<table>
<thead>
<tr>
<th></th>
<th>School Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raffles Institution</td>
</tr>
<tr>
<td>2</td>
<td>Nanyang Girls' High School</td>
</tr>
<tr>
<td>3</td>
<td>Dunman High School</td>
</tr>
<tr>
<td>4</td>
<td>CHIJ Saint Nicholas Girls' School</td>
</tr>
<tr>
<td>5</td>
<td>Catholic High School</td>
</tr>
<tr>
<td>6</td>
<td>Chung Cheng High School</td>
</tr>
<tr>
<td>7</td>
<td>Crescent Girls' School</td>
</tr>
<tr>
<td>8</td>
<td>Victoria School</td>
</tr>
<tr>
<td>9</td>
<td>Anglican High School</td>
</tr>
<tr>
<td>10</td>
<td>Methodist Girls' School</td>
</tr>
<tr>
<td>11</td>
<td>Tanjong Katong Girls' School</td>
</tr>
<tr>
<td>12</td>
<td>St. Margaret's Secondary School</td>
</tr>
<tr>
<td>13</td>
<td>Maris Stella High School</td>
</tr>
<tr>
<td>14</td>
<td>Holy Innocents' High School</td>
</tr>
<tr>
<td>15</td>
<td>Fuhua Secondary School</td>
</tr>
<tr>
<td>16</td>
<td>Holy Innocents' High School</td>
</tr>
</tbody>
</table>
Candidate Name____________________() Class: Sec 4 /______

Anglican High School
Preliminary Examination 2016
Secondary Four
Mathematics Paper 1
[4048 / 01]

Date of Examination: 5 August 2016 Duration : 2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If degree of accuracy is not specified in the question, and if the answer is not exact, give
the answer to three significant figures. Give answers in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer
in terms of \(\pi \).

The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80.

\[
\begin{array}{|l|c|}
\hline
\text{Error} & \text{Penalty} & \text{Q No.} \\
\hline
\text{Significant figures} & -1 & \\
\text{Units} & -1 & \\
\text{Presentation/ Missing statements/ Not using ink} & -1 & \\
\hline
\end{array}
\]

Parent’s Signature : ______________

This document consists of 20 printed pages.

2016 PRELIM EXAM SEC4 EM P1
Mathematical Formulae

Compound Interest

Total amount = \(P \left(1 + \frac{r}{100} \right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r \theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\(a^2 = b^2 + c^2 - 2bc \cos A \)

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2} \)
3

Answer all the questions.

1

Calculate \(\frac{-6.23^2 + \sqrt[3]{-124.5}}{3.22(-5.003)^2} \).

(a) Write down the first six digits on your calculator display.

Answer (a) ……………………… [1]

(b) Write your answer to part (a) correct to 2 significant figures.

Answer (b) ……………………… [1]

2

Given that \(\frac{\sqrt[4]{x^{-3}} \times x^2}{x^{-2}} \times x^2 = x^{3k} \), find the value of \(k \).

Answer…………………………… [2]
A class of 30 students was randomly divided into two equal groups, A and B. Each group was taught by 2 teachers with different years of experience. Their marks in a common test are shown in the stem-and-leaf diagram.

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 2</td>
<td>7</td>
</tr>
<tr>
<td>6 0 0</td>
<td>3 2 8</td>
</tr>
<tr>
<td>2 4</td>
<td>5 6</td>
</tr>
<tr>
<td>5 1 5</td>
<td>5 9</td>
</tr>
<tr>
<td>8 8 8 3</td>
<td>6 0 1 9 9</td>
</tr>
<tr>
<td>0 7</td>
<td>2 7 8</td>
</tr>
<tr>
<td>9 8 0</td>
<td></td>
</tr>
<tr>
<td>9 6 9</td>
<td></td>
</tr>
</tbody>
</table>

Key (Group A) Key (Group B)
8 | 2 means 28 2 | 7 means 27

(a) Write down the mode of Group B’s marks.

Answer (a) [1]

(b) Write down the median of Group A’s marks.

Answer (b) [1]

(c) Explain briefly whether Group A or Group B performed better in the common test.

Answer (c) Groupperformed better because [1]
4 (a) The population density of Singapore is 7697 people per square kilometre. The population density in Hong Kong is 17019 people per square mile. State, showing your working, the country that is more densely populated, given that 1 mile = 1.61 kilometre.

Answer…………………………... [2]

(b) Given that the land space in Singapore is 719 km2, calculate the total population residing in Singapore, leaving your answer in standard form.

Answer…………………………... [2]
5 A car travelled at an average speed of 80 km/h on a recent journey to Malacca. Along the way, a 15-minute rest stop was taken before continuing on the trip. The ratio of the times of the whole journey is $5 : 3 : 7$. Calculate the distance travelled.

Answer: $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ km [2]

6 The diagram shows a sector AOB with radius 6 cm. Angle AOB is 75°.

(i) Express 75° in radians.

Answer (i) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ [1]

(ii) Hence, find the arc length AB.

Answer (ii) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ cm [1]
The diagram shows a triangle ABC, with AB parallel to the x-axis.

A is $(-2, 2)$, C is $(7, -10)$ and the equation of the line BC is $y = -2x + 4$. Find

(i) the length of AC.

Answer (i) …………………… units [1]

(ii) the x-coordinate of B.

Answer (ii) …………………… [1]

(iii) the area of triangle ABC.

Answer (iii) …………………… square units [1]
8
Determine whether triangle ABC is right-angled. [2]

Answer ………………………………………………………………………………………...
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………

9
Peter and Mary competed in a written Mathematics quiz that required them to answer twenty questions.

The table shows the number of questions they have answered correctly, wrongly or did not attempt.

<table>
<thead>
<tr>
<th></th>
<th>Correct</th>
<th>Wrong</th>
<th>Did not attempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mary</td>
<td>12</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

The table shows the number of points they will be awarded if they answer correctly, wrongly or did not attempt.

<table>
<thead>
<tr>
<th>Points Awarded</th>
<th>Correct</th>
<th>Wrong</th>
<th>Did not attempt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>–1</td>
<td>0</td>
</tr>
</tbody>
</table>

Using matrix multiplication, find the number of points awarded to Peter and Mary respectively.

Answer
Peter is awarded …………..points and Mary is awarded ………….. points. [3]
10 (a) Express in set notation, the set shaded in the Venn diagram.

\[A \cap B \]

Answer (a) .. [1]

(b) \(A = \{ \text{letters from the word 'THRONES'} \} \)
\(B = \{ \text{letters from the word 'PHONES'} \} \)

(i) State an element \(x \) such that \(x \in A \) and \(x \notin B \).

Answer (b)(i) .. [1]

(ii) List the elements in the set \(A \cup B \).

Answer (b)(ii) .. [1]

11 Given that \(\frac{1}{x} + \frac{1}{y} = \frac{4}{3} \), find the value of \(\frac{y}{x} \), where \(x \neq 0 \).

Answer .. [3]
12 (i) If \(x \) is directly proportional to \(y^2 \), and \(y \) is inversely proportional to \(z \).
Prove that \(xy \) is inversely proportional to \(z^3 \).

Answer (i)

(ii) Given that when \(xy = A \), a particular value of \(z \) is obtained. Find the percentage change in \(z \) when \(xy \) is doubled.

Answer (ii) ………………….. % [2]
11

Ian has written down six numbers 3, 4, 7, a, 3 and b where $b > a$.
If the mode of these numbers is 3, the mean is 6 and the median is 5,
find the value of a and of b.

Answer a is and b is [2]

14

Factorise $2x^2 - 8xy + 8y^2 - 18$ completely.

Answer... [3]
PQ, QR and RS are adjacent sides of a regular polygon. Given that \(\angle RPQ = 18^\circ\),

(a) calculate

(i) the exterior angle of the polygon,

\[\text{Answer (a)(i) } \]

(ii) the number of sides of the polygon,

\[\text{Answer (a)(ii) } \]

(iii) angle PRS.

\[\text{Answer (a)(iii) } \]

(b) Write down the name of this polygon.

\[\text{Answer (b) } \]
16 (a) Written as a product of its prime factors

\[2200 = 2^3 \times 5^2 \times 11\] .

(i) Express 5880 as the product of its prime factors.

Answer…………………………. [1]

(ii) Hence write down the greatest integer that will divide both 2200 and 5880 exactly.

Answer…………………………. [1]

(iii) Write down an integer \(k \), such that \(\sqrt{\frac{2200}{k}} \) will give a whole number.

Answer…………………………. [1]

(b) A glass marble has a mass of 30 grams. If the volume of the marble is 13 cm\(^3\), correct to the nearest cubic centimetre. Find the greatest possible mass of 1 cubic centimetre of the marble.

Answer………………………… grams [2]
The diagram shows the speed-time graph of a plane before taking off from the runway.

(i) Calculate the acceleration of the plane at 3 seconds.

Answer (i) ………………………… m/s² [1]

(ii) Calculate the total distance travelled by the plane before taking off from the runway.

Answer (ii) ………………………… m [2]
(iii) Use the grid below to sketch the acceleration-time graph of the plane during the first eight seconds.

