E G \times D G \\
& 6=\frac{1}{2} \times E G \times 3 \\
& E G=4 \text { units } \\
& \therefore E(8-4,0) \\
&=E(4,0)
\end{aligned}
$$

(b) the equation of line $F D$,

$$
\begin{aligned}
\text { gradient of } F D & =\frac{3-0}{8-4} \\
& =\frac{3}{4}
\end{aligned}
$$

eq of line $F D: y=\frac{3}{4} x+c$

$$
\text { when } x=4, y=0
$$

$$
0=\frac{3}{4}(4)+c
$$

$$
c=-3
$$

$$
\therefore y=\frac{3}{4} x-3
$$

(c) the coordinates of F.

$$
y \text {-intercept }=F(0,-3)
$$

25 In 2008, the International Court of Justice (ICJ) awarded the sovereignty of the island, Pedra Branca (P) to Singapore. There are two maritime features near the island: Middie Rocks (M) and South Ledge (S). Middle Rocks is due west of Pedra Branca. The bearing of S from P is 200° with a distance of 1.0 Nautical Miles (nm) between them.
(a) (i) Construct a scaled drawing of the Triangle MPS using the scale 1 cm to represent 0.1 nm . Line $M P$ has been drawn for you.
(ii) Construct the perpendicular bisector of line MP.
(iii) Construct the angle bisector of $\angle S M P$.
(b) A ship in distress sends a SOS signal for help at a location within the Triangle MPS. The ship is known to be located in the triangle at a point that is nearer to $M S$ than $M P$ and equidistant from M and P. Mark a possible point with a cross and label the point as W.

${ }^{\circ}{ }^{\circ}$ Leverel Centre／l ldex Number $\left.\left.\quad\right|^{\text {Class }}\right|^{\text {Name }}$

新加坡海星中学

MARIS STELLA HIGH SCHOOL
 PRELIMINARY EXAMINATION TWO SECONDARY FOUR

MATHEMATICS

4048／2
Paper 2
16 August 2016

2 hours 30 minutes

Additional Materials：
Writing Paper（7 sheets） Graph Paper（1 sheet）

READ THESE INSTRUCTIONS FIRST

Write your class，index number and name on all the work you hand in．
Write in dark blue or black pen on both sides of the paper．
You may use an HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue or correction fluid．

Answer all the questions．
Write your answers on the separate Answer Paper provided．
Give non－exact numerical answers correct to 3 significant figures，or 1 decimal place in the case of angles in degrees，unless a different level of accuracy is specified in the question．
The use of an approved scientific calculator is expected，where appropriate．
You are reminded of the need for clear presentation in your answers．
At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．
The total number of marks for this paper is 100.

This document consists of 12 printed pages．

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) Simplify $\frac{3 a-6}{2 a^{2}-7 a+6}$.
(b) Solve the inequality $\frac{3 x-1}{5} \geq \frac{6 x+1}{7}$.
(c) It is given that $q=\sqrt{\frac{4 p^{2}-5 q}{p^{2}+2}}$. Express p in terms of q.
(d) (i) Express 4536 as the product of its prime factors.
(ii) Given that $\frac{4536}{k^{2}}=p$, where k and p are integers and k is as large as possible, find the values of k and p.
(iii) The lowest common multiple of two numbers is 4536 . The highest common factor of these two numbers is 189 . Both numbers are greater than 189.

Find the two numbers.

2
(a) $\mathbf{P}=\left(\begin{array}{cc}2 & -8 \\ 0 & 4\end{array}\right)$ and $\mathbf{Q}=\left(\begin{array}{cc}\frac{1}{2} & x \\ 0 & \frac{1}{4}\end{array}\right)$

Find the value of x given that $\mathbf{P Q}$ is an identity matrix.
(b) The price of a ticket in each category at the River Safari is given below:

Child: \$20
Adult: \$30
Senior Citizen: \$14
(i) Represent the above information as a 3×1 column matrix A.

The number of tickets sold on one particular weekend is given as follows:

	Child	Adult	Senior Citizen
Saturday	500	800	480
Sunday	700	1000	580

This information can be represented by the matrix

$$
B=\left(\begin{array}{lll}
500 & 800 & 480 \\
700 & 1000 & 580
\end{array}\right)
$$

(ii) Given that $C=B A$, find C and describe what is represented by the elements of C.
(iii) On that particular weekend, the River Safari decided to donate 40% of Saturday's ticket sales and 50% of Sunday's ticket sales to charity. Write a matrix D such that the product of $D C$ will give the total amount donated. Hence find the total amount donated.
$3 \quad A, B, C$ and D are four points on level ground. A is due west of D and the bearing of C from A is $050^{\circ} . A D=25 \mathrm{~m}, D C=45 \mathrm{~m}, D B=70 \mathrm{~m}$ and $B C=90 \mathrm{~m}$.

(a) Calculate
(i) $\angle D C A$,
(ii) $\angle C D B$,
(iii) the bearing of C from D,
(iv) the area of $\triangle B D C$.
(b) A tower of height h metres stands at D and the angle of elevation of the top of the tower from B is 37°. Calculate

> (i) the value of h,
> (ii) the shortest distance of D from $B C$.
(c) A man walks along a straight path from B to C until he reaches a point E where the angle of elevation of the top of the tower from E is at its greatest. Calculate the distance of $B E$.
$4 \quad$ Two taps A and B run water at different speed. Tap A runs water at x litres per minute. Tap B runs water at a rate of 5 litres per minute faster than tap A. A rectangular tank with a capacity of 9000 litres is to be filled with water. It takes 5 hours longer to fill the tank with water using $\operatorname{tap} A$ as compared to using $\operatorname{tap} B$.
(a) Write down an expression, in terms of x, the time taken to fill the tank by using
(i) $\operatorname{Tap} A$,
(ii) $\operatorname{Tap} B$.
(b) Form an equation in x and show that it reduces to $x^{2}+5 x-150=0$.
(c) Solve the equation $x^{2}+5 x-150=0$.
(d) Hence find the time taken, in hours, to fill the rectangular tank if both $\operatorname{taps} A$ and B are turned on at the same time.

5 Map A is drawn to a scale of $1: 250000$.
(a) Find the length, in centimetres, represented by a 12.4 km road on Map A.
(b) Calculate the area of a town on Map A if its actual area is $60 \mathrm{~km}^{2}$.
(c) The very same town occupies an area of $6 \frac{2}{3} \mathrm{~cm}^{2}$ on Map B, find the scale of Map B, giving your answer in the format of $1: n$.

6
(a) $\overrightarrow{A B}=\binom{-3}{2}, \overrightarrow{O B}=\binom{2}{4}$ and $\overrightarrow{B C}=\binom{-5}{-7}$.
(i) Find the column vector $\overrightarrow{A C}$.
(ii) Find the value of $|\overrightarrow{B C}-2 \overrightarrow{A B}|$.
(b)

$O P C$ and $O Q A$ are straight lines and $P A$ intersects $Q C$ at B. Given that $\overrightarrow{O A}=3 \overrightarrow{O Q}, \overrightarrow{O P}=\overrightarrow{P C}, P B: B A=1: 4, \overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$, express the following vectors as simply as possible in terms of \mathbf{p} and/or \mathbf{q}.
(i) $\overrightarrow{A P}$,
(ii) $\overrightarrow{P B}$,
(iii) $\overrightarrow{O B}$,
(iv) $\overrightarrow{Q B}$.
(c) Find the value of $\frac{\text { Area of } \triangle O B C}{\text { Area of } \triangle Q B A}$.

$7 \quad$ Answer the whole of this question on a sheet of graph paper.

The following table gives the corresponding values of x and y which are connected by the equation $y=\frac{2 x^{3}}{5}-4 x+2$.

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
\boldsymbol{y}	-7.6	3.2	6.8	5.6	2	-1.6	-2.8	\boldsymbol{a}	11.6

(a) Find the value of \boldsymbol{a}, giving your answer correct to 1 decimal place.
(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph of y against x for values of x in the range $-4 \leq x \leq 4$.
(c) Use your graph to find the solutions of $\frac{2 x^{3}}{5}-4 x+2=0$.
(d) By drawing a tangent, find the gradient of the curve when $x=-3$.
(e) By drawing a suitable straight line on your graph, solve $2 x^{3}-25 x+20=0$.

8 (a)

In the figure above, the sector $C A B$ has centre C and radius 8 cm . $C D$ bisects $\angle A C B$ and O is the midpoint of $C D$.
An arc with centre O, is drawn to meet $C A$ and $C B$ at E and F respectively. Given that $\angle E O F=\frac{5 \pi}{12}$,
(i) find in terms of \square,
(a) the angle $A C B$,
(b) the length of arc $A D B$,
(c) the area of the sector $C A B$.
(ii) find the area of the shaded region $A D B F E$, correct to 2 significant figures.
(b)

The line $C E$ is a diameter of the circle $A B C D E$, centre O. The tangent at A meets $C E$ produced at Z.
Angle $C B A=116^{\circ}$ and angle $D C Z=39^{\circ}$.
Find, giving reasons for each answer,
(i) $\angle C D A$,
(ii) $\angle C O A$,
(iii) $\angle D A E$,
(iv) $\angle E A Z$,
(v) $\angle C A Z$.

9 (a) A group of students was asked to complete a class test. The time taken to complete the test is shown in the following table:

Time in minutes (x)	$30<x \leq 35$	$35<x \leq 40$	$40<x \leq 45$	$45<x \leq 50$	$50<x \leq 55$
No. of students	12	40	81	42	25

(i) State the median class.
(ii) Calculate
(a) the estimated mean time taken for a student to complete the test,
(b) the estimated standard deviation of the time taken to complete the test.
(iii) If one more question is added to the test, each student took 5 more minutes to complete the test. Comment on how this will affect the mean and standard deviation of the data found in part (ii).
(b) 15 red balls, 5 blue balls and 2 white balls were placed in a bag. Two balls were drawn at random.
(i) Draw a tree diagram to show the possible outcomes and their probabilities.
(ii) Expressing each of your answers as a fraction in its lowest term, calculate the probability that when two balls are drawn,
(a) both of them will be red,
(b) only one of the ball drawn is blue,
(c) both are of different colours.

10 (a) Mr Ng bought a new car that cost $\$ 100000$. Each year the value of the car decreases by 10% of its value at the start of the year. At the end of 5 years, Mr Ng decides to sell the car.

Calculate the overall percentage reduction in the value of the car compared with the original purchase price.
(b) Mr Wong wishes to purchase a new 4-Room Flat at the upcoming Bidadari estate near the school. The flat can be bought on a hire purchase scheme with a down payment of 10% of the purchase price and the remaining amount to be paid by monthly instalments throughout the loan period.

Useful information:
Simple Interest rate for housing loan : 1.8% per annum
Maximum loan period allowed : 25 years

The selling price of a new 4 -Room Flat starts from $\$ 440,000$ for a $2^{\text {nd }}$ floor unit and increases at a constant rate to $\$ 520,000$ for a highest $18^{\text {th }}$ floor unit.

With his savings, Mr Wong is able to pay the 10% down payment for the flat. With his current income, Mr Wong can only afford to spend at most $\$ 2100$ per month to service future instalments.

Using the information provided in the question, determine what is the highest floor unit that Mr Wong can afford to purchase.
${ }^{\circ}{ }^{\circ}$ Leverel Centre／l ldex Number $\left.\left.\quad\right|^{\text {Class }}\right|^{\text {Name }}$

新加坡海星中学

MARIS STELLA HIGH SCHOOL
 PRELIMINARY EXAMINATION TWO SECONDARY FOUR

MATHEMATICS

4048／2
Paper 2
16 August 2016
2 hours 30 minutes
Additional Materials：
Writing Paper（7 sheets） Graph Paper（1 sheet）

READ THESE INSTRUCTIONS FIRST

Write your class，index number and name on all the work you hand in．
Write in dark blue or black pen on both sides of the paper．
You may use an HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue or correction fluid．
Answer all the questions．
Write your answers on the separate Answer Paper provided．
Give non－exact numerical answers correct to 3 significant figures，or 1 decimal place in the case of angles in degrees，unless a different level of accuracy is specified in the question．
The use of an approved scientific calculator is expected，where appropriate．
You are reminded of the need for clear presentation in your answers．
At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．
The total number of marks for this paper is 100.

This document consists of 12 printed pages．

Solution to Prelim 2 EM Paper 2

1 (a)

$$
\begin{align*}
& \frac{3 a-6}{2 a^{2}-7 a+6} \\
& =\frac{3(a-2)}{(2 a-3)(a-2)} \\
& =\frac{3}{2 a-3} \tag{A1}
\end{align*}
$$

(b)

$$
\begin{align*}
\frac{3 x-1}{5} & \geq \frac{6 x+1}{7} \\
21 x-7 & \geq 30 x+5 \tag{M1}\\
-12 & \geq 9 x \\
x & \leq-1 \frac{1}{3} \tag{A1}
\end{align*}
$$

(c)

$$
\begin{align*}
& q=\sqrt{\frac{4 p^{2}-5 q}{p^{2}+2}} \\
& q^{2}=\frac{4 p^{2}-5 q}{p^{2}+2} \quad[\mathrm{M} 1] \\
& q^{2}\left(p^{2}+2\right)=4 p^{2}-5 q \\
& p^{2}\left(q^{2}-4\right)=-2 q^{2}-5 q \\
& p^{2}=\frac{-2 q^{2}-5 q}{q^{2}-4} \text { or } \frac{2 q^{2}+5 q}{4-q^{2}} \quad[\mathrm{M} 1] \\
& p= \pm \sqrt{\frac{-2 q^{2}-5 q}{q^{2}-4}} \text { or } \pm \sqrt{\frac{2 q^{2}+5 q}{4-q^{2}}} \quad[\mathrm{~A} 1, \text { minus } 0.5 \text { if no } \pm] \tag{M1}
\end{align*}
$$

(d) (i) $4536=2^{3} \times 3^{4} \times 7$
(ii) $k=18, p=14 \quad[\mathrm{~B} 1]$
(iii) $189=3^{3} \times 7 \quad$ [M1]

The 2 numbers are 567 and 1512

2 (a)

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
2 & -8 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & x \\
0 & \frac{1}{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad[\mathrm{M} 1] \\
\left(\begin{array}{cc}
1 & 2 x-2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
2 x-2=0 \\
x
\end{array}\right) \quad[\mathrm{A} 1] \quad .
$$

(b)(i)

$$
A=\left(\begin{array}{l}
20 \\
30 \\
14
\end{array}\right) \quad[\mathrm{B} 1]
$$

(ii)

$$
\begin{aligned}
C & =\left(\begin{array}{ccc}
500 & 800 & 480 \\
700 & 1000 & 580
\end{array}\right)\left(\begin{array}{l}
20 \\
30 \\
14
\end{array}\right) \\
& =\binom{40720}{52120}
\end{aligned}
$$

The elements in C represents the total ticket sales on Saturday and Sunday respectively. [B1]
(iii)

$$
\begin{aligned}
D & =\left(\begin{array}{ll}
0.4 & 0.5
\end{array}\right) \quad[\mathrm{B} 1] \\
D C & =\left(\begin{array}{ll}
0.4 & 0.5
\end{array}\right)\binom{40720}{52120} \\
& =(42348)
\end{aligned}
$$

The amount donated is $\$ 42348$. [A1, P if no statement]

3(a)
(i) $\angle C A D=40^{\circ}$

$$
\begin{aligned}
& \frac{45}{\sin 40^{\circ}}=\frac{25}{\sin \angle D C A} \quad[\mathrm{M} 1] \\
& \sin \angle D C A
\end{aligned}=0.35710 \quad \begin{aligned}
\angle D C A & =20.922^{\circ} \\
& =20.9^{\circ} \quad(1 \mathrm{~d} . \mathrm{p}) \quad \text { [A1] }
\end{aligned}
$$

(ii) $90^{2}=70^{2}+45^{2}-2(70(45) \cos \angle C D B \quad[\mathrm{M} 1]$

$$
\begin{aligned}
\cos \angle C D B & =\frac{-1175}{6300} \\
\angle C D B & =100.749^{\circ} \\
& =100.7^{\circ} \quad \text { (1 d.p) } \quad[\mathrm{A} 1]
\end{aligned}
$$

(iii) Bearing of C from $D=180^{\circ}-130^{\circ}-\angle D C A$ [M1]

$$
\begin{aligned}
& =29.078^{\circ} \\
& =029.1^{\circ} \quad[\mathrm{A} 1, \text { no mark if no } 0]
\end{aligned}
$$

(iv) Area of $\triangle B D C=\frac{1}{2}(70)(45) \sin 100.749^{\circ}$

$$
\begin{aligned}
& =1547.36 \\
& =1550 \mathrm{~m}^{2} \quad[3 \text { s.f. }] \quad[\mathrm{B} 1, \mathrm{R} \text { if not to } 3 \text { s.f. }]
\end{aligned}
$$

(b)
(i) $\tan 37^{\circ}=\frac{h}{70} \quad[\mathrm{M} 1]$

$$
\begin{aligned}
h & =70 \tan 37^{\circ} \\
& =52.749 \\
& =52.7 \quad \text { (3 s.f) } \quad[\mathrm{A} 1]
\end{aligned}
$$

(ii) Let the shortest distance be $x \mathrm{~m}$.

$$
\begin{aligned}
\frac{1}{2}(90)(x) & =1547.36 \quad[\mathrm{M} 1] \\
x & =34.386 \\
& =34.4 \quad(3 \text { s.f. })
\end{aligned}
$$

The shortest distance is 34.4 m . [A1]
(c) Area of $\triangle B D C=\frac{1}{2}(70)(90) \sin \angle D B C$

$$
\begin{aligned}
& =1547.36 \\
\sin \angle D B C & =0.49123 \\
\angle D B C & =29.421^{\circ} \quad[\mathrm{M} 1] \\
\tan \angle D B C & =\frac{x}{B E} \\
B E & =\frac{34.386}{\tan 29.421^{\circ}} \\
& =60.973 \\
& =61.0 \mathrm{~m} \quad \text { (3.s.f) } \quad[\mathrm{A} 1, \mathrm{R} \text { is never give to } 3 \mathrm{~s} . \mathrm{f}]
\end{aligned}
$$

4 (a)
(i) Time taken by Tap $\mathrm{A}=\frac{9000}{x}$ mins [B1, unit error applicable]
(ii) Time taken by Tap $\mathrm{B}=\frac{9000}{x+5}$ mins [B 1 , unit error applicable]
(b)

$$
\begin{aligned}
& \frac{9000}{x}-\frac{9000}{x+5}=5 \times 60 \quad[\mathrm{M} 1] \\
& 9000(x+5)-9000 x=300 x(x+5) \quad[\mathrm{M} 1] \\
& 45000=300 x^{2}+1500 x \\
& x^{2}+5 x-150=0 \quad \text { (shown) }
\end{aligned}
$$

(c) Solve the equation $x^{2}+5 x-150=0$.

$$
\begin{aligned}
& x^{2}+5 x-150=0 \\
& (x-10)(x+15)=0 \\
& x=10 \text { or }-15
\end{aligned}
$$

(d)

$$
x=10
$$

Combined rate $=25$ litres per min [M1]
Time taken to fill the tank $=(9000 \div 25) \div 60$
$=6$ hours [A1]
5
(a) $1 \mathrm{~cm}: 250000 \mathrm{~cm}$
$=1 \mathrm{~cm}: 2.5 \mathrm{~km}$
Length of road on Map A $=\frac{12.4}{2.5}$

$$
\begin{equation*}
=4.96 \mathrm{~cm} \tag{A1}
\end{equation*}
$$

(b) $1 \mathrm{~cm}^{2}: 6.25 \mathrm{~km}^{2} \quad----[\mathrm{M} 1]$

Area of town on Map $A=\frac{60}{6.25}$

$$
\begin{equation*}
=9.6 \mathrm{~cm}^{2} \tag{A1}
\end{equation*}
$$

(c)

$$
\begin{aligned}
& 6 \frac{2}{3} \mathrm{~cm}^{2}: 60 \mathrm{~km}^{2} \\
= & 1 \mathrm{~cm}^{2}: 9 \mathrm{~km}^{2} \\
= & 1 \mathrm{~cm}: 3 \mathrm{~km} \quad---[\mathrm{M} 1] \\
= & 1 \mathrm{~cm}: 300000 \mathrm{~cm} \\
= & 1: 300000 \quad---[\mathrm{A} 1]
\end{aligned}
$$

6 (a)
(i) $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$

$$
\begin{aligned}
& =\binom{-3}{2}+\binom{-5}{-7} \\
& =\binom{-8}{-5}
\end{aligned}
$$

(ii) $|\overrightarrow{B C}-2 \overrightarrow{A B}|=\left|\binom{-5}{-7}-2\binom{-3}{2}\right|$

$$
\begin{aligned}
& =\left|\binom{1}{-11}\right| \\
& =\sqrt{1^{2}+(-11)^{2}}
\end{aligned}
$$

$$
=11.0 \text { units (3 s.f.) } \quad[\mathrm{A} 1, \mathrm{P} \text { if no unit }]
$$

(b)
(i) $\overrightarrow{A P}=\overrightarrow{A O}+\overrightarrow{O P}$

$$
\begin{align*}
& =-3 \overrightarrow{O Q}+\overrightarrow{O P} \\
& =\underline{p}-3 \underline{q} \tag{B1}
\end{align*}
$$

(ii) $\overrightarrow{P B}=-\frac{1}{5} \overrightarrow{P A}$

$$
\begin{equation*}
=\frac{1}{5}(3 \underline{q}-\underline{p}) \tag{B1}
\end{equation*}
$$

(iii) $\overrightarrow{O B}=\overrightarrow{O P}+\overrightarrow{P B}$

$$
\begin{aligned}
& =\underline{p}+\frac{1}{5}(3 \underline{q}-\underline{p}) \\
& =\frac{1}{5}(3 \underline{q}+4 \underline{p})
\end{aligned}
$$

$$
\text { (iv) } \begin{aligned}
\overrightarrow{Q B} & =\overrightarrow{Q O}+\overrightarrow{O B} \\
& =-\underline{q}+\frac{1}{5}(3 \underline{q}+4 \underline{p}) \\
& =\frac{2}{5}(2 \underline{p}-\underline{q}) \quad[\mathrm{B} 1]
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{\text { Area of } \triangle O B C}{\text { Area of } \triangle Q B A} & =\frac{2 \times \text { Area of } \triangle O P B}{\text { Area of } \triangle O B A} \times \frac{\text { Area of } \triangle O B A}{\text { Area of } \triangle Q B A} \\
& =2 \times \frac{1}{4} \times \frac{3}{2} \\
& =\frac{3}{4}
\end{aligned}
$$

Sitbect \qquad Cat \qquad tast \qquad (Q7)

The following parts of Q7 is to be answered on the back of graph paper

Q7(a) $a=0.8 \quad[\mathrm{~B} 1]$
(c) From the graph, the solution is $-3.3,0.5,2.9$. (Accept ± 0.1) [B2]
(d) Gradient of the curve at $x=-3$ is $=\frac{12-(-4)}{-1.8-(-4)}$

$$
=7.27(3 \mathrm{~s} . \mathrm{f}) \quad(\text { Accept } 6.12 \text { to } 7.48)[\mathrm{A} 1]
$$

(e) $2 x^{3}-25 x+20=0$
$\frac{2 x^{3}}{5}-5 x+4=0$
$\frac{2 x^{3}}{5}-4 x+2=x-2$

Draw the line $y=x-2$
From the graph, the solution is $x=-3.8,0.85,3.05$ Accept $[\pm 0.1]$ [A1]

8 (a)(i)

$$
\text { (a) } \begin{aligned}
\angle A C B & =\frac{1}{2}\left(\frac{5 \pi}{12}\right) \quad(\angle \text { at center }=2 \angle \text { at circumference }) \\
& =\frac{5 \pi}{24} \quad[\mathrm{~B} 1]
\end{aligned}
$$

(b) Arc $A D B=8 \times \angle A C B$

$$
=\frac{5 \pi}{3} \mathrm{~cm} \quad[\mathrm{~B} 1]
$$

(c) Area of sector $C A B=\frac{1}{2} \times(8)^{2}\left(\frac{5 \pi}{24}\right)$

$$
=\frac{20 \pi}{3} \mathrm{~cm}^{2} \quad[\mathrm{~B} 1]
$$

(ii) Area of shaded region
$=$ Area of sector $C A B-$ Area of sector $O E F-2 \times$ Area of $\triangle O C F \quad[\mathrm{M} 1]$
$=\frac{20 \pi}{3}-\frac{1}{2}(4)^{2}\left(\frac{5 \pi}{12}\right)-2 \times \frac{1}{2}(4)^{2} \sin \left(\pi-\frac{5 \pi}{24}\right) \quad$ [M1]
$=0.73179$
$=0.73 \mathrm{~cm}^{2}$ (2 s.f.) [A1]
(b)(i) $\angle C D A+\angle C B A=180^{\circ} \quad$ ($\angle \mathrm{s}$ in opp. segment)

$$
\angle C D A=180^{\circ}-116^{\circ}
$$

$$
\begin{equation*}
=64^{\circ} \tag{B1}
\end{equation*}
$$

(b)(ii) $\angle C O A=2 \times \angle C D A$ (\angle at centre $=2 \times \angle$ at circumference)
$=128^{\circ}$
[B1]
(b)(iii) $\angle D A E=\angle D C E \quad$ ($\angle \mathrm{s}$ in same segment)
$=39^{\circ}$
[B1]
(b)(iv) $\angle A O E=180^{\circ}-\angle C O A($ adj \angle s on a st. line)
$=52^{\circ}$

$$
\begin{aligned}
\angle O A E & =\frac{180^{\circ}-\angle A O E}{2}(\text { Base } \angle \mathrm{s} \text { isos } \triangle O A E) \\
& =64^{\circ} \quad[\mathrm{M} 1] \\
\angle O A Z & =90^{\circ} \quad(\text { tangent } \perp \text { radius }) \\
\angle E A Z & =90^{\circ}-\angle O A E \\
& =26^{\circ} \quad[\text { A1 }]
\end{aligned}
$$

$$
\text { (b)(v) } \begin{aligned}
\angle C A E & =90^{\circ}(\angle \text { in semi circle }) \quad[\mathrm{M} 1] \\
\angle C A Z & =\angle C A E+\angle E A Z \\
& =90^{\circ}+26^{\circ} \\
& =116^{\circ}
\end{aligned}
$$

9(a) (i) Median class is $40<x \leq 45$
[B1]
(ii)
(a) Mean $=\frac{\sum f x}{\sum f}$

$$
=\frac{8640}{200}
$$

$$
=43.2 \mathrm{mins}
$$

(b) Mean $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{378900}{200}-(43.2)^{2}} \\
& =5.32 \mathrm{mins} \quad(3 \mathrm{~s} . \mathrm{f})
\end{aligned} \text { [A1] }
$$

(iii) The mean time taken will increase to 48.2 mins.

The standard deviation will remain the same at 5.32 mins.
[1 mark for each correct statement]

9(b)(i)

[B2]

R represent Red
B represent Blue
W represent white
(ii) (a) $\mathrm{P}($ both are red $)=\frac{15}{22} \times \frac{14}{21}$

$$
=\frac{5}{11} \quad[\mathrm{~B} 1]
$$

(ii)(b) $\mathrm{P}\left(\right.$ only one blue ball) $=2 \times \frac{5}{22} \times \frac{17}{21}$

$$
\begin{equation*}
=\frac{85}{231} \tag{M1}
\end{equation*}
$$

(iii) $(c) \mathrm{P}($ both are of different colour $)=1-\mathrm{P}($ both red $)-\mathrm{P}($ both blue $)-\mathrm{P}($ both white $) \quad[\mathrm{M} 1]$

$$
\begin{align*}
& =1-\frac{15}{22} \times \frac{14}{21}-\frac{5}{22} \times \frac{4}{21}-\frac{2}{22} \times \frac{1}{21} \\
& =\frac{115}{231} \tag{A1}
\end{align*}
$$

$$
\begin{array}{rlrl}
10(a) \text { Value of the car at the end of } 5 \text { years } & =(0.9)^{5} \times 100000 \\
& =\$ 59049 & {[\mathrm{M} 1]} \\
\text { Overall percentage reduction } & =\frac{100000-59049}{100000} \times 100 \% \\
& =40.951 \%
\end{array} \quad[\mathrm{M} 1]
$$

(b) Let x be the floor number of the flat to be purchased.

$$
\begin{aligned}
\text { Price of a flat } & =440000+5000(x-2) \\
& =430000+5000 x \\
\text { Loan amount } & =0.9(430000+5000 x) \\
& =4500 x+387000 \\
\text { Interest charge } & =\frac{(4500 x+387000) \times 1.8 \times 25}{100} \\
& =2025 x+174150
\end{aligned} \quad[\mathrm{M} 1]
$$

\therefore the highest floor Mr Wong can purchase is a 10th floor unit.
(Can accept other logical method presented by students)

Answer all the questions.

1 Write the following numbers in order of size, starting with the smallest.

$$
-\frac{4}{7},-\frac{4}{5},-0.8^{2},-0 . \dot{8}
$$

2 During a children's day celebration, a charity organization distributed 825 files, 495 pens and 660 pencils equally among the children in a children's home. Each child received the same number of files, pens and pencils.
(a) Find the largest possible number of children.

> Answer (a)
(b) Hence, find the number of files, pens and pencils each child received.

Answer (b)
files, \qquad .pens, pencils [1]

3 It is given that $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$.
(a) Find f when $u=1.2$ and $v=0.4$.

$$
\text { Answer (a) } f=
$$

(b) Express u in terms of f and v.

> Answer (b)

4 A restaurant charges $\$ 27.80$ per person for buffet lunch. On a particular day, 114 people dined in the restaurant.
By approximating both the charge and the number of diners to 2 significant figures, estimate the total amount received by the restaurant on that particular day.

Show your working and give your answer to a reasonable degree of accuracy.

Answer $\$$

5 A piece of metal is heated to $375^{\circ} \mathrm{C}$ and then left to cool for 15 minutes.
The temperature of the metal decreases at a rate of $18^{\circ} \mathrm{C} / \mathrm{min}$ for the first 5 minutes and then decreases at a rate of $7{ }^{\circ} \mathrm{C} / \mathrm{min}$ for the next 10 minutes.

Find the time taken for the metal to cool to a temperature of $250^{\circ} \mathrm{C}$.

Answer. \min [2]

6 (a) Solve the inequality $1-x \leq 4+x<13-2 x$.
Answer (a)
(b) Write down all the integers which satisfy $1-x \leq 4+x<13-2 x$.

Answer (b)

7 The current, I amperes, passing through a circuit is inversely proportional to its resistance, R ohms. When the resistance of the circuit is 3 ohms, the current passing through it is 2 amperes.
(a) Find an equation connecting I and R.

> Answer (a)
(b) Calculate the resistance of the circuit when 1.5 amperes of current passes through it.

Answer (b) ohms [1]
(c) Sketch the graph of I against R.

Answer (c)

8 Two containers are geometrically similar.
The surface area of the larger container is $63 \mathrm{~cm}^{2}$ and the surface area of the smaller container is $28 \mathrm{~cm}^{2}$.
The height of the smaller container is 5 cm .
Calculate the height of the larger container.

9 Between 2014 and 2015, the number of pupils who applied for a particular school as their first choice increased by 25%.
In 2015, the number of applicants for that school was 425.
Calculate the number of applicants in 2014.

Answer

10 The probability that it will rain on any particular day is 0.3 .
Calculate the probability that on two consecutive days, it will rain on only one of the days.

Answer.

11 The table below shows the number of internet-connected devices in some households.

Number of devices	1	2	3	4	5	6
Number of households	2	4	x	7	5	3

(a) If the modal number of devices is 4 , state the maximum possible value of x.

> Answer (a)
(b) If the mean number of devices is 3.6 , calculate the value of x.

> Answer (b)
(c) If the median number of devices is 4 , write down all the possible values of x.

> Answer (c)

12 Peter drove from Town X to Town Z, passing by Town Y along the way.
He took 40 minutes to drive from Town X to Town Y at an average speed of $72 \mathrm{~km} / \mathrm{h}$. He rested in Town Y for 10 minutes before continuing his journey to Town Z.
The distance between Town Y and Town Z is 52 km .
His average speed for the whole journey was $60 \mathrm{~km} / \mathrm{h}$.
Calculate
(a) the distance between Town X and Town Y,

Answer (a)
km [1]
(b) the average speed for the journey between Town Y and Town Z.

[^0]13 The point $(1,1)$ is marked on the diagram.
Sketch the graph of $y=8-x^{3}$ in the answer space below.
Answer

14 David wants to invest $\$ 500$ for 3 years.
Company A offers 8% simple interest per year.
Company B offers 6% interest per year compounded quarterly.
In which company should David invest his money? Justify your answer.

Answer \qquad
\qquad
$15 \xi=\{x: x$ is an integer, $1 \leq x \leq 100\}$
$A=\{x: x$ is divisible by 11$\}$
$B=\{x: x$ is divisible by 22$\}$
$C=\{x: x$ is divisible by 33$\}$
(a) List the elements of $A \cap(B \cup C)^{\prime}$.
\qquad
(b) Draw, in the answer space, a clearly labelled Venn diagram to illustrate the three sets A, B and C.

Answer (b)

16 On the axes shown, P is $(-4,3), Q$ is $(-3,-2)$ and R is $(2,-2)$.

Find
(a) the gradient of $P Q$,

> Answer (a)
(b) $\tan P \hat{R} Q$,

Answer (b)
(c) the equation of the line $P R$,

> Answer (c)
(d) the area of triangle $P Q R$,

> Answer (d)
\qquad units ${ }^{2}$
(e) the coordinates of two possible points S, such that the four points P, Q, R and S are the four vertices of a parallelogram.

Answer (e) (
) or (

17

T_{1}

T_{4}
The figures $T_{1}, T_{2}, T_{3} \ldots$.. are made up of squares.
N is the number of rows of squares in each shape.
S is the number of squares in each shape.
D is the number of dots in each shape.
The values of N, S and D in $T_{1,}, T_{2}, T_{3}$ and T_{4} are recorded in the table below.

Figure	T_{1}	T_{2}	T_{3}	T_{4}
N	1	2	3	4
S	1	4	p	16
D	4	10	q	28
$D-N^{2}$	3	6	r	s

(a) Find the values of p, q, r and s.

$$
\begin{equation*}
\text { Answer (a) } p=\ldots \ldots \ldots \ldots, q= \tag{2}
\end{equation*}
$$

$$
r=.
$$

\qquad
\qquad $s=$
(b) Express S in terms of N.

Answer (b)
(c) Express D in terms of N.

Answer (c)
(d) Explain why the number of dots cannot be 42 .

> Answer

18 Three points A, B and C are shown below.

(a) Construct the perpendicular bisector of $B C$.
(b) Construct the bisector of angle $A B C$.
(c) Mark clearly the point, P, which is equidistant from the lines $A B$ and $B C$, and equidistant from B and C.
(d) The point D is such that $A B C D$ is a parallelogram. Find and label the position of D.

19 A gold solid is formed by joining the plane faces of a cone, a cylinder and a hemisphere.
The cone and cylinder have a base radius of 3 cm and height 6 cm .
The hemisphere has a radius of 7 cm .

Calculate
(a) the length of the slant height of the cone,

Answer (a) . cm [2]
(b) the surface area of the gold solid,

$$
\operatorname{Answer}(b) \ldots \ldots . \mathrm{cm}^{2} \text { [3] }
$$

(c) the volume of the gold solid.

> Answer (c) cm^{3} [2]

The density of gold is $19.32 \mathrm{~g} / \mathrm{cm}^{3}$.
A gold bar has length 25 cm , width 7 cm and height 3.5 cm .
Five gold bars were melted down and all the gold was used to make a large number of these gold solids.
(d) Calculate the mass of gold that remains after the gold solids are made, giving your answer correct to two significant figures.

Answer (d)

$20 \quad O$ is the origin. A is the point $(3, p) . B$ is the point $(-4,5) . \quad \overrightarrow{B C}=\binom{6}{5}$.
(a) If $\overrightarrow{B C}$ is parallel to $\overrightarrow{O A}$, find the value of p.

$$
\text { Answer (a) } p=
$$

(b) Find the ratio $O A: B C$.

> Answer (b)
(c) Find the position vector of M such that $O A M B$ is a parallelogram.

Answer (c)
[2]

21 The diagram, not drawn to scale, shows the speed-time graph of a car and a bus during a period of 48 seconds. The car and the bus start from the same point, at the same time and travel in the same direction.

(a) Calculate the value(s) of t when the car and bus have the same speed.

Answer (a)
(b) Find the value of t when the car overtakes the bus.

Answer (b)
(c) Use the grid below to sketch the distance-time graph of the car for the same journey.

Answer all the questions.

1 (a) Express as a single fraction in its simplest form $1-\frac{2 x}{2 x-7}+\frac{7}{(2 x-7)^{2}}$.
(b) Simplify $5 a^{-3} b^{5} \div \frac{10}{9} a^{3} b^{-2}$.
(c) Factorise fully
(i) $11 p^{2}-44 p q+4 q-p$,
(ii) $30 m^{2}+14 m n-4 n^{2}$.
(d) Solve the equation $\frac{1}{x}-\frac{x-5}{2 x-3}=1$.

2 Twenty five boys took a quiz.
The marks are shown in the stem-and-leaf diagram.

> Key
> $1 \mid 4$ means 14 marks
(a) Find
(i) the median mark,
(ii) the interquartile range.

Twenty five girls took the same quiz.
The median mark and interquartile range of the girls' marks are 35 and 6 respectively.
(b) Compare and comment on the performance of the boys and girls in this quiz.
$3 P Q R S$ is a quadrilateral. M is the mid-point of $P Q$. $\overrightarrow{P Q}=\boldsymbol{a}, \overrightarrow{P S}=\boldsymbol{b}$ and $\overrightarrow{Q R}=\frac{6}{5} \boldsymbol{b}-\frac{1}{3} \boldsymbol{a}$.

(a) Find $\overrightarrow{S R}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
(b) Use vectors to show that $P S$ and $M R$ are not parallel.

4 In the diagram, $P X R, Q Y R$, and $X Y Z$ are straight lines. $P Q$ is parallel to $X Z, Q Z=R Z, \frac{Y Z}{X Z}=\frac{3}{5}$ and $P \hat{Q} R=90^{\circ}$.

(a) Show that triangles $Q Y Z$ and $R Y Z$ are congruent.
(b) Show that triangles $P Q R$ and $X Y R$ are similar.
(c) Find
(i) $\frac{\text { area of } \triangle X Y R}{\text { area of } \triangle R Y Z}$,
(ii) $\frac{\text { area of } \triangle X Y R}{\text { area of } \triangle P Q R}$.

5 Jeannie bought some health drink for $\$ 6400$. She paid $\$ x$ for each litre of the drink.
(a) Find, in terms of x, an expression for the number of litres she bought.
(b) She gave away 8 litres of the drink to her friends. She sold the remainder of the drink for $\$ 50$ per litre more than she paid for it. Write down an expression, in terms of x, for the sum of money she received.
(c) She made a profit of $\$ 2960$.
(i) Write down an equation in x to represent this information, and show that it reduces to $x^{2}+420 x-40000=0$.
(ii) Solve the equation $x^{2}+420 x-40000=0$.
(d) Find the number of litres of drink Jeannie sold.

6 Two satay stalls sell 3 types of satay.
The number of sticks of each type of satay sold per day is given by the matrix \mathbf{S}.

$$
\mathbf{S}=\left(\begin{array}{lll}
\text { Chicken } & \text { Mutton } & \text { Beef } \\
400 & 300 & 200 \\
200 & 500 & 300
\end{array}\right) \quad \begin{aligned}
& \text { Stall A } \\
& \text { Stall B }
\end{aligned}
$$

(a) The price of each stick of chicken, mutton and beef satay is $\$ 0.35, \$ 0.45$ and $\$ 0.40$ respectively.

Represent these prices in a 3×1 column matrix \mathbf{P}.
(b) Evaluate the matrix $\mathbf{T}=\mathbf{S P}$.
(c) State what the elements of \mathbf{T} represent.
(d) In June 2016, Stall A operated 20 days and Stall B operated 25 days.

Use matrix multiplication to find the total amount of money collected by the two stalls in June 2016.
(e) In July, the number of sticks of each type of satay sold per day is increased by 10%. The information is given by the matrix \mathbf{Q}.

$$
\mathbf{Q}=\left(\begin{array}{lll}
\text { Chicken } & \text { Mutton } & \text { Beef } \\
440 & 330 & 220 \tag{1}\\
220 & 550 & 330
\end{array}\right) \quad \begin{gathered}
\\
\text { Stall A } \\
\text { Stall B }
\end{gathered}
$$

Write down the matrix \mathbf{R} such that $\mathbf{Q}=\mathbf{S R}$.

7 A box contains 5 Chocolate doughnuts, 3 Glazed doughnuts and 1 Strawberry doughnut.
(a) Two doughnuts were taken out of the box at random, without replacement.

Copy and complete the tree diagram to show this information.
First
Second

(b) Find, as a fraction in its simplest form, the probability that
(i) the two doughnuts are the same flavour,
(ii) at least one of the doughnuts is Chocolate.

8 In the diagram, the points P, Q, R, S and T lie on a circle, centre O.
$X T Y$ is a tangent to the circle. Angle $P R S=109^{\circ}$ and angle $P S T=41^{\circ}$.

(a) Find, giving reasons for each answer,
(i) $P \hat{Q} S$,
(ii) $P \hat{T S}$,
(iii) $Y \hat{T} S$,
(iv) $O \hat{T} P$.
(b) $O A B C$ is a sector of a circle, centre O and radius 8 cm . The perimeter of the sector is 30 cm .

(i) Show that angle $A O C=1.75$ radians.
(ii) Calculate the area of the shaded region.

9

The diagram shows a field, $A B C D E$, which is crossed by two paths, $A C$ and $A D$. $A D$ is perpendicular to $C D . A B=42 \mathrm{~m}, A D=60 \mathrm{~m}, D E=55 \mathrm{~m}$, angle $B A C=48^{\circ}$ and angle $A C B=32^{\circ}$.
(a) Show that $A C=78.05 \mathrm{~m}$, correct to four significant figures.
(b) Calculate $C D$.
(c) A bird is at P, which is 8 m vertically above E.

Calculate the angle of depression of D from P.
(d) Given that the area of triangle $A D E$ is $1300 \mathrm{~m}^{2}$, calculate angle $A D E$.
(e) D is due east of A.

Calculate the bearing of E from A.

10 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y=\frac{5 x^{2}}{4}+\frac{60}{x}-40$.
Some corresponding values of x and y are given in the following table.

x	1	1.5	2	3	3.5	4	4.5	5	6
y	p	2.81	-5	-8.75	-7.54	-5	-1.35	3.25	15

(a) Find the value of p.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for
$1 \leq x \leq 6$.
Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $-15 \leq y \leq 25$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Using your graph, find the range of values of x for which
$\frac{5 x^{2}}{4}+\frac{60}{x}-40<0$.
(d) By drawing a tangent, find the gradient of the curve at the point where $x=4$.
(e) Draw the tangent to the curve at the point where the gradient is -10 .

Write down the equation of this tangent.
(f) The line l intersects the curve $y=\frac{5 x^{2}}{4}+\frac{60}{x}-40$ at $x=2$ and $x=6$.
(i) Find the equation of l.

It is given that $x=2$ and $x=6$ are solutions of the equation
$5 x^{3}+A x^{2}+B x+240=0$.
(ii) By using your answer from (f)(i), find the value of A and of B.

11 Diagram I shows a pencil before it is sharpened. It is made up of a piece of cylindrical carbon encased in wood. The length of the pencil is 19 cm .
Diagram II shows the cross-sectional area of the pencil. $A B C D E F$ is a regular hexagon with side 0.45 cm . The diameter of the carbon is 0.2 cm .

(a) Find
(i) the interior angle of the regular hexagon $A B C D E F$,
(ii) $C F$.
(b) Show that $A E=0.7794 \mathrm{~cm}$.
(c) Calculate the area of the regular hexagon $A B C D E F$.
(d) Calculate the volume of the carbon as a percentage of the volume of the pencil.

Diagram III shows ten of these pencils which just fit into a rectangular box which is open on one side.
Diagram IV shows ten of these pencils which just fit into a box whose cross-sectional area is an equilateral triangle which is open on one side.

(e) The boxes are made of cardboard which cost $\$ 10$ per m^{2}.

Determine which box will be cheaper to produce for 1000 boxes. Justify your decision with calculations.

\square

MATHEMATICS

VICTORIA SCHOOL
PRELIMINARY EXAMINATION TWO SECONDARY FOUR

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For, use either your calculator value or 3.142 , unless the question requires the answer in terms of .

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

Compound interest
Total amount $=$

Mensuration
Curved surface area of a cone $=$
Surface area of a sphere $=$
Volume of a cone $=$
Volume of a sphere $=$
Area of triangle $A B C=$
Arc length $=$, where is in radians
Sector area $=$, where is in radians

Trigonometry

Statistics

> Mean =

Standard deviation $=$

1 Calculate giving your answer correct to
(a) 5 decimal places,

> Answer (a).
(b) 5 significant figures.
Answer (b).

2 A sequence of numbers is given as follows;

$$
\begin{array}{ll}
1^{\text {st }} \text { line: } & 1^{2}+1-1=1 \\
2^{\text {nd }} \text { line }: & 2^{2}+2-1=5 \\
3^{\text {rd }} \text { line: } & 3^{2}+3-1=11 \\
4^{\text {th }} \text { line }: 4^{2}+4-1=19
\end{array}
$$

(a) Write down an expression, in terms of n, for the nth term in the sequence.
Answer (a).
(b) Calculate the value of the $67^{\text {th }}$ term of the sequence.
Answer (b).

3 (a) Given that find the value of x.

> Answer (a)
(b) Light travels 1 metre in 3.3 nanoseconds.

Find the total distance, in metres, that light will travel in 6.6 microseconds.

Answer (b)
$\mathrm{m}[1]$
$P Q$ is parallel to $R S$.
(a) Find
(b) Find
Answer (b)

5 A group of students were asked to determine which of the following allows more water to flow through in a given time:

$A \quad$	Two hoses with
diameters of 5 cm each.	\quad OR

B
A hose with a diameter of 8 cm .

Paul chooses A. His reasoning is that the two hoses have a bigger combined diameter of $5+5=10>8$. Is Paul right? Explain.

Answer \qquad
\qquad

6 Simplify

Answer
7 Some students were interviewed to find out the languages they spoke at home.
(a) Describe, as simply as possible, in words, the set

Answer (a) \qquad
(b) On the Venn Diagram, shade the region which represents

It is given that, and
(c) If, find the number of students who did not speak either English or their Mother Tongue.

> Answer (c).

8
(a) Factorise
Answer (a).
(b) Factorise completely

Answer (b)
$9 \quad$ Boris and Bram jog on a circular track with radius 15 m . Boris jogs with a constant speed of and Bram jogs with a constant speed of If both boys start jogging in the opposite direction from point A at 0810 , when will they meet again at A ?

Answer

10 Two similar marbles made from the same material have radii in the ratio of $2: 5$.
(a) If it costs $\$ 2$ to paint the small marble, calculate the cost to paint the large marble using the same paint.

Answer (a) \$
(b) If the mass of the larger marble is 250 g , what is the mass of the smaller marble?

Answer (b).

11 A painter takes 4 days to paint a house. His apprentice takes 2 more days to paint the same house.
(a) Find the number of similar houses that the apprentice can paint in 30 days.
(b) If the painter and the apprentice paint the house together, how many days will it take the both of them to complete painting 1 house?

12 (a) Sketch the graph of
Answer (a)
(b) Write down the equation of the line of symmetry of the graph of

$$
\begin{equation*}
\text { Answer }(b) \tag{1}
\end{equation*}
$$

13 The cumulative frequency curve below shows the marks obtained, out of 100 , by 60 students in an Elementary Mathematics paper.
(a) Find interquartile range of the distribution.

Answer (a).
marks
(b) The same 60 students also sat for the Additional Mathematics paper. The box-andwhisker diagram below illustrates the marks obtained. The maximum mark was again 100 .

A parent commented that the Elementary Mathematics paper was easier than the Additional Mathematics paper.

Do you agree? Give a reason for your answer.
Answer (b) \qquad .because \qquad
\qquad
\qquad
14 The period of oscillation, T seconds of a string varies directly as the square root of the length of the string, $l \mathrm{~cm}$. When the length of the string is 36 cm , the period of the oscillation is 0.3 seconds.
(a) Find the length of the string when the period of oscillation is 0.4 seconds.

Answer (a)

(b) Calculate the percentage change in l if T is decreased by 30%.

Answer (b)

15 (a) The lowest point of a quadratic curve is It intersects the y-axis at Write down the equation of the curve in the form, where a, b, c are integers.

Answer (a) y
(b) Hence solve the equation, giving your answers correct to two decimal places.

$$
\text { Answer (b) } x
$$

16 (a) Is it possible to draw a regular polygon whose exterior angle is ? Give a reason for your answer.

Answer (a) \qquad
\qquad
(b)

In the diagram above, $A B C \ldots$ is part of a polygon. is The size of the remaining interior angles are each equal to Find the number of sides of this polygon.
Answer (b)

17 Vernon travels to school either by bus or by car. The probability of being late for school is if he travels by bus and if he travels by car.
(a) Find the probability that he will be late on just two out of three days if he travels by bus on three consecutive days.

Answer (a).
(b) If the probability that he travels by bus is, find the probability that he will be late for school on any given day.

$$
\text { Answer }(b) .
$$

18 The graph shows the charges made by a telecommunication company for making local phone calls lasting up to 70 minutes. The total cost is made up of a fixed charge, $\$ 3.00$, together with a charge of $\$ x$ per minute for making local phone calls.
(a) State the cost of making 44 minutes of local phone call.
Answer (a) \$
(b) (i) A second telecommunication company that does not have a fixed charge, charges $8 \varnothing$ per minute for the first 50 minutes and $15 ¢$ per minute after that.
Draw a graph, on the same axes, to represent the charge made by this second company.
(ii) Find the range of times, T, for which it would be cheaper to subscribe to the second company.

19 In the diagram, $A B C D$ is a parallelogram with, and $E F$ intersects $H D$ and $H C$ at G and K respectively.
If the area of, find the area of
(a) ,

Answer (a)
(b)

20 The diagram shows a circle with centre O and radius 7 cm inscribed in a regular octagon of sides 5.8 cm each.
(a) Calculate the area of the octagon.

Answer (a).
(b) Find the total area of the shaded region between the circle and the octagon.

> Answer (b).
(a) Solve the equation

Answer (a) \qquad
(b) 216 cubes, each having edges of 2.6 cm , measured to the nearest 0.1 cm , fit exactly into a larger cubic box. Find the
(i) greatest possible length of the cubic box,
(ii) least possible volume of the cubic box.

$$
\text { Answer }(b)(i i)
$$

22 The equation of a straight line is
(a) Find the gradient of the line.

Answer (a)

(b) Find the equation of the line, parallel to, which passes through the point
Answer (b)
(c) Find the distance between the points at which these two lines cut the x-axis.

> Answer (c). units [2]

23 (a) In the diagram, O is the centre of the circle $A D B C . A B$ and $C D$ are two perpendicular diameters. L and R are points on $A B . N$ and P are points on $C D . M$ and Q are points on the circumference of the circle. $L M N O$ and $O P Q R$ are two rectangles.

Explain briefly why $L N$ and $P R$ are equal in length.
Answer (a) \qquad
\qquad
\qquad
(b) In the diagram, the points A, B, C, D and E lie on a circle, centre O.
$B O E$ is a diameter,
$A E$ is parallel to $C D$.
(i) Find

$$
\text { Answer }(b)(i)
$$

(ii) Hence show that triangle $A C E$ is an equilateral triangle.

Answer (b)(ii) \qquad
\qquad
\qquad
\qquad

24 The point H represents the position of a harbour located along a coastline. Another point J represents the position of a jetty situated along the same coastline. The point L represents the position of a lighthouse. It is given that
(a) Using a scale of 1:20000, construct the

Answer (a) and (c)
(b) Measure and write down the distance $L H$.

Answer (b)

m [1]
(c) A yacht sails directly from H to L. By drawing a suitable line, measure and write down its closest distance to the jetty.

End of Paper

This document is intended for internal circulation in Victoria School only. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the Victoria School Internal Exams Committee.

2016 Victoria School Prelim 2 Mathematics Paper 1 Answer Key

1a	0.00504
1 b	0.0050408
2 a	
2 b	4555
3 a	
3 b	2000 m
4 a	
4 b	
5	No, Paul is wrong. The hose in B with a larger cross sectional area allows more water to flow through than in A.
6	
7 a	is the set of students who spoke only in their Mother Tongue at home
7 b	
7 c	61 students
8 a	
8 b	
9	
10 a	$\$ 12.50$
10 b	16 g
11 a	5 days

11 b	days
12 a	
12 b	
13 a	39 marks
13 b	Disagree. Median marks in Elementary Mathematics paper is lower.
14 a	64
14 b	Increase by 69%
15 a	
15 b	
16 a	No. is not divisible by 7
16 b	9 sides
17 a	
17 b	
18 a	$\$ 5.20$
18 bi	
i	
19 i	50
19 ii	20
20 a	162.4
20 b	8.4
21 a	
21 bi	15.9
21 bi	
i	
22 a	
22 b	
22 c	
23 a	
24 c	Constructions
2055 m	
	790 m

VICTORIA SCHOOL VICTORIA SCHOOL
VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL VICTORIA SCHOOL

VICTORIA SCHOOL

PRELIMINARY EXAMINATION TWO SECONDARY FOUR

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

This paper consists of 17 printed pages, including the cover page.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 Calculate $\frac{\sqrt{0.00234 \times 9.45}}{29.5}$, giving your answer correct to
(a) 5 decimal places,

$$
0.00504 \text {---- [B1] }
$$

(b) 5 significant figures.

$$
0.0050408 \text {---- [B1] }
$$

2 A sequence of numbers is given as follows;

$$
\begin{array}{ll}
1^{\text {st }} \text { line: } & 1^{2}+1-1=1 \\
2^{\text {nd }} \text { line: } & 2^{2}+2-1=5 \\
3^{\text {rd }} \text { line: } & 3^{2}+3-1=11 \\
4^{\text {th }} \text { line: } & 4^{2}+4-1=19
\end{array}
$$

(a) Write down an expression, in terms of n, for the nth term in the sequence.

$$
n^{2}+n-1-----[\text { B1] }
$$

(b) Calculate the value of the $67^{\text {th }}$ term of the sequence.

```
4555
[B1]
```

3 (a) Given that $3^{4} \times 3^{\frac{2}{x}}=3^{-\frac{1}{2}}$, find the value of x.

$$
\begin{align*}
3^{4} \times 3^{\frac{2}{x}} & =3^{-\frac{1}{2}} \\
\Rightarrow 4+\frac{2}{x} & =-\frac{1}{2} \\
8 x+4 & =-x \\
9 x & =-4 \\
x & =-\frac{4}{9} \tag{A1}
\end{align*}
$$

(b) Light travels 1 metre in 3.3 nanoseconds.

Find the total distance, in metres, that light will travel in 6.6 microseconds.
3.3 nanoseconds $=3.3 \times 10^{-9}$ seconds
6.6 microseconds $=6.6 \times 10^{-6}$ seconds
\therefore Distance travelled $=\frac{6.6 \times 10^{-6}}{3.3 \times 10^{-9}}$

$$
\begin{equation*}
=2000 \mathrm{~m} \tag{A1}
\end{equation*}
$$

4

$P Q$ is parallel to $R S$.
(a) Find x.

$$
\begin{aligned}
x & =180^{\circ}-46^{\circ}-24^{\circ} \\
& =110------[\text { A1 }]
\end{aligned}
$$

(b) Find y.

$$
\begin{align*}
y & =180^{\circ}-46^{\circ}-52^{\circ} \\
& =82-\cdots---[\mathrm{A} 1] \tag{A1}
\end{align*}
$$

5 A group of students were asked to determine which of the following allows more water to flow through in a given time:

A	Two hoses with diameters of 5 cm each.	OR	B	A hose with a diameter of 8 cm.

Paul chooses A. His reasoning is that the two hoses have a bigger combined diameter of $5+5=10>8$. Is Paul right? Explain.

No, Paul is wrong. ----- [B1]
Total cross-sectional area of $A=2 \pi(2.5)^{2}=12.5 \pi \mathrm{~cm}^{2}$.
Total cross-sectional area of $B=2 \pi(4)^{2}=16 \pi \mathrm{~cm}^{2}$.
\therefore The hose in B with a larger cross sectional area allows more water to flow through than in A. ---- [A1]

6 Simplify $36 b^{2}-25(1-b)^{2}$.

$$
\begin{aligned}
& 36 b^{2}-25(1-b)^{2}=(6 b)^{2}-[5(1-b)]^{2} \\
& =[6 b-5(1-b)][6 b+5(1-b)]-------[\mathrm{B} 1-\text { Identity }] \\
& =(6 b-5+5 b)(6 b+5-5 b) \\
& =(11 b-5)(b+5)------[\mathrm{A} 1]
\end{aligned}
$$

7 Some students were interviewed to find out the languages they spoke at home.
$\varepsilon=\{$ The set of students who were interviewed $\}$
$E=\{$ The set of students who spoke English $\}$
$M=\{$ The set of students who spoke their Mother Tongue $\}$
(a) Describe, as simply as possible, in words, the set $M \cap E^{\prime}$.
$M \cap E^{\prime}$ is the set of students who spoke only in their Mother Tongue at home. [B1]
(b) On the Venn Diagram, shade the region which represents $E \cup(M \cup E)$ '.

[B1 - Correct Shading]

It is given that $\mathrm{n}(\varepsilon)=256, \mathrm{n}(E)=195$ and $\mathrm{n}(M)=123$.
(c) If $M \subset E$, find the number of students who did not speak either English or their Mother Tongue.

Number of students who did not speak either English or their Mother Tongue = 256-195
= 61 ---------- [B1]

8 (a) Factorise completely $x^{2}-2 x y+y^{2}$.

$$
\begin{aligned}
& x^{2}-2 x y+y^{2} \\
& =(x-y)^{2}-[\mathrm{B} 1]
\end{aligned}
$$

(b) Factorise completely $x^{3}-3 x^{2}-4 x+12$.

$$
\begin{align*}
& x^{3}-3 x^{2}-4 x+12 \\
& =x^{2}(x-3)-4(x-3) \text {------- [B1] } \tag{B1}\\
& =\left(x^{2}-4\right)(x-3) \\
& =(x-2)(x+2)(x-3)-----[\mathrm{A} 1]
\end{align*}
$$

9 Boris and Bram jog on a circular track with radius 15 m . Boris jogs with a constant speed of $0.15 \pi \mathrm{~ms}^{-1}$ and Bram jogs with a constant speed of $0.25 \pi \mathrm{~ms}^{-1}$. If both boys start jogging in the opposite direction from point A at 0810 , when will they meet again at A ?

$$
\begin{align*}
& \text { Time taken for Boris to finish } 1 \text { lap }=\frac{2 \pi(15)}{0.15 \pi} \\
& \left.\begin{array}{rl}
& =200 \mathrm{~s} \\
\text { Time taken for Bram to finish } 1 \text { lap } & =\frac{2 \pi(15)}{0.25 \pi} \\
& =120 \mathrm{~s}
\end{array}\right] \tag{M1}\\
& \therefore 200=2^{3} \times 5^{2}, 120=2^{3} \times 3 \times 5 \\
& \text { LCM of } 200 \text { and } 120=2^{3} \times 3 \times 5^{2} \\
& \text { [M1] } \\
& =600 \mathrm{~s} \\
& =10 \mathrm{mins} \\
& \text { Time they will meet again }=10 \mathrm{~min} \text { after } 0810 \\
& \text { = } 0820 \text {----------[A1] }
\end{align*}
$$

10 Two similar marbles made from the same material have radii in the ratio of $2: 5$.
(a) If it costs $\$ 2$ to paint the small marble, calculate the cost to paint the large marble using the same paint.

Since the marbles are similar,
$\frac{\text { Surface area of large marble }}{\text { Surface area of small marble }}=\left(\frac{5}{2}\right)^{2}$
\therefore Cost to paint larger marble $=\left(\frac{5}{2}\right)^{2} \times \$ 2$

$$
=\$ 12.50 \text {-------- [A1] }
$$

(b) If the mass of the larger marble is 250 g , what is the mass of the smaller marble?

Since the marbles are similar,
$\frac{\text { Mass of small marble }}{250}=\left(\frac{2}{5}\right)^{3}$ -------- [B1]
\therefore Mass of small marble $=\left(\frac{2}{5}\right)^{3} \times 250$

$$
=16 \mathrm{~g} \text {-------- [A1] }
$$

11 A painter takes 4 days to paint a house. His apprentice takes 2 more days to paint the same house.
(a) Find the number of similar houses that the apprentice can paint in 30 days.

No. of days the apprentice takes $=4+2$

$$
=6
$$

\therefore No. of houses he can paint in 30 days $=\frac{30}{6}$

$$
=5 \text {------ [A1] }
$$

(b) If the painter and the apprentice paint the house together, how many days will it take the both of them to complete painting 1 house?