![Acceleration-Time Graph](image)

18 Triangle ABC is mapped onto triangle DEF.

(i) Write down the enlargement factor.

Answer (a)(i) ……………………. [1]

(ii) Given that the area of triangle ABC is 20 square units, calculate the area of triangle DEF.

Answer (a)(ii) ……………………. square units [1]
16

(a) Solve the inequality

\[
\frac{2 - 3x}{-3} \geq \frac{x - 5}{4}.
\]

Illustrate the above solution on the number line given below.

Answer

(b) State, with reasons, one condition for \(a\), such that the following simultaneous equations have a solution.

\[
\begin{align*}
ax - 2y &= 13, \\
2x &= y + 6.
\end{align*}
\]

Show your workings clearly.

Answer

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………[2]
In the diagram below, A, B, C and D are points on the circumference of the circle. AEC and DEB are straight lines.

It is also given that $AE = 4 \text{ cm}$, $BC = 3 \text{ cm}$ and $AD = 9 \text{ cm}$.

(i) Show that triangles AED and BEC are similar.

Answer (i)

In triangles AED and BEC

(ii) Find the length of BE.

Answer (b)(ii) \[\text{cm} \] [2]
21 \(D \) is the point \((-2, 1)\) and \(E \) is \((h, 6)\) and \(\overrightarrow{AB} = \begin{pmatrix} 7 \\ 1 \end{pmatrix} \).

(i) Express \(\overrightarrow{DE} \) as a column vector, in terms of \(h \).

Answer (i) …………………………… [1]

(ii) If \(\overrightarrow{DE} \) is parallel to \(\overrightarrow{AB} \), find the value of \(h \).

Answer (ii) \(h = \) …………………………… [2]

(iii) If instead, \(\overrightarrow{DE} = \overrightarrow{AB} \), find the value(s) of \(h \).

Answer (b)(iii) \(h = \) ……………… or …………… [3]
A sketch of the graph \(y = ax^2 + bx + c \), where \(a, b \) and \(c \) are integers, is given in the diagram below. The line of symmetry is \(x = 2 \), and the graph cuts the \(y \)-axis at \(7 \), and the \(x \)-axis at \(\frac{1}{2} \). Find the values of \(a, b \) and \(c \).

\[
\begin{align*}
\text{Answer} & \quad a = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
b & = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
c & = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots [3]
\end{align*}
\]

(b) Sketch the graph of \(y = -x^2 + 3x - 5 \), indicating clearly the coordinates of the turning point and intercepts.

\[
\begin{align*}
\text{Answer (b)} & \quad \text{[3]}
\end{align*}
\]
23. $ABCD$ is a trapezium. AB has already been drawn.

Answer (a) and (b).

(a) C is the point equidistant from A and B and angle ABC is 50°.

Construct and label the point C.

(b) Construct the trapezium $ABCD$ with DC parallel to AB and the point D equidistant from the lines BC and BA.

(c) Measure and write down the value of reflex angle BAD.

Answer (c) [1]

END OF PAPER

2016 PRELIM EXAM SEC4 EM P1
Marking Scheme for AHS 2016 EM Paper 1

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)</td>
<td>0.09644</td>
</tr>
<tr>
<td>1(b)</td>
<td>0.096 (2s.f)</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{7}{4} = \frac{2}{3}k)
 (k = \frac{5}{8}) (o.e)</td>
</tr>
<tr>
<td>3(a)</td>
<td>69</td>
</tr>
<tr>
<td>3(b)</td>
<td>63</td>
</tr>
<tr>
<td>3(c)</td>
<td>Group A … higher mean or median</td>
</tr>
<tr>
<td>4(a)</td>
<td>(\frac{17019}{1.61^2} = 6565.718915 \text{pop./km}^2)
 Singapore is more densely populated.</td>
</tr>
<tr>
<td>4(b)</td>
<td>\textit{total population} = 5.53 \times 10^6</td>
</tr>
<tr>
<td>5</td>
<td>distance travelled = (80 \times \frac{5}{4} = 100 \text{km})</td>
</tr>
<tr>
<td>6(i)</td>
<td>1.31 / (\frac{5\pi}{12}) or o.e.</td>
</tr>
<tr>
<td>6(ii)</td>
<td>(6 \times \frac{5\pi}{12} = 7.85 \text{cm})</td>
</tr>
<tr>
<td>7(i)</td>
<td>15 units</td>
</tr>
<tr>
<td>7(ii)</td>
<td>(x = 1)</td>
</tr>
<tr>
<td>7(iii)</td>
<td>(\frac{1}{2} \times 3 \times 12 = 18 \text{ sq units})</td>
</tr>
<tr>
<td>8</td>
<td>According to Pythagoras’ Theorem, triangle (ABC) is not right-angled.
 (16^2 + 6^2 = 292)
 (17^2 = 289)
 (AB^2 + BC^2 \neq AC^2)</td>
</tr>
<tr>
<td>9</td>
<td>(\begin{pmatrix} 15 \ 17 \end{pmatrix})</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>10 (a)</td>
<td>$A \cap B'$</td>
</tr>
<tr>
<td>10(b)(i)</td>
<td>Any of the following answers. $x = T, R$</td>
</tr>
<tr>
<td>10(b)(ii)</td>
<td>$A \cup B = {T, H, R, O, N, E, S, P}$</td>
</tr>
<tr>
<td>11</td>
<td>$\frac{y}{x} = \frac{3}{5}$</td>
</tr>
</tbody>
</table>
| 12 (i) | $x = ky^2$ & $y = \frac{l}{z}$
$\therefore xy = k\left(\frac{l}{z}\right)^2 \left(\frac{l}{z}\right)$
$= \frac{kl^3}{z^3}$, where kl^3 is a constant.
$\therefore xy \propto \frac{1}{z^3}$ (shown) |
| 12 (ii) | Percentage change of $z = -20.6\%$ |
| 13 | $a = 6$
$b = 13$ |
| 14 | $2(x - 2y - 3)(x - 2y + 3)$ |
| 15(a)(i) | 36° |
| 15(a)(ii)| 10 |
| 15(a)(iii)| Angle $PRS = 126^\circ$ |
| 15(b) | Decagon |
| 16(a)(i) | $5880 = 2^3 \times 3 \times 5 \times 7^2$ |
| 16(a)(ii)| $HCF = 2^3 \times 5 = 40$ |
| 16(a)(iii)| Either $k = 2 \times 11 = 22$ (minimum)
Or $k = 2200$ (maximum) |
<p>| 16(b) | greatest possible mass = 2.4 gram |
| 17(i) | 12.5 m/s2 |
| 17(ii) | 330 m |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>17(iii)</td>
<td></td>
</tr>
<tr>
<td>18(i)</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>18(ii)</td>
<td>5 sq units</td>
</tr>
<tr>
<td>19(a)</td>
<td>$x \geq -\frac{7}{9}$</td>
</tr>
</tbody>
</table>
| 19(b) | Gradient of equation 1: $\frac{a}{2}$
Gradient of equation 2: $\frac{a}{2} \neq 2$
For solution, the two equations must not be parallel to each other. |
| 20(ii) | $BE = 1\frac{1}{3}$ cm o.e. |
| 21(i) | $\left(\frac{h + 2}{5} \right)$ |
| 21(ii) | $h = 33$ |
| 21(iii) | $h = -7$ or $h = 3$ |
| 22(a) | $a = 4, b = -16, c = 7$ |
22(b)

\[(\frac{3}{2}, -\frac{11}{4}) \]

-5

23(c) 245° ± 3°
READ THESE INSTRUCTIONS FIRST
Write your name and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.
Write your answers on the writing papers provided.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

At the end of the examination, attach the entire set of question papers on top of your answer scripts.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

For Examiner’s Use

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marks</td>
<td></td>
</tr>
</tbody>
</table>

Table of Penalties

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Units</th>
<th>Significant Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Parent’s Name/Signature/Date

This question paper consists of 9 printed pages.
Mathematical Formulae

Compound Interest

Total amount = $P \left(1 + \frac{r}{100}\right)^n$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3} \pi r^2 h$

Volume of a sphere = $\frac{4}{3} \pi r^3$

Area of triangle $ABC = \frac{1}{2} ab \sin C$

Arc length = $r \theta$, where θ is in radians

Sector area = $\frac{1}{2} r^2 \theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean = $\frac{\sum fx}{\sum f}$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$
Answer all the questions.

1 (a) Simplify \(2x^3y^2 + \frac{6x^2}{5y}\). [2]

(b) Express as a single fraction in its simplest form \(\frac{3}{x-1} + \frac{6x}{1-x^2}\). [2]

(c) (i) Factorize \(4ab - 10c + 6a^2b - 15ac\) completely. [2]

(ii) Given that \(\frac{3x - 7y}{4x + y} = \frac{2}{5}\), find the value of \(\frac{x}{8y}\). [2]

2 (a) In the diagram, \(ABCDE\) is a regular pentagon and \(ABQRST\) is a regular hexagon. Calculate

(i) \(\angleBAE\), [1]

(ii) \(\angleBAX\), [1]

(iii) \(\angleEAX\), [1]

(iv) \(\angleEXR\), [1]

(v) \(\angleXAC\). [2]

(b) Calculate the sum of the angles \(a, b, c, d, e, f, g, h, i\) and \(j\) in the diagram below. [3]
3 In this question, leave all your answers to 2 decimal places.
The table below shows the exchange rate in April 2016. To convert from the foreign currency
to Singapore Dollars, we use the rate listed in the “Buy” column. To convert from Singapore
Dollars to the foreign currency, we use the rate listed in the “Sell” column.

<table>
<thead>
<tr>
<th>Currency</th>
<th>Amount</th>
<th>Buy ($S)</th>
<th>Sell ($S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Dollars</td>
<td>US$1</td>
<td>1.363</td>
<td>1.38</td>
</tr>
<tr>
<td>Australian Dollars</td>
<td>AU$1</td>
<td>1.050</td>
<td>1.10</td>
</tr>
<tr>
<td>Japanese Yen</td>
<td>¥1000</td>
<td>12.434</td>
<td>12.55</td>
</tr>
<tr>
<td>Hong Kong Dollars</td>
<td>HK$100</td>
<td>17.576</td>
<td>18.25</td>
</tr>
<tr>
<td>Malaysian Ringgit</td>
<td>RM100</td>
<td>35.080</td>
<td>36.00</td>
</tr>
</tbody>
</table>

(a) John wants to tour Hong Kong and wants to bring HK$2000. Calculate the
amount of Singapore dollars he must pay to buy the foreign currency. [2]

(b) By using the rate listed in the “Buy” column, calculate the exchange rate
between US$1 and the Malaysian Ringgit. [2]

(c) Mr Lim was originally going on a business trip to Japan and converted S$2000
to Japanese Yen. However, the trip was cancelled. He decided to convert the
Japanese Yen he had back to Singapore dollars. Show that the amount he lost as
a percentage of his original sum is less than 1%. [4]

(d) Sharon went to Australia and bought a luxury watch at AU$ 10 079. Calculate the
amount of money (in Singapore dollars) she would need to exchange before the
trip, if she paid in cash. [2]

4 (a) Consider the pattern.

\[11 - 2 = 3^2 \]
\[1111 - 22 = 33^2 \]
\[111111 - 222 = 333^2 \]
\[\vdots \]
\[x - y = 333333333^2 \]

(i) Write down the 4th line in the pattern. [2]

(ii) Find the number of 1s in \(x \). [1]

(iii) Find the value of \(y \). [1]

(b) The first four numbers of a sequence are 1, 4, 7, and 10.

(i) Write down the 10th term. [1]

(ii) Find, in terms of \(n \), a formula for the general term, \(T_n \), of the sequence. [1]

(iii) Show, with working, whether or not 45 is in this sequence. [3]
5 (a) Express \(y = x^2 - 7x + 12 \) in the form of \(y = (x - a)^2 - b \). [2]

(i) Write down the equation of the line of symmetry and the minimum value of \(y \). [2]

(ii) Find the solutions of \(y - \frac{15}{4} = 0 \). [3]

(b) Solve \(\frac{15x}{x - 9} - 3 = 0 \). [3]

6 The diagram (not drawn to scale) shows a badge designed by a student for his CCA. It is made up of a regular octagon and a circle with centre \(X \). The line segments \(AC, CE, EG, GI, IK, KM, MO, OA \) are tangents to the circle at \(B, D, F, H, J, L, N, P \) respectively.

(a) Find, giving reasons for each answer,

(i) \(\angle AXC \), [1]

(ii) \(\angle PXE \), [1]

(iii) \(\angle PND \), [1]

(iv) \(\angle DNL \), [1]

(v) \(\angle PNL \), [1]

(vi) \(\angle PFL \). [1]

(b) Another student drew a circle on paper by tracing the circumference of a cup. Explain how he can obtain the centre of the circle after he drew 2 more chords on the circle. [2]
The diagram shows the front view of the N.R.G. greenhouse which is vertical to the ground. \(PT \) and \(ST \) make up the roof which make angles of \(15^\circ \) with the horizontal.

Given that \(SR = 4 \text{ m} \), \(QR = 6 \text{ m} \) and \(M \) is a point due south of \(Q \) on the ground such that \(MQ = 30 \text{ m} \) and angle \(MQR = 110^\circ \). \(U \) and \(V \) are the mid points of \(PS \) and \(QR \) respectively.

(a) Find

(i) the distance between \(T \) and \(V \), \[2\]
(ii) the angle of elevation of \(T \) from \(M \), \[4\]
(iii) the bearing of \(V \) from \(M \). \[2\]

(b) A student walks from \(M \) to \(V \). Find the distance that he has to walk so that he is closest to \(Q \). \[2\]
8 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation
$$y = 24x^2 - 6x^3.$$

The table below shows some values of x and the corresponding values of y.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>p</td>
<td>18</td>
<td>33.75</td>
<td>48</td>
<td>q</td>
<td>54</td>
<td>36.75</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Calculate the value of p and of q. [2]

(b) Using a scale of 2 cm to 0.5 units, draw a horizontal x-axis for $0 \leq x \leq 4$. Using a scale of 2 cm to 10 units, draw a vertical y-axis for $0 \leq y \leq 60$. On your axes, plot the points given in the table and join them with a smooth curve. [3]

(c) By drawing a tangent, find the gradient of the curve at $x = 2$. [2]

(d) By drawing a suitable straight line on your graph, solve $24x - 6x^2 - \frac{50}{x} = -55$. [3]

(e) Using the graph, solve $y \geq 40$. [2]
9 (a) The waiting time, in seconds, for 20 students queueing up to buy food in the canteen from 2 different stalls are recorded as follows.

<table>
<thead>
<tr>
<th>Stall A</th>
<th>Time (s)</th>
<th>30 < t ≤ 35</th>
<th>35 < t ≤ 40</th>
<th>40 < t ≤ 45</th>
<th>45 < t ≤ 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stall B</th>
<th>Mean</th>
<th>36 s</th>
<th>Standard Deviation</th>
<th>5 s</th>
</tr>
</thead>
</table>

(i) For Stall A, calculate an estimate of
(a) the mean waiting time. [1]
(b) the standard deviation. [1]

(ii) Make two comparisons between the waiting times for the two stalls. [2]

(iii) Stall C has a standard deviation of 0s for its waiting time, suggest a reason for this. [1]

(b) A bag contains three identical red balls numbered 1 to 3 and two identical blue balls numbered 1 and 2. Two balls are taken from the bag at random without replacement.

(i) Draw a possibility diagram to show all the possible outcomes. [2]

Using the possibility diagram or otherwise, find the probability that

(ii) the two balls bear the same number, [1]
(iii) the two balls are of different colours. [1]

A third ball is next chosen from the bag without replacement after the first two.

(iv) What is the probability that all are blue? [1]
(v) What is the probability that only two red balls are chosen? [2]
The diagram shows part of a circular table that is pushed into a corner of a room. A boy measures a point, \(X \), on the circumference of the table to be 1 cm from the south wall and 50 cm from the west wall. Points \(A \) and \(B \) are the points where the table meets the walls.

(a) By the use of the Pythagoras’ Theorem, verify that the radius of the table is 61 cm. [3]

(b) Find the length of arc \(XB \). [3]

(c) Calculate the length of the chord \(XB \). [1]

(d) These tables are used by a restaurant as dining tables in a dining area of 100 m\(^2\).

<table>
<thead>
<tr>
<th>Useful information</th>
<th>Casual dining</th>
<th>Fine dining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum area of table space per diner</td>
<td>1700 cm(^2)</td>
<td>2700 cm(^2)</td>
</tr>
<tr>
<td>Number of tables</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Recommended amount of dining space (in square metres) per diner</td>
<td>1.4 m(^2)/diner</td>
<td>1.8 m(^2)/diner</td>
</tr>
</tbody>
</table>

Determine if the restaurant should be a casual dining or fine dining establishment. Justify your decision with calculations. [5]

End of Paper.
2016 AHS Prelim Math P2 Worked Solution

1(a)
\[
\frac{5xy^3}{3}
\]

(b)
\[
\frac{3}{x+1}
\]

(c)(i)
\[(3a + 2)(2ab - 5c)\]

(ii)
\[
\frac{x}{8y} = \frac{37}{56}
\]

2

(a)(i) 108°

(ii) 60°

(iii) 48°

(iv) 120°

(b) 2160°

3

(a) S$365.00

(b) US$1 ≈ RM3.89

(c) Percentage loss = 0.924305%

< 1% (shown)

(d) She needed to exchange S$11 086.90 before the trip.

4

(i) \[1111111112222 = 3333^2\]

(ii) 18

(iii) \[y = 222222222\]

(b)(i) \[10^{th} \text{ term} = 28\]

(ii) \[3n - 2\]

(b)(iii)
\[
3n - 2 = 45
\]
\[
3n = 47
\]
\[
n = \frac{47}{3} \text{ or } 15\frac{2}{3}
\]

Since \(n\) has to be a positive integer, 45 is not in the sequence.