Rate for painter $=\frac{1}{4}$, Rate for apprentice $=\frac{1}{6}$
\therefore No. of days taken if they paint together $=\frac{1}{\frac{1}{4}+\frac{1}{6}}-[$ M1]

$$
\begin{aligned}
& =\frac{12}{5} \\
& =2 \frac{2}{5}-\cdots--[\mathrm{A} 1]
\end{aligned}
$$

12 (a) Sketch the graph of $y=2-\frac{1}{2}(x+2)^{2}$.
Answer (a)

(b) Write down the equation of the line of symmetry of the graph of $y=2-\frac{1}{2}(x+2)^{2}$.

Equation of the line of symmetry $x=-2$ \qquad [B1]

13 The cumulative frequency curve below shows the marks obtained, out of 100 , by 60 students in an Elementary Mathematics paper.

(a) Find interquartile range of the distribution.

$$
\begin{aligned}
\text { Interquartile range } & =69-30 \\
& =39 \text { marks }-----[\mathrm{A} 1]
\end{aligned}
$$

(b) The same 60 students also sat for the Additional Mathematics paper. The box-andwhisker diagram below illustrates the marks obtained. The maximum mark was again 100 .

A parent commented that the Elementary Mathematics paper was easier than the

Additional Mathematics paper.
Do you agree? Give a reason for your answer.
Disagree. Median marks in Elementary Mathematics paper is lower. ------- [B1, B1]

14 The period of oscillation, T seconds of a string varies directly as the square root of the length of the string, $l \mathrm{~cm}$. When the length of the string is 36 cm , the period of the oscillation is 0.3 seconds.
(a) Find the length of the string when the period of oscillation is 0.4 seconds.
$T=k \sqrt{l}, k$ is a constant
When $T=0.3, l=36$
$\Rightarrow k=\frac{0.3}{\sqrt{36}}=0.05 \quad-----[\mathrm{B} 1$ for finding $k=0.05]$
$\therefore T=0.05 \sqrt{l}$
When $T=0.4$,

$$
\begin{aligned}
& 0.4=0.05 \sqrt{l} \\
& \sqrt{l}=8 \therefore l=64 \mathrm{~cm}^{2}-----[\mathrm{A} 1]
\end{aligned}
$$

(b) Calculate the percentage change in l if T is decreased by 30%.

Old : $T_{\text {old }}=0.05 \sqrt{l} \Rightarrow l=\left(20 T_{\text {old }}\right)^{2}$
When T is decreased by 30%,
New: $0.7 T_{\text {old }}=0.05 \sqrt{l} \Rightarrow l=\left(14 T_{\text {old }}\right)^{2}$
$\begin{aligned} \therefore \% \text { change in } l & =\frac{\left(14 T_{\text {old }}\right)^{2}-\left(20 T_{\text {old }}\right)^{2}}{\left(20 T_{\text {old }}\right)^{2}} \times 100 \%-\cdots---[\mathrm{M} 1] \\ & =-51 \%-\cdots--[\mathrm{A} 1]\end{aligned}$

15 (a) The lowest point of a quadratic curve is $(-1,-6)$. It intersects the y-axis at -5 . Write down the equation of the curve in the form $y=a(x+b)^{2}+c$, where a, b, c are integers.

Since $(-1,-6)$ is the lowest point $\Rightarrow b=1, c=-6$
$y=a(x+1)^{2}-6-----[\mathrm{B} 1]$
At $x=0, y=-5, \Rightarrow a=1$
$y=(x+1)^{2}-6-----[\mathrm{A} 1]$
(b) Hence solve the equation $a(x+b)^{2}+c=0$, giving your answers correct to two decimal places.

$$
\begin{aligned}
& (x+1)^{2}-6=0 \text {------ [M1] } \\
& (x+1)^{2}=6 \\
& x+1= \pm \sqrt{6} \\
& \Rightarrow x=-1-\sqrt{6} \text { or } x=-1+\sqrt{6} \\
& \therefore x=-3.45 \text { or } x=1.45 \quad \text {------ [A1] }
\end{aligned}
$$

16 (a) Is it possible to draw a regular polygon whose exterior angle is 7° ? Give a reason for your answer.

No. 360° is not divisible by 7 ------ [B1, B1]
(b)

In the diagram above, $A B C \ldots$ is part of a polygon. $\angle A B C$ is 148°. The size of the remaining interior angles are each equal to 139°. Find the number of sides of this polygon.

Exterior $\angle A B C=180^{\circ}-148^{\circ}=32^{\circ}$

Let n be the number of sides of the polygon.
Since the sum of exterior angles of polygon $=360^{\circ}$

$$
\begin{align*}
\therefore 32^{\circ}+(n-1)\left(180^{\circ}-139^{\circ}\right)=360^{\circ} & \cdots \tag{B1}\\
32+41 n-41 & =360 \\
41 n & =369 \\
n & =9
\end{align*}
$$

17 Vernon travels to school either by bus or by car. The probability of being late for school is $\frac{1}{5}$ if he travels by bus and $\frac{1}{20}$ if he travels by car.
(a) Find the probability that he will be late on just two out of three days if he travels by bus on three consecutive days.

$$
\begin{aligned}
\text { Probability } & =\frac{1}{5} \times \frac{1}{5} \times \frac{4}{5} \times 3-----[\mathrm{M} 1] \\
& =\frac{12}{125}-\cdots---[\mathrm{A} 1]
\end{aligned}
$$

(b) If the probability that he travels by bus is $\frac{2}{3}$, find the probability that he will be late for school on any given day.

$$
\begin{aligned}
\text { Probability } & =\frac{1}{3} \times \frac{1}{20}+\frac{2}{3} \times \frac{1}{5}----[\mathrm{B} 1] \\
& =\frac{3}{20}-----[\mathrm{A} 1]
\end{aligned}
$$

18 The graph shows the charges made by a telecommunication company for making local phone calls lasting up to 70 minutes. The total cost is made up of a fixed charge, $\$ 3.00$, together with a charge of $\$ x$ per minute for making local phone calls.

(a) State the cost of making 44 minutes of local phone call.

(b) (i) A second telecommunication company that does not have a fixed charge, charges $8 \notin$ per minute for the first 50 minutes and $15 \notin$ per minute after that.
Draw a graph, on the same axes, to represent the charge made by this second company.
(ii) Find the range of times for which it would be cheaper to subscribe to the second company.
The range of time is $0 \leq T<65$. ----- [B1]

19 In the diagram, $A B C D$ is a parallelogram with $E F / / A B, A H=G H=3 \mathrm{~cm}$ and $H B=D G=2 \mathrm{~cm} . E F$ intersects $H D$ and $H C$ at G and K respectively. If the area of $\Delta G H K=18 \mathrm{~cm}^{2}$, find the area of
(i) triangle DHC ,
$\triangle G H K$ is similar to $\triangle D H C$.
$\therefore \frac{\text { Area } \triangle D C H}{\text { Area } \triangle G H K}=\left(\frac{5}{3}\right)^{2}$
$\frac{\text { Area } \triangle D C H}{18}=\left(\frac{5}{3}\right)^{2}-$
Area $\triangle D C H=18 \times \frac{25}{9}$

$$
=50 \mathrm{~cm}^{2}-----[\mathrm{A} 1]
$$

(ii) triangle $B C H$.

Let h be the perpendicular height of $\triangle D C H$.
$\triangle B C H$ shares the same height as $\triangle D C H$.
Area $\triangle D C H=\frac{1}{2} \times D C \times h$

$$
50=\frac{1}{2} \times 5 \times h----[\mathrm{M} 1]
$$

$$
h=20
$$

\therefore Area $\triangle B C H=\frac{1}{2} \times 2 \times 20$

$$
=20 \mathrm{~cm}^{2}-----[\mathrm{A} 1]
$$

20 The diagram shows a circle with centre O and radius 7 cm inscribed in a regular octagon of sides 5.8 cm each.
(a) Calculate the area of the octagon.

$$
\begin{aligned}
\text { Area of octagon } & =\frac{1}{2} \times 5.8 \times 7 \times 8-----[\mathrm{M} 1] \\
& =162.4 \mathrm{~cm}^{2}-----[\mathrm{A} 1]
\end{aligned}
$$

(b) Find the total area of the shaded region between the circle and the octagon.

$$
\begin{aligned}
\text { Area of shaded region } & =162.4-\pi \times 7^{2}------[\mathrm{M} 1] \\
& =8.46 \mathrm{~cm}^{2}(3 \mathrm{SF})------[\mathrm{A} 1]
\end{aligned}
$$

21 (a) Solve the equation $\frac{x-3}{2}-5=\frac{7}{2} x$.

$$
\begin{align*}
\frac{x-3}{2}-5 & =\frac{7}{2} x \\
x-3-10 & =7 x \quad------[\mathrm{M} 1] \\
6 x & =-13 \\
x & =-\frac{13}{6} \\
& =-2 \frac{1}{6} \quad-\cdots---[\mathrm{A} 1]
\end{align*}
$$

(c) 216 cubes, each having edges of 2.6 cm , measured to the nearest 0.1 cm , fit exactly into a larger cubic box. Find the
(i) greatest possible length of the cubic box.

Greatest possible length of cubic box

$$
\begin{aligned}
& =2.65 \times 6 \text {---------- [M1] } \\
& =15.9 \mathrm{~cm} \text {------ }[\mathrm{A1}]
\end{aligned}
$$

(ii) least possible volume of the cubic box.

$$
\begin{aligned}
& \text { Least possible volume of cubic box } \\
& =216 \times 2.55^{3} \\
& =3581.577 \mathrm{~cm}^{3}------[\mathrm{A} 1]
\end{aligned}
$$

22 The equation of a straight line is $\frac{x}{3}-\frac{y}{4}=1$.
(a) Find the gradient of the line.
$\frac{x}{3}-\frac{y}{4}=1$
$y=\frac{4}{3} x-4$
\therefore Gradient is $1 \frac{1}{3}$------- [A1]
(b) Find the equation of the line, parallel to $\frac{x}{3}-\frac{y}{4}=1$, which passes through the point $\left(1 \frac{1}{2}, \frac{1}{2}\right)$.
$y-\frac{1}{2}=\frac{4}{3}\left(x-\frac{3}{2}\right) \quad----$ [M1]
$y=\frac{4}{3} x-2+\frac{1}{2}$
$\Rightarrow y=\frac{4}{3} x-1 \frac{1}{2} \quad----$ [A1 o.e]
(c) Find the distance between the points at which these two lines cut the x-axis.

At $y=0$,
For $y=\frac{4}{3} x-4: x=3$
For $y=\frac{4}{3} x-\frac{3}{2}: x=\frac{9}{8}$
\therefore Distance between the two points $=3-\frac{9}{8}$----- [M1]

$$
=1 \frac{7}{8} \text { units ------- [A1] }
$$

23 (a) In the diagram, O is the centre of the circle $A B C D . A B$ and $C D$ are two perpendicular diameters. L and R are points on $A B . N$ and P are points on $C D . M$ and Q are points on the circumference of the circle. $\angle M N O$ and $O P Q R$ are two rectangles.

Explain briefly why $L N$ and $P R$ are equal in length.

$O M$ and $O Q$ are radii to the circle. ----- [B1]
Since $O M$ is the diagonal of rectangle $L M N O$ and $O Q$ is the diagonal of rectangle $O P Q R$ $\Rightarrow O M=L N=O Q=P R$. \qquad
(b) In the diagram, the points A, B, C, D and E lie on a circle, centre O. $B O E$ is a diameter, $A B=B C, \angle E C D=60^{\circ}$.
$A E$ is parallel to $C D$.
(i) Find $\angle A E B$.

$$
\begin{aligned}
& \angle A B C=120^{\circ}(\text { opp } \angle \mathrm{s} \text { of cyclic quad }) \\
& \angle B A C=\angle B C A=\frac{1}{2}\left(180^{\circ}-120^{\circ}\right) \cdots----[\mathrm{M} 1] \\
& =30^{\circ} \quad(\text { base } \angle \mathrm{s} \text { of isos } \Delta) \\
& \angle A E B=\angle A C B=30^{\circ}(\angle \mathrm{s} \text { in same segment })---- \text { - [A1] }
\end{aligned}
$$

(ii) Hence show that triangle $A C E$ is an equilateral triangle.

$$
\begin{aligned}
& \angle A E C=60^{\circ}(\text { alt. } \angle, A E / / C D) \\
& \angle B C E=90^{\circ}(\text { Right } \angle \text { in semicircle }) \\
& \angle B C A=30^{\circ}(\text { base } \angle \mathrm{s} \text { of isos } \Delta) \\
& \angle A C E=90^{\circ}-30^{\circ}=60^{\circ}
\end{aligned}
$$

$\therefore \triangle A C E$ is an equilateral triangle.

24 The point H represents the position of a harbour located along a coastline. Another point J represents the position of a jetty situated along the same coastline. The point L represents the position of a lighthouse.
It is given that $H J=1800 \mathrm{~m}, \angle L H J=26^{\circ}$ and $\angle H J L=93^{\circ}$.
(a) Using a scale of 1: 20000, construct the $\triangle H J L$.

Answer (a) and (c)

Answer (a) and (c)

$$
\mathrm{Bi} \text { - coirect constraction }
$$

(b) Measure and write down the distance $L H$.

Answer (b) 2055
m [1]
(c) A yacht sails directly from H to L. By drawing a suitable line, measure and write down its closest distance to the jetty.

Answer (c)
790 m [2]

End of Paper

This document is intended for internal circulation in Victoria School only. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the Victoria School Internal Exams Committee.
\square

VICTORIA SCHOOL
PRELIMINARY EXAMINATION TWO SECONDARY FOUR

Additional Materials: Answer Paper Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100 .

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$ Volume of a cone $=\frac{1}{3} \pi r^{2} h$ Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 (a) Victor and Gloria are in an organic farm in Murai Farmway with their families. Victor buys five pieces of tofu and four packets of mushroom for $\$ 23.55$.
Gloria buys four pieces of tofu and three packets of mushroom.
She pays with two $\$ 10$ notes and receives change of $\$ 1.80$.
(i) Write down a pair of simultaneous equations to represent this information. Use t to represent the cost, in dollars, of a piece of tofu and m to represent the cost, in dollars, of a packet of mushrooms.
(ii) Solve your simultaneous equations to find t and m.
(iii) Calculate the total cost of buying two pieces of tofu and five packets of mushroom.
(b) Solve the equation $3+13 x-4 x^{2}=0$, giving the answers correct to three decimal places.

2
(a) (i) Express 8064 as the product of its prime factors.
(ii) Find the value of k such that $\frac{8064}{k}$ is the largest possible perfect cube.

Given that $p=2^{3} \times 3^{4} \times 7$. Write down the
(iii) lowest common multiple of 8064 and p, giving your answer as the product of its prime factors,
(iv) greatest integer that will divide both 8064 and p exactly.
(b) When n is a whole number, $2 n+1$ is an odd number.
(i) Write down an expression for the next two consecutive odd numbers after $2 n+1$.
(ii) Find and simplify an expression for the difference between the squares of the two consecutive odd numbers found in (b)(i).
(iii) Hence, explain why the difference between the squares of two consecutive odd numbers is always a multiple of 8 .

3 The table below shows the ticket prices at the Singapore Garden Festival held at Gardens by the Bay.

Ticket	Price
Adult	$\$ 20$
Child	$\$ 12$
Senior Citizen	$\$ 15$

(a) Represent the ticket price for adult, child and senior citizen by a column matrix
Q.
(b) Mr Ang bought 4 adults, 2 children and 1 senior citizen tickets to the festival. Write down a matrix \mathbf{P} such that the matrix multiplication $\mathbf{R}=\mathbf{P Q}$ gives the total amount Mr Ang paid for the tickets. Hence, find \mathbf{R}.
(c) The table below shows the number of tickets sold at the festival.

Number of tickets sold			
Day	Adult	Child	Senior Citizen
Monday	81	c	36
Tuesday	85	42	s

(i) The ticket sales collected on Monday and Tuesday was $\$ 2724$ and $\$ 2744$ respectively.
Represent these ticket sales in a 2×1 matrix \mathbf{T}.
(ii) Form a matrix multiplication such that the product will be \mathbf{T}.
(iii) Find the value of c and of s.

Gardens by the Bay donated part of their ticket sales to a charity organization. \mathbf{U} represents the total amount of money donated to the organization on Monday and Tuesday.
(iv) Evaluate the matrix $\mathbf{U}=\left(\begin{array}{ll}0.15 & 0.1\end{array}\right) \mathbf{T}$.
(v) Explain what the elements of the matrix $\left(\begin{array}{ll}0.15 & 0.1\end{array}\right)$ represent.

$A B D$ and $B C D$ are two horizontal triangular plots of land.
$B D=48 \mathrm{~m}$ and $C D=86 \mathrm{~m}$.
Angle $B A D=40^{\circ}$ and angle $B D A=54^{\circ}$.
A is due north of B and $A D C$ is a straight line.
(a) Calculate
(i) $A D$,
(ii) the total area of the plots of land $A B C D$,
(iii) $B C$.
(b) Given that Z is a point on $C D$ such that $Z D=48 \mathrm{~m}$, calculate the bearing of B from Z.
(c) The base of a vertical mast is at B.

The greatest angle of elevation of the top of the mast from a point on $A C$ is 17.4°.
Calculate the angle of depression of C when viewed from the top of the mast. [3]

5 (a) Simplify $\frac{16 a^{3} b^{4}}{7 c^{4}} \div \frac{4 a b^{2}}{21 c^{3}} \times \frac{27 a^{n+1}}{8 a^{n-2}}$.
(b) Simplify $\frac{2 u+18 v}{(u+4 v)^{2}-25 v^{2}}$.
(c) (i) Solve the inequality $\frac{6 x}{7}-\frac{3}{8} \leq x+2 \frac{1}{4}$.
(ii) Hence, state the smallest integer value of x such that $\frac{6 x}{7}-\frac{3}{8} \leq x+2 \frac{1}{4}$.[1]
(d) (i) Express as a single fraction in its simplest form $\frac{h}{4-h}-\frac{1}{h+3}$.
(ii) Solve the equation $\frac{h}{4-h}-\frac{1}{h+3}=\frac{4}{5}$.

6 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$
y=x+\frac{12}{x}-5 .
$$

Some corresponding values of x and y are given in the table below.

x	1	1.5	2	3	4	5	6	7	8
y	8	p	3	2	2	2.4	3	3.7	4.5

(a) Calculate the value of p.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $0 \leq x \leq 8$.

Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for $0 \leq y \leq 8$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find the solutions of $x+\frac{12}{x}=8 \frac{1}{5}$.
(d) By drawing a tangent, find the gradient of the curve at $(6,3)$.
(e) By drawing a suitable straight line on your graph, solve $2 x^{2}-11 x+12=0$.

7 (a) A is a point $(-4,1), \overrightarrow{A B}=\binom{5}{4}$ and $\overrightarrow{A C}=\binom{-3}{8}$.
(i) Write down the column vector $\overrightarrow{B C}$.
(ii) Find $|\overrightarrow{B C}|$.
(iii) P is a point such that $\overrightarrow{B P}=2 \overrightarrow{P C}$.

Find the column vector $\overrightarrow{A P}$.
(iv) Given $\overrightarrow{O Q}=\binom{\frac{2}{3}}{11 \frac{2}{3}}$.

What type of quadrilateral is $A P Q B$?
Justify your answer using vectors.
(b)

$O A B C$ is a parallelogram
$\overrightarrow{O A}=\mathbf{p}, \overrightarrow{O C}=\mathbf{q}$ and $\overrightarrow{C T}=4 \overrightarrow{A C}$.
$A C T, B R T$ and $O C R$ are straight lines.
(i) Express each of the following, as simply as possible, in terms of \mathbf{p} and/or \mathbf{q},
(a) $\overrightarrow{O B}$,
(b) $\overrightarrow{O T}$,
(c) $\overrightarrow{B T}$.
(ii) Given that $\overrightarrow{B R}=\frac{4}{5} \mathbf{q}-\mathbf{p}$, find k if $\overrightarrow{O C}=k \overrightarrow{C R}$.
(iii) Find the value of $\frac{\text { area of } \triangle B C R}{\text { area of } \triangle O C T}$.
(a)

The line $D F$ is a diameter of the circle $B D E F$ with centre O.
$A B C$ is a tangent to the circle at B.
X is the point of intersection of $D F$ and $B E$.
Angle $D B E=30^{\circ}$ and angle $B E F=58^{\circ}$.
(i) Find
(a) angle $F B O$,
(b) angle $A B F$,
(c) angle $D X E$.
(ii) Given that the radius of the circle is 14 cm , find the area of triangle $B D F$.
(b)

In the diagram, $P O R$ is a quadrant of a circle with radius 6 cm .
$O R$ and $P Q$ are parallel.
$Q R$ is an arc of a circle with centre P.
Calculate the area and the perimeter of the shaded region.

9 (a) The ages of 50 employees in Company V is shown in the table below.

Age in years	$24<x \leq 28$	$28<x \leq 32$	$32<x \leq 36$	$36<x \leq 40$	$40<x \leq 44$
Number of employees	7	10	13	8	p

(i) State the value of p.
(ii) Hence, calculate the
(a) mean age of the employees,
(b) standard deviation.
(iii) The age distribution of 50 employees in Company W is summarized below.

Mean	29.6 years
Standard deviation	7.13 years

Make two comparisons between the ages of employees in both companies.
(b) A box contains 5 red flags and 8 yellow flags.

Two flags are taken from the bag at random without replacement.
(i) Draw a tree diagram to show the probabilities of the possible outcomes.
(ii) Find, as a fraction in its simplest form, the probability that
(a) the first flag is red and the second flag is yellow,
(b) both flags are the same colour,
(c) at least one flag is yellow.

Class $4 V$ has chosen the 'Go Green' theme for their Social Innovation Project. The diagram above shows the recycling bins structure that they have built.

The whole structure consists of 3 open identical cylindrical plastic containers fit into a wooden cuboid crate. All the containers and the crate are of negligible thickness.

3 circles had to be cut from the top of the crate to fit the containers.
Each plastic container is placed in the crate such that they are 20 cm away from the sides of the crate, $A D H E$ and $B C G F$, as well as 20 cm apart from each other.
Each plastic container touches the base and sides, $A B F E$ and $D C G H$, of the crate too. The radius and height of the plastic container are 30 cm and 120 cm respectively.
(a) Write down the dimensions of the crate.
(b) Calculate the
(i) exact total surface area of the crate that was cut out,
(ii) exact total internal surface area of each cylindrical container,
(iii) total exposed external surface area of the crate.
(c) The class would like to paint all the exposed external surfaces of the crate yellow. One tin of paint can cover an area of $3.75 \mathrm{~m}^{2}$. How many tins do they need to purchase? Justify your answer.
(d) If each cylindrical container is filled to the brim, what is the maximum volume of recyclables that can be collected by the class in a single collection?

End of Paper

[^1]2016 Victoria School Prelim 2 Mathematics Paper 2 Answer Key

1a(i)	$\begin{aligned} & 5 t+4 m=23.55 \\ & 4 t+3 m=18.20 \end{aligned}$
1a(ii)	$t=2.15$ and $m=3.20$
1a(iii)	\$ 20.30
1b	$x=-0.216$ (3 d.p.) or $x=3.466$ (3 d.p.)
2a(i)	$8064=2^{7} \times 3^{2} \times 7$
2a(ii)	$k=126$
2a(iii)	$2^{7} \times 3^{4} \times 7$
2a(iv)	504
2b(i)	$(2 n+3)$ and $(2 n+5)$
2b(ii)	$8(n+2)$
2 b (iii)	Since 8 is a factor of $8(n+2)$, the difference between two consecutive odd numbers will always be a multiple of 8 .
3(a)	$\mathbf{Q}=\left(\begin{array}{l} 20 \\ 12 \\ 15 \end{array}\right)$
3(b)	$\begin{aligned} \mathbf{P} & =\left(\begin{array}{lll} 4 & 2 & 1 \end{array}\right) \\ \mathbf{R} & =\left(\begin{array}{lll} 4 & 2 & 1 \end{array}\right)\left(\begin{array}{l} 20 \\ 12 \\ 15 \end{array}\right) \\ & =(119) \end{aligned}$
3(c)(i)	$\mathbf{T}=\binom{2724}{2744}$
3(c)(ii)	$\left(\begin{array}{ccc} 81 & c & 36 \\ 85 & 42 & s \end{array}\right)\left(\begin{array}{l} 20 \\ 12 \\ 15 \end{array}\right)=\binom{2724}{2744}$
3(c)(iii)	$c=47$ and $s=36$
3(c)(iv)	(683)
3(c)(v)	Elements of $\left(\begin{array}{ll}0.15 & 0.1\end{array}\right)$ represent the percentage of the total ticket sales that Gardens by the Bay had donated to the charity organization on Monday and Tuesday respectively
4(a)(i)	74.5 m (3 s.f.)
4(a)(ii)	$3120 \mathrm{~m}^{2}$ (3 s.f.)
4(a)(iii)	121 m (3 s.f.)
4(b)	$293{ }^{\circ}$
4(c)	5.8° (1 d.p.)

5(a)	$\frac{81 a^{5} b^{2}}{2 c}$	
5(b)	$\frac{2}{u-v}$	
5(c)(i)	$x \geq-18 \frac{3}{8}$	
5(c)(ii)	-18	
5(d)(i)	$\frac{h^{2}+4 h-4}{(4-h)(h+3)}$	
5(d)(ii)	$h=-3 \frac{7}{9} \text { or } h=2$	
6(a)	$p=4.5$	
6(c)	$x=1.9$ or $x=6.3$	-
6(d)	0.660 (3 s.f.)	
6(e)	$x=1.5$ or $x=4$	
7(a)(i)	$\binom{-8}{4}$	
7(a)(ii)	8.94 units (3 s.f.)	
7(a)(iii)	$\binom{\frac{-1}{3}}{6 \frac{2}{3}}$	
7(a)(iv)	$\begin{aligned} & \overrightarrow{A P}=\overrightarrow{B Q} \text { and } \overrightarrow{A B}=\overrightarrow{P Q} \\ & \|\overrightarrow{A P}\|=\|\overrightarrow{B Q}\| \text { and }\|\overrightarrow{A B}\|=\|\overrightarrow{P Q}\| \end{aligned}$ Thus, $A P Q B$ is a parallelogram.	
7(b)(i)(a)	$\underset{\sim}{p}+\underset{\sim}{q}$	
7(b)(i)(b)	$5 \underset{\sim}{q}-4 \underset{\sim}{p}$	
7(b)(i)(c)	$4 \underset{\sim}{q}-5 \underset{\sim}{p}$	
7(b)(ii)	$k=1 \frac{1}{4}$	
7(b)(iii)	$\frac{1}{5}$	
8(a)(i)(a)	32°	
8(a)(i)(b)	58°	
8(a)(i)(c)	88°	
8(a)(ii)	$176 \mathrm{~cm}^{2}$ (3 s.f.)	
8(b)	Area of shaded region $=18 \mathrm{~cm}^{2}$ Perimeter of shaded region $=24.6 \mathrm{~cm}$ (3 s.f.)	

9(a)(i)	$p=12$
9(a)(ii)(a)	34.64 years
9(a)(ii)(b)	5.45 years (3 s.f.)
9(a)(iii)	The employees in company W are younger than those in company V since the mean age of employees in company W is lower than that of company V. The spread of ages of employees in company W is wider since the standard deviation of ages of employees in company W is larger than that of company V
9(b)(ii)(a)	$\frac{10}{39}$
9(b)(ii)(b)	$\frac{19}{39}$
9(b)(ii)(c)	$\frac{34}{39}$
10(a)	$260 \mathrm{~cm} \mathrm{by}^{2} 60 \mathrm{~cm}$ by 120 cm
10 (b)(i)	$2700 \pi \mathrm{~cm}^{2}$
10 (b)(ii)	$8100 \pi \mathrm{~cm}^{2}$
10 (b)(iii)	$83900 \mathrm{~cm}^{2} \quad(3$ s.f.)
10 (c)	3
10 (d)	$1020000 \mathrm{~cm}^{3} \quad$ (3 s.f.)

VICTORIA SCHOOL
PRELIMINARY EXAMINATION TWO SECONDARY FOUR

Additional Materials: Answer Paper Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100 .

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$ Volume of a cone $=\frac{1}{3} \pi r^{2} h$ Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 (a) Victor and Gloria are in an organic farm in Murai Farmway with their families. Victor buys five pieces of tofu and four packets of mushroom for $\$ 23.55$.
Gloria buys four pieces of tofu and three packets of mushroom.
She pays with two $\$ 10$ notes and receives change of $\$ 1.80$.
(i) Write down a pair of simultaneous equations to represent this information. Use t to represent the cost, in dollars, of a piece of tofu and m to represent the cost, in dollars, of a packet of mushrooms.
(ii) Solve your simultaneous equations to find t and m.
(iii) Calculate the total cost of buying two pieces of tofu and five packets of mushroom.
(b) Solve the equation $3+13 x-4 x^{2}=0$, giving the answers correct to three decimal places.

Solutions:

(a) (i)

$$
\begin{aligned}
& 5 t+4 m=23.55 \\
& 4 t+3 m=18.20
\end{aligned}
$$

(ii)

$$
\begin{align*}
& 5 t+4 m=23.55 \tag{1}\\
& 4 t+3 m=18.20 \tag{2}
\end{align*}
$$

(1) $\times 3: \quad 15 t+12 m=70.65 \quad \ldots$ (3)
(2) $\times 4: \quad 16 t+12 m=72.80 \quad \cdots$ (4)
(4)-(3): $\quad t=2.15$

Sub. $t=2.15$ into (2):
$4(2.15)+3 m=18.20$
$3 m=9.6$
$m=3.20$
$t=2.15$ and $m=3.20$
(a) (iii)

$$
\begin{aligned}
\text { Cost } & =2(2.15)+5(3.20) \\
& =\$ 20.30
\end{aligned} \quad \mathbf{A 1}
$$

(b)

$$
\begin{aligned}
& 3+13 x-4 x^{2}=0 \\
& x=\frac{-13 \pm \sqrt{(13)^{2}-4(-4)(3)}}{2(-4)} \quad \text { or } \quad x=\frac{-(-13) \pm \sqrt{(-13)^{2}-4(4)(-3)}}{2(4)} \longleftarrow \longleftarrow \\
& =\frac{-13 \pm \sqrt{217}}{-8} \quad=\frac{13 \pm \sqrt{217}}{8} \\
& x=-0.216 \text { (3 d.p.) or } \quad x=3.466 \text { (3 d.p.) }
\end{aligned}
$$

2
(a) (i) Express 8064 as the product of its prime factors.
(ii) Find the value of k such that $\frac{8064}{k}$ is the largest possible perfect cube.