5

(a)
\[
(x - \frac{7}{2})^2 - \frac{1}{4}
\]

(i)
\[
x = \frac{7}{2}
\]

Minimum value of \(y = -\frac{1}{4}\)

(ii)
\[
x = 5\frac{1}{2} \text{ or } 1\frac{1}{2}
\]
6(a)(i) \(45^\circ\)
(ii) \(112.5^\circ\)
(iii) \(45^\circ\)
(iv) \(90^\circ\)
(v) \(135^\circ\)
(vi) \(45^\circ\)
(b) Draw perpendicular bisectors for the 2 chords. The perpendiculars will intersect at the centre, since the perpendicular bisectors of a chord will pass through the centre.

7(a)(i) 4.80 m (3 sf)
(ii) \(\angle TMV^\circ = 8.767^\circ \ldots \approx 8.8^\circ\) (1 dp)
(iii) Bearing is 005.2°
(b) 29.9 m

8(a) \(p = 5.25, q = 56.25\)
(b) (c) Gradient = 24
(d) From the graph, \(x \approx 0.7\)
(e) From the graph, \(1.7 \leq x \leq 3.4\)

9(a)(i) Mean = 37.25 s
(b) s.d. = 4.32 s
(ii) On average Stall A has a longer waiting time, due to a higher mean. The spread of the waiting time for Stall A is smaller as it has a smaller s.d.
(iii) All the students who bought from Stall C had the same waiting time

9(b)

<table>
<thead>
<tr>
<th>1(^{\text{ST}}) DRAW</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2(^{\text{ND}}) DRAW</th>
<th>R1</th>
<th>R2R1</th>
<th>R3R1</th>
<th>B1R1</th>
<th>B2R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
<td>R2</td>
<td>R3</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>R1R2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td>R1R3</td>
<td>R2R3</td>
<td>B1R3</td>
<td>B2R3</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>R1B1</td>
<td>R2B1</td>
<td>R3B1</td>
<td>B2B1</td>
</tr>
</tbody>
</table>
Let the radius be \(R \)

\[
R^2 = (R - 50)^2 + (R - 1)^2
\]

\[
R^2 - 102R + 2501 = 0
\]

Solve to get \(R = 61 \) only

10(b)

11.1 cm

10(c)

11.0 cm (3 sf)

10(d)

Number of diners the table can take for casual dining

\[
= \pi \times 61 \times 61 \div 1700
\]

\[
\approx 6
\]

Number of diners the table can take for fine dining

\[
= \pi \times 61 \times 61 \div 2700
\]

\[
\approx 4
\]

Number of diners the restaurant can host for casual dining

\[
= 12 \times 6
\]

\[
= 72
\]

Number of diners the restaurant can host for fine dining

\[
= 9 \times 4
\]

\[
= 36
\]

Recommended number of diners for casual dining

\[
= 100 \div 1.4
\]

\[
\approx 71
\]

Recommended number of diners for fine dining

100 \div 1.8

\[
\approx 55
\]

Since the number of diners the restaurant can host for casual dining is closer to the recommended number, it would appear that the restaurant is a casual dining establishment.
MATHEMATICS (4016/1)
PAPER 1 (4048/1)

Additional Materials:
Construction Set & Electronic calculator

DATE 30 August 2016
TIME 09 00 – 11 00
DURATION 2 hours

INSTRUCTIONS TO CANDIDATES

Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, correction tapes or correction fluid.

Answer all questions on the question paper itself.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result of loss of marks.
Calculator should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer correct to 3 significant figures. Give answers in degrees to 1 decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.

PARENT'S SIGNATURE

FOR EXAMINER'S USE

/ 80

This question paper consists of 18 printed pages including this page.

[Turn over
MATHEMATICAL FORMULAE

Compound Interest

Total amount = \(P (1 + \frac{r}{100})^n \)

Mensuration

Curved surface area of cone = \(\pi rl \)
Surface area of a sphere = \(4 \pi r^2 \)
Volume of a cone = \(\frac{1}{3} \pi r^2 h \)
Volume of sphere = \(\frac{4}{3} \pi r^3 \)
Area of triangle ABC = \(\frac{1}{2} ab \sin C \)
Arc length = \(r \theta \), where \(\theta \) is in radians
Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

\[a^2 = b^2 + c^2 - 2bc \cos A \]

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)
Standard Deviation = \(\sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2} \)
Answer all the questions.

1 (a) Calculate \(\frac{-1.3^2 + 2\pi^3}{4 - \sqrt{19}} \).

(b) Express 0.15\% as a fraction in its simplest form.

Answer (a) [1]

(b) .. [1]

2 (a) Express \(\frac{3}{2(5-x)} - \frac{4-x}{(x+1)(x-5)} \) as a single fraction in its simplest form.

(b) A man bought \(x \) kg rice at \($y \). He sold all the rice at \(p \) cents per 100g.
Find an expression in terms of \(x, y \) and \(p \) for the profit he made in dollars.

Answer (a) [2]

(b) .. [1]
3 (a) Given that $8^{12} \div 4^{2w} = \left(\frac{1}{2}\right)^{3w-2}$, find the value of w.

(b) Simplify $\frac{2ab^2}{(2bc^0)^{-2}} \div \frac{8}{\sqrt{ab^2}}$, leaving your answer in positive index notation.

Answer (a) $w =$.. [2]

(b) ... [2]

4 Solve the simultaneous equations.

\[
\begin{align*}
\frac{x}{3} &= \frac{1}{6} - \frac{y}{2} \\
7x - 3y + 1 &= 0
\end{align*}
\]

Answer $x =$ $y =$ [3]
5

Written as the product of its prime factors, \(4536 = 2^3 \times 3^4 \times 7 \).

(a) Write 4410 as the product of its prime factors.

(b) Find the highest common factor of 4536 and 4410. Give your answer as the product of prime factors.

(c) Find the smallest positive integer \(k \) such that \(4410k \) is multiple of 4536.

Answer (a) 4410 = ……………………….. [1]

(b) ………………………………………. [1]

(c) \(k = \) …………………………………. [1]

6

The temperature of a buffalo wing was \(-15^\circ C\) when taken out of a freezer. The buffalo wing was immediately heated up in an oven and after 15 minutes, its temperature was \(120^\circ C\).

Given that the temperature of the buffalo wing increased at constant rate, calculate,

(a) the number of minutes it had been heated up when its temperature reached \(40^\circ C\),

(b) its temperature when it had been warmed for 8 minutes.

Answer (a) ………………………… minutes [2]

(b) …………………………………..\(^\circ C\) [2]
7 A metal rod A has a length of 43 m, correct to the nearest m.
A metal rod B has a length of 61 m, correct to the nearest m. Find
(a) the least possible length of metal rod A,
(b) the greatest possible difference in their lengths.

Answer (a) \[\ldots \ldots \ldots \text{m} \] [1]
(b) \[\ldots \ldots \ldots \text{m} \] [1]

8 An area of 9 cm2 on a map represents an actual area of 0.04 km2. Calculate
(a) the area on the map, in square centimetres, which represents an actual area of 2000 m2,
(b) the actual distance, in kilometres, represented by a length of 7.8 cm.

Answer (a) \[\ldots \ldots \ldots \text{cm}^2 \] [2]
(b) \[\ldots \ldots \ldots \text{km} \] [2]
9 A man bought a game for $86. He made a profit of 25% of the cost price after selling the game at a discount of 30% of the selling price. Find the actual selling price of the game.

Answer $…………….………….…………………... [2]

10 An athlete walks a distance of 20 km at an average speed of 8 km/h and takes a break for 15 minutes, and continue to run a further distance of 800 m in 3.4 minutes.
(a) Express 8 km/h in m/s.
(b) Find the average speed of the athlete for the whole journey in m/s.

Answer (a) ………………………………………m/s [1]
(b) ………………………………………m/s [2]
11 One of the interior angles of a polygon is 120°. The remaining interior angles are each equal to 165°. Find the number of sides of the polygon.

\[\text{Answer} \]

12 Given that y varies inversely as the square root of x, and $y = 3$ for a particular value of x. Find the value of y when this value reduced to 36%.

\[\text{Answer} \]
13 The length of a rectangular microchip is 1.8 micrometre and the width is 720 nanometres.

(a) Find the ratio of its length to its width.

(b) If the length is decreased by 50%, and the width is increased by 70%. Find the percentage change in the area of the microchip.

\[\text{Answer (a)} \quad \quad : \quad \quad \text{[1]} \]

\[\text{Answer (b)} \quad \quad \% \text{ [2]} \]

14 In the diagram below, \(BCD \) is a straight line. It is given that \(AB = 8 \text{ cm}, \ CD = 3 \text{ cm}, \)

\(\angle ABC = 90^\circ \text{ and } \tan \angle BCA = \frac{4}{3}. \)

(a) Find the length of \(BC \).

(b) Write down \(\cos \angle ACD \).

(c) Find the area of triangle \(ACD \).

\[\text{Answer (a)} \quad \quad \quad \quad \quad \quad \quad \text{[1]} \]

\[\text{Answer (b)} \quad \quad \quad \quad \quad \quad \quad \text{[1]} \]

\[\text{Answer (c)} \quad \quad \quad \quad \quad \quad \quad \text{[1]} \]
There are 40 students in a class. 12 students are in the NCC and 24 students are in the NPCC. 8 students are neither members of the NCC nor the NPCC. Let

\[\mathcal{E} = \{ \text{Students in the class} \} \]

\[N = \{ \text{Students in the NCC} \} \]

\[P = \{ \text{Students in the NPCC} \} \]

(a) Draw a Venn Diagram to illustrate the above information. Show on the Venn Diagram the number of elements in each distinct region.

(b) It is also given that

\[C = \{ \text{Chinese students in the class} \} \]

\[M = \{ \text{Malay students in the class} \} \]

\[I = \{ \text{Indian students in the class} \} \]

(i) Describe in words the meaning of the set notation \(M \cap N \neq \{ \} \).

(ii) Describe what you can deduce from the set notation \(I \subset N \).

(iii) Express in set notation \{ Chinese students who are neither in NCC nor NPCC \}.

Answer (a)

Answer (bi)

Answer (bii)

Answer (biii)
16 (a) Express \(-x^2 + 2x - 4\) in the form \(-(x - a)^2 + b\), where \(a\) and \(b\) are constants.

(b) Hence, sketch the graph of \(y = -x^2 + 2x - 4\). Label clearly in your sketch, the turning point and any intercepts with the axes.

Answer (a) ... [1]

Answer (b) ... [2]
17 Two similar claypots have volumes 240 cm3 and 810 cm3 respectively.

(a) Find the ratio of the depth of the smaller claypot to that of the larger claypot.

(b) If the base area of the larger claypot is 72 cm2, find the base area of the smaller claypot.

Answer (a) : [1]

(b) cm2 [1]

18 Every morning James takes either the bus or the taxi to school. The probability that he will take the bus is $\frac{2}{3}$. If he takes the bus, the probability of him being late is $\frac{2}{15}$.

If he takes the taxi, the probability of him being late is $\frac{3}{5}$. Find

(a) the probability that James will be late on any given day,

(b) the probability that he will not be late for three consecutive days.

Answer (a) : [2]

(b) : [2]
The diagram shows a speed-time graph of a motorist. Given that the total distance travelled in the 35 seconds is 450 metres.

Calculate
(a) the maximum speed \(V \) m/s,
(b) the speed at 28 seconds,
(c) the acceleration of the motorist during the first 15 seconds.

Sketch the distance-time graph of the motorist for the 35 seconds in the spaces provided below.

\[\text{Answer} \]

\[\text{Answer \,(a)} \quad \text{.................................}\text{m/s \, [2]}\]

\[\text{(b) \quad \text{.................................}\text{m/s \, [2]}\]

\[\text{(c) \quad \text{.................................}\text{m/s}^2 \, [1]}\]
20. Given \(\mathbf{A} = \begin{pmatrix} -3 & 1 \\ x & -2 \end{pmatrix} \) and \(\mathbf{B} = \begin{pmatrix} -2 & y \\ -5 & -3 \end{pmatrix} \).

(a) Find \(\mathbf{AB} \) in terms of \(x \) and \(y \).

(b) If \(\mathbf{AB} = \mathbf{I} \), where \(\mathbf{I} \) is the identity matrix, find the value of \(x \) and \(y \).

Answer (a) .. [1]

\((b) \; x = \ldots \; y = \ldots \) [2]

21. The box and whisker above represent the mass of the fish caught in a group fishing competition. Compare and comment on the results between Group A and Group B.

Answer ..[2]
A simple survey was conducted with Secondary 1 students on the types of pets that they have at home using the survey form below.

Survey Form

<table>
<thead>
<tr>
<th>Pets:</th>
<th>Dog</th>
<th>Rabbit</th>
<th>Cat</th>
<th>Hamster</th>
<th>Bird</th>
<th>Fish</th>
<th>Others</th>
<th>Nil</th>
</tr>
</thead>
</table>

The results from the survey are summarised in the Pie Chart below.

Results

(a) Explain why the Pie Chart is misleading.

(b) Suggest an improvement to better represent the data.

Answer (a)

Answer (b)

The diagram shows a trapezium $ABCD$ where $AB = 8$ cm and $CD = 12$ cm. The diagonals AC and BD meet at E.

(a) Show that $\triangle ABE$ and $\triangle CDE$ are similar.

(b) Given that the area of $\triangle CDE$ is 36 cm2, find the area of trapezium, $ABCD$.

Answer (a) [2]

(b) cm2 [2]
The line l_1 meets the line $2y = x + 5$ at $x = 2$. Find

(a) the equation of l_1,
(b) the area of triangle ABC.

Answer (a) ………………………………. [2]

(b) …………………………. units2 [1]
A playground is in the shape of a triangle ABC. Construct the model of the playground ABC such that $AB = 9.6$ cm, $AC = 12$ cm and $BC = 7$ cm. [2]

(a) In the triangle ABC, construct using only compasses and ruler, the bisector of angle ABC. [1]

(b) In the triangle ABC, construct using only compasses and ruler the perpendicular bisector of the line AB. [1]

(c) These two lines will intersect at a point P.
Measure and write down the length of AP.

Answer (c) .. cm [1]

End of Paper
<table>
<thead>
<tr>
<th>No</th>
<th>Solution</th>
<th>Marks</th>
</tr>
</thead>
</table>
| 1a | \[-13.37^2 - \pi^3 \]
\[\frac{6.574 - \sqrt{133.7}}{} = 42.046 \approx 42.0 \] | B1 |
| 1b | \[3.75\% = \frac{3.75}{100} = \frac{3}{80} \] | B1 |
| 2a | \[\frac{2a(2 + a)}{4 - a^2} - \frac{a}{a - 2} \]
\[= \frac{2a(2 + a)}{(a - 2)(a + 2)} - \frac{a}{a - 2} \]
\[= \frac{2a}{a - 2} - \frac{a}{a - 2} \]
\[= \frac{a}{a - 2} \]
Accept \[\frac{a}{2 - a} \] | M1 A1 |
| 2b | \[2ab + bx^2 - b^2 - 2ax^2 \]
\[= 2ab - b^2 - 2ax^2 + bx^2 \]
\[= b(2a - b) - x^2(2a - b) \]
\[= (b - x^2)(2a - b) \] | M1 A1 |
| 3a | \[2^{2013} \div \frac{1}{2^{2007}} = 2^{2013+(-2007)} = 2^6 \]
\[k = 6 \] | B1 |
| 3b | \[\frac{12a^3b}{(2b^2e^0)^2} \div \sqrt{a^6b^{-6}} = \frac{2^2(3)a^3b^6}{2^{-2}b^{-2}} \times \frac{a^3b^{-3}}{3} \]
\[= 2^4a^0b^0 = 2^4 \] | B2 (Subtract 1 for each wrong term) |
| 4 | \[\frac{x}{3} - \frac{y}{2} = \frac{1}{8} \]
\[2x - 3y = \frac{3}{4} \]
\[8x - 12y = 3 \quad -(1) \]
\[5x - 2y + 5 = 0 \]
\[2y = 5 + 5x \quad -(2) \]
Subst (2) in (1) | M1 |
\[
\begin{align*}
8x - 6(5 + 5x) &= 3 \\
8x - 30 - 30x &= 3 \\
22x &= -33 \\
x &= -\frac{33}{22} = -\frac{3}{2} = -1\frac{1}{2} \\
y &= -\frac{5}{4} = -1\frac{1}{4}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>(3528 = 2^3 \times 3^2 \times 7^2)</td>
</tr>
<tr>
<td>5b</td>
<td>(18144 = 2^5 \times 3^4 \times 7)</td>
</tr>
<tr>
<td></td>
<td>(\text{HCF} = 2^3 \times 3^2 \times 7)</td>
</tr>
<tr>
<td>5c</td>
<td>(k = 2^2 \times 3 \times 7 = 84)</td>
</tr>
<tr>
<td>6a</td>
<td>(\text{density} = \frac{1.7 \times 10^{11} \text{ g}}{2 \text{ m} \times 2 \text{ m} \times 2 \text{ m}} = \frac{1.7 \times 10^8 \text{ kg}}{2 \text{ m} \times 2 \text{ m} \times 2 \text{ m}})</td>
</tr>
<tr>
<td></td>
<td>= 18356 \text{ kg/m}^3</td>
</tr>
<tr>
<td></td>
<td>= 1.84 \times 10^4 \text{ kg/m}^3</td>
</tr>
<tr>
<td>6b</td>
<td>(\text{Total value of Gold} = 1.7 \times 10^{11} \text{ g} \times 6.2 \times 10^3 / \text{ g})</td>
</tr>
<tr>
<td></td>
<td>= 1.054 \times 10^{14}</td>
</tr>
<tr>
<td></td>
<td>= 105.4 \times 10^{12}</td>
</tr>
<tr>
<td></td>
<td>\approx 1.05 \times 10^2 \text{ trillion}</td>
</tr>
<tr>
<td>7a</td>
<td>(24 - (-9.5) = 33.5)</td>
</tr>
<tr>
<td></td>
<td>(25 - (-5) = 30)</td>
</tr>
<tr>
<td></td>
<td>(23.5 - (-11) = 34.5)</td>
</tr>
<tr>
<td></td>
<td>\text{Largest Difference is 34.5°C}</td>
</tr>
<tr>
<td></td>
<td>\text{Accept 36°C}</td>
</tr>
<tr>
<td>7b</td>
<td>(25 - \frac{x}{3000} \times 30 = 0)</td>
</tr>
<tr>
<td></td>
<td>(25 - \frac{x}{100} = 0)</td>
</tr>
<tr>
<td></td>
<td>(x = 2500 \text{ m})</td>
</tr>
<tr>
<td>8</td>
<td>(-1 - x < \frac{9 - 7x}{4})</td>
</tr>
<tr>
<td></td>
<td>(-4 - 4x < 9 - 7x)</td>
</tr>
<tr>
<td></td>
<td>(3x < 13)</td>
</tr>
<tr>
<td></td>
<td>(x < 4\frac{1}{3})</td>
</tr>
</tbody>
</table>
\[
\frac{9 - 7x}{4} \leq 6 - x
\]
\[
9 - 7x \leq 24 - 4x
\]
\[-15 \leq 3x
\]
\[-5 \leq x
\]
\[-5 \leq x < \frac{4}{3}
\]