Given that $p=2^{3} \times 3^{4} \times 7$. Write down the
(iii) lowest common multiple of 8064 and p, giving your answer as the product of its prime factors,
(iv) greatest integer that will divide both 8064 and p exactly.
(b) When n is a whole number, $2 n+1$ is an odd number.
(i) Write down an expression for the next two consecutive odd numbers after $2 n+1$.
(ii) Find and simplify an expression for the difference between the squares of the two consecutive odd numbers found in (b)(i).
(iii) Hence, explain why the difference between the squares of two consecutive odd numbers is always a multiple of 8 .

Solutions:

(a) (i)
$8064=2^{7} \times 3^{2} \times 7 \quad$ B1
(ii)

For $\frac{8064}{k}$ to be the largest perfect cube, k needs to be the smallest possible value.
Largest $\frac{8064}{k}$ will be 2^{6}.
$k=2 \times 3^{2} \times 7$
$k=126 \quad$ B1
(iii)

$$
\begin{aligned}
& 8064=2^{7} \times 3^{2} \times 7 \\
& p=2^{3} \times 3^{4} \times 7 \\
& \text { Lowest common multiple }=2^{7} \times 3^{4} \times 7 \quad \longleftarrow \quad \text { B1 }
\end{aligned}
$$

(b) (i) The next two numbers are $(2 n+3)$ and $(2 n+5)$. B1
(ii)

$$
\begin{aligned}
(2 n+5)^{2}-(2 n+3)^{2} & =4 n^{2}+20 n+25-\left(4 n^{2}+12 n+9\right) \\
& =4 n^{2}+20 n+25-4 n^{2}-12 n-9 \\
& =8 n+16 \\
& =8(n+2) \quad \text { B1 }
\end{aligned}
$$

(iii) Since 8 is a factor of $8(n+2)$, the difference between two consecutive odd numbers will always be a multiple of 8 .

3 The table below shows the ticket prices at the Singapore Garden Festival held at Gardens by the Bay.

Ticket	Price
Adult	$\$ 20$
Child	$\$ 12$
Senior Citizen	$\$ 15$

(a) Represent the ticket price for adult, child and senior citizen by a column matrix
Q.
(b) Mr Ang bought 4 adults, 2 children and 1 senior citizen tickets to the festival. Write down a matrix \mathbf{P} such that the matrix multiplication $\mathbf{R}=\mathbf{P Q}$ gives the total amount Mr Ang paid for the tickets. Hence, find \mathbf{R}.
(c) The table below shows the number of tickets sold at the festival.

Number of tickets sold			
Day	Adult	Child	Senior Citizen
Monday	81	c	36
Tuesday	85	42	s

(i) The ticket sales collected on Monday and Tuesday was $\$ 2724$ and $\$ 2744$ respectively.
Represent these ticket sales in a 2×1 matrix \mathbf{T}.
(ii) Form a matrix multiplication such that the product will be \mathbf{T}.
(iii) Find the value of c and of s.

Gardens by the Bay donated part of their ticket sales to a charity organization. \mathbf{U} represents the total amount of money donated to the organization on Monday and Tuesday.
(iv) Evaluate the matrix $\mathbf{U}=\left(\begin{array}{ll}0.15 & 0.1\end{array}\right) \mathbf{T}$.
(v) Explain what the elements of the matrix $\left(\begin{array}{ll}0.15 & 0.1\end{array}\right)$ represent.

Solutions:

(a)

$$
\mathbf{Q}=\left(\begin{array}{l}
20 \\
12 \\
15
\end{array}\right) \quad \text { B1 }
$$

(b)

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{lll}
4 & 2 & 1
\end{array}\right) \longleftarrow \\
& \mathbf{R}=\left(\begin{array}{lll}
4 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
20 \\
12 \\
15
\end{array}\right) \\
&=(119) \longleftarrow \\
& \longleftrightarrow
\end{aligned}
$$

(c) (i)

$$
\mathbf{T}=\binom{2724}{2744} \longleftarrow \quad \mathbf{B 1}
$$

(ii)

$$
\left(\begin{array}{ccc}
81 & c & 36 \\
85 & 42 & s
\end{array}\right)\left(\begin{array}{l}
20 \\
12 \\
15
\end{array}\right)=\binom{2724}{2744} \quad \text { B1 }
$$

(iii)

$$
\begin{aligned}
& 1620+12 c+540=2724 \\
& 12 c=564 \\
& c=47 \\
& 1700+504+15 s=2744 \\
& 15 s=540 \\
& s=36
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\mathbf{U} & =\left(\begin{array}{ll}
0.15 & 0.1
\end{array}\right) \mathbf{T} \\
& =\left(\begin{array}{ll}
0.15 & 0.1
\end{array}\right)\binom{2724}{2744} \\
& =(683) \longleftarrow \mathbf{A 1}
\end{aligned}
$$

(v) Elements of (0.15 0.1) represent the percentage of the total ticket sales that Gardens by the Bay had donated to the charity organization on Monday and Tuesday respectively.

$A B D$ and $B C D$ are two horizontal triangular plots of land.
$B D=48 \mathrm{~m}$ and $C D=86 \mathrm{~m}$.
Angle $B A D=40^{\circ}$ and angle $B D A=54^{\circ}$.
A is due north of B and $A D C$ is a straight line.
(a) Calculate
(i) $A D$,
(ii) the total area of the plots of land $A B C D$,
(iii) $B C$.
(b) Given that Z is a point on $C D$ such that $Z D=48 \mathrm{~m}$, calculate the bearing of B from Z.
(c) The base of a vertical mast is at B.

The greatest angle of elevation of the top of the mast from a point on $A C$ is 17.4°.
Calculate the angle of depression of C when viewed from the top of the mast. [3]

Solutions:

(a) (i)

$$
\begin{aligned}
& \angle A B D=180^{\circ}-54^{\circ}-40^{\circ}(\angle \text { sum of } \triangle) \\
&=86^{\circ} \\
& \frac{A D}{\sin 86^{\circ}}=\frac{48}{\sin 40^{\circ}} \longleftarrow \mathbf{~ M 1 ~} \\
& A D= \frac{48 \sin 86^{\circ}}{\sin 40^{\circ}} \\
& A D \approx 74.4928 \\
& A D=74.5 \mathrm{~m}(3 \text { s.f. }) \longleftarrow \longleftarrow
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\angle A B D & =180^{\circ}-54^{\circ}(\text { adj. } \angle \text { s on a str. line }) \\
& =126^{\circ} \\
\text { Total area } & =\frac{1}{2}(74.49)(48) \sin 54^{\circ}+\frac{1}{2}(48)(86) \sin 126^{\circ} \longleftarrow \quad \mathbf{M 1} \\
& \approx 3116.139 \\
& =3120 \mathrm{~m}^{2}(3 \text { s.f. }) \longleftarrow \mathbf{A 1}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& B C^{2}=48^{2}+86^{2}-2(48)(86) \cos 126^{\circ} \\
& B C \approx 120.6348 \\
& B C=121 \mathrm{~m}(3 \text { s.f. }) \longleftarrow \mathbf{A 1}
\end{aligned}
$$

(b)

$$
\left.\begin{array}{rl}
\angle A Z N & =40^{\circ}(\text { alt. } \angle \mathrm{s}, B A / / Z N) \\
\angle D B Z & =\angle D Z B \text { (base } \angle \mathrm{s} \text { of isos. } \Delta) \\
\angle D B Z & =\frac{180^{\circ}-126^{\circ}}{2}(\angle \text { sum of } \Delta) \\
& =27^{\circ}
\end{array}\right\}
$$

Bearing of B from $Z=360^{\circ}-40^{\circ}-27^{\circ}$ ($\angle \mathrm{s}$ at a pt.)

$$
=293^{\circ} \longleftarrow \quad \text { A1 }
$$

(c)

Let the point on $A C$ be Y and the top of the mast be T.
$\frac{1}{2} \times B Y \times A C=3116$
$\frac{1}{2} \times B Y \times(74.49+86)=3116 \longleftarrow \quad$ M1
$B Y=\frac{2 \times 3116}{160.49}$
$B Y \approx 38.83 \mathrm{~m}$
$\tan 17.4^{\circ}=\frac{B T}{38.83} \quad \longleftarrow \quad$ M1
$B T \approx 12.168584 \mathrm{~m}$

Let the angle of depression be θ.
$\tan \theta=\frac{12.17}{120.6}$

$\theta=5.8^{\circ}$ (1 d.p.)

5 (a) Simplify $\frac{16 a^{3} b^{4}}{7 c^{4}} \div \frac{4 a b^{2}}{21 c^{3}} \times \frac{27 a^{n+1}}{8 a^{n-2}}$.
(b) Simplify $\frac{2 u+18 v}{(u+4 v)^{2}-25 v^{2}}$.
(c) (i) Solve the inequality $\frac{6 x}{7}-\frac{3}{8} \leq x+2 \frac{1}{4}$.
(ii) Hence, state the smallest integer value of x such that $\frac{6 x}{7}-\frac{3}{8} \leq x+2 \frac{1}{4}$.[1]
(d) (i) Express as a single fraction in its simplest form $\frac{h}{4-h}-\frac{1}{h+3}$.
(ii) Solve the equation $\frac{h}{4-h}-\frac{1}{h+3}=\frac{4}{5}$.

Solutions:

(a)

$$
\begin{aligned}
\frac{16 a^{3} b^{4}}{7 c^{4}} \div \frac{4 a b^{2}}{21 c^{3}} \times \frac{27 a^{n+1}}{8 a^{n-2}} & =\frac{16 a^{3} b^{4}}{7 c^{4}} \times \frac{21 c^{3}}{4 a b^{2}} \times \frac{27 a^{3}}{8} \\
& =\frac{81 a^{5} b^{2}}{2 c} \longleftarrow \quad \text { A2 }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{2 u+18 v}{(u+4 v)^{2}-25 v^{2}} & =\frac{2 u+18 v}{(u+4 v)^{2}-(5 v)^{2}} \\
& =\frac{2 u+18 v}{(u+4 v+5 v)(u+4 v-5 v)} \\
& =\frac{2(u+9 v)}{(u+9 v)(u-v)} \longleftarrow \\
& =\frac{2}{u-v} \longleftarrow \mathbf{A 1}
\end{aligned}
$$

(c) (i)

$$
\begin{gathered}
\frac{6 x}{7}-\frac{3}{8} \leq x+2 \frac{1}{4} \\
-\frac{x}{7} \leq \frac{21}{8} \\
x \geq-\frac{147}{8} \\
x \geq-18 \frac{3}{8}
\end{gathered}
$$

(ii) The smallest integer value of x is -18 .
(d) (i)

$$
\begin{aligned}
\frac{h}{4-h}-\frac{1}{h+3} & =\frac{h(h+3)-(4-h)}{(4-h)(h+3)} \longleftarrow \mathbf{~ M 1 ~} \\
& =\frac{h^{2}+3 h-4+h}{(4-h)(h+3)} \\
& =\frac{h^{2}+4 h-4}{(4-h)(h+3)} \longleftarrow \mathbf{A 1}
\end{aligned}
$$

(ii)

$$
\begin{align*}
& \frac{h}{4-h}-\frac{1}{h+3}=\frac{4}{5} \\
& \frac{h^{2}+4 h-4}{(4-h)(h+3)}=\frac{4}{5} \\
& 5\left(h^{2}+4 h-4\right)=4\left(12+h-h^{2}\right) \quad \longleftarrow \\
& 5 h^{2}+20 h-20=48+4 h-4 h^{2} \\
& 9 h^{2}+16 h-68=0 \\
& (9 h+34)(h-2)=0 \quad \text { M1 } \\
& 9 h+34=0 \quad \text { or } \quad h-2=0 \\
& h=-3 \frac{7}{9}
\end{aligned} \quad \begin{aligned}
& \text { M1 } \\
&
\end{align*}
$$

6 Answer the whole of this question on a sheet of graph paper.
The variables x and y are connected by the equation

$$
y=x+\frac{12}{x}-5 .
$$

Some corresponding values of x and y are given in the table below.

x	1	1.5	2	3	4	5	6	7	8
y	8	p	3	2	2	2.4	3	3.7	4.5

(a) Calculate the value of p.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $0 \leq x \leq 8$.

Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for $0 \leq y \leq 8$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find the solutions of $x+\frac{12}{x}=8 \frac{1}{5}$.
(d) By drawing a tangent, find the gradient of the curve at $(6,3)$.
(e) By drawing a suitable straight line on your graph, solve $2 x^{2}-11 x+12=0$.

Solutions:

(a) $\quad p=4.5$ B1
(b) Correct scale B1

Correct plotting of points B1
Smooth curve B1
-1 : missing labels (x, y, O)
(c) $x+\frac{12}{x}=8 \frac{1}{5}$
$x+\frac{12}{x}-5=3 \frac{1}{5}$
Draw the line $y=3 \frac{1}{5}$.
$x=1.9 \quad$ or $\quad x=6.3 \quad$ B1 (with correct line drawn)
(d)

$$
\begin{aligned}
& \text { Draw a tangent at }(6,3) . \quad \longleftarrow \quad \text { B1 } \\
& \begin{aligned}
\text { gradient } & =\frac{4.3-1}{8-3} \longleftarrow \quad \text { M1 } \\
& =0.660 \quad(3 \text { s.f. })
\end{aligned}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& 2 x^{2}-11 x+12=0 \\
& 2 x-11+\frac{12}{x}=0 \\
& 2 x+\frac{12}{x}-11+\frac{12}{x}-x+6=-x+6 \\
& x+\frac{12}{x}-5=6-x \\
& \text { Draw the line } y=6-x . \quad \text { B1 } \\
& x=1.5 \text { or } x=4 \quad \text { B1 (with correct line drawn) }
\end{aligned}
$$

7 (a) A is a point $(-4,1), \overrightarrow{A B}=\binom{5}{4}$ and $\overrightarrow{A C}=\binom{-3}{8}$.
(i) Write down the column vector $\overrightarrow{B C}$.
(ii) Find $|\overrightarrow{B C}|$.
(iii) P is a point such that $\overrightarrow{B P}=2 \overrightarrow{P C}$.

Find the column vector $\overrightarrow{A P}$.
(iv) Given $\overrightarrow{O Q}=\binom{\frac{2}{3}}{11 \frac{2}{3}}$.

What type of quadrilateral is $A P Q B$?
Justify your answer using vectors.
(b)

$O A B C$ is a parallelogram
$\overrightarrow{O A}=\mathbf{p}, \overrightarrow{O C}=\mathbf{q}$ and $\overrightarrow{C T}=4 \overrightarrow{A C}$.
$A C T, B R T$ and $O C R$ are straight lines.
(i) Express each of the following, as simply as possible, in terms of \mathbf{p} and/or \mathbf{q},
(a) $\overrightarrow{O B}$,
(b) $\overrightarrow{O T}$,
(c) $\overrightarrow{B T}$.
(ii) Given that $\overrightarrow{B R}=\frac{4}{5} \mathbf{q}-\mathbf{p}$, find k if $\overrightarrow{O C}=k \overrightarrow{C R}$.
(iii) Find the value of $\frac{\text { area of } \triangle B C R}{\text { area of } \triangle O C T}$.

Solutions:

7
(a) (i)

$$
\begin{aligned}
\overrightarrow{B C} & =\overrightarrow{B A}+\overrightarrow{A C} \\
& =\binom{-5}{-4}+\binom{-3}{8} \\
& =\binom{-8}{4} \longleftarrow \quad \text { B1 }
\end{aligned}
$$

(ii)

$$
\begin{array}{rlr}
|\overrightarrow{B C}| & =\sqrt{(-8)^{2}+4^{2}} \quad \mathbf{M 1} \\
& =\sqrt{80} \\
& =8.94 \text { units (3 s.f.) } \longleftarrow \quad \text { A1 }
\end{array}
$$

(iii)

$$
\begin{aligned}
& \overrightarrow{B P}=2 \overrightarrow{P C} \\
& \overrightarrow{B A}+\overrightarrow{A P}=2(\overrightarrow{P A}+\overrightarrow{A C}) \\
& \overrightarrow{A P}-\overrightarrow{A B}=2(\overrightarrow{A C}-\overrightarrow{A P}) \\
& \overrightarrow{A P}-\overrightarrow{A B}=2 \overrightarrow{A C}-2 \overrightarrow{A P} \\
& 3 \overrightarrow{A P}=2 \overrightarrow{A C}+\overrightarrow{A B} \\
& =2\binom{-3}{8}+\binom{5}{4} \\
& =\binom{-1}{20} \\
& \overrightarrow{A P}=\frac{1}{3}\binom{-1}{20} \\
& =\binom{\frac{-1}{3}}{6 \frac{2}{3}} \longleftarrow \quad \text { A1 }
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{A P} & =\overrightarrow{A B}+\overrightarrow{B P} \\
& =\overrightarrow{A B}+\frac{2}{3} \overrightarrow{B C} \\
& =\binom{5}{4}+\frac{2}{3}\binom{-8}{4} \\
& =\binom{5}{4}+\binom{-5 \frac{1}{3}}{2 \frac{2}{3}} \\
& =\binom{\frac{-1}{3}}{6 \frac{2}{3}}
\end{aligned}
$$

7
(a) (iv)

$$
\begin{aligned}
& \overrightarrow{A B}=\binom{5}{4} \\
& \overrightarrow{O B}-\overrightarrow{O A}=\binom{5}{4} \\
& \overrightarrow{O B}=\binom{5}{4}+\binom{-4}{1} \\
& =\binom{1}{5} \\
& \overrightarrow{B Q}=\overrightarrow{O Q}-\overrightarrow{O B} \\
& =\binom{\frac{2}{3}}{11 \frac{2}{3}}-\binom{1}{5} \\
& =\binom{\frac{-1}{3}}{6 \frac{2}{3}} \\
& \therefore \overrightarrow{A P}=\overrightarrow{B Q} \\
& \overrightarrow{P Q}=\overrightarrow{P A}+\overrightarrow{A B}+\overrightarrow{B Q} \\
& =\binom{\frac{1}{3}}{-6 \frac{2}{3}}+\binom{5}{4}+\binom{\frac{-1}{3}}{6 \frac{2}{3}} \\
& =\binom{5}{4} \\
& \therefore \overrightarrow{A B}=\overrightarrow{P Q} \\
& |\overrightarrow{A P}|=|\overrightarrow{B Q}|=\sqrt{\left(\frac{-1}{3}\right)^{2}+\left(6 \frac{2}{3}\right)^{2}} \\
& =\sqrt{\frac{401}{9}} \\
& =6.67 \text { units (3 s.f) } \\
& |\overrightarrow{A B}|=|\overrightarrow{P Q}|=\sqrt{(5)^{2}+(4)^{2}} \\
& =\sqrt{41} \\
& =6.40 \text { units (} 3 \text { s.f) }
\end{aligned}
$$

Thus, $A P Q B$ is a parallelogram.
$7 \quad$ (b) (i) (a)

$$
\begin{aligned}
\overrightarrow{O B} & =\overrightarrow{O A}+\overrightarrow{A B} \\
& =\overrightarrow{O A}+\overrightarrow{O C} \\
& =\underset{\sim}{p}+\underset{\sim}{q} \longleftarrow \quad \mathbf{B 1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A} \\
& =\underset{\sim}{q}-\underset{\sim}{p} \\
\overrightarrow{O T} & =\overrightarrow{O A}+\overrightarrow{A T} \\
& =\underset{\sim}{p}+5 \overrightarrow{A C} \\
& =\underset{\sim}{p}+5(\underset{\sim}{q}-\underset{\sim}{p}) \\
& =5 \underset{\sim}{q}-4 \underset{\sim}{p}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\overrightarrow{B T} & =\overrightarrow{O T}-\overrightarrow{O B} \\
& =5 \underset{\sim}{q}-4 \underset{\sim}{p}-\underset{\sim}{p}-\underset{\sim}{q} \\
& =4 \underset{\sim}{q}-5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \overrightarrow{B R}=\frac{4}{5} \underset{\sim}{q}-\underset{\sim}{p} \\
& \overrightarrow{O R}-\overrightarrow{O B}=\frac{4}{5} \underset{\sim}{q-\underset{\sim}{p}} \\
& \overrightarrow{O R}=\frac{4}{5} \underset{\sim}{q}-\underset{\sim}{p}+\underset{\sim}{p}+\underset{\sim}{q} \\
& \overrightarrow{O R}=\frac{9}{5} \underset{\sim}{q} \\
& \therefore \overrightarrow{O C}=\frac{5}{4} \overrightarrow{C R} \\
& \quad k=1 \frac{1}{4} \longleftarrow \quad \text { A1 }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{B R}=\frac{4}{5} \underset{\sim}{q}-\underset{\sim}{p} \\
\\
=\frac{1}{5}(4 \underset{\sim}{q}-5 \underset{\sim}{p}) \\
=\frac{1}{5} \overrightarrow{B T}
\end{array} \\
& \begin{aligned}
\frac{\text { area of } \Delta O C T}{\text { area of } \triangle C T R} & =\frac{O C}{C R} \\
& =\frac{5}{4}
\end{aligned} \\
& \begin{aligned}
& \text { area of } \Delta B C R \\
& \text { area of } \triangle C T R=\frac{R B}{T R} \\
&=\frac{1}{4}
\end{aligned} \\
& \therefore \frac{\text { area of } \Delta B C R}{\text { area of } \triangle O C T}=\frac{1}{5}
\end{aligned}
$$

(a)

The line $D F$ is a diameter of the circle $B D E F$ with centre O. $A B C$ is a tangent to the circle at B.
X is the point of intersection of $D F$ and $B E$.
Angle $D B E=30^{\circ}$ and angle $B E F=58^{\circ}$.
(i) Find
(a) angle $F B O$,
(b) angle $A B F$,
(c) angle $D X E$.
(ii) Given that the radius of the circle is 140 cm , find the area of triangle $B D F$.
(b)

In the diagram, $P O R$ is a quadrant of a circle with radius 6 cm .
$O R$ and $P Q$ are parallel.
$Q R$ is an arc of a circle with centre P.
Calculate the area and the perimeter of the shaded region.

Solutions:

(a)(i)(a)

$$
\begin{aligned}
\angle F O B & =2 \times 58^{\circ}(\angle \text { at centre }=2 \angle \text { at circumference }) \longleftarrow \\
& =116^{\circ} \\
\angle O F B & =\angle O B F \quad \text { (base } \angle \text { s of isos. } \Delta) \\
\angle F B O & =\frac{180^{\circ}-116^{\circ}}{2}(\angle \text { sum of } \Delta) \\
& =32^{\circ} \longleftarrow \mathrm{A} 1
\end{aligned}
$$

(a)(i)(b) $\angle O B A=90^{\circ}(\tan \perp \mathrm{rad})$
$\angle A B F=90^{\circ}-32^{\circ}$ (complementary $\angle \mathrm{s}$)

$$
=58^{\circ} \quad \longleftarrow \quad \text { A1 }
$$

Alternative working:
$\angle A B F=58^{\circ} \quad(\angle \mathrm{s}$ in alt. segment $) \longleftarrow \quad$ B1
(a)(i)(c)
$\angle D F E=30^{\circ}(\angle \mathrm{s}$ in the same segment $)$

$$
\begin{aligned}
\angle D X E & =30^{\circ}+58^{\circ}(\text { ext. } \angle \text { of } \triangle) \\
& =88^{\circ} \longleftarrow \quad \mathbf{A 1}
\end{aligned}
$$

(a)(ii)

$$
\begin{aligned}
& \angle B D F=58^{\circ}(\angle \mathrm{s} \text { in the same segment }) \\
& \angle D B F=90^{\circ} \text { (rt. } \angle \text { in a semicircle) } \\
& \text { In } \triangle B D F, \cos 58^{\circ}=\frac{B D}{D F} \quad \longleftarrow \mathbf{M 1} \longrightarrow \quad \sin 58^{\circ}=\frac{B F}{D F} \\
& B D=28 \cos 58^{\circ} \\
& \approx 14.84 \mathrm{~cm} \\
& B F=28 \sin 58^{\circ} \\
& \approx 23.75 \mathrm{~cm} \\
& \text { Area of } \triangle B D F=\frac{1}{2}(14.84)(28) \sin 58^{\circ} \quad \text { or } \quad \text { Area of } \triangle B D F=\frac{1}{2}(14.84)(23.75) \\
& =176 \mathrm{~cm}^{2}(3 \text { s.f. }) \quad \text { - A1 } \longrightarrow \quad=176 \mathrm{~cm}^{2} \text { (3 s.f.) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \angle P R O=\angle R P O \quad(\text { base } \angle \mathrm{s} \text { of isos. } \Delta) \\
& \begin{aligned}
\angle P R O & =\frac{\pi-\frac{\pi}{2}}{2}(\angle \text { sum of } \Delta) \\
& =\frac{\pi}{4}
\end{aligned} \\
& \begin{aligned}
\angle R P Q & =\frac{\pi}{4}(\text { alt. } \angle \mathrm{s}, P Q / / O R) \longleftarrow \\
P R & =\sqrt{6^{2}+6^{2}} \longleftarrow \\
\quad & =\sqrt{72} \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Area of shaded region
$=\frac{1}{2}(\sqrt{72})^{2}\left(\frac{\pi}{4}\right)-\frac{1}{2}(6)^{2}\left(\frac{\pi}{2}-\sin \frac{\pi}{2}\right)$
$=18 \mathrm{~cm}^{2}$
Perimeter of shaded region

$$
\begin{aligned}
& =\sqrt{72}+(\sqrt{72})\left(\frac{\pi}{4}\right)+(6)\left(\frac{\pi}{2}\right) \\
& =24.6 \mathrm{~cm} \quad(3 \text { s.f. })
\end{aligned}
$$

9 (a) The ages of 50 employees in Company V is shown in the table below.

Age in years	$24<x \leq 28$	$28<x \leq 32$	$32<x \leq 36$	$36<x \leq 40$	$40<x \leq 44$
Number of employees	7	10	13	8	p

(i) State the value of p.
(ii) Hence, calculate the
(a) mean age of the employees,
(b) standard deviation.
(iii) The age distribution of 50 employees in Company W is summarized below.

Mean	29.6 years
Standard deviation	7.13 years

Make two comparisons between the ages of employees in both companies.
(b) A box contains 5 red flags and 8 yellow flags.

Two flags are taken from the bag at random without replacement.
(i) Draw a tree diagram to show the probabilities of the possible outcomes.
(ii) Find, as a fraction in its simplest form, the probability that
(a) the first flag is red and the second flag is yellow,
(b) both flags are the same colour,
(c) at least one flag is yellow.

Solutions:

(a) (i)

```
p=12 \longleftarrow B1
```

(ii) (a)

$$
\begin{aligned}
\text { Mean } & =\frac{1732}{50} \\
& =34.64 \text { years } \longleftarrow \quad \text { A1 }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Standard deviation } & =\sqrt{\frac{61480}{50}-34.64^{2}} \\
& =5.45 \text { years (3 s.f.) } \longleftarrow \quad \mathbf{A 1}
\end{aligned}
$$

(a) (iii) The employees in company W are younger than those in company V since the mean age of employees in company W is lower than that of company V.

The spread of ages of employees in company W is wider since the standard deviation of ages of employees in company W is larger than that of company V.
(b) (i)
[B1] [B1]
First flag Second flag
$\left(\frac{5}{13}\right)$ Red
(ii) (a)

$$
\begin{aligned}
\text { Probability } & =\frac{5}{13} \times \frac{2}{3} \\
& =\frac{10}{39} \longleftarrow \quad \text { A1 }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Probability } & =\left(\frac{5}{13} \times \frac{1}{3}\right)+\left(\frac{8}{13} \times \frac{7}{12}\right) \\
& =\frac{19}{39} \longleftarrow \mathbf{A 1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Probability } & =1-\left(\frac{5}{13} \times \frac{1}{3}\right) \\
& =\frac{34}{39} \longleftarrow \quad \text { A1 }
\end{aligned}
$$

10

Class $4 V$ has chosen the 'Go Green' theme for their Social Innovation Project. The diagram above shows the recycling bins structure that they have built.

The whole structure consists of 3 open identical cylindrical plastic containers fit into a wooden cuboid crate. All the containers and the crate are of negligible thickness.

3 circles had to be cut from the top of the crate to fit the containers.
Each plastic container is placed in the crate such that they are 20 cm away from the sides of the crate, $A D H E$ and $B C G F$, as well as 20 cm apart from each other.
Each plastic container touches the base and sides, $A B F E$ and $D C G H$, of the crate too. The radius and height of the plastic container are 30 cm and 120 cm respectively.
(a) Write down the dimensions of the crate.
(b) Calculate the
(i) exact total surface area of the crate that was cut out,
(ii) exact total internal surface area of each cylindrical container,
(iii) total exposed external surface area of the crate.
(c) The class would like to paint all the exposed external surfaces of the crate yellow. One tin of paint can cover an area of $3.75 \mathrm{~m}^{2}$. How many tins do they need to purchase? Justify your answer.
(d) If each cylindrical container is filled to the brim, what is the maximum volume of recyclables that can be collected by the class in a single collection?

Solutions:

(a) Dimensions are 260 cm by 60 cm by 120 cm . B1
(b) (i)

$$
\begin{aligned}
\text { Area that was cut out } & =3 \times \pi \times 30^{2} \\
& =2700 \pi \mathrm{~cm}^{2} \quad \longleftarrow \quad \text { A1 }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Internal surface area of cylinder } & =\left(\pi \times 30^{2}\right)+(2 \pi \times 30 \times 120) \quad \text { M1 } \\
& =900 \pi+7200 \pi \\
& =8100 \pi \mathrm{~cm}^{2} \longleftarrow \quad \text { A1 }
\end{aligned}
$$

(iii) Total exposed surface area of the crate
$=2(260 \times 120)+2(60 \times 120)+(260 \times 60-2700 \pi) \longleftarrow \quad$ M1
$=62400+14400+15600-2700 \pi$
$=92400-2700 \pi$
≈ 83917.7
$=83900 \mathrm{~cm}^{2} \quad(3$ s.f. $) \longleftarrow \quad$ A1
(c)

(d)

End of Paper

08	

The total of the marks for this paper is 80 .
 If the degree of accuracy is not speofied in the question, and if the answer is not exact, give the answer to
inree significant figures. Give answers in degrees to one decimal phaco.
For $\boldsymbol{\pi}$, une either your calculator valioe or 3.142 , unless the question requires the answer in Omission of essential working wili result in loss of marks.
Catculators shouid be used where appropriate.
If the degree of accuracy is not tspecified in the question,
If working is needed for any question it must be stown with the answer.
Do not use stapies, paper clips, highlighters, glue or correction fuid.
Answer all questions.
Wrte your name, register number and class on all the work you hand in.
Wrthe in dark blue or black pen.
You majy use a apencif for rany diagrams or graphs.
Do not use stapien, poper clips, nighlightera, plue or correction fluid.
LSะIS SNOLLOMALSNI 353H1 av3

b laded
SOL

NOI \forall NIW $\forall X \exists$ d

Name:	Register No.:	Class:

Cratent Orele gethoi

 (a) Find the value of n.

\equiv
$\mid \tau)_{2} \operatorname{tar}+\cdots+\ldots \ldots+\ldots . . .$.

 7

td unW py araid live 01

(ii)

nops , the wistal
sano tind
Id uman utah intoc

-

\section*{}
 घथाN

穴 [1]

The cumulative frequency curve below shows the distribution of the marks scored by
students in School X for a Mathematios exam.

ns in School X for a Mathematios exam.

[1]

$[z]$

 $|z|$

[1] $\quad 1 . .$.

[1] -
p pur $<$ jo sump uq aspd 8uplis sul ssadiag (v)

14

tano unil

Answer .-...........................12]		
	-	
Crucent Out scheel	2010 Pramm Sc lutipl	-

		ниe нasmo
*		
	\cdots	
		(q)

五

 If she takes the aled, the probability that she will reach the castle is $\frac{4}{5}$. If the rides the horse, the protubility that she will reach the castie is $\frac{1}{2}$. The probability that Anna take the sled is $\frac{5}{8}$ and the probability that she walks is $\frac{1}{6}$. Anna can either ride the horse, take the sled or walk to the toe caatie.

4sno unil

$\langle z|$ รวานйแ
the total time he took to run along the perimeter of the town.
Leave your unswers in hours and minutes.

uмory are saңp posuquin asiчL. 61

josó uanıl

[z] …
$D B=B E$ and $A B$ is the

20no wanl
[z]

Jano unhl
The number of marks is given in brackets I I at the end of each question or part question.
The total of the marks for this paper is 100 . At the end of the examination, fasten all your work securely together,
For π, use either your calculator value or 3,142 , uniess the question requires the answer in terms
of π. anawer to three significant figures. Give answers in degrees to one decimal place. If the degree of scouracy is not specified in the question, and if the answer is not exact, give the The use of an approved scientific caiculator is expected, where appropriate. If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marke.
Answer all the questions.
You may use an HB pencil for any diagrams or graphs,
Do not use staples, paper clips, highighters, glue or cor
Write your name, register number and class on all the work you hand in
Write in dark blue or black pen.
READ THESE INSTRUCTIONS FIRST
Graph Paper (1 sheet)
Mark Sheet
Additional Materials:
2 leded

 CRESCENT GIRL.S' SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATION

Name:	Register No.:	Class:

[^2]
Explain why ahe could be wrong.

(v)

The heights of 180 girls from School X is shown in the table below.
guopmanb of II" дамะиу
픈

Any extra hours put in by the clerka are considered overtime. and 4 normal hours on Saturdays. Miss Chong and Miss Nomini are clerks in a food factory in Jurong.
Thoy are paid according to normal and overtime rates.
Based an company policy, all clerks are required to work $\$$ normal ho

$$
t
$$

		(10)	
	ד\% $z / 9=8 \mathrm{~g}$ точ мочя	(1)	

A solid pyramid with nquare base $A B C D$ and heipht $O V, 6 \mathrm{~cm}$, is placed in the bowL
The points V, A, B, C and D touch the inner surface of the hemispherical bowl.

'H jo sสuว 비 'pula (q)
 Angle $D T C=\frac{\pi}{3}$ radians The tangent at D meets $B C$ produced at T. The line $A D$ is a diameter of the larger circle $A B C D$ with centre O
$A C$ is a diameter of the smaller circle $O A C$.

刃 Ξ

$$
\Xi \equiv \Xi \Xi \Xi \Xi
$$ into adulthood, it may jeopardise the person's work, family and relationships." said addiction, is that a person can get far too immersed in the virtual world and, as a

result, not realise he or she has a problem. "If the gaming addiction persists of Mental Health (IMH), said the danger of garning, compared with other forms of Dr Thomas Lee, head of the addiction medicine department at the Institute
 the word 'stop' may mean they have to do something boring like homework... children take up another "good and fun" activity like sports to replace the habit,
he said. "Many parents simply tell their children to stop playing, but to the child,
 Mr Daniel Koh of counselling practica Insights Mind Centre has this advice aside $\$ 10$ million to fund cyber-wellness projects over the next five years has prompted the Government to take action. In August, it announced it had set while more than haif quarrelled with their parents over their habit. The problem Alarmingly, 7 per cent of all students polled had shoplifted games or stolen money
to pay for them And 24 per cent of addiction.
release on Tuesday of Singapore's first comprehenisive study of video game prominently. She declined to give further details. The new research follows the Hyekyung said school and family-related stress is one factor likely to feature nearly 9 per cent of youngsters are addicted to computer gaming, and how to help
them. National University of Singapore (NUS) Assistant Professor Choo Kong Polytechnic University. They are carrying out further studies to find out why the Academy of Medicine Singapore, and was carried out by researchers from
NUS, the National Institute of Education (NIE), Iowa State University and The study of 3,000 students aged nine to 14 was published in the Annals of worrying number of young Singaporeans hooked on video games, researchers
said yesterday. STRESS caused by academic and family pressure could be linked to the

SAZY ХスASNV IO GNI

Answeris chart is misicading Explain one way in which the pie chart is mialeading i Je|

2 The pie chart shows the sales for 4 different brands of handphones.

(q)

Answer (a)
Ax
Amswer all questions

E

$$
80^{\circ} 2 \times 6^{\circ} \angle 1+85^{\circ}(2 f)
$$

$$
\sqrt[3]{7758}, 170 \times 2
$$

[^3]a

 (b) A from B

 oops 48

[1] ***................... $=b$ (v) Ladsuy

The graph shows the volume of water (η) in a water bucket for the first 10 minutes.
The bucket is filled with water at a constand all the water is poured out instantly.
When the bucket in full, the bucket tilts and all
The bucket then continues to be filled with water.

In Singupore, giant tipping water buckets are one of the fun features in a water
playground.

[2]
Answer (b) (ii)[1]
(c) Wayne claims that he can draw a triangle $A C D$ with sides $A C=6.5 \mathrm{~cm}$,
$C D=5 \mathrm{~cm}$ and $A D=12 \mathrm{~cm}$. Justify whether you agree with his claim.
Answer (c) ..
sactuy

side $4 k^{\circ} \mathrm{cm}$. The diagram below shows a semicircle and 2 quadrants inscribed in a squarc of
in $\tau^{\text {w }}$

- purg rul -
(ompazas

uIf $=$ DXg ค

*

Cumulative
Frequency

It is given that $\overrightarrow{P Q}=\binom{4}{1}$. T lies on $S R$ produced and X lies on $Q R$ produced. The diagram ahows a parallelogram $P Q R S$ not drawn to acule.
Q and S are the points $(6,2)$ and $(4,4)$ respectively.
(a) The cumulative frequency curve below shows the distribution of their lengths

［2］			
［1］			
［z］			
［1］	＊jo sunar u＊\％ssarcha		
［1］			
f2l			
4	DL	b	L
UL	25	II	9
05	ti	6	5
Z¢	02	L	\dagger
81	01	5	ε
8	\％	E	2
2	τ	1	1
		sump jo дорumn	

Thic tuble below shows the row number，the number of terms，the first term and the
tant term for each row．

[^4]玉 ت 제 Ξ 区

oe

Here is some information about a tank used to store gaseous chemicall.

(1)	$\frac{1}{5}$
$4(0)$	$h=10$
7(a)(a)(a)	31 cm
(ta)(0) (b)	10 cm
(a) (0) (c)	27,5\%
(a)(i)	The median would be 3 em niore. There would be no chunge in tho interquartile range
(6) 0	$\frac{13}{25}$
(b) ${ }^{(i i)}$	$\frac{1872}{3725}$
M(a)	13,98
(2)	221 is odd while the numbers in the column are even.
$3(\mathrm{c})$	$M_{\text {s }}=2 n-1$
\%(d)($)^{\text {(}}$	$L_{\text {ax-1 }}=2(n-1)^{2}$
च(d) ${ }^{\text {(i) }}$	$2(n t-1)^{2}+2$
(e)	$\begin{aligned} & L_{\mathrm{0}}=2(15)^{2}=450 \\ & F_{11}=2(15-1)^{2}+2=394 \end{aligned}$
(a)(0)	$\begin{aligned} \angle A B D & =\tan ^{-1}\left(\frac{36}{60}\right) \\ & =30.963^{\circ} \\ \angle C B D & =142.5^{\circ}-30.963^{\circ}-90^{\circ} \\ & =21.536^{\circ} \\ & =21.5^{\circ} \text { (shown) } \end{aligned}$
4n)(ii)	$301{ }^{\circ}$
atho)	By pythagoras' theorem, 70.0 km
(b) (b)	48.4 km
(c)	$\theta=0.9{ }^{\circ}$
O(a)	381 cm
10(b)	17 tins
th(c)	$\begin{aligned} & \text { Constant }=4.3 \times 19=81.7 \\ & \text { Volumne of tank } \\ & =\frac{4}{3} \pi(0.525)^{3}+\pi(0.525)^{2}(3.81) \\ & =1.243 .06875 \pi \\ & \text { Let Pressure be } P \\ & P(1.24306875 \pi)=81.7 \\ & P=20.9 \\ & \text { Since the calculated presure is less than 25, the tank is able to } \\ & \text { withtatand 10 kg of gnteous chemical } X \text {. } \end{aligned}$

Answer all the questions.
1 (a) Calculate $7 \frac{1}{3}-\sqrt[3]{\frac{5.25+13.5^{2}}{\sin 28^{\circ}}}$.
Write down the first six digits on your calculator display.
(b) Write your answer to part (a) correct to 2 significant figures.

> Answer (a)
(b)

2 (a) Arrange the following numbers in ascending order:

$$
\frac{1}{20}, \quad 5 \frac{1}{4} \%, \quad 5.22 \times 10^{-3}, \quad 0.0 .
$$

> Answer (a)
(b) State which of the following number(s) is / are irrational:
$0.3, \quad \frac{\pi}{5}, \quad \sqrt{7} \times 2 \sqrt{7}, \quad 3 \sqrt{3}$.

Answer (b)

3 The length of each side of a cube is increased by 40%.
Find the percentage increase in the total surface area of the cube.

4 Given that $(2 x-5)(x+a)=2 x^{2}+b x-5$ for all values of x, find the values of a and b.

$$
\text { Answer } a=\ldots \ldots \ldots \ldots ., b=
$$

5 Two numbers p and q, written as the products of their prime factors, are $p=2^{2} \times 3^{5} \times 5^{6}$ and $q=2^{2} \times 3^{3}$.
(a) Find the HCF of p and q.
(b) Find the smallest positive integer k such that $(p \times q \times k)$ is a perfect cube.

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 1916 London time. The flight arrived at Singapore on Tuesday at 1551 Singapore time. Calculate how long the flight took, giving your answer in hours and minutes.

7 The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres, of the micro-organism, giving your answer in standard form.

Answer

mm^{2}

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016.

Explain why the graph is misleading.
Answer \qquad
\qquad
\qquad
\qquad

9 Two of the interior angles of a hexagon are $2 x^{\circ}$ and $(5 x-200)^{\circ}$. The remaining interior angles are 90° each. By forming an equation in x, find the value of x.

Answer $x=$

10 In the diagram, the points B, C, D and E lie on a circle with centre $O . P Q$ is a tangent to the circle at $D . A B C$ and $A E O D$ are straight lines. $\angle O C B=54^{\circ}$ and $\angle O A B=30^{\circ}$.

Find, giving reasons for each answer,
(a) $\angle A D C$,
(b) $\angle C D Q$,
(c) $\angle A C E$,
(d) $\angle C B E$.
\qquad 0
(b) \qquad 0
(c) \qquad。
(d) \qquad -
$11 A B C D$ is a quadrilateral. $A B C$ and $C D E$ are equilateral triangles. Using a pair of congruent triangles, show that $A D=B E$. State your reasons clearly.

Answer In triangles \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12 Janet has $\$ 50000$ to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months.
Calculate the amount of interest she will get at the end of 3 years.

13 (a) Given that $\left(\frac{1}{4}\right)^{p} \times 8=1$, find the value of p.
(b) Simplify $\left(\frac{2^{\gamma+1} \sqrt{2}}{2^{\gamma}}\right)^{-2}$.

Answer (a) $p=$

(b)

Page 9 of 18

14 The equations of the three graphs shown below are in the form $y=n+x^{n-1}$.
State the value of n for each of the following graph.
(a)

(b)

(c)

Answer (a) $n=$
(b) $n=$
(c) $n=$

15 In the answer space, sketch the graph of $y=5-(x+1)^{2}$, indicate clearly the turning point and the intercepts on the x and y-axes (if any).

Answer

16 (a) $\mathrm{\varepsilon}=\{x: x$ is an integer and $1 \leq x<24\}$ $A=\{x: x$ is a perfect square $\}$
$B=\{x: x$ is a factor of the number 24$\}$
$C=\{x: x+1$ is divisible by 6$\}$
(i) List the elements in $A \cap C$.
(ii) Find $n\left(B^{\prime} \cup C\right)$.
\qquad
(ii)
(b) State the set notation of the shaded region in following Venn Diagram.

17 Given that point $A(4,2)$ and $\overrightarrow{A C}=\binom{-7}{3}$.
(a) Find $|\overrightarrow{C A}|$.

Answer (a) \qquad units
(b) The point P lies on $C A$ such that $\overrightarrow{P A}=k \overrightarrow{C A}$.
(i) Show that $\overrightarrow{O P}=\binom{4-7 k}{2+3 k}$.

Answer (b)(i)
(ii) Given that point P lies on the y-axis, find the coordinates of P.

18 Consider the number patterns in the table below. The first three terms of each column have been given.

Row, n	S	T	U
1	4	16	16
2	8	32	30
3	12	48	44
7	p	q	r
n			
n			

(a) Find values of p, q and r.
(b) Write down the equation connecting S and T,
(c) Write down the equation connecting U and n.
(d) Betty said that 256 can be found in column U.

Write whether you agree or disagree with Betty. Give reason(s) for your answer.
Answer
(a) $p=$
.
$q=$
,$r=$
[1]
(b) $\ldots \ldots \ldots$
(c)
(d) I \qquad with Betty. This is because \qquad
\qquad
\qquad
\qquad
\qquad

19 The frequency table shows the number of countries that a group of students had visited.

Number of countries	0	1	2	3	4
Number of students	2	8	6	x	4

(a) Given that the mode is 1 , state the largest possible value of x.
(b) Given that the median number of countries visited is 2 , find the largest possible value of x.
(c) Given that the mean number of countries is more than 2 , find the smallest possible value of x.

Answer (a) $x=$
(b) $x=$
(c) $x=$

20 (a) The air resistance, R, is directly proportional to the square of the speed, V, of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.
(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?
\qquad newtons [2]
(b) \qquad men [2]

21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.
(b) Calculate
(i) the total distance travelled by the train in the first 3 minutes,
(ii) the average speed of the train, in km / h, in the first 3 minutes.

(ii)
km / h [2]
(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c)
Distance (m)

$22 \quad P$ and R are points on the x-axis. $T Q R$ is a straight line parallel to the y-axis. Area of $\triangle P Q R=30$ units 2.

(a) Find the coordinates of
(i) point R,
(ii) point P.
(b) Find the length of $P Q$.
(c) Find $\cos \angle P Q T$, giving your answer as a fraction.
(d) Given that $P R=T R$, find the equation of $P T$.

Answer (a)(i) $R(\ldots \ldots . ., \ldots \ldots .$.$) [$
(ii) $P(\ldots \ldots . ., \ldots \ldots .$.
(b) \qquad units [1]
(c)
(d)

23 Five discs numbered $1,3,4,6$ and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.
(a) Complete the following probability tree diagram.

Answer (a)

(b) Find
(i) the probability that one disc is odd and the other is even,
(ii) the probability that both numbers drawn are smaller than 4 .
(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.
\qquad
Answer (b)(i)
(ii)
(c)

24 The diagram below shows a horizontal field $A B C$.
A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m , show all the constructions clearly.
(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
(i) By construction, mark and label clearly the position of the lamp post L. [1]
(ii) Measure and write down the bearing of the lamp post L from point C.
(b) A gate, G, is located along the path of $B C$, equidistant from B and C. By construction, mark and label clearly the position of the gate G.
(c) A circular flower bed is built such that it touches each side of the field at one point.
(i) By constructing two angle bisectors, draw the circular flower bed and label its centre O.
(ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(ii)
(c)(ii)

Class	Index Number

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2016
 Secondary 4

Thursday
4 August 2016

MATHEMATICS
Paper 1 (Solutions)

4048/01 2 h

INSTRUCTIONS TO CANDIDATES

Write your name, class and index number on the question paper.
Write in dark blue or black ink on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answer in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

Mathematical Formulae

Compound Interest

Mensuration

Trigonometry

Statistics

$$
\text { Total amount }=p\left(1+\frac{\mathrm{r}}{100}\right)^{n}
$$

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of a triangle }=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A
\end{aligned}
$$

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 (a) Calculate $7 \frac{1}{3}-\sqrt{\frac{5.25+13.5^{2}}{\sin 28^{2}}}$.
Write down the first six digits on your calculator display.
(b) Write your answer to part (a) correct to 2 significant figures.
Answer (a)
(b) $\quad-0.031 \quad$ B1

2 (a) Arrange the following numbers in ascending order:
$\frac{1}{20}, \quad 5 \frac{1}{4} \%$,
5.22×10^{-3},
$0 . \ddot{0} \dot{5}$
0.050 .0525
0.00522
0.050505

Answer (a) $5.22 \times 10^{-3}, \frac{1}{20}, 0 . \ddot{0}, 5 \frac{1}{4} \%$ B1
(b) State which of the following number(s) is / are irrational:

$$
0 . \dot{3}, \quad \frac{\pi}{5}, \quad \sqrt{7} \times 2 \sqrt{7}, \quad 3 \sqrt{3} .
$$

Answer (b)

3 The length of each side of a cube is increased by 40%.
Find the percentage increase in the total surface area of the cube.

$$
\begin{aligned}
\% \text { increase in surface area } & =\frac{6(1.4 l)^{2}-6 l^{2}}{6 l^{2}} \times 100 \% \\
& =\frac{11.76-6}{6} \times 100 \% \\
& =96 \%
\end{aligned}
$$

4 Given that $(2 x-5)(x+a)=2 x^{2}+b x-5$ for all values of x, find the values of a and b.

$$
\left.\begin{gathered}
2 x^{2}+2 a x-5 x-5 a=2 x^{2}+b x-5 \\
-5 a=-5 \\
a=1
\end{gathered} \right\rvert\, \begin{aligned}
& 2 a-5=b \\
& b=2(1)-5 \\
&=-3
\end{aligned}
$$

B1
B1
Answer $a=1 \ldots \ldots \ldots \ldots, b=\ldots \ldots \ldots \ldots$. [2]

5 Two numbers p and q, written as the products of their prime factors, are $p=2^{2} \times 3^{5} \times 5^{6}$ and $q=2^{2} \times 3^{3}$.
(a) Find the HCF of p and q.
(b) Find the smallest positive integer k such that $(p \times q \times k)$ is a perfect cube.
(a) $\mathrm{HCF}=2^{2} \times 3^{3}=108$
(b) $(p \times q \times k)=2^{4} \times 3^{5} \times 5^{6} \times k$

$$
\begin{aligned}
k & =2^{2} \times 3 \\
& =12
\end{aligned}
$$

B1 108
Answer (a)
(b) $k=\ldots 12 \ldots \ldots \ldots \ldots \ldots$

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 1916 London time. The flight arrived at Singapore on Tuesday at 1551 Singapore time. Calculate how long the flight took, giving your answer in hours and minutes.
Departure time from London (Singapore time)
$=0216$ Tuesday M1

Arrival time at Singapore (Singapore time)
$=1551$ Tuesday
h \min
$15 \quad 51$
Duration of Journey
$=13 \mathrm{~h} 35 \mathrm{~min}$

A1

Answer ${ }^{13}$........ hours ${ }^{35}$....... minutes [2]

Page 5 of 18

7 The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres, of the micro-organism, giving your answer in standard form.

$$
\begin{aligned}
\text { Radius } & =\frac{1}{2} \times 9.04 \times 10^{-6} \mathrm{~m} \\
& =4.52 \times 10^{-6} \times 10^{3} \mathrm{~mm} \\
& =4.52 \times 10^{-3} \mathrm{~mm} \quad \text { M1 }
\end{aligned}
$$

$$
\begin{aligned}
\text { Surface area } & =4 \pi\left(4.52 \times 10^{-3}\right)^{2} \\
& =2.57 \times 10^{-4} \mathrm{~mm}^{2}
\end{aligned}
$$

$2.57 \times 10^{-4} \quad \mathrm{Al}$
Answer $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{mm}^{2}$
[2]

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016.

No. of computer notebooks sold

Explain why the graph is misleading.
The scale of the vertical axis is not consistent.
Answer
This distorts the graph, making the sales from May to June (16-4=12 units)
seemed to be less than the sales from March to April ($8-0=8$ units).
\qquad

9 Two of the interior angles of a hexagon are $2 x^{\circ}$ and $(5 x-200)^{\circ}$. The remaining interior angles are 90° each. By forming an equation in x, find the value of x.

$$
\begin{aligned}
2 x+(5 x-200)+4(90) & =(6-2) \times 180 \quad \text { M1 } \\
7 x+160 & =720 \\
7 x & =560 \\
x & =80
\end{aligned}
$$

10 In the diagram，the points B, C, D and E lie on a circle with centre $O, P Q$ is a tangent to the circle at $D . A B C$ and $A E O D$ are straight lines．$\angle O C B=54^{\circ}$ and $\angle O A B=30^{\circ}$ ．

Find，giving reasons for each answer，
（a）$\angle A D C$ ，
（b）$\angle C D Q$ ，
（c）$\angle A C E$ ，
（d）$\angle C B E$ ．
（a） $\left.\begin{array}{rl}\angle C O D & =54^{\circ}+30^{\circ}(\text { Ext } \angle \text { of } \triangle) \\ & =84^{\circ}\end{array}\right\} \mathbf{M 1}$

$$
\left.\begin{array}{rl}
\angle A D C & =\frac{180^{\circ}-84^{\circ}}{2}(\text { Base } \angle \mathrm{s} \text { of isos. } \Delta) \\
& =48^{\circ}
\end{array}\right\} A 1
$$

（b） $\left.\begin{array}{rl}\angle C D Q & =90^{\circ}-48^{\circ}(\tan \perp \mathrm{rad}) \\ & =42^{\circ}\end{array}\right\} \mathrm{A1}$
（c）$\angle D C E=90^{\circ}$（Rt．\angle in semi－circle $) \mathrm{MI} \quad$ or $\angle C O E=48^{\circ} \times 2(\angle$ at centre $=2 \angle$ at circumfere - ， $\angle A D C=180^{\circ}-90^{\circ}-48^{\circ}-30^{\circ}(\angle$ sum of $\left.\triangle)\right)_{\mathrm{A} 1}=96^{\circ}$

$$
=12^{\circ}
$$

$$
\begin{aligned}
\angle A C E & =\frac{180^{\circ}-96^{\circ}}{2} \quad(\text { Base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =42^{\circ} \\
\angle A D C & =54^{\circ}-42^{\circ} \\
& =12^{\circ}
\end{aligned}
$$

（d）$\angle C B E=180^{\circ}-48^{\circ}(\angle \mathrm{s}$ in opp segments are supp $\left.)\right\}$

$$
=132^{\circ}
$$

$$
\begin{aligned}
& \int_{\text {Answer (a)............4......... }}{ }^{\circ} \\
& \text { (b) } \\
& \text { - } \\
& \text { (c). } \\
& \text { 。 } \\
& \text { (d). } \\
& 132 \\
& \text { 。 }
\end{aligned}
$$

［2］
［1］
$11 A B C D$ is a quadrilateral. $A B C$ and $C D E$ are equilateral triangles. Using a pair of congruent triangles, show that $A D=B E$. State your reasons clearly.

Answer In triangles.
$C D$ and $C E$ (sides of equil. $\triangle C D E$)
$A B$ and $B C$ (sides of equil. $\triangle A B C$)
$\angle A C D=60^{\circ}-\angle A C E \quad(\angle$ of equil. $\triangle C D E) \quad$ Mi
$\angle B C E=60^{\circ}-\angle A C E \quad(\angle$ of equil. $\triangle A B C)$
$\therefore \angle A C D=\angle B C E$
B1
$\therefore \triangle A C D=\triangle B C E$ (SAS) (criteria must tally with test)
Hence, $A D=B E$

12 Janet has $\$ 50000$ to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months. Calculate the amount of interest she will get at the end of 3 years.

$$
\begin{aligned}
\text { Amount } & =50000\left(1+\frac{0.02}{4}\right)^{12} \quad \mathrm{M1} \\
& =\$ 53083.8905 \\
\text { Interest } & =\$ 53083.8905-\$ 50000 \\
& =\$ 3083.89(\text { to } 2 \mathrm{dp})
\end{aligned}
$$

13 (a) Given that $\left(\frac{1}{4}\right)^{p} \times 8=1$, find the value of p.

$$
\begin{aligned}
& \left(2^{-2}\right)^{p} \times 2^{3}=2^{0} \\
& 2^{-2 p+3}=2^{0} \\
& -2 p+3=0 \\
& p=1 \frac{1}{2}
\end{aligned}
$$

(b) Simplify $\left(\frac{2^{\gamma+1} \sqrt{2}}{2^{y}}\right)^{-2}$.

$$
\begin{aligned}
& \left(\frac{2^{y+1} \sqrt{2}}{2^{y}}\right)^{-2} \\
& =\left(2^{y+1+\frac{1}{2}-y}\right)^{-2} \\
& =\left(2^{\frac{3}{2}}\right)^{-2} \\
& =2^{-3} \\
& =\frac{1}{8}
\end{aligned}
$$

(b)

8

14 The equations of the three graphs shown below are in the form $y=n+x^{n-1}$.
State the value of n for each of the following graph.
(a)

(b)

(c)

Answer (a) $n=\ldots \ldots \ldots \ldots \ldots$ [1]
(b) $n=$
B1
(c) $n=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$

15 In the answer space, sketch the graph of $y=5-(x+1)^{2}$, indicate clearly the turning point and the intercepts on the x and y-axes (if any).

Answer
[2]

16 (a) $\varepsilon=\{x: x$ is an integer and $1 \leq x<24\}=\{1,2,3, \ldots 23\}$
$A=\{x: x$ is a perfect square $\}=\{1,4,9,16\}$
$B=\{x: x$ is a factor of the number 24$\}=\{1,2,3,4,6,8,12\}$
$C=\{x: x+1$ is divisible by 6$\}=\{5,11,17,23\}$
(i) List the elements in $A \cap C$.
(ii) Find $n\left(B^{\prime} \cup C\right)$.
(a) (ii) $B^{\prime}=\{5,7,9,10,11,13,14,15,16, \ldots 23\}$

$$
\begin{aligned}
n\left(B^{\prime} \cup C\right) & =n\left(B^{\prime}\right) \\
& =n(\varepsilon)-n(B) \\
& =23-7
\end{aligned}
$$

(b) State the set notation of the shaded region in following Venn Diagram.

\qquad

Page 11 of 18

17 Given that point $A(4,2)$ and $\overrightarrow{A C}=\binom{-7}{3}$.
(a) Find $|\overrightarrow{C A}|$.

$$
\begin{aligned}
\overrightarrow{C A} & =\binom{7}{-3} \\
|\overrightarrow{C A}| & =\sqrt{7^{2}+(-3)^{2}} \\
& =7.62 \text { (to } 3 \mathrm{sf} \text {) }
\end{aligned}
$$

7.62 B1

Answer (a)
(b) The point P lies on $C A$ such that $\overrightarrow{P A}=k \overrightarrow{C A}$.
(i) Show that $\overrightarrow{O P}=\binom{4-7 k}{2+3 k}$.

Answer (b)(i)

$$
\begin{aligned}
& \overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A} \\
& \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\
& =\binom{4}{2}+k \overrightarrow{A C} \\
& =\binom{4}{2}+k\binom{-7}{3} \\
& =\binom{4-7 k}{2+3 k}
\end{aligned}
$$

(ii) Given that point P lies on the y-axis, find the coordinates of P.

$$
\begin{gather*}
4-7 k=0 \\
k=\frac{4}{7} \tag{B1}\\
2+3\left(\frac{4}{7}\right)=3 \frac{5}{7}
\end{gather*}
$$

$$
\begin{equation*}
\text { Answer (b)(ii) } \quad P\left(\ldots \ldots \ldots . \quad 3 \frac{5}{7},\right. \tag{2}
\end{equation*}
$$

18 Consider the number patterns in the table below. The first three terms of each column have been given.

Row, n	S	T	U
1	4	16	16
2	8	32	30
3	12	48	44
7	p	q	r
n			

(a) Find values of p, q and r.
(b) Write down the equation connecting S and T.
(c) Write down the equation connecting U and n.
(d) Betty said that 256 can be found in column U.

Write whether you agree or disagree with Betty. Give reason(s) for your answer.
(d) $14 n+2=256$

$$
14 n=254
$$

$$
n=\frac{254}{14}
$$

$$
=18 \frac{1}{7}
$$

B1

(All 3 must be correct)
Answer (a) $p=28 \ldots \ldots, q=112 \ldots, r=\ldots 100$. [1]
(b) $\quad T=4 S \quad B 1$

(d) $1 \ldots \ldots \ldots \ldots \ldots$ disagree with Betty. This is because

When 2 is deducted from 256 , the result 254 is not divisible by 14 .
(is not a multiple of 14).