9a
\[
2x^2 + 3x - 7 = 2\left(x + \frac{3}{4}\right)^2 - 8 \frac{1}{8}
\]

bi
Min value is \(-8 \frac{1}{8}\)

bii \(x = -2.76556 \text{ or } 1.26556 \approx -2.8 \text{ or } 1.3\)

10a
1cm : 250 000cm
1cm : 2.500m
1cm : 2.5km
3.3cm : 8.25 km

Actual Distance = 8.25km

10b
0.4cm : 1km
0.16cm² : 1km²
0.112cm² : 0.7 km²

Ans: 0.112cm² ≈ 0.11cm²

11a

<table>
<thead>
<tr>
<th>Fig</th>
<th>Area of Shaded Squares, (S)</th>
<th>Area of White Squares, (W)</th>
<th>Total Area, (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
<td>50</td>
<td>61</td>
</tr>
</tbody>
</table>

11b
\[
n \quad 2n + 1 \quad 2n^2 \quad 2n^2 + 2n + 1
\]

12
Angle ABC = 7x
Angle BAE = 3x
Sum of angles of the pentagon
= 3x + 3x + 7x + 7x + 7x
27x = (5-2)180° = 540°
x = 20°

Interior Angle = 7x = 140°
\[(n-2)180^\circ = 140^\circ n\]
\[40^\circ n = 360^\circ\]
\[n = 9\]

13. \[P = kT^4\]
\[6.32 = k(5.6 \times 10^3)^4\]
\[k = \frac{6.32}{(5.6 \times 10^3)^4}\]
\[3.25 \times 10^{-2} = \frac{6.32}{(5.6 \times 10^3)^4} T^4\]
\[T^4 = 5.0572962 \times 10^{12}\]
\[T = 1499.61 \approx 1.50 \times 10^3 K\]

Accept 1500K. (3s.f)

14a \[n(A \cap B) = 28\] B1

14b \[n(A \cup B)' = 0\] B1

14c \[C' = \emptyset\]
All students take Additional Mathematics.
There are no students who do not take Additional Mathematics.

15a \[f(x) = \frac{1}{x^2}\] B1
15b

\[f(x) = 2^x \]

(No double penalty eg. For labelling)

16a Mode = 36 marks

16b Median = 29.5 marks

16c Probability = \(\frac{6}{20} \times \frac{1}{4} = \frac{3}{40} \)

16d Disagree. The number of boys (20) and girls (12) are not equal. As there are more boys than girls, the boys interquartile range will naturally be higher and are more spread out. It doesn’t imply that they are less consistent.

17a

17b \(P(2 \text{ Blacks}) = \frac{5}{8} \times \frac{4}{7} = \frac{5}{14} \)

17c \(P(\text{At least 1 Red}) = 1 - \frac{5}{14} = \frac{9}{14} \)

\[P(\text{Win}) = \left(\frac{9}{14} \right)^3 = \frac{729}{2744} \]
18a

Acceleration

\[\text{Acceleration} = \frac{80}{(10/60)} = 480 \text{km/h}^2 \]

- **B1**

18b

Speed

\[\text{Speed} = \frac{80}{3} = 26\frac{2}{3} \text{km/h} \]

- **B1**

18ci

Total Distance

\[\text{Total Distance} = \frac{1}{2} \left(1 + \frac{1}{3} \right) 80 = 53\frac{1}{3} \text{km} = \frac{160}{3} \text{km} \]

Speed

\[\text{Speed} = \frac{160}{3} \div \frac{3}{4} = \frac{640}{9} = 71\frac{1}{9} \text{km/h} \]

- **M1**

18cii

![Graph](image)

- **B1**

19a

BC = CB (Shared length) (S)

\[\angle ABC = \angle ACB \text{(Given)} \]

\[\angle CBD = \angle BCE \text{(A)} \]

AD = AE (Isos Triangles)

AB = AC (Isos Triangles)

BD = AD – AB = AE – AC = CE (S)

Therefore BCD and CBE are congruent (SAS)

- **M1**

19b

Triangle ABC and Triangle ADE

Triangle BCF and Triangle FDE

- **B1**

20a

\[m = \frac{3 - (-2)}{-2 - (-1)} = -5 \]

- **M1**

20b

\[x = 4 \]

- **B1**

20c

Area

\[\text{Area} = \frac{1}{2} \times 5 \times 5 = 12.5 \text{ units}^2 \]

- **B1**

21

Surface Area

\[6 \times (5 \times 5) - \pi (2.5)^2 + 2\pi (2.5)^2 \]

\[= 169.63 \approx 169.6 \text{ cm}^2 \]

- **M2 (Cube & Hemisphere)**

- **A1**
B1 for pt C
B1 for Perpendicular Bisector
B1 for Angle Bisector
B1 for Arc around B
B1 for region & Coordinate X
<table>
<thead>
<tr>
<th>Qn</th>
<th>Solution</th>
<th>Marks</th>
<th>Marker's Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)</td>
<td>-168</td>
<td>B1</td>
<td>Most students were able to get this question correct.</td>
</tr>
</tbody>
</table>
| 1(b) | \[
\frac{3}{2000}
\] | B1 | Most students were able to get this question correct. |
| 2(a) | \[
\frac{3(x + 1) + 2(4 - x)}{2(5 - x)(x + 1)} = \frac{x + 1}{2(5 - x)(x + 1)}
\] | M1 | Do not accept half factorisation |
| | | A1 | Eg: \[
\frac{x + 1}{(10 - 2x)(x + 1)}
\] |
| 2(b) | \[
(p + 10 - y)
\] | B1 | Most students were not able to do this question. |
| 3(a) | \[
36 - 4w = 2 - 3w
\] | M1 | Most students were able to get this question correct. |
| | \[
w = 34
\] | A1 | Most students were able to get this question correct. |
| 3(b) | \[
\frac{2ab^2}{2^3b^2} \times \frac{1}{a^2b} = \frac{a^2b^5}{2^3}
\] | M1 | Most students were able to get this question correct. |
| | | A1 | Most students were able to get this question correct. |
| 4 | \[
2x = 1 - 3y
\] | M1 | Most students were able to get this question correct. |
| | \[
x = 0
\] | A1 | Most students were able to get this question correct. |
| | \[
y = 1/3
\] | A1 | Most students were able to get this question correct. |
| 5(a) | \[
4410 = 2 \times 3^2 \times 5 \times 7^2
\] | B1 | Some students did not leave the answer in index prime notation. |
| 5(b) | HCF = \[
2 \times 3^2 \times 7
\] | B1 | Some students did not leave the answer in index prime notation. |
| 5(c) | K = 36 | B1 | Some students were not able to do this question. |
| 6(a) | Number of minutes = \[
\frac{15}{135 \times 55}
\] = \[
\frac{6}{9}
\] | M1 | Do not accept 3sf or improper fraction. Quite a number of students took the temperature starting from \(0^\circ C\) instead of \(-15^\circ C\) |
| | | A1 | Some students were not able to get this question correct. |
| 6(b) | Temperature = \[
\frac{8}{15} \times 135 - 15
\] = \[
57
\] | M1 | Quite a number of students took the change in temperature as \(120^\circ C\) instead of \(135^\circ C\) |
| | | A1 | Some students do not understand the question |
| 7(a) | 42.5 | B1 | Some students do not understand the question |
7(b)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greatest difference = 61.5 – 42.5 = 19</td>
<td>A1</td>
<td>Most students were not able to do this question. Some students did not realise that 61.49 = 61.5. Many students got the answer by rounding up 18.9999 to 3 sf. BOD was given as the question was poorly answered.</td>
<td></td>
</tr>
</tbody>
</table>

8(a)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ratio = 9 cm² : 40000 m² = 9/20 cm² : 2000 m²</td>
<td>M1 A1</td>
<td>Some students were not able to convert km² to m²</td>
<td></td>
</tr>
</tbody>
</table>

8(b)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length ratio = 3 cm : 0.2 km = 7.8 cm : 0.52</td>
<td>A1</td>
<td>Well answered.</td>
<td></td>
</tr>
</tbody>
</table>

9

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual selling price = (\frac{86 \times 1.25}{0.7} = $153.57)</td>
<td>A1</td>
<td>Some students were not able to differentiate the old selling price with the discounted selling price.</td>
<td></td>
</tr>
</tbody>
</table>

10(a)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{9})</td>
<td>B1</td>
<td>Do not accept 3sf or improper fraction.</td>
<td></td>
</tr>
</tbody>
</table>

10(b)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average speed = (\frac{(20 + 0.8) \times 1000}{\frac{20}{8} \times 3600 + 15 \times 60 + 3.4 \times 60} = \frac{2 \times 74}{1263})</td>
<td>A1</td>
<td>Do not accept 3sf or improper fraction.</td>
<td></td>
</tr>
</tbody>
</table>

11

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 + 15(n-1) = 360 (n = 21)</td>
<td>M1 A1</td>
<td>Poorly answered.</td>
<td></td>
</tr>
</tbody>
</table>

12

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{\text{new}} = \frac{k}{0.6\sqrt{x}} = 5)</td>
<td>A1</td>
<td>Need to emphasize on “reduced to 36%” and “reduced by 36%” -1 if students substitute values into (x/y) to calculate</td>
<td></td>
</tr>
</tbody>
</table>

13(a)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:2</td>
<td>B1</td>
<td>Do not accept 2.5:1</td>
<td></td>
</tr>
</tbody>
</table>

13(b)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marking</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage change = (\frac{0.5x(1.7y) - xy}{xy} \times 100% = -15%)</td>
<td>A1</td>
<td>Quite a number of students give 15% as answer as they thought percentage change do not have negative sign.</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Grade</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>14(a)</td>
<td>BC = 6 cm</td>
<td>B1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>14(b)</td>
<td>Cos ACD = -0.6</td>
<td>B1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>14(c)</td>
<td>Area = 0.5 x 10 x 3 sin ACD = 12</td>
<td>B1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>15(a)</td>
<td></td>
<td>B2</td>
<td>Poorly answered. Students were not able to find the number of students that join NPCC and NCC.</td>
</tr>
<tr>
<td>15(b)(i)</td>
<td>There are malay students from the class that join NCC.</td>
<td>B1</td>
<td>Some students were not able to interpret the set notation.</td>
</tr>
<tr>
<td>15(b)(ii)</td>
<td>All the indian students from the class joined NCC.</td>
<td>B1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>15(b)(iii)</td>
<td>C (n) (N U P)'</td>
<td>B1</td>
<td>Poorly answered.</td>
</tr>
<tr>
<td>16(a)</td>
<td>(- (x-1)^2 - 3)</td>
<td>B1</td>
<td>Most students able to complete the square.</td>
</tr>
<tr>
<td>16(b)</td>
<td></td>
<td>B2</td>
<td>1m for shape 1m for turning point and y-intercept Poorly answered. Students were not able to identify the turning point and some were struggling to find the x-intercept.</td>
</tr>
<tr>
<td>17(a)</td>
<td>2:3</td>
<td>B1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>17(b)</td>
<td>32</td>
<td>B1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>18(a)</td>
<td>(P(late) = \frac{2}{3} \left(\frac{2}{15} \right) + \frac{1}{3} \left(\frac{3}{5} \right))</td>
<td>M1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marking</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>18(b)</td>
<td>$P(\text{not late for 3 consecutive days}) = \left(1 - \frac{13}{45}\right)^3 = \frac{32768}{91125}$</td>
<td>M1 A1</td>
<td>Do not accept 3sf. Poorly answered. Many students wrote probability more than 1. Some just multiply the P(not late) by 3.</td>
</tr>
<tr>
<td>19(a)</td>
<td>$V = \frac{450}{0.5(10 + 35)} = 20$</td>
<td>M1 A1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>19(b)</td>
<td>$v = \frac{7}{10} = 0.7$</td>
<td>M1 A1</td>
<td>Well answered.</td>
</tr>
<tr>
<td>19(c)</td>
<td>Acceleration $= 1\frac{1}{3}, \text{ms}^{-2}$</td>
<td>B1</td>
<td>Do not accept 3sf and improper fraction.</td>
</tr>
</tbody>
</table>

1M for shapes
1M for Distance 150m, 350m and 450m.
20(a) \[
\begin{pmatrix}
1 & -3 - 3y \\
10 - 2x & xy + 6
\end{pmatrix}
\] B1 Poorly answered. Many students make careless mistakes.

20(b) \[x = 5 \quad y = -1\] A2 0 m for those who got their answer from wrong working

21 Generally, the mass of the fish caught by Group A is heavier than the mass of the fish caught by Group B because Group A median is higher than Group B.

The mass of the fish caught by Group B is more spread compared to the mass of the fish caught by Group A because the interquartile range for Group B is higher than Group A.

B1 Students need to be more specific in explaining.

22(a) Some students might have more than 1 type of pets. B1 Poorly answered.

22(b) Venn Diagram B1 Poorly answered.

23(a) \[\angle AEB = \angle CED \text{ (vert. opp)}\]
[\[\angle EBA = \angle EDC \text{ (alt } \angle, \text{ AB parallel DC)}\]
[\[\angle EAB = \angle ECD \text{ (alt } \angle, \text{ AB parallel DC)}\]
B2 Any two reasons. Well answered.

23(b) Height of trapezium = \[
\frac{36}{0.5 \times 12} + \frac{8}{12} \times \frac{36}{0.5 \times 12} = 10
\]
Area of trapezium = \[
0.5(8 + 12)(10) = 100
\] M1 A1 Some students used length ratio to find the area of triangle ABE.

24(a) Gradient = -1.75 \[y = -1.75x + 7\] M1 A1 Well answered.

24(b) Area of triangle = 4.5 B1 Do not accept improper. Well answered.

25 Poorly answered. Students need to learn how to construct a triangle, perpendicular bisector and angle bisector.
INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

<table>
<thead>
<tr>
<th>PARENT'S SIGNATURE</th>
<th>FOR EXAMINER'S USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/ 100</td>
</tr>
</tbody>
</table>

This question paper consists of 12 printed pages including this page.

[Turn Over

FHSS/4E5N/Prelims/4016/02/4048.02
MATHEMATICAL FORMULAE

Compound Interest

Total amount = \(P (1 + \frac{r}{100})^n \)

Mensuration

Curved surface area of cone = \(\pi rl \)
Surface area of a sphere = \(4 \pi r^2 \)
Volume of a cone = \(\frac{1}{3} \pi r^2 h \)
Volume of sphere = \(\frac{4}{3} \pi r^3 \)
Area of triangle ABC = \(\frac{1}{2} ab \sin C \)
Arc length = \(r \theta \), where \(\theta \) is in radians
Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

\(a^2 = b^2 + c^2 - 2bc \cos A \)

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard Deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2} \)
1 (a) The diagram below shows a segment $AMBC$ of a circle centre O with diameter 86 cm. Given that $CM = 68$ cm, find the area of the segment. [4]

(b) In the diagram given below, $ABCD$ is a parallelogram and E is a point on AB such that $DA = DE$. The lines BD and EC intersect at F. Prove that

(i) $\triangle DEC \cong \triangle CBD$.

(ii) $\triangle DEF \cong \triangle CBF$.

[Turn over]
Johnny borrowed $50,000 from Joyful Bank to pay for the renovation of his new flat. The bank offered him two interest schemes.

Scheme A:

<table>
<thead>
<tr>
<th>Year</th>
<th>Interest Rate (% per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3 onwards</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The interest would be computed on the original principal amount.

Scheme B:

The interest is computed on the amount owed at the beginning of the year at 2% per annum.

If Johnny clears the loan at the end of 5 years, which scheme should he take up? Justify your answer with working.
(ii) The tables below show the exchange rates between Singapore dollars (SGD) and US dollars (USD) given by Unity Bank and Dedicated Bank.

Unity Bank

<table>
<thead>
<tr>
<th>US Dollars (USD)</th>
<th>Selling</th>
<th>Buying</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD 1</td>
<td>1.342</td>
<td>1.327</td>
</tr>
</tbody>
</table>

Dedicated Bank

<table>
<thead>
<tr>
<th>US Dollars (USD)</th>
<th>Selling</th>
<th>Buying</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD 1</td>
<td>1.361</td>
<td>1.340</td>
</tr>
</tbody>
</table>

Unity Bank charges no commission and Dedicated Bank charges a commission of \(\frac{1}{2} \% \) for each transaction, subject to a minimum charge of S$12.

(a) Mary is planning a trip to US and wants to buy USD650. Calculate, in SGD, the least amount of money she needs so that she can buy the USD from either bank. [3]

(b) At the end of the trip, she went to Dedicated Bank and changed the remaining USD150 back to Singapore dollars. Calculate the amount of Singapore dollars she received. [2]
3 (a) The coordinates of points A and B are $(6, 2)$ and $(-3, 8)$ respectively.