19 The frequency table shows the number of countries that a group of students had visited.

Number of countries	0	1	2	3	4
Number of students	2	8	6	x	4

(a) Given that the mode is 1 , state the largest possible value of x.
(b) Given that the median number of countries visited is 2 , find the largest possible value of x.
(c) Given that the mean number of countries is more than 2, find the smallest possible value of x.
(b) $2+8+(6-1)=x+4$

$$
\begin{aligned}
15 & =x+4 \\
x & =11
\end{aligned}
$$

(c) Mean $=\frac{0(2)+1(8)+2(6)+3 x+4(4)}{2+8+6+x+4}>2$

$$
\begin{aligned}
\frac{3 x+36}{x+20} & >2 \\
3 x+36 & >2(x+20) \\
3 x+36 & >2 x+40 \\
x & >4 \\
\text { smallest } x & =5
\end{aligned}
$$

$$
\begin{align*}
& \text { Answer (a) } x=\ldots \ldots \text { B1 } \quad \text { [1] } \\
& \text { (b) } x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}\\
& \text { (c) } x=\ldots \quad \text { B1 } \\
& \text { (c) } x=\ldots \ldots \ldots \ldots
\end{align*}
$$

20 (a) The air resistance, R, is directly proportional to the square of the speed, V, of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.
(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?
(a) $R=k V^{2}, k$ constant

$$
\begin{aligned}
24 & =k V^{2} \Rightarrow k=\frac{24}{V^{2}} \quad \text { M1 } \\
R_{\text {now }} & =k(1.5 V)^{2} \\
& =\frac{24}{V^{2}} \times 2.25 V^{2} \\
& =54 \text { newtons }
\end{aligned}
$$

(b) No. of men required to build 3 huts in 72 h

$$
\begin{aligned}
& =\frac{3}{2} \times \frac{60}{72} \times 48 \\
& =60 \\
& \therefore \text { Extra no. of men needed }=60-48 \\
& \qquad=12 \\
& \text { OR }
\end{aligned}
$$

\therefore Extra no. of men needed $=60-48$

$$
=12
$$

21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.
(b) Calculate
(i) the total distance travelled by the train in the first 3 minutes,
(ii) the average speed of the train, in km / h, in the first 3 minutes.
(a) Acceleration $=\frac{40-0}{0-90}=-\frac{4}{9} \mathrm{~m} / \mathrm{s}^{2} \quad \therefore$ Deceleration $=\frac{4}{9} \mathrm{~m} / \mathrm{s}^{2}$
(b) (i) Total distance $=\frac{1}{2}(90)(40)+\frac{1}{2}(30)(80)$

$$
\begin{aligned}
& =1800+1200 \\
& =3000 \mathrm{~m}
\end{aligned}
$$

(ii) Average speed $=\frac{3000 \mathrm{~m}}{3 \mathrm{~min}} \quad \mathrm{MI}$
$=60 \mathrm{~km} / \mathrm{h}$
(ii)
A1
km / h [2]
(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c)

$22 \quad P$ and R are points on the x-axis. $T Q R$ is a straight line parallel to the y-axis. Area of $\triangle P Q R=30$ units 2.

(a) Find the coordinates of
(i) point R,
(ii) point P.
(b) Find the length of $P Q$.
(c) Find $\cos \angle P Q T$, giving your answer as a fraction.
(d) Given that $P R=T R$, find the equation of $P T$.
(a)(i) $R(4,0)$
(ii) $\frac{1}{2} \times P R \times 5=30$

$$
P R=\frac{2 \times 30}{5}=12 \text { units }
$$

$$
\therefore P(-8,0)
$$

(c) $\cos \angle P Q T=-\cos \angle P Q R$

$$
=-\frac{5}{13}
$$

(d) $P(-8,0) \quad T(4,12)$
$m=\frac{12-0}{4-(-8)}=1$
Equation of $P T$ is

$$
\begin{aligned}
y-0 & =1[x-(-8)] \\
y & =x+8
\end{aligned}
$$

Answer (a)(i) $R\left(\ldots{ }^{0} . ..\right)$ [1] B1
(ii) $P(\ldots-8, \ldots \ldots)$ [2] A1
(b) $\ldots \ldots \ldots \ldots \ldots \ldots$ units [1] B1
(c) $\ldots \ldots \ldots \ldots \ldots$
(d) \qquad [1] A1

23 Five discs numbered 1,3,4,6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second dise is drawn.
(a) Complete the following probability tree diagram.

Answer (a)

3 odd nos., 2 even nos.

(b) Find
(i) the probability that one disc is odd and the other is even,
(ii) the probability that both numbers drawn are smaller than 4 .
(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.
(b) (i) $P($ odd, even $)+P($ even, odd $)=\frac{3}{5} \times \frac{1}{2}+\frac{2}{5} \times \frac{3}{4}$ or $=2 \times \frac{3}{5} \times \frac{1}{2}$
(ii) P (both nos. <4) $=\frac{2}{5} \times \frac{1}{4}$

$$
=\frac{1}{10}
$$

(c)

B1 | + | 1 | 3 | 4 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | 4 | 5 | 7 | 8 |
| 3 | 4 | | 7 | 9 | 10 |
| 4 | 5 | 7 | | 10 | 11 |
| 6 | 7 | 9 | 10 | | 13 |
| 7 | 8 | 10 | 11 | 13 | |

$$
\begin{aligned}
P(\text { sum }=\text { prime no. }) & =\frac{10}{20} \\
& =\frac{1}{2}
\end{aligned}
$$

Answer (b)(i) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
(ii) \qquad
(c)
$\frac{1}{2}$

24 The diagram below shows a horizontal field $A B C$.
A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m , show all the constructions clearly.
(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
(i) By construction, mark and label clearly the position of the lamp post L. [1]
(ii) Measure and write down the bearing of the lamp post L from point C.
(b) A gate, G, is located along the path of $B C$, equidistant from B and C. By construction, mark and label clearly the position of the gate G.
(c) A circular flower bed is built such that it touches each side of the field at one point.
(i) By constructing two angle bisectors, draw the circular flower bed and label its centre O.
(ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(ii)
(c)(ii) m [1]

End of Paper 1

Answer all the questions.
1 (a) Given that $-8 \leq x \leq 4$ and $-3 \leq y \leq 2$, find
(i) the least value of $x y$,
(ii) the greatest value of $x^{2}-y^{2}$.
(b) Express as a single fraction in its simplest form
(i) $\frac{x-y}{x y}+\frac{y-z}{y z}$,
(ii) $\frac{2 x^{3}}{x+y+z} \times \frac{(x+y)^{2}-z^{2}}{6 x}$.
(c) It is given that $2 p q=\sqrt{\frac{4 q^{2}+p^{2}}{2}}$.

Express q in terms of p.

2 In the diagram, $O A B C D$ is a semicircle with centre at O.
$A D / / B C$, angle $C D A=$ angle $B A D=\frac{3}{10} \pi$ radians and $O A=20 \mathrm{~mm}$.

(a) Show that angle $B O A=\frac{2}{5} \pi \mathrm{rad}$.
(b) Find the length of arc $A B$, leaving your answer in terms of π.
(c) Find angle $B O C$.
(d) Calculate the area of the shaded region.
(e) Find angle $B O A$ in degrees.
(f) The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, $A D=60 \mathrm{~mm}$. Find the area of the enlarged logo.

3 The cash price of a car is $\$ 74000$. Mr Smith is introduced to two types of payment schemes.

	Scheme \boldsymbol{A}	Scheme \boldsymbol{B}
Down payment	40%	60%
Simple interest rate (per annum)	3.28%	$R \%$
Loan period (years)	5	5

(a) Find the total amount that Mr Smith has to pay for the car, if he chose Scheme A.
(b) If Mr Smith chose Scheme B, the monthly instalment he has to pay over 5 years is $\$ 572.76$. Calculate the value of R.
(c) One day the exchange rate between US dollar (US\$) and Singapore dollars (S\$) was US $\$ 1=$ S $\$ 1.27$.

On the same day, the exchange rate between British pound ($£$) and US dollar was $\mathrm{£1}=$ US $\$ 1.33$.

Calculate the cash price of the car in pounds, correct to the nearest pound.

4 In the diagram, $W X Y Z$ is a trapezium and $W X$ is parallel to $Z Y$.
The point P on $X Z$ is such that $Z P: P X=1: 3$ and $W X: Z Y=3: 4$.
It is given that $\overrightarrow{W X}=9 \mathbf{a}$ and $\overrightarrow{W Z}=\mathbf{b}$.

(a) Express, as simply as possible, in terms of \mathbf{a} and \mathbf{b},
(i) $\overrightarrow{Z X}$,
(ii) $\overrightarrow{W P}$,
(iii) $\overrightarrow{Y W}$.
(b) Show that the line $X Y$ is parallel to the line $W P$.
(c) Find, as a fraction in its simplest form,
(i) $\frac{\text { area of } \triangle W Z P}{\text { area of } \triangle W X P}$,
(ii) $\frac{\text { area of } \triangle W Z P}{\text { area of } \triangle Y X Z}$

5 Answer the whole of this question on a sheet of graph paper.

A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

Week (x)	0	1	2	3	4	5	6	7
Total number of members (y)	5	15	35	p	90	145	230	400

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for $0 \leq x \leq 7$. Using a scale of 2 cm to 50 members, draw a vertical y-axis for $0 \leq y \leq 400$. On your axes, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to estimate
(i) the value of p,
(ii) the week that the total number of members reaches 300 .
(c) (i) By drawing a tangent, find the gradient of the curve at $x=4$.
(ii) What does this gradient represent?
(d) The group of friends wish to estimate what the total number of members will be in one year's time. They propose to extend the graph line up to week, $x=52$. Explain why is it not possible to estimate the total number of members in this way.

6 The distance between two houses, P and Q, is 200 km . Joe travelled by car from P to Q at an average speed of $x \mathrm{~km} / \mathrm{h}$.
(a) Write down an expression, in terms of x, for the number of hours he took to travel from P to Q.
(b) He returned from Q to P at an average speed of which was $5 \mathrm{~km} / \mathrm{h}$ more than the first journey.

Write down an expression, in terms of x, for the number of hours he took to travel from Q to P.
(c) The difference between the two times was 24 minutes.

Write down an equation in x to represent this information, and show that it reduces to

$$
\begin{equation*}
x^{2}+5 x-2500=0 \tag{3}
\end{equation*}
$$

(d) Solve the equation $x^{2}+5 x-2500=0$, giving each answer correct to three decimal places.
(e) Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second.

7 (a) Jim exercises on Monday and Wednesday. On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes.
On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes.
This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{ccc}\text { J } & \text { C } & \mathrm{S} \\ 10 & 20 & 30 \\ 20 & 10 & 15\end{array}\right)$ Mon $\begin{aligned} & \text { Wed }\end{aligned}$.
(i) Evaluate the matrix $\mathbf{P}=60 \mathrm{Q}$.
(ii) Jim's exercising speeds are the same for Monday and Wednesday.

His jogging speed is $4 \mathrm{~m} / \mathrm{s}$, cycling speed is $5.5 \mathrm{~m} / \mathrm{s}$ and swimming speed is $1.3 \mathrm{~m} / \mathrm{s}$.

Represent his exercising speeds in a 3×1 column matrix \mathbf{S}.
(iii) Evaluate the matrix $\mathbf{R}=\mathbf{P S}$.
(iv) State what the elements of R represent.
(b) The cost of a shirt is $\$ C$. If the shirt is sold at $\$ 60$, a shop makes a profit of $x \%$ on the cost price.
(i) Write down an equation in C and x to represent this information and show that it simplifies to

$$
\begin{equation*}
6000-100 C=C x . \tag{1}
\end{equation*}
$$

If the shirt is sold at $\$ 24$, the shop makes a loss of $2 x \%$ on the cost price.
(ii) Write down an equation in C and x to represent this information,
(iii) Solve these two equations to find the value of C and the value of x.
(iv) Calculate the selling price of the shirt if the profit is 45% of the cost price.

8 The diagram shows a triangular park $B C D$ and the route that Ali has cycled.
Ali cycles from his home, A, on a bearing of 220° towards point B of the park. The distance from A to B is 4.8 km . From B, he cycles to C, which is 6 km away, and he continues to D.
C is due north of B. Reflex angle $A B D=210^{\circ}$ and angle $B D C=35^{\circ}$.

(a) Show that $\triangle B C D$ is an isosceles triangle.
(b) Calculate the
(i) distance of $A C$,
(ii) area of the park $B C D$,
(iii) angle $B A C$,
(iv) shortest distance from B to $C D$.
(c) A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building.

9120 visitors took a survey on the number of hours they spent at the Gardens by the Bay in February 2016.

The cumulative frequency curve below shows the distribution of the time spent.

(a) Use the curve to estimate
(i) the median time,
(ii) the interquartile range of the times,
(iii) the percentage of visitors who spent at least 4 hours at the Gardens by the Bay.
(b) It was discovered that the number of hours has been recorded incorrectly. The correct number of hours was all 1 hour less than those recorded.

The box-and-whisker plot shows the correct distribution of hours.

Find the value of
(i) c,
(ii) $e-a$.
(c) The table below shows the results of the survey conducted on another 120 visitors on the number of hours they spent at the Gardens by the Bay in June 2016.

Number of hours spent $(x \mathbf{h})$	Number of visitors
$2<x \leq 4$	33
$4<x \leq 6$	46
$6<x \leq 8$	30
$8<x \leq 10$	11

Calculate an estimate of the
(i) mean time that the visitors spent in June,
(ii) standard deviation.
(d) The programme management team at the Gardens by the Bay commented that the visitors generally spent longer hours in February 2016 than in June 2016. Justify if the comment is valid.

10 A solid cone is cut into 2 parts, X and Y, by a plane parallel to the base. The length of $A B=$ the length of $B C$.

Diagram I

(a) Given that the volume of the solid cone is $\frac{64}{3} \pi \mathrm{~m}^{3}$, find the volume, in terms of π, of the frustum, Y.
(b) In Diagram II, a rocket can be modelled from a cylinder of height, $h, 94.2 \mathrm{~m}$ with a cone, X, on top and a frustum, Y, at the bottom. The cone, X, has a diameter, d_{2}, of 4 m and the frustum, Y, has a base diameter, d_{i}, of 8 m . The parts X and Y are taken from Diagram I above.

(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter.
(ii) Calculate the volume, in cubic metres, of the rocket.
(iii) The rocket is designed to launch to the moon.

Useful information

- Distance of moon from earth: 384400 km
- Speed of rocket: $800 \mathrm{~km} /$ minute
- $1 \mathrm{~m}^{3}=264$ gallon
- The rocket is filled with liquid fuel to a maximum of 95% of its volume.
- Rate of fuel consumption: 20000 gallons/minute
- Capacity of each external fuel tank: 3.2×10^{6} gallons

How many external fuel tanks will the rocket require to sustain its journey to the moon?

Justify your answer with calculations.

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2016 Secondary 4

Tuesday
16 August 2016
MATHEMATICS
Paper 2

4048/02
2 h 30 mins

INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100 .

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration
Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi^{2}$
Volume of a cone $=\frac{1}{3} \operatorname{st}^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Are length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians
Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{gathered}
\text { Mcan }=\frac{\sum f x}{\sum f} \\
\text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{gathered}
$$

Answer all the questions.

1	(a)	Given that $-8 \leq x \leq 4$ and $-3 \leq y \leq 2$, find		
		(i)	the least value of $x y$, Least value of $x y=(-8)(2)=-16 \ldots B 1$	[1]
		(ii)	the greatest value of $x^{2}-y^{2}$. Greatest value of $x^{2}-y^{2}=(-8)^{2}-0=64-$ B1	[1]
	(b)	Express as a single fraction in its simplest form		
		(i)	$\begin{aligned} & \frac{x-y}{x y}+\frac{y-z}{y z}, \\ & \frac{x z-y z+x y-x z}{x y z} \cdots \mathrm{Ml} \\ & =\frac{x y-y z}{x y z} \\ & =\frac{y(x-z)}{x y z} \\ & =\frac{x-z}{x z} \cdots \mathrm{Al} \end{aligned}$	[2]
		(ii)	$\begin{aligned} & \frac{2 x^{3}}{x+y+z} \times \frac{(x+y)^{2}-z^{2}}{6 x} \\ & \frac{2 x^{3}}{x+y+z} \times \frac{(x+y-z)(x+y+z)}{6 x}-\mathrm{M} 1 \\ & =\frac{x^{2}(x+y-z)}{3}-\mathrm{A} 1 \end{aligned}$	[2]
	(c)		given that $2 p q=\sqrt{\frac{4 q^{2}+p^{2}}{2}}$. ess q in terms of p.	[3]

		$\begin{aligned} & 2 p q=\sqrt{\frac{4 q^{2}+p^{2}}{2}} \\ & 4 p^{2} q^{2}=\frac{4 q^{2}+p^{2}}{2} \cdots \mathrm{M} 1 \\ & 8 p^{2} q^{2}=4 q^{2}+p^{2} \\ & 8 p^{2} q^{2}-4 q^{2}=p^{2} \\ & q^{2}\left(8 p^{2}-4\right)=p^{2} \cdots \mathrm{M1} \\ & q^{2}=\frac{p^{2}}{\left(8 p^{2}-4\right)} \\ & q= \pm \sqrt{\frac{p^{2}}{4\left(2 p^{2}-1\right)} \cdots \mathrm{Al} \quad \text { or } \quad q= \pm \frac{p}{2 \sqrt{2 p^{2}-1}} \quad \text { or } q= \pm \sqrt{\frac{p^{2}}{8 p^{2}-4}}} \end{aligned}$	
2	In th $A D$	diagram, $O A B C D$ is a semicircle with centre at O. $B C$, angle $C D A=$ angle $B A D=\frac{3}{10} \pi$ radians and $O A=20 \mathrm{~mm}$.	
	(a)	Show that angle $B O A=\frac{2}{5} \pi \mathrm{rad}$. $\triangle B O A$ is an isosceles triangle $\begin{aligned} \angle B O A & =\pi-2\left(\frac{3 \pi}{10}\right) \cdots \mathrm{B} 1 \\ & =\frac{2 \pi}{5} \mathrm{rad} \end{aligned}$	[1]
	(b)	Find the length of arc $A B$, leaving your answer in terms of π. $\text { arc length } \begin{aligned} A B & =(20)\left(\frac{2 \pi}{5}\right) \\ & =8 \pi \mathrm{~mm} \cdots \mathrm{~B} 1 \end{aligned}$	[1]
	(c)	Find angle $B O C$.	[1]

	$\begin{aligned} \angle B O C & =\pi-2\left(\frac{2 \pi}{5}\right) \quad(\text { adj } \angle \mathrm{s} \text { on a st line }) \\ & =\frac{\pi}{5} \mathrm{rad} \cdots \mathrm{~B} 1\left(\text { or } 0.628 \mathrm{rad}(3 \text { s.f. }) \text { or } 36^{\circ}\right) \end{aligned}$	
(d)	Calculate the area of the shaded region. $\begin{aligned} \angle B O D & =\pi-\frac{2 \pi}{5} \\ & =\frac{3 \pi}{5} \mathrm{rad} \end{aligned}$ area of sector $B O D=\frac{1}{2}(20)^{2}\left(\frac{3 \pi}{5}\right)$ $=120 \pi \mathrm{~mm}^{2}$ area of $\triangle B O D$ and $\triangle C O D=\frac{1}{2}(20)^{2}\left(\sin \frac{\pi}{5}+\sin \frac{2 \pi}{5}\right)$ M1 shaded area $=120 \pi-200\left(\sin \frac{\pi}{5}+\sin \frac{2 \pi}{5}\right)$ $=69.2 \mathrm{~mm}^{2} \quad(3 \text { s.f. })$ OR $\begin{aligned} \text { shaded area } & =\frac{1}{2}(20)^{2}\left(\frac{\pi}{5}-\sin \frac{\pi}{5}\right)+\frac{1}{2}(20)^{2}\left(\frac{2 \pi}{5}-\sin \frac{2 \pi}{5}\right) \quad-\mathrm{M} 1+\mathrm{MI} \\ & =69.2 \mathrm{~mm}^{2}(3 \text { s.f. }) \end{aligned}$	[3]
(e)	Find angle $B O A$ in degrees. $\begin{aligned} \angle B O A & =\frac{2 \pi}{5} \\ & =72^{\circ} \quad-\mathrm{B} 1 \end{aligned}$	[1]
(f)	The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, $A D=60 \mathrm{~mm}$. Find the area of the enlarged logo.	[2]

3	The cash price of a car is $\$ 74000$. Mr Smith is introduced to two types of payment schemes.				
			Scheme A	Scheme B	
		Down payment	40\%	60\%	
		Simple interest rate (per annum)	3.28%	R \%	
		Loan period (years)	5	5	
	(a)	Find the total amount that Mr Smith has to pay for the car, if he chose Scheme A.$\begin{aligned} \text { Amount loaned } & =0.6 \times 74000 \\ & =\$ 44400 \\ \text { Simple interest } & =44400 \times \frac{3.28}{100} \times 5 \cdots \mathrm{M} 1 \\ & =\$ 7281.60 \\ \text { Total amount } & =7281.60+74000 \\ & =\$ 81281.60 \end{aligned}$			[2]
	(b)	If Mr Smith chose Scheme B, the monthly instalment he has to pay over 5 years is $\$ 572.76$. Calculate the value of R.			[3]

	$\begin{array}{rlr} \text { Amount loaned } & =0.4 \times 74000 & \\ & =\$ 29600 \\ 572.76 \times 12 \times 5 & =29600+29600 \times \frac{R}{100} \times 5 & \\ & & \text { M1- instalments paid (LHS) } \\ R=3.22-\mathrm{Al} & & \end{array}$
(c)	One day the exchange rate between US dollar (US\$) and Singapore dollars (S\$) was US\$1 = S\$1.27. On the same day, the exchange rate between British pound (£) and US dollar was $£ 1=$ US $\$ 1.33$. Calculate the cash price of the car in pounds, correct to the nearest pound. $\begin{aligned} \text { Amount in USS } & =74000 \div 1.27 \\ & =\text { US } \$ 58267.71654 \end{aligned}$ Amount in pounds $=58267.71654 \div 1.33 \quad$ or M1 here $=£ 43810 \text { (to nearest pound) }-\mathrm{Al}$ or $\begin{aligned} \mathrm{E} 1 & =U S \$ 1.33 \times 1.27 \cdots \mathrm{M} 1 \\ & =\text { US } \$ 1.6891 \end{aligned}$ $\text { cost of car in pounds }=\frac{74000}{1.6891}$ $=£ 43810 \text { (to nearest pound) }$

4	In the diagram, $W X Y Z$ is a trapezium and $W X$ is parallel to $Z Y$. The point P on $X Z$ is such that $Z P: P X=1: 3$ and $W X: Z Y=3: 4$. It is given that $\overrightarrow{W X}=9 \mathbf{a}$ and $\overrightarrow{W Z}=\mathbf{b}$.			
	(a)	Exp	ss, as simply as possible, in terms of \mathbf{a} and \mathbf{b},	
		(i)	$\overrightarrow{Z X}$ $\overrightarrow{Z X}=-b+9 a \quad-B 1$	[1]
		(ii)	$\begin{aligned} & \overrightarrow{W P}, \\ & \overrightarrow{W P}=\mathbf{b}+\overrightarrow{Z P} \\ & =\mathbf{b}+\frac{1}{4}(-\mathbf{b}+9 \mathbf{a}) \\ & =\frac{3}{4}(\mathbf{b}+3 \mathbf{a}) \end{aligned}$ - B1	[1]
		(iii)	$\begin{align*} & \overrightarrow{Y W} \\ & \overrightarrow{W Y}=\mathbf{b}+\overrightarrow{Z Y} \\ & =\mathbf{b}+\frac{4}{3}(9 \mathbf{a}) \\ & =\mathbf{b}+12 \mathbf{a} \\ & \overrightarrow{Y W}=-\mathbf{b}-12 \mathbf{a} \end{align*}$ or $\begin{aligned} & \overrightarrow{Y W}=\overrightarrow{Y Z} \cdot \mathbf{b} \\ & =-\mathbf{b}-12 \mathbf{a} \end{aligned}$	[1]
	(b)	Show	that the line $X Y$ is parallel to the line $W P$.	[2]

5 Answer the whole of this question on a sheet of graph paper.

A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

Week (x)	0	1	2	3	4	5	6	7
Total number of members (y)	5	15	35	p	90	145	230	400

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for $0 \leq x \leq 7$. Using a scale of 2 cm to 50 members, draw a vertical y-axis for $0 \leq y \leq 400$. On your axes, plot the points given in the table and join them with a smooth curve.
(b) Use your graph to estimate
(i) the value of p,
(ii) the week that the total number of members reaches 300 .
(c) (i) By drawing a tangent, find the gradient of the curve at $x=4$.
(ii) What does this gradient represent?
(d) The group of friends wish to estimate what the total number of members will be in one year's time. They propose to extend the graph line up to week, $x=52$.

Explain why is it not possible to estimate the total number of members in this way.

Page 11 of 23

[^5]| 6 | The distance between two houses, P and Q, is 200 km . Joe travelled by car from P to Q at an average speed of $x \mathrm{~km} / \mathrm{h}$. | | |
| :---: | :---: | :---: | :---: |
| | (a) | Write down an expression, in terms of x, for the number of hours he took to travel from P to Q. $\text { time }=\frac{200}{x} h$ | [1] |
| | (b) | He returned from Q to P at an average speed of which was $5 \mathrm{~km} / \mathrm{h}$ more than the first journey.
 Write down an expression, in terms of x, for the number of hours he took to travel from Q to P. $\text { time }=\frac{200}{x+5} h$ | [1] |
| | (c) | ```The difference between the two times was 24 minutes. Write down an equation in \(x\) to represent this information, and show that it reduces to \(x^{2}+5 x-2500=0\). \(\frac{200}{x}-\frac{200}{x+5}=\frac{24}{60} \quad-\quad\) MI \(200(x+5)-200 x=\frac{2}{5}(x)(x+5) \quad\) M1 \(1000(x+5)-1000 x=2 x^{2}+10 x\) \(1000 x+5000-1000 x=2 x^{2}+10 x\) \(2 x^{2}+10 x-5000=0 \quad\) M1 \(x^{2}+5 x-2500=0\)``` | [3] |
| | (d) | Solve the equation $x^{2}+5 x-2500=0$, giving each answer correct to three decimal places. $\begin{aligned} & x=\frac{-5 \pm \sqrt{5^{2}-4(1)(-2500)}}{2(1)} \quad \cdots \mathrm{Ml} \\ & =47.562 \text { or }-52.562 \end{aligned}$ | [3] |
| | (e) | Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second. $\text { time }=\frac{200}{47.562}=4 \mathrm{~h} 12 \mathrm{~min} 18 \mathrm{sec}(\text { nearest sec) }-\mathrm{M} 1+\mathrm{Al}$ | [2] |

7	(a)	Jim exercises on Monday and Wednesday. On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes. On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes. This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{lll}10 & 20 & 30 \\ 20 & 10 & 15\end{array}\right) \begin{aligned} & \text { Mon } \\ & \text { Wed }\end{aligned}$.		
		(i)	Evaluate the matrix $\mathbf{P}=60 \mathbf{Q}$. $\begin{align*} & P=60\left(\begin{array}{lll} 10 & 20 & 30 \\ 20 & 10 & 15 \end{array}\right) \\ & =\left(\begin{array}{ccc} 600 & 1200 & 1800 \\ 1200 & 600 & 900 \end{array}\right) \tag{B1} \end{align*}$	[1]
		(ii)	Jim's exercising speeds are the same for Monday and Wednesday. His jogging speed is $4 \mathrm{~m} / \mathrm{s}$, cycling speed is $5.5 \mathrm{~m} / \mathrm{s}$ and swimming speed is $1.3 \mathrm{~m} / \mathrm{s}$. Represent his exercising speeds in a 3×1 column matrix \mathbf{S}. $\mathbf{S}=\left(\begin{array}{c} 4 \\ 5.5 \\ 1.3 \end{array}\right) \quad \text { B1 }$	[1]
		(iii)	Evaluate the matrix $\mathbf{R}=\mathrm{PS}$. $\begin{aligned} & \mathrm{R}=\left(\begin{array}{rrr} 600 & 1200 & 1800 \\ 1200 & 600 & 900 \end{array}\right)\left(\begin{array}{c} 4 \\ 5.5 \\ 1.3 \end{array}\right) \quad \mathrm{M} 1 \\ & =\binom{11340}{9270} \quad \mathrm{~A} 1 \end{aligned}$	[2]
		(iv)	State what the elements of R represent. The elements of R represent the distance, in metres, that Jim has exercised on Monday and Wednesday, respectively. A1	[1]

(b)	The cost of a shirt is $\$ C$. If the shirt is sold at $\$ 60$, a shop makes a profit of $x \%$ on the cost price.		
	(i)	Write down an equation in C and x to represent this information and show that it simplifies to $6000-100 C=C x$ Percentage profit $=x \%$ $\left[\begin{array}{l} \frac{60-C}{C} \times 100=x \\ 100(60-C)=C x \end{array}\right]-\mathrm{M} 1$ $6000-100 C=C x$ (shown)	[1]
	If the shirt is sold at \$24, the shop makes a loss of $2 x \%$ on the cost price.		
	(ii)	Write down an equation in C and x to represent this information. $\begin{aligned} & 2 x=\frac{C-24}{C} \times 100 \\ & 2 x=\frac{100 C-2400}{C} \\ & 100 C-2400=2 C x \end{aligned}$ A1	[1]
	(iii)	Solve these two equations to find the value of C and the value of x. $\begin{aligned} & 6000-100 C=C x \cdots(1) \\ & 100 C-2400=2 C x-(2) \end{aligned}$ (1) $\times 2-(2)$, $\left.\begin{array}{l} (12000-200 C)-(100 C-2400)=0 \\ 1400=300 C \end{array}\right] \mathrm{MI}$ $C=48$ $x=25$ A1 + A1	[3]
	(iv)	Calculate the selling price of the shirt if the profit is 45% of the cost price. $\begin{aligned} & \text { Selling price }=1.45 \times 48 \mathrm{M} 1 \\ & =\$ 69.60 \mathrm{~A} 1 \end{aligned}$	[2]

		$\begin{aligned} & \frac{\sin \angle B A C}{6}=\frac{\sin 40^{\circ}}{3.862103} \\ & \angle B A C=\sin ^{-1}\left(\frac{\sin 40^{\circ}}{3.862103} \times 6\right) \\ & =87.0^{\circ} \text { (to } 1 \mathrm{dp} \text {) A1 } \end{aligned}$	
	(iv)	shortest distance from B to $C D$. $\begin{aligned} & \text { Shortest distance }=60 \times \sin 35^{\circ} \mathrm{M} 1 \\ & =3.44 \mathrm{~km}(\mathrm{to} 3 \mathrm{sf}) \mathrm{A} 1 \end{aligned}$	[2]
(c)	A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building. Height of the building $=6 \times \tan 40^{\circ} \mathrm{M} 1$ $=5.03 \mathrm{~km} \quad(\mathrm{to} 3 \mathrm{sf}) \quad \mathrm{A} 1$		[2]

	(d)	The programme management team at the Gardens by the Bay commented that the visitors gencrally spent longer hours in February 2016 than in June 2016. Justify if the comment is valid.	
	Median in June is $4<x \leq 6 . ~ M 1 ~$ The comment is invalid as median is in February (5.9 hours) is within the median class in June $(4<x \leq 6) . ~ A 1$		

(b)	In Diagram II, a rocket can be modelled from a cylinder of height, $h, 94.2 \mathrm{~m}$ with a cone, X, on top and a frustum, Y_{2} at the bottom. The cone, X, has a diameter, d_{2}, of 4 m and the frustum, Y, has a base diameter, d_{l}, of 8 m . The parts X and Y are taken from Diagram I above.	
	(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter. $\begin{aligned} & \text { total surface area }=\pi(4)\left(\sqrt{4^{2}+4^{2}}\right)+2 \pi(2)(94.2)+\pi(4)^{2} \quad \mathrm{M} 2 \\ & =1305.1037 \ldots \\ & =1305 \mathrm{~m}^{2} \quad \text { (to nearest square metre) } \mathrm{A} 1 \end{aligned}$	[3]
	(ii) Calculate the volume, in cubic metres, of the rocket. $\begin{aligned} & \mathrm{vol}=\frac{1}{3} \pi(4)^{2}(4)+\pi(2)^{2}(94.2) \\ & =1250.7727 \ldots \\ & =1250 \mathrm{~m}^{3} \quad \text { (to } 3 \mathrm{sf} \text {) } \quad \mathrm{A} 1 \end{aligned}$	[1]
	(iii) The rocket is designed to launch to the moon.	