(i) Find $|\overrightarrow{AB}|$. \[2\]

(ii) Given that $\overrightarrow{BC} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}$, express \overrightarrow{OC} as a column vector. \[1\]

(iii) If $\overrightarrow{AD} = \begin{pmatrix} -7 \\ 1 \end{pmatrix}$, name the quadrilateral $ABDC$.

Justify your answer using vectors. \[3\]

(b) The following table shows the number of boxes of ice-cream bought by April and May.

<table>
<thead>
<tr>
<th></th>
<th>Chocolate</th>
<th>Strawberry</th>
<th>Vanilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>May</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

The price of each box of chocolate, strawberry and vanilla ice-cream is $9.80, $6.20 and $8 respectively.

(i) Represent the data in the table by a 3×3 matrix P. \[1\]

(ii) Write down a matrix Q such that PQ will give the amount spent by April and May respectively. Evaluate PQ. Explain what the elements in PQ represent. \[3\]

(iii) Write down another matrix such that the product with PQ will give the total amount spent by both of them. Evaluate this product. \[2\]
Matchsticks are used to form shapes of squares. The table below shows the square number (N), the number of matchsticks on each side (n), the total number of matchsticks used to form the square (T) and the area of the square formed (A).

<table>
<thead>
<tr>
<th>Square number (N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of matchsticks per side (n)</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>...</td>
<td>p</td>
</tr>
<tr>
<td>Total number of matchsticks (T)</td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>...</td>
<td>q</td>
</tr>
<tr>
<td>Area (A) units2</td>
<td>1</td>
<td>9</td>
<td>25</td>
<td>...</td>
<td>r</td>
</tr>
</tbody>
</table>

(i) Write down the value of p, of q and of r. [2]

(ii) Express n, T and A in terms of N. [3]

(iii) Find the value of N if $A = 169$ units2. [2]

(iv) Find the largest possible area of the square that can be formed with 168 matchsticks. [3]
5 (a) (i) Factorise \(6x^2 + 22x - 40\). \[2\]

(ii) Hence, find the value(s) of \(2a - 2b\) given \(3a^2 + 3b^2 + 11a - 11b - 6ab - 20 = 0\) and \(a < b\). \[3\]

(b) (i) Express \(\frac{4x - 2}{x + 1} - \frac{6x + 12}{2x^2 - 2}\) as a single fraction in its simplest form. \[3\]

(ii) Using the result in (b) (i), solve \(\frac{2x - 1}{x + 1} - \frac{3x + 6}{2x^2 - 2} = 3\), giving your answers correct to two decimal places. \[4\]

6 The diagram below shows a circle with diameter \(BD\) passing through the points \(A\), \(B\), \(C\) and \(D\). \(AT\) and \(BT\) are tangents to the circle at \(A\) and \(B\) respectively. \(BD\) and \(AC\) intersect at \(X\). Given that \(\angle BAC = 55^\circ\) and \(\angle ABC = 75^\circ\),

(a) calculate, stating your reasons clearly,

(i) \(\angle CBX\), \[2\]

(ii) \(\angle ADC\), \[1\]

(iii) \(\angle ATB\). \[3\]

(b) Find the diameter of the circle given that \(BT = 8\) cm. \[2\]
Answer the whole of this question on a sheet of graph paper.

The value of car, currently estimated at $140 000, depreciates at 15% each year.

The value of the car, V, in terms of n, is given by $V = 140000(0.85)^n$ where n is the number of years from now.

The table below shows some corresponding values of n and V where values of V are corrected to the nearest whole number.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>140000</td>
<td>119000</td>
<td>101150</td>
<td>85977</td>
<td>p</td>
<td>62119</td>
<td>q</td>
<td>44881</td>
</tr>
</tbody>
</table>

(a) Find the value of p and of q. [1]

(b) Using a scale of 2 cm to 1 year, draw a horizontal axis for $0 \leq n \leq 7$ and a scale of 2 cm to 10000, draw a vertical axis for $40000 \leq V \leq 140000$. On your axis, plot the points and join them with a smooth curve. [3]

(c) The owner decides to sell his car if the cost incurred is not more than 40% of the original value. Use your graph to estimate the value of n when he can sell his car. [2]

(d) By drawing a tangent, find the gradient of the curve at $n = 2$. Explain the significance of this gradient. [3]

[Turn over]
In the diagram below, A, B, C and D are four points on level ground with A due west of B.

Given that \(AC = 50 \text{ m}, \ CD = 30 \text{ m}, \ AD = 70 \text{ m}, \ \angle CAB = 50^\circ \) and \(\angle ABC = 60^\circ \), calculate

(a) (i) the length of \(AB \), [2]

(ii) \(\angle CAD \), [2]

(iii) bearing of D from A. [1]

(b) A vertical building of height 30 m is at A. A man of height 1.75 m walks from D to C. Find the largest angle of depression from the top of the building to the top of the man’s head. [3]

(c) A boy walks due east from A until he reaches a point P which is equidistant from B and from C. Calculate the distance of PB. [3]

[Turn over]
The Mathematics test scores of 25 students are presented in the following stem-and-leaf diagram.

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5 5 6</td>
</tr>
<tr>
<td>5</td>
<td>0 1 2 4 6 6 8</td>
</tr>
<tr>
<td>6</td>
<td>0 1 3 4 6 7 8 9</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1 2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: 4 | 5 means 45 marks

(a) Find the value of \(s \) given that the range is 39.

(b) Find the median mark.

(c) A Distinction grade is awarded for students who score \(x \) marks and above.

Given that 20% of the students obtained a Distinction grade, find \(x \).

(d) Find the mean and standard deviation of the test scores.

(e) A moderation is to be done and 4 marks are to be added across all scores.

Explain how the median and standard deviation of the marks would be affected by the moderation.

(f) Two students are chosen at random. Find the probability that both students have obtained different scores in the test.
Figure 1 shows a simplified model of a trophy consisting a sphere, a bifrustum and two cylinders. A bifrustum is made up of two frustums. Each frustum is made by slicing the top off a right circular cone as shown in Figure 2.

The cylindrical bases are made of oak and the bifrustum and sphere are made of teak.

(i) Calculate the amount of teak needed to make a frustum.

(ii) The trophy will be unstable if the mass of the bifrustum and the sphere is 10% greater than the mass of the cylindrical bases. Given that the densities of oak and teak are 2.7 g/cm3 and 0.63 g/cm3 respectively, will the trophy be unstable? Justify your answer with calculations.

End of paper
Answers

1 (a) 4930 cm\(^2\) (b) (i) SAS test (ii) ASA test

2 (i) Scheme B because the total amount payable is lesser than that of Scheme A (ii) (a) SGD 896.65 (b) SGD 189

3 (a) (i) 10.8 units (ii) \(\begin{pmatrix} 2 \\ 1 \end{pmatrix}\) (iii) Trapezium (b) (i) \(P = \begin{pmatrix} 5 \\ 6 \\ 8 \\ 4 \\ 3 \\ 5 \end{pmatrix}\) (ii) \(Q = \begin{pmatrix} 9.80 \\ 8.20 \\ 8 \end{pmatrix}\), \(PQ = \begin{pmatrix} 122.60 \\ 123.60 \end{pmatrix}\) (iii) \(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\) \(122.60 \\ 123.60 \) = (246.20)

4 (i) \(p = 17\), \(q = 68\), \(r = 289\) (ii) \(n = 2N - 1\), \(T = 4(2N - 1)\), \(A = (2N - 1)^2\) (iii) \(N = 7\) (iv) 1681 units\(^2\)

5 (a) (i) \(2(3x - 4)(x + 5)\) (ii) \(-10\) (b) (i) \(\frac{4x^2 - 9x - 4}{x^2 - 1}\) (ii) \(0.21\) or \(-4.71\)

6 (a) (i) \(35^\circ\) (ii) \(105^\circ\) (iii) \(80^\circ\) (b) 13.4 cm

7 (a) \(p = 73\ 081\) (nearest whole number), \(q = 52\ 801\) (nearest whole number) (c) \(0 < n < 3.2\) (d) \(-16250\)

Carousell-examguru
8
(a) (i) 54.3 m (ii) 21.8° (iii) 018.2°
(b) 33.1° (c) 44.2 m

9
(a) 3 (b) 61 marks (c) 71
(d) Mean = 60.44 marks, standard deviation = 10.2 marks
(e) Median will increase by 4, no change in standard deviation
(f) $\frac{59}{60}$

10
(a) 2150 m³ (b) It will not be unstable.
1 (a) Let the midpoint of AB be M.

$AO = BO = 43$ cm, $OM = 25$ cm

$\cos \left(\frac{1}{2} \angle AOB \right) = \frac{25}{43}$

$\angle AOB = 108.902^\circ$ (to 3 dec pl) -- M1 [find angle]

Area of $\triangle AOB = \frac{1}{2} \times 43^2 \times \sin 108.902^\circ$

$= 874.6427$ cm2 (7 sf) -- M1 [find area of triangle]

Area of segment $= 874.6427 + \frac{360^\circ - 108.902^\circ}{360^\circ} \times \pi (43)^2$ -- M1 [find total]

$= 4926.25...$ CBD

$= 4930$