Answer scheme

1a)

1b)

$$
\begin{aligned}
& = \\
& =
\end{aligned}
$$

1ci) Let x be the tens digit and y be the units digit.

Solving : $x=2, y=3$

1cii) Therefore number is 23 (Answer can also be 32)

1di)

1dii)

2a)

2b)

2c)

2d) $x=1.20, x=-36$

3a(i)

3a(ii)(a) $\mathrm{P}($ both discs are yellow) $=$

3a(ii)(b) P (one is blue and one is red)
=

3 a (ii)(c) P (both discs are of different colour)
$=1-\mathrm{P}($ both blue $)-\mathrm{P}($ both yellow $)-\mathrm{P}($ both red $)$
=

3b(i) \quad Mean $=54.6$

$$
\mathrm{SD}=13.6
$$

3b(ii) Mega Sec performed better as their mean is greater than mean for Faith Sec.

Results for Faith Sec is more consistent as their SD is less than SD for Mega Sec.

4a) $\quad a=21, b=1$

4c) $\quad x=0.6,4.3$

4d)

4e) Draw line

$$
x=6.1
$$

5a(i) $\quad=2 \mathbf{b}+\mathbf{a}$

5a(ii) $==(2 \mathbf{b}+\mathbf{a})$
$5 \mathrm{a}(\mathrm{iii})=(6 \mathbf{b}+\mathbf{a})$
5a(iv) $=\mathbf{a}$
5(b) , where is a scalar and FE is parallel to BC.

5c(i)

5c(ii)

5c(iii)

6a)

6b)

6c) The total amount collected from the sales of the four types of doughnuts in each of the outlet respectively.

7(a) $\quad \angle \mathrm{BAC}=120^{\circ}$

$$
=153 \mathrm{~m}(3 \mathrm{sf})
$$

7(b) \quad Area $=3390 \mathrm{~m}^{2}$

7(c) $\quad \angle \mathrm{ADC}=40.2^{\circ}$

7(d) length of mast $=92 \tan 27^{\circ}$
Angle of elevation $=17.0^{\circ}$

8a(i) \quad Median $=68$ marks

8a(ii) $\quad 65^{\text {th }}$ percentile mark $=76$ marks

8(b)

8(c) $\quad \mathrm{P}$ (both obtained more than 88 marks)

9(a)(i) No of apprentices $=425$

9(a)(ii) number of workers $=1020$

9a(iii) 12.5% increase

9bi(a) Amount owed after first payment

$$
=
$$

9bi(b) Amount owed after second payment

$$
=
$$

9b(ii) \quad Final settlement $=$
$9 b$ (iii) The final settlement will be different. This is because if $\$ 2000$ is paid at the end of the first month, the principal sum used to calculate the next payment will be different and will eventually lead to a different final settlement.

10a) Perimeter $=$
Area $=$

$$
=
$$

$$
=11.3 \mathrm{~cm}^{2}
$$

10b(i) \quad Vol of spherical ball $=4.19 \mathrm{~cm}^{3}$
10 b (ii) Depth of water $=17.9 \mathrm{~cm}$
10 b (iii) Depth of water $=3.51 \mathrm{~cm}$

11(i) From the distance time graph, the police car and the speeding car will meet somewhere between the $2^{\text {nd }}$ and $3^{\text {rd }}$ minute. Hence the police car will be able to overtake the speeding car and arrest the driver.

11(ii) Possible assumptions:

- The flow of traffic on the expressway is smooth
- Both cars did not stop along the way
- Both cars are travelling on the same expressway

ST. MARGARET'S SECONDARY SCHOOL. Preliminary Examinations 2016

CANDIDATE NAME

CLASS \square REGISTER NUMBER \square

MATHEMATICS

4048/02
Paper 2

22 August 2016

Secondary 4 Express
2 hours 30 minutes

Additional Materials: $\quad \begin{aligned} & \text { Writing Paper } \\ & \text { Graph Paper (1 sheet) }\end{aligned}$

READ THESE INSTRUCTIONS FIRST

Write your name, registration number and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

Mathematical Formulae

Compound Interest

Total amount =

Mensuration

> Curved surface area of a cone $=$
> Surface area of a sphere $=$
> Volume of a cone $=$
> Volume of a sphere $=$
> Area of triangle $A B C=$

Arc length $=$, where is in radians
Sector area $=$, where is in radians
Trigonometry

Statistics

Mean =

Standard deviation $=$

Answer all the questions.

1. (a) Factorise completely.

Express as a single fraction in its simplest form.
(c) For a two-digit number, the sum of the units digit and tens digit is 5 and the difference between the units digit and tens digit is 1 .
(i) Form two simultaneous equations and solve them.
(ii) Hence state the two-digit number.

Make m the subject of the formula .
(ii) Hence find the value of m, given that $s=2, r=1$ and $p=3$.
2. Peter bought some lychees for $\$ 360$. He paid $\$ x$ for each kilogram of lychees.
(a) Write down an expression, in terms of x, for the number of kilogram of lychees that he bought.

During the delivery, 5 kilogram of his lychees were squashed. He sold the remainder of the lychees at 60 cents more per kilogram than he paid for.
(b) Write down, in terms of x, for the sum of money he received for the remaining lychees.

He made a profit of $\$ 171$.
(c) Write down an equation in x to represent this information and show that it reduces to $5 x^{2}+174 x-216=0$.
(d) Solve the equation and hence find the price that he paid for each kilogram of lychees.
3. (a) A bag contains 20 coloured discs. Out of these 20 discs, 8 are blue, 7 are red and 5 are yellow. Jane draws two discs from the bag at random.
(i) Draw a tree diagram to show the probabilities of the possible outcomes.
(ii) Find, as a fraction in its simplest form, the probability that
(a) both discs are yellow,
(b) one disc is red and the other is blue,
(c) both discs are of different colour.
(b) 120 students from Mega Secondary School took a Science Test and their marks are given in the following table.

Marks	Frequency
$0<x \leq 20$	2
$20<x \leq 30$	5
$30<x \leq 40$	8
$40<x \leq 50$	35
$50<x \leq 80$	70

(i) Calculate an estimate of the mean and standard deviation.
(ii) The mean mark for another group of student from Faith Secondary

School is 42 and the standard deviation is 12.8 mark. Make two comparisons between the marks for the 2 different groups of students.
4. Answer the whole of this question on a sheet of graph paper.

This following is a table of values for the graph of.

x	0	1	2	3	4	5	6	7	8
y	15	19	21	a	19	15	9	b	-9

(a) Calculate the value of a and of b.
(b) Using a scale of 2 cm to 1 unit on the x axis and 2 cm to 5 unit on the y axis, draw the graph of for.
(c) Use your graph to find the values of x when $y=18$.
(d) By drawing a tangent, find the gradient of the curve where $x=4.5$.
(e) By drawing a suitable straight line on the same axes, use your graph to find the solutions of the equation.
5.
$A B C D$ is a rectangle. $=2 \boldsymbol{b}$ and $=\boldsymbol{a}$.
M is the midpoint of $A C$ and $A C=2 C E$.
F is a point on $A B$ extended such that $A F: A B=3: 2$.
(a) Express each of the following, as simply as possible, in terms of \boldsymbol{a} and/or \boldsymbol{b}.
(i)
(ii)
(iii)
(iv)
(b) Write down 2 facts about $B C$ and $F E$.
(c) Calculate the value of
(i)
(ii)
(iii)

6 The number of doughnuts sold by a bakery in three of its most popular outlets for the first week of June is shown in the table below.

	Outlet A	Outlet B	Outlet C
Salted Caramel	300	280	250
Chocolate	450	385	355
Sugared coated	255	275	310
Strawberry	150	140	185

(a) Write down a 4×3 matrix N that represents the information given in the table.
(b) The selling price of salted caramel doughnuts, chocolate doughnuts, sugared coated doughnuts and strawberry doughnuts are $\$ 2, \$ 1.80, \$ 1.30$ and $\$ 1.40$ respectively. Write down a matrix P that represents this information and hence evaluate $P N$.
(c) Explain what the elements of matrix $P N$ represents.

7 In the diagram below, A, B, C and D are points on level ground. $A B=85 \mathrm{~m}$, $A C=92 \mathrm{~m}$ and.B is due North of A and the bearing of D from A is 205°.
(a) Find $B C$.
(b) Calculate the area of triangle $A B C$.
(c) Calculate .
(d) A vertical mast is at C. The angle of elevation of the top of the mast from A is 27°. Calculate the angle of elevation of the top of the mast from B.

8 The cumulative frequency graph shows the distribution of marks of 60 students in a spelling test.

Cumulative frequency

(a) Find
(i) the median mark.
(ii $65^{\text {th }}$ percentile mark.
(b) Find the percentage of students who obtained more than 48 marks.
(c) Two students are chosen at random to go through to the next round of competition. Find the probability that both students obtain more than 88 marks.

In 2014, a factory employed 1275 workers consisting of Foreman, Craftsman and Apprentice in the ratio 1:9:5.

Find the number of Apprentices employed in 2014.
The number of workers employed in 2014 was 25% more than it was in 2013. Find the number of workers employed in 2013.
70% of the factory's total expense are for wages and the rest is for raw materials. In 2015, wages increased by 8% and the cost of the raw material increased by 23%. Calculate the percentage increase in the total expense, assuming that the number of workers employed remained the same.

Tom borrowed $\$ 4000$ from a bank at the interest rate of 15% per annum compounded monthly. He repaid $\$ 1500$ at the end of the first month, $\$ 2000$ at the end of the second month, and made a final settlement at the end of the third month.

How much did he owe the bank just after the first payment, the second payment?

How much was the final settlement payment?
If Tom has repaid $\$ 2000$ at the end of the first month and $\$ 1500$ at the end of the second month, would the final settlement payment at the end of the third month remain the same? Explain briefly.

In the diagram, each circle centered A, B and C is of the same radius of 4 cm . Calculate the perimeter and the area of the shaded region.

A spherical ball of radius 1 cm is completely submerged in a cylindrical container of height 30 cm and radius 3 cm . Water is then poured into the container to a depth of 18 cm . Calculate
the volume of the spherical ball,
the depth of water in the container if the spherical ball is removed from the container.

If the water in the cylindrical container is poured into a rectangular trough of length 18 cm and breadth 8 cm , what is the depth of the water in the trough?

11 During a routine operation along an expressway one night, a car drove through a police road block without stopping. The police signalled for the car to stop but it accelerated and the police gave chase.
The speed and the time of the speeding car and the police car during the 3-minute high-speed chase along the expressway are recorded in the table below.

Time	Speed of Speeding Car $(\mathrm{km} / \mathrm{h})$	Speed of Police Car $(\mathrm{km} / \mathrm{h})$
$1^{\text {st }}$ minute	105	90
$2^{\text {nd }}$ minute	140	135

$3^{\text {rd }}$ minute	155	180

(a) Based on the information given, using a distance-time graph, determine whether the police car will be able to overtake the speeding car and arrest the driver during the high-speed chase. Show how you arrive at your conclusion.
(b) Are there any assumptions that you may have to make?

Founded 1842

ST. MARGARET'S SECONDARY SCHOOL. Preliminary Examinations 2016

CANDIDATE NAME

MATHEMATICS

4048/01

Paper 1

19 August 2016
Secondary 4 Express
2 hours
Additional Materials: NIL

READ THESE INSTRUCTIONS FIRST

Write your name, registration number and class on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80 .

Compound

Interest

> Total amount =

Mensuration

Curved surface area of a cone $=$ Surface area of a sphere $=$

Volume of a cone $=$

Volume of a sphere =

Area of triangle $A B C=$

Arc length =, where is in radians
Sector area $=$, where is in radians
Trigonometry

Statistics

Mean =

Standard deviation =

1 Factorise each of the following expressions completely
(a) ,

Answer (a)
(b)

Answer (b)

2 (a) Petrol costs y cents per litre. Desmond buys some petrol and it costs him x dollars. Find an expression, in terms of x and y, for the number of litres that he buys.

Answer (a) \qquad litres
(b) Rashid's best timing for 2.4 km run was 9 minutes and 34 seconds. Convert his speed into metres per second.

3 Express the following expressions in their simplest form
(a)

Answer (a)
[2]
(b)

Answer (b)
[2]
4 Solve the equation,

Answer $x=$ \qquad

5 (a) Solve the equation

Answer (a) $x=$

(b) Given that and, find the value of.

Answer (b)
[2]

6 The speed of light is .
(a) Express this speed in km / h, giving your answer in standard form.

Answer
(a) \qquad km / h
(b) Find the time taken in nanoseconds, for light to travel one kilometre.

Answer
 (b)

 ns7 (a) Given find the smallest possible value of x if x is a perfect
square.

Answer (a) $x=$
(b) Given that $-3 \leq x \leq 4$ and where x and y are integers, find (i) the least value of

> Answer (b)(i)
(ii) the greatest value of.

Answer (b)(ii)

8 (a) Express 504 as the product of its prime factors.

Answer (a)
(b) Find the smallest positive integer value of k for which $504 k$ is a multiple of 240 .

Answer (b) $k=$
8 (c) Given that the lowest common multiple of 504 and n is 12600 , find the smallest value of n.

Answer (c) $n=$

9 The first five terms of a sequence are

Find
(a) the next term,

Answer (a)
(b) an expression for the $n^{\text {th }}$ term,

Answer (b)
(c) the $50^{\text {th }}$ term.

Answer (c)

10 In the figure, $Q R S T$ is a straight line. Angle $=90^{\circ}, P S=5 \mathrm{~cm}, R S=2 \mathrm{~cm}$ and the area of triangle $P R S=3 \mathrm{~cm}^{2}$.
(a) Calculate
(i) $P Q$,

Answer (a)(i) \qquad cm
(ii) $P R$.

Answer (a)(ii) \qquad cm
(b) Express, as a fraction in the lowest term, the value of

Answer (b)

11 A scale of 2 cm to 1 km is used for a map.
(a) Express the scale in the form $1: n$.

Answer (a) 1 :
(b) The distance between town A and town B measures 16 cm on the map. Find the actual distance, in metres, between the two towns.

Answer (b) m
(c) A playground covers an actual area of $8 \mathrm{~km}^{2}$. Find the area of the playground on the map, leaving your answer in cm^{2}.

Answer (c)
(c) \qquad cm^{2}

The diagram shows part of a regular polygon with n sides. Given that $\angle B A C=12^{\circ}$ and E is the point where the lines $B D$ and $A C$ intersect.

Calculate
(a) the value of n,

Answer (a) $n=$
(b) $\angle A E D$.

Answer (b) \qquad ${ }^{\circ}$

13 Solve the simultaneous equations below giving your answers in exact values.

Answer $x=$ \qquad , $y=$ \qquad
14 (a) Given that,
$P=\{x: x$ is a multiple of 4$\}$,
$Q=\{x: x$ is an even number $\}$ and $R=\{x: x$ is a number less than 7$\}$.
(i) List the elements in set P.

Answer (a)(i)
(ii) Find.

Answer (a)(ii)
(iii) State the value of $n(R)$.

Answer (a)(iii)
(b) On the Venn diagram shown in the answer space, shade the set .
$15 A B$ is the diameter of the circle $A F B C D$ shown in the diagram. E is the point on $A B$ produced, where $B D=B E$ and angle.
The straight line $E D$ cuts the circle at C.
(a) Explain why angle.
\qquad
\qquad
\qquad
(b) Find angle.

Answer (b) \qquad -
(c) Show that $B D$ bisects angle.
\qquad
\qquad
\qquad
\qquad
(d) Given also that angle, calculate angle.

Answer (d) \qquad -

16 Given that A is the point $(1,1)$, and that D is the
midpoint of $B C$. Find
(a)

Anwser (a)
(b) ,

Answer (b)
units
(c) the coordinates of the point P such that $A B P C$ is a parallelogram using vector method.

Answer (c) \qquad , \qquad)

17 A container is a prism with a triangular cross-section. The container has a height of 30 cm . Jamie pours water into the empty container at a constant rate.
She takes 9 seconds to fill the container with water. After t seconds, the depth of the water is $d \mathrm{~cm}$.
(a) Find the value of d when $t=4$.

Answer (a)

(b) Given that the volume of the container is $1350 \mathrm{~cm}^{3}$. Find the volume of the water when $t=4$.

Answer (b) \qquad cm^{3}

17 (c) On the axes in the answer space, sketch the graph showing how the (i) depth varies during the 9 seconds,
(ii) volume varies during the 9 seconds.

18 The times (in seconds) taken by 12 boys to complete the shuttle run are given below.

9	14	12	17	16	10	10	18	12	15	13	12

Find,
(a) (i) the median,

Answer (a)(i)

(ii) the interquartile range.

Answer (b)(ii)

(b) The times (in seconds) taken by 12 girls to complete the shuttle run are given below.

10	18	19	12	12	14	21	21	22	15	13	15

Compare the results of the boys and girls.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

19 (a) Express in the form and sketch in the space provided showing the turning point and y-intercept.

Answer (a) $y=$
(b The diagram below shows a quadratic function in the form of .)

Equation of line of symmetry is. Find the values of a, b and c.

Answer $\underset{\sim}{\text { (b)}} \quad b=$

$$
c=
$$

20 In the diagram below, O is the origin, A is and B is. C is a variable point with the coordinates and D is the point of intersection of the lines $A B$ and $O C$.
(a) Prove that triangles $O B D$ and $C A D$ are similar for all values of m.
\qquad
\qquad
\qquad
\qquad
(b) Find
)
(i) the equation of the line $A B$,

Answer (b)(i)
(ii) the value of m when the length of $O C$ is given as units,

Answer (b)(ii) $m=$ \qquad
(iii) using the value of m in (ii), find the coordinates of D.

Answer Key

1 (a)
(b)

2
(a) litres
(b) $4.18 \mathrm{~m} / \mathrm{s}$

3 (a)
(b)

5 (a)
(b)

6 (a) km / h (b) 3330 ns
7 (a)
(b) (i) (ii) 16

8
(a)
(b)
(c)

9
(a) 35
(b)
(c) 2499

10 (a) (i) 3 cm
(ii) 3.61 cm
(b)

11 (a) 1: 50000
(b) 8000 m
(c) 32 cm

12 (a)
(b) 156°
$13 x=, \quad y=$
14 (a) (i) $\{8,12,16\}$
(ii) 6
(iii) 0
(b) ---

15 (a) (base angles isosceles triangle),
(b) 72° (angles in the same segment), shown
(c) $18+18$ (exterior angle of a triangle)
(d) 111°

$$
\begin{gathered}
=36^{\circ} \\
=72-36=36^{\circ}
\end{gathered}
$$

$B D$ bisects
16 (a)
(b)
(c) $(3,9)$

17 (a) $d=20$
(b) 600 cm
(c) (i)
(c) (ii)

18 (a) (i) 12.5 (ii) 4.5
(b) median of girls $=15$ and IQR of girls $=4.5$

Boys are faster because median is smaller. Boys' performance more consistent as IQR is smaller.
19 (a)
(b) $a=$

20 (a) $A C$ is horizontal, hence parallel to $O B$
(b) (i)
(alternate angles, $A C / / O B) \quad$ (ii) $m=3$ (iii) (2,) (alternate angles, $A C / / O B$)

Since 2 corresponding angles are equal, are similar.

 3. The sine of an angle is 0.1786 .

Give two possible values for the anglo in degrees, correct to two significint figures.

[дano unl]

Calculate the radius of the smaller cone as a percentige of the larger cone
 Tiwo cones, made of the same material, have the same height. $\frac{3}{4}$
$\frac{3}{8}$
$\frac{3}{3}$
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

10．A high－speed train travels at an estimated ipeed of 660 kilometres per hour．
U
2

$=V(q) ~ د כ \mu \leqslant \ldots V$		
	$L \times \varepsilon \times c=891$ ＇tiopary ouls	

Answer（b）．．．．．．．．．．．．．．．．．．．．．．．．．．2bach

（सtrpuet（q）土avexy

[18กロ wn」]

[^6] Answer Given that $A X B=D Y A=90^{\circ}$, prove that triangles $A B X$ and $D A Y$ are congruent. A, B, C and D are the vertices of a square. The point Z lies on $C D$ such that A, X, Y
and Z are collinear. Clses)
[zaso wni]
 (a) Construct the perpeniticular bisector of $B C$:
(b) Construct the angle bisiector of angle $A B C$.
[I]
Answer (a) Construct the perpeniticular bisector of $B C$:
(b) Construct the angle bisiector of angle $A B C$.
[I]
Answer
$\stackrel{\square}{7}$ The diagrais in the anawer space below thows three points, A, B and C. (a) Construct the perpenificular bisector of $B C$:
(b) Construct the angle bisiector of angle $A B C$.
Answer

部
renpectively The diagram below shows two concentric circlen, with centre O.
$\overline{0}$

[^7]Q

1004 s, splo Bubux Buolue \perp
[јано uinıl
9102 uopenuluex keurupad inod kiepucoos

(n) Catculate reflex angle BCD.

The diaqram shows two regular pentagons $A B C G H$ and CDEFO, $A B$ and $E D$ are
produced to meet at point P.

Answer all questions on the writing paper provided.

저 픚

- End of Paper -
rainstorm. Show your working and give reasons to justify your answer. [4]

(c) A drain must be able to channel away 90% of the rin water within 30 secunds, if
not preventive measures need to be set up to curb the flood.

 the semicircle is 50 cm and the vertical height measured from the bottom of the semicircle

UnO\& A甘VONOJas
OML NOUVNIWVXZ AUVNIWI

$1 1 \longdiv { C } = x (9)$ chanivy

200HOS vTHOLJIA
Watculso

VICTORLA SCHOCH.
$1654 \mathrm{PR} 2 \mathrm{FM} / \mathrm{I}$

3

 12 (a) skotch the
(a) Mod the mantier of similithouses thai the spqrencice can puinn in 30 ilvs

 The cumialative frequency curve below shaw

(b) Catculate the preventage change in 7 if r is decreased by 30%

 length of the ating. I ct The peried of ascillation, F seconits of a string varies iterestly as the square roof of the 6
6

> Pin vanes
\mid |t| $\mathbf{\text { as }}$
700HOS YIHOLIA

$$
\text { III } \quad 1
$$

(z|,

VICTORIA SCHKKOt

Carousell-examguru

TOOHOS VIADILHA

(e) enutiny

VICTORIN SCHOOL.

ul (כ) sanitry

Answir (a) and (c)
(a) Lioing ancale of 1: 20000 , comtruct the 3 HHL

twataikse)

isкo uñ.]
 The total number of marics for this paper is 100 . The number of marks is given in brackets [] at the end of each question or part At the end of the examination, fasten all your work securely fogether, For π, use either your calculator value or 3.142 , unless the question requires the
answer in terms of π. decimal piace. If the degree of accuracy is not specilied in the question, and if the answer is not
exact, give the answer to three significant figures. Give answers in degrees to one You ara expected to use a scientific calculator to evaluate explicit numericat
expressions. If working lo needed for any quatation it must be shown with the an mwirr.
Omission of essantial working will result in loss of marks.
You ara expected to use a scientific calculator to gvaluate explicit numention Answer all questions.
If working is needed for any quastion it must be shown with
Do not use paper clips, highlighters, glue or correction fluid. Write your name, class and registar number on all the work you hand in.
Write in dark blue or black per. READ THESE INSTRUCTIONS FIRST

MATHEMATICS sennupu of sinouz
Z HadVd
2.

 joquinn jeqnioay

VICTORLA SCHOOL,

Tiven that $p=2^{3} \times 3^{4} \times 7$. Write down the

E [1) шоониния

She payn with two 510 notes and receives change of $\$ 1,50$.
(i) Write down a pair of simuitancous equations to rejues Ghoria buya the preces of tofu and ituree packets of mushoom
5 phe pay with 510 notes and receives change of $\$ 1.80$.

Voctir buya fire peeces of tofu and four packets of muahroorn for $\$ 77.35$

Ticket	Price
Adali	530
Chud	512
Sentor Critizen	415

Then rahle helow shows the ticket prices if the Singaporn Ganden Festival heid at
Cfumbens by the Bdy.

A is due ranth of B and $A D C$ it a stragght line.
(a) Calcalise

 (ii) Given that the radius of the circle is 14 cm, find the area of
rianझle $B D F$.

 QR is an wre of a circle with centse P
 In the diagram, $F O R$ is a quadrant of a circle with radius 6 cm.

$$
\begin{aligned}
& \text { Find } \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

 The line $D H$ is a diameter of the circle BDAF with contre 19

(4)
포ㅍㅡㅗ

$$
\begin{aligned}
& \begin{array}{l}
\text { [1) } \\
\text { (1) } \\
\text { (1) }
\end{array}
\end{aligned}
$$

(ii) Find, "ts a fruction in its simpleut form, the probibility that
(iu) the firu flag is red and the second flag is yellow. [i] weutorno эqqisod oip jo sop Two fhass whe taken from the bag al random without replicement (b) A box contains 3 red flags and 8 yellow fags

(d. D) ${ }^{8} 8$	(a)
เटठठ	(a)
	(10)(0) ${ }_{\text {\% }}$
	$(\mu)($ P $)+$
	(0) c_{5}
	(A)(9) C
- (¢99)	(A) (a) k
9E =2 pur $\angle 5=0$	
$\binom{w \angle z}{V L L z}=\left(\begin{array}{l}c t \\ z 1 \\ c z\end{array}\right)\left(\begin{array}{ccc}2 & \text { zi } & 58 \\ 90 & 2 & 18\end{array}\right)$	
$\binom{p v z}{v z L z}=1$	(1)(0)E
$\begin{gathered} (61 t)= \\ \left(\begin{array}{ll} 51 \\ z 1 \\ 0 \tau \end{array}\right)\left(\begin{array}{ll} 1 & \tau \end{array}\right)=u \end{gathered}$	(q) ε
$\left(\begin{array}{lll}t & z & t\end{array}\right)=d$	
$\left(\begin{array}{l}s 1 \\ 21 \\ o z\end{array}\right)=0$	(i)
 	(H ¢at
$(z+u) y$	
$(\xi+\mathrm{kq})$ pue $(\varepsilon+\mathrm{wz})$	(1) Cc
105	(A) ${ }^{\text {a }}$ C
$L x_{1}+E x_{1} z$	(H$)^{\text {F }}$
$921=9$	(ii)
	(1) ${ }^{\text {a }}$
	91
OETOS	
	(1) ${ }^{\text {I }}$ I
0chemet\%	(0) 1

	(p)01
E	(3)
(Tse) (was coets	(mioru)
${ }_{4}$ m3 40013	(1)(9)01
, 1 U3 20027	110)01
जए	T01
	(3) $)^{(1)}$ (4) 10
(if)	(9) 9 (0) $(9) 16$
61	
$\frac{69}{0!}$	(3)(0)(9) ${ }^{\text {a }}$
 	(6)
	(q) (t)(v) 6
sumax by ff	(6)(a) ${ }^{(0) h}$
[) $=$ d	(0)W)

$$
37,33,29,25 .
$$ (a) Write down the 6 6 term of the sequetice.

[^8]
Write the following in order of size, starting with the
$7.3 \dot{5}, \frac{22}{3}, 7.3 \dot{5}, \sqrt{54}$

[^9]

m

10 Given that $3^{3} \times 3^{\text {let }}+3^{3!}=729$. find the value oft

$=$
8
8 Given that y is inveriely proportional ta the square of x, find the percentage dectease in y when x
is increased by 400%.

Answer|2]

(a) Factorise completely $75 x^{4}-147 x^{2}$

-

Given that $3^{1} \times 3^{1+1}+3^{3}=729$. Find the walue ofk

[^10]Con

The diagram shown a triangle $A B C$ such that $B C$
D is a point en $B C$ wech that $\angle D A C=\angle A B C$,
(a) Show thet triangle $A B C$ is similar to triangs Antreer
The diagram shown a triangic $A A C$ such that $B C=18 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$. D is a point on $B C$ such that $\angle D A C=\angle A B C$.

E

π

(b) Hence calculate
(i) $C D$

co

 E

Anger [1]
(ii) Find $n(A \cap B)$ '

I

I

(b) Simplify $(3 k-2)(4 k+5)+(k-4)^{1}$
(b) Hence or otherwise, soive $-x^{2}+6 x-7=0$, showing your workings elearly. Give your
answers correct to three decimal places.
(c) Hence, sketch the graph of $y=-x^{3}+6 x-7$, labeling all x intercepts and turning points
Annwer

$$
\text { Ansver } x=\ldots \text { or [2] }
$$

[2]

\cdots

(a) Find the values of a, b and c.

Ansier $a=\ldots \ldots \ldots \ldots, b=\ldots \ldots \ldots \ldots, c=\ldots \ldots \ldots \ldots$. [2]
(b) The score 60 was accidentally left out Uning the remaining results from the 9 basketbali
D
www.sgexamguru.com

Michael paid a total of $\$ 5937.50$ in 2016 for his income tax. He received a 3 months bonus and
his tax reliefs amount to $\$ 10000$ (Chargeable income = Annual income-total tax relief)
Calculate
(a) Miehael's shargeable income.
Michael's monthly salary Anneers.........................[3]

(b) Five cards are numbered 1, 4,6,7 and
(b) Five cards are numbered $1,4,6,7$ and 9 respectively. Two cards are drawn, ane by one
without replacement, and the sum of the numbers are recorded.
(i) Show all the possible outcomes in a possibility dingram.
Hence, find the probability that the sums is
(ii) an even number,

| (iii) a multiple of 3. |
| :--- | :--- |
| A third card is drawn. |
| (iv) Find the probability that the sum of the three curds is 14 . |

∞

Answer questions 9 to 11 in Bookjet C .

$$
\text { The diagram shows a circle with centre } O \text { and pases through } A, B, C, D \text { and } E \text {. }
$$

$P A Q$ is a tangent to the circle.
The diameter $B E$ is extended to meet the tangent at P.
Angle $C D E=140^{\circ}$, angle $B P Q=20^{\circ}$ and angle $P A E=35^{\circ}$,
$\begin{array}{ll}\text { (a) angle } B A E \text {, } & \text { II] } \\ \text { (b) angle } C A E & \text { [II }\end{array}$

(c) angle CO , [i]

(d) angle $A C A$. 30** Dedoce whether X lies on the cirtumffrence of the circle, intide the cirale or ouside the
sircle, giving a resson for your ansuer.
9

4
Given that $\angle B A C=0.873$ radians, find
(x) $A C$,
(b) the area of the shaded region.

[^11]

$=$

	(i) He heigh, in centmetre, of se cy finder,	(II)
	(ii) He volume, in cubic certimeter, of the conainet, extwing the neck	(2)
(b)		
	Caiculut tie ical mass of tee iquad	[2]

4
 carry is 150 kg

Assume that the basket can be modelled in the form of a cuboid below.

[^12]
CHS 2016 Prelim 3

Answer all the questions,
(b) Simplify $5 a^{-3} b^{3}+\frac{10}{9} a^{2} b^{-1}$.
(c) Factorisc fully
(i) $11 p^{2}-44 p q+4 q-p$,
(i) $30 m^{2}+14 m n-4 n^{2}$
(d) Solve the equation $\frac{1}{2 x-7}+\frac{7}{(2 x-7)^{2}}, \frac{x-5}{2 x-3}=1$.
7 A box contains 5 Chocolate doughnuts, 3 Glazed doughnuts and 1 Strawberry
doughnut.
(a) Two doughnuts were taken out of the box at random, without replacerntat
Copy and completo the tree diagram to show this infornation.
(b) Find, as a fraction in its simplest form, the probability that
(i) the two doughnuts are the same flavour,
(ii) at least one of the doughnuts is Chocolate.

or

11

14)	$\frac{56-14 x}{(2 x-2)^{2}}$
1b)	$\frac{9 b^{7}}{2 a^{6}}$
Ic)	(i) $(11 p-1)(p-4 q)$
	(ii) $2(3 m+2 n)(5 m-n)$
1d)	$x=\frac{1}{3} \quad$ or $\quad 3$
2a)	35 marks
2b)	13 marka
3a)	$\frac{2}{3} a+\frac{1}{5} b$
4e)	(i) $\frac{\text { area of } \triangle X Y R}{\text { area of } \triangle R Y Z}=\frac{2}{3}$
	(ii) $\frac{\text { area of } \triangle X Y R}{\text { area of } \triangle P Q R}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
5a)	$\frac{6400}{x}$
5b)	$\left(\frac{320000}{x}-8 x+6000\right)$
5c)	(ii) $x=-500$ or $x=80$
Sd)	72
6a)	$\left(\begin{array}{l}0.35 \\ 0.45 \\ 0.40\end{array}\right)$
6b)	$\binom{355}{415}$
6c)	The total amount of money collected by each stall (per day from the selling the satay)
6d)	517475
6e)	$\left(\begin{array}{ccc}1.1 & 0 & 0 \\ 0 & 1.1 & 0 \\ 0 & 0 & 1.1\end{array}\right)$
7b)	(i) $\frac{5}{4}$
	(ii) $\frac{13}{14}$
Ba)	(i) 109^{8}
	(ii) $71{ }^{\circ}$
	(iii) 68°
	(iv) 49°

> 7 The current, /amperes, passing through a circwit is inversely proporional to its exeistance, R ohms when the retitance of the circuit is 3 ohms , the current pasting through it in 2 amperes.
(a) Find an equarion

[^13]

(b) Caleulate the rexistance of the cirevit when 1.5 amperes of current pastes
through it:
(c) Sketch the graph of I against R.
Answer (c) I (amperes)
(b) Caleulate the rexistance of the cirevit when 1.5 amperes of current pastes
through it:
(c) Sketch the graph of I against R.
Answer (c) I (amperes)

A restaurant charges 527.80 per person for buffet lunch, On a particular day, 114
people dined in the restautani
By approximating both the charge and the number of diners to 2 nignificast figures,
cstimate the total ainount received by the restaurant on that particular day.
Show your working and give your answer to a reasonable degree of accuracy,
[z] …..........................".s sansuy
Find the time taken for the metal to cool to a temperanure of $250^{\circ} \mathrm{C}$

6 (a) Solve the inequality $1-x \leq 4+x<13-2 x$.

[^14]—

The distance between Town Y and Town Z is 52 km .
His average speed for the whole journey was $60 \mathrm{~km} / \mathrm{h}$.
Calculate
(a) the digtance between Town X and Town Y.
Answer (a)...
(b) the average speed for the journey between Town
 [t]
12 Peter drove from Town X to Town Z, passing by Town Y along the way.
He rested in Town Y for 10 minutes before continuing his journey to Town Z.
The distance between Town Y and Town Z is 52 km .

\square

s

$$
16 \text { On the axes ahow, } P \text { is }(-4,3), Q \text { is }(-3,-2) \text { and } R \text { is }(2,-2) \text {. }
$$

5

Find
 'Ods Joy wipath ani (v)

(b) in $P \dot{R} Q$.

tTurn our

।
I

I

(a) If $\overrightarrow{B C}$ in parallel b $O A$, fiad the vaive of p.

π
 -

19. A gold solid is formed by joining the plane faces of a cont, a cylinder and a
 The coar and cyliniser have a bese radius of 3 cm and height 6 cm .
The hemitplere has a radius of 7 cm . $\overbrace{5}^{1}$

(b) the sarface area of the gold solid, \quad Answer (e)cm [2]
(b) the surface area of the gold solid, \quad Anmer (c)cm [7]
E

Calculate
(a) the length of the sian height of the cons,

Catmire

3
Answer all the quettions.
figures. $\frac{24.9-1.01^{2}}{}$, giving your answer correct to 3 significant
Answer a man sells an art piece at 5250 , he would make a loss of 20%. Evaluate the selling

4 Given that $\frac{3 a-b}{2 b}=\frac{1}{4}$, find the value of $\frac{a}{b}$.

2016 Preliminary Exam/CCIMS/Secondary 4Maternatig/404tol

6

 11 Benson has 480 strawberry-flavoured lallipops and 560 cola-flavoured

12 Consider the sequence $1^{1}-4,2^{1}-6,3^{3}-8,4^{3}-10, \ldots$. .
(a) Write down the $5^{\text {a }}$ term of the sequence.

9 The scale of a map is 1:60000. A park is represented by an ares of $4 \mathrm{~cm}^{2}$ on the
 map. Caleulate the actual area of the park in square kilometres.

$$
5
$$

8 Solve the equation $x(x-2)=3$.

Answer $\mathrm{km}^{2} \quad$ [2]

10 The table shows the battery lifespan of 40 laptops.
10 The table shows the battery lifespan of 40 laptops.
[1]
(a) Find the percentage of laptopt that have battery lifespan of at least 4 hours.
(b) Find the mean and stardard deviation of the battery lifespan of the laptops.

13 It is given that $\overline{A B}=\binom{4}{5}, \overline{O C}=\binom{2}{p}$ and the position vector of A is $\binom{-2}{1}$.
(a) Find $|\overline{A B}|$.
(b) Find the coordinates of B.
Answer (a) [2]

10
18 Alex has $\$ x$ and Ben has $\$ y$. If Ben gives Alex $\$ 5$, Alex will have twice as much
(a) Form an equation in x and y,
∞
values of x and y.
(b) If they have a total of $\$ 48$, form another equation in x and y. Hence, find the
(1)
Answer (a)

Anter (a)

9
16 Two interior angles of a n-sided polygon are 160° and 40° while the remaining interior angles are each 140°. Find the value of n.
\oplus

therever 13

ene
ii
ii
The vertical heights of V and W sre in the ratio of $2: 3$ rapectively.
If the whume of W is $S 4 \mathrm{~m}$ ' fiod the voturne of the solid V.

Anver (b) …….................... [1]

Anrwer $r=\ldots \ldots \ldots .+H=\ldots \ldots \ldots \ldots$ [4]
3016 Thatininay EunCCHMSTarcotay 4Maderusa 254801
(a) Find the length of arc $A C B$.

13
The speed time graph shows tho joumey of a train over a period of 90 a fhom Paya
Answer (a) km / h [1] Answer (a) km / m
(b) Given that the acceleration in the first part of the journey was $0.8 \mathrm{~m} / \mathrm{s}^{2}$,
calculate the time taken, in seconds, for the train to reach its maximum
speed.

[^15]

$$
\Xi \text { 떠 }
$$

[^16]む
른

	3	
Answer all the questions.		
1 (a)	Simplify $\frac{4 y}{3 x^{1}}+\frac{12 y^{*}}{x}$.	[1]
(b)	Simplify $\frac{4 x-8}{7 x^{2}-12 x-4}$,	[2]
(c)	Factorise completely $20 \mathrm{~m}^{2}-45 \mathrm{~m}^{2}$.	[2]
(d)	Solve the equation $\frac{4 x+5}{3 x-2}=4$,	[2]
(e)	The volume, $V \mathrm{~m}^{3}$, of a certain object is given by the formula $V=\frac{b^{2}}{2}(a+3 h)$, where h is the height of the object in metres and a and b are constants.	
	(i) Make b the subject of the formula.	[2]
	(ii) Hence find b, when the volume and height of the object are $15 \mathrm{~m}^{3}$ and 2.5 m respectively, and $a=0.25$.	[2]

Package A	Compound interest of 4.7\% per annum, repaymeat period of 5 years
Package \bar{B}	Simple interest of 4.9% per annum, repayment period of 6 years.
(if) Find the total repayment amount for Package A.	
(iii) Find the total repayment amount for Package B.	
(iv) Wayne is able to afford a maximum repuyment of $\$ 400$ per month.	
Explain, with working, which package Wayne ahould choose.	

(b) In this part, use the fact that 1 light year $=9.46 \times 10^{15}$ metres,
The distance of the star Sirius from the Sun is 8.6 light years.
A space probo travels at $70000 \mathrm{~km} / \mathrm{h}$.
Calculate the time taken for the probe to travel from the Sun to Sirius.
Give your answer in years, correct to three significant figares.

(c) graph sketch
16.7
17. (a) $y=-x^{2}+5.5 x+3 \quad$ (b) $x=2.75$
$\begin{array}{ll}\text { 18. (a) } 2 y-x=15 & \text { (b) } x=27, y=21\end{array}$
(b) $r=7.57 ; H=4.87$
(c) 40
(b)(ii) Carpark A
(b) $C(7,0)$
(b) 25
(ii) 55
(b) 3.5 hrs

$$
\begin{aligned}
& \text { (i) Make } b \text { the subject of the formula. } \\
& \text { (ii) Hence find } b \text {, when the volume and height of the object are } 15 \mathrm{~m}^{3} \text { and } 2.5 \mathrm{~m} \\
& \text { respectively, and } a=0.25 \text {. }
\end{aligned}
$$

$$
\equiv \text { ভ } \Xi
$$

6
A group of students took a multiple choice test containing 40 questions.
answered 5 fewer questions wrongly and lefi 3 more questions unattempted.
.

$$
\begin{gathered} \text { Mean A B } \\ \left(\begin{array}{cc} 28 & 40-x \end{array}\right) \end{gathered}
$$
 The information can be represented by the matrix $Q=\left(\begin{array}{ccc}\text { Mean } & \text { A } & \mathrm{B} \\ 28 & 40-x & 2 \\ 4 & x & -5 \\ 4 & 0 & 3\end{array}\right) \begin{aligned} & \text { C }\end{aligned}$.

(a) For every correct answer, 2 marka were awarded and for every wrong answer 1 mark was deducted.

No mark was awarded or deducted for unattempted questions. Write down a 1×3 matrix \mathbf{R} to represent this information.
(b) Find $\mathrm{S}=\mathrm{RQ}$, leaving your answer in terms of x.
(c) Benny claims that his score is better than Ashley's. Is his claim correet? Justify your answer.
(d) Ashlcy's score is 4 marks higher than the mean mark. Find the value of x.

10
 The diagram shows a prism with a cross-section 8 cm . The prism has thickness 5 cm .

9

12

Two bottles have capacities of 1.5 litres and 2 litres respectively.

13
Answer

[^17]Do you agree that Candidate I has the most number of votes? Explain your answer. Anwer

[2]
(a) Calculate the volume of the container.

16
17

Answer
(b) Water is poured at a constant rate into the container from the top.
On the axes provided, aketch the graph of the change in height of water level over time.
Answer (b)
Answer
(b) Water is poured at a constant rate into the container from the top.
On the axes provided, aketch the graph of the change in height of watet level over time.
Answer (b)
Answer
(b) Water is poured at a constant rate into the coniainer from the top.
On the axes provided, aketch the graph of the change in height of watet level over time.
Answer (b)
[2]

201 OPraliminary Eram/Mathemarica/se AEpy SMA Puper I $!$ $=-$

(1)

15
Write down a possibie equation for each of the following graphs.

ลิ

(a) Find the interquartile range for May.
Time tiken (minutes)

17
18 The Venn diagram shows a universal set ξ and two sets A and B.
 pointer is spun, it is equally likely to stop at any of the sectors.

4

(a) Given that the pointer lands on $A \cap B^{\prime}$ and $B \cap A$ ' on the first and second spin espectively, shade the region(s) in the Venn diagram below. Answer (a)

Giving your answer as a froction in its simplest form, find the probability that Andrea shades
the following regions.
(b) $A \cap B$.

Answer ___._ni......_(1]
(c) $A \cup B^{\prime}$,

6

2016 Prelim Exam/Mathematicu Sec AESN Paper 2

10

$$
\begin{aligned}
& \text { (a) State the median marks for the girls in the class. } \\
& \text { (b) Calculate the }
\end{aligned}
$$

${ }^{\circ}$

む Ξ
 The passing mark for this particular test is 18 .
 (i) A student was selected at random from the class. Find the probability that the
 student selected passed the mathematical test.
 (ii) Two students were selected at random. Find the probability that at least one

(i) standard deviation of the test for the boys,
(c) The statistical results for the girls in the class are
the girls in the class are summarized below.

Mean	23

-

2

4(aiv)	$16.2 \times 40=648 \mathrm{~km}$
4(b)	\therefore Fuelconsumption for sport-mode $=11.31 \mathrm{~km} / \mathrm{h}$ $\therefore \frac{357,5}{11.31}=33.2 t$ Thereis ne need for a refuelas hiscar has a capacityfor 40 litres. Heis abletocompletchis journeyon a singlefull tank.
5(a)	$\frac{16}{x}$
5 (b)	Shown
5 (c)	$x=3.15$ or -10.2
5(d)	$\begin{aligned} & 8.6566 \\ & * 8.66 \mathrm{hrs} \end{aligned}$
6	Refer to graph paper
7 (ai)	$\overrightarrow{O Q}=5 r$
7 (aii)	$\overrightarrow{R S}=-\frac{1}{6} r+\frac{1}{6} p$
7(b)	$\overline{O M}=\frac{1}{2}(p+5 r)$
7(ei)	$\overline{O M}=3(\rho+5 r)$ (shown)
7 (cii)	The points are collinear.
7(di)	$\frac{1}{6}$
7(dii)	$\frac{1}{30}$
8(aia)	$\angle O H B=61^{\circ}$
8(aib)	$\angle C B D=18^{\circ}$
8 (aii)	Arc Length $=9.01 \mathrm{~cm}$

9
to 2 decimal places where necessary.
Answer (a) $\tan \angle P Q R=$.......... Answer (a) $\tan \angle P Q R=\ldots \ldots \ldots \ldots . . .[2]$
Answer (b) $\cos \angle T R P=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
9 (a) Express 660 as the product of its prime factors.
(b) The lowest common multiple of 6,12 and k is 660 .
Given that $k<150$, find two possible values of k.

5

时

E

> (c) The bax-and-whisker diagram below shows the ages of another 16 students who work at a
cafe next to the bookshop.
Answer (c)
"The ages of the 4 youngest students who work at the caffare closer together than the ages
of the 4 youngest students who work at the bookshop."

$$
\begin{aligned}
& 16 \text { Given that } A-\left(\begin{array}{cc}
7 & 5 \\
-2 & 3
\end{array}\right) \text {, find } \\
& \because \\
& \text { - } \\
& \stackrel{\circ}{-}
\end{aligned}
$$

$y=\ldots \ldots \ldots \ldots \ldots$

1
b
$\underset{\sim}{n}$

1
I
H
1

11

1

\square
(b) the value of x and of y if $3 A-\left(\begin{array}{cc}15 & x \\ 2 & 0\end{array}\right)-\left(\begin{array}{cc}6 & 16 \\ y & 9\end{array}\right)$.
[z] (q) bannuy (b) Electric power, P, in watt (W) is proportional to the square of the current, l, in amps (A).
If $P=0.8 \mathrm{~W}$ when $/=0.02 \mathrm{~A}$, find an equation for P in terms of .
[Turn over

Sec 4 E Maths Prelimv01/2016

Nanyang Giris' High School
[z] ,
" 21

2016 Sec	4 Prelims Mathematica P1（Answer Key）
Question	n Solution
1（a）	1.9974
1（b）	2.00
2	$0.52^{\frac{1}{7}}, \frac{33}{41}, 0.803, \sqrt{0.64}$
3	$\frac{1}{5} x(2 x+y)(2 x-y)$
4（a）	$\frac{5}{y^{6}}$
4（b）	$k=4$
5	－It is sot ciear whecher the vertical axis repretents the number of smidents or the percentage of the atudenir． －The intervals between the values on the vertical axir are not equal． －The vertical axis is truncated and does not start from zero．
6	\＄255
7	$16 x y-y^{2}$
8 （a）	$\tan \angle P Q R=0.81$（2dp）
8（b）	$\cos \angle T R^{P}=-\frac{12}{19}$
9 （a）	$660-2^{2} \times 3 \times 5 \times 11$
$9 \mathrm{~b})$	55， 110
10（a）（i）	$i^{\prime}=(1,4,6,8,9,10,12,14,15,16)$
10（a）（i）	$\mathrm{n}(A \cup B)=11$
10（b）	$P \cap Q=$（）means that none of the girls play both the guitur and the drums．
11（a）	48 cm
11（b）	$105000 \mathrm{~m}^{2}$
12（a）	$\left(x-\frac{5}{2}\right)^{2}-\frac{37}{4}$ or $(x-2.5)^{2}-9.25$
12（b）	$\begin{array}{ll} x=\sqrt{\frac{37}{4}}+\frac{5}{2} & \text { or } \\ -5=-\sqrt{\frac{37}{4}}+\frac{5}{2} \\ -54(2 d p) & =-0.54(2 d p) \end{array}$
13（a）	
13（b）	Median $=0.5(19+20)=19.5$
13（c）	Lower quartile of ages（book ahop）$=18$ years Lower quartile of ages（cast）$=18$ years

断
\square
(continued from previous page)

$$
\begin{aligned}
& \text { (d) In the treasure box that you discovered at point } X \text {, you found USS } 12000 \text {, } \\
& \text { The current exchange rate is } S S \text { I = USS } 0.75 \text {. } \\
& \text { How much Singapore Dollars will you receive? }
\end{aligned}
$$

Quertion	Solution
19aii	
19(a)(iii)	$x=-1$
193)	
20(3)(i)	Reflex angle $A O B=216^{\circ}$ because male at centre is oxice angle a Lhe circumfertacs
20(a)(1)	CAXB $=30^{\circ}$
21(a)	$T_{5}=3\left(\frac{4}{3}\right)^{3}-9-\frac{295}{81}$
21(b)	$T,=3\left(\frac{4}{3}\right)^{7}-13=\frac{6907}{729}$
$21(c)$	$r_{n}=3\left(\frac{4}{3}\right)^{*}-(2 n-1)$ or $T_{n}-3\left(\frac{4}{3}\right)^{*}-2 n+1$
21(d)	Alvin is ineorrect because the denominalor wer all pousth of 3 , bot 1458 is not a power of 3 .

[^18]

[^19] (5
7

(a) Calculate
(i) the bearing of R from Q.
(ii) the length $P R$,
(iii) the area of the field $P Q R S$,
(iv) angle $Q P R$.
(b) An eagle was hovering at a height of 35 metres above the field. It spots its
prey on the ground at an angle of depression of 58°. Calculate the distance
that the eagle must fly to catch its prey.
[Tum Over
that the eagle must fly to catch its prey.
(2)

[^20]9. In the triangle $L R S$, the point P on $L R$ in wuch that $R L=3 R P$. Q is the midpoint or $\overrightarrow{P R}=\mathrm{a}$ and $\overline{Q S}-2 \mathrm{~b}$.

(a) Expreas each of the following. as simply as poanible, in terms of 3 and/or b,
(i) $\overline{P Q}$.
$\Xi \equiv \Xi \Xi$ 玉 Ξ

$$
10
$$
$$
2
$$
\[

$$
\begin{aligned}
& \begin{array}{l}
\text { (b) Show that } \overline{K N}-\frac{1}{7}(-9 \mathrm{a}+12 \mathrm{~b}) \text {. } \\
\text { (c) Calculate the value of } \\
\text { (a) } \frac{R N}{N S} \text {. } \\
\text { (b) } \frac{\text { area of } \triangle L N Q}{\text { area of } \triangle Q N S} \text {. } \\
\text { (c) } \frac{\text { area of } \triangle R L M}{\text { area of } \triangle N L S} \text {. }
\end{array}
\end{aligned}
$$
\]

5 bi	$\left(\begin{array}{ccc} 5 & 3 & 2 \\ 11 & 8 & 6 \\ 8 & 5 & 4 \end{array}\right)$
5 bii	$\left(\begin{array}{l}184 \\ 454 \\ 310\end{array}\right)$
56iil	The total cost price incurred by esch thoo.
Sbiv	$\left(\begin{array}{ccc} 0.1 & 0 & 0 \\ 0 & 0.15 & 0 \\ 0 & 0 & 0.2 \end{array}\right)$
5 bv	$\left(\begin{array}{c}18.4 \\ 68.1 \\ 62\end{array}\right)$
6a	$x \geq 2 \frac{3}{7}$
6b	$\begin{aligned} & \frac{3}{2 x-1}-\frac{1}{3 x-1}+\frac{1}{(3 x-1)(2 x-1)} \\ & -\frac{3(3 x-1)-(2 x-1)+1}{(3 x-1)(2 x-1)} \\ & -\frac{9 x-3-2 x+1+1}{(3 x-1)(2 x-1)} \\ & -\frac{7 x-1}{(3 x-1)(2 x-1)} \end{aligned}$
6 c	$y= \pm \sqrt{\frac{x+1}{x-3}}$
7 i	$\angle B O C=0.749 \mathrm{rad}(3 \mathrm{sf})$
7ii	$B D=4.76 \mathrm{~cm}$ (3st)
7 iii	OD 5.13 cm (3sf)
7iv	Area of shaded region $-6.12 \mathrm{sq} \mathrm{~cm}(3 \mathrm{sf})$
8 ai	Bearing of R from $\mathrm{Q}=114^{\circ}$
8 Siil	$P R=141 \mathrm{~m}$ (3sf)
8aiii	Area of field $P Q R S$ -6620 sq m (3sf)
8siv	LQPR - 57.0^{*} (1 dp)
8 b	41.3 m (3 s)

3 Write down the first five digits on your calculator display.
Answer (b)[1]

$$
\begin{aligned}
& \text { The first four term of a sequence are } \\
& 12 \quad 19
\end{aligned}
$$

$$
\text { Answer (a) }[1]
$$

(b) Write down an expression, in teems of n, for the nth term of the sequence.

e

$$
\begin{aligned}
& 7 \text { Given that } y \text { it proportional to the square of } x x \text { in increased by } 50 \% \text {. Find be percentage } \\
& \text { increase in } y \text {. }
\end{aligned}
$$

10 On a map, the ares of a lake is $0.25 \mathrm{~cm}^{2}$. The actual area of the lake is $4 \mathrm{~km}^{2}$.
(a) Express the scale of the map in the form $1: n$.
[1]
 between A and B on another map with a scale of 1:250 000 .
$\geq-\leqslant<0$

$$
2
$$

[E]uy $\cdots+\ldots+\cdots+m+\cdots \cdots$ (q) Janduy
[2]
In the given axes, OA represents how the height of the water level changes against time for container A.

U
品

and C.)

 =

(c)…...............(q) sauruy
4
$\xi=\{$ intregers $x: 1 \leq x \leq 16\}$ A - \{integers that are perfect squares)
$B=\{$ integers divisible by 2$\}$
(i) On the Venn Disgram shown below, thade the vet $A^{\prime} \cup B$.

(11)

(ii)............................. [1]

Answer (iii)..............................(1)
Answer
Answer

(ii) Write down $n\left(A^{\prime} \cap B^{\prime}\right)$.

\downarrow
 \$

 I

2

$\%$

is a straight line.
(a) Find the value of $\cos \angle R Q S$.
(b) Hence, calculate RS.
4

(i) to position X after I throw,
(ii) 10 position Y afier 2 throw

困

(c) Calculate the shortest distance between $B C$ and $A D$.
(a) Find the equation of the line parallel to $B C$ passing through A

Answer (a) $\cdots \cdots+\cdots+\cdots+\cdots+\cdots+\cdots+\cdots$ [1]
(b) State the coordinates of D such that $A B C D$ is a parallelogram.

Answer (ii) $x=\ldots \ldots[1] ~$
(ii) the other solution of the equation.
'yjo anten कu: (1)

www．sgexamguru．com

[^21]Answer all the questions．

Answer all the questions．						
A shop sells two flavours of ice cream，Cherry and Durian．Ench flavour is sold in cups The sales in two successive days are given in the table below． of three different sizes，mall，medium and large at $\$ 2.50, \$ 3.20$ and $\$ 4.50$ reapectively．						
Size Number of cups of Cherry sold	Saturday					
	Small	Medium	Large	Sunday		
	12			Small	Medium	Large
	12	17	8	14	12	10
Number						
of cups of Durian sold	18	15	41	13	21	16

I
In the diagram, O is the centre of the circle $P Q R S$ and $\angle P O S=76^{\circ}$, $A P$ is a ungens io
the circle at P. $R S$ is produced to A such that $\angle P A S=44^{\circ}$.
the circle at P. $R S$ is produced to A wech that $\angle P A S=44^{\circ}$.
(a) Calculate, suating your resions clearly,
(i) $\angle P R S$,
(ii) $\angle S Q P$,
(ii) $\angle S P A$,
(iv) $\angle P Q R$,
(v) $\angle R P O$.
(b) Given that the ndius of the circle in 6 cm , calculate the length of abord $P P$.

U
II

ot'81 (i!i) w 641 (9)

达气
o
응

[^0]: Answer (b)

[^1]: This document is intended for internal circulation in Victoria School only. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the Victoria School Internal Exams Committee

[^2]: 2016 Prelitu S4 Math P2
 sase armL|

[^3]:
 The volume of air, $V \mathrm{~cm}^{3}$, instide a bicycle pump is inversely proportional to the cube

[^4]: ［1］Hewom
 \＃
 多
 ［i］
 （i）the probatitity that one person，choson at random，will bea woman．

[^5]:

[^6]:

[^7]: (v) .sasuy

[^8]: (b) Write your answer to part (a) correct to 2 decimal places.

[^9]: $\sqrt{\frac{27.38-3.42^{2}}{0.076421}}$ and write down the first six digits on your calculator dipplay. $\sqrt{0.076421}$ (n) Calculate

[^10]: is increased by 400%.

[^11]: 8 Answer the whole of this question on a sheet of graph paper.

[^12]: [t]

[^13]: [2]

[^14]: Antwer (a) [2]
 (b) Write down all the integers which satisfy $1-x \leq 4+x<13-2 x$.

[^15]: 도

 Answer (b) seconds

[^16]: Ξ

 씨 Kyscanum
 Wayne decides to tuke a study loan from the bank to pay the remaining tuition fees.
 Singapore is $\$ 12000$.
 (i) Wayne receives a bursary of $\$ 5000$ per year for 3 years.
 Find the remaining amount that Wayne has to pay.
 Find the remaining amount that Wayne has to pay.

[^17]: 14 Four candidates took part in an election.
 The tables below represent the polling results from two polling stations.
 The candidate with the highest polling results from two polling stutions. election.

 | Candidate | Votes received |
 | :---: | :---: |
 | 1 | 28% |
 | 2 | 22% |
 | 3 | 20% |
 | 4 | 30% |

 | Candidate | Votes received |
 | :---: | :---: |
 | 1 | 28% |
 | 2 | 22% |
 | 3 | 20% |
 | 4 | 30% |

 $=$

 Polling Station-1

[^18]: www.sgexamguru.com

 | $15(b)$ | $P-2000 J^{2}$ |
 | :--- | :--- |
 | $16(a)$ | $\left(\begin{array}{cc}39 & 50 \\ -20 & -1\end{array}\right)$ |
 | $16(b)$ | $x=-1, y=-8$ |
 | $17(a)$ | 720° |
 | $17(b)$ | 1440° |
 | $18(a)$ | $\angle A C B=\angle A B E$ (given)
 $\angle R A C=\angle E A B \quad$ (common angle)
 Triangles $A C B$ and. $A B E$ are similar: |
 | $18(b)$ | $A B-6, \mathrm{~cm}$ |
 | $18(c)$ | 648 cm |
 | $19(a)(b)$ | $x=1$ or -3 |

[^19]: The diagram below is the cumulative frequency eurve for the heights, in cm , of two
 batches of plants each of which was given Brand A and Brand B fertilizer
 respectively.
 The diagram below is the cumulative frequency curve for the heights, in cm , of two
 batches of plants each of which was given Brand A and Brand B fertilizer
 respectively.
 The diagram below is the cumulative frequency curve for the heights, in cm , of two
 batches of plants each of which was given Brand A and Brand B fertilizer
 respectively.

[^20]: (b) An eagle was hovering at a height of 35 metres above the field. It spots its

[^21]: The information for Saturday＇s sale can be reprosented by
 $\mathbf{M}=\left(\begin{array}{ccc}12 & 17 & 8 \\ 18 & 15 & 11\end{array}\right)$ and the cost of each flavour for each size can be represeated by the matrix $\mathrm{C}=\left(\begin{array}{l}2.5 \\ 3.2 \\ 4.5\end{array}\right)$ ．The information for the Sunday＇s sale can be represented by the matrix \mathbf{N}（4．5）
 matrix N ．
 （a）Write

 $$
 \begin{aligned}
 & \text { (a) Write down the matrix } \mathrm{N} \text { and calculate } \mathbf{P}=\mathbf{M}+\mathbf{N} \text {. } \\
 & \text { (b) Describe what the eiements of } \mathrm{P} \text { represent. } \\
 & \text { (e) Calculate } \mathrm{Q}=\mathbf{P C} \text {. } \\
 & \text { (d) Describe what the elements of } \frac{1}{2} \mathrm{Q} \text { represent. } \\
 & \text { (c) Write down the matrix } \mathrm{S} \text { such that the elements of } \mathrm{SPC} \text { represent the total } \\
 & \text { amount received from the sales of the ice cream. }
 \end{aligned}
 $$

 The

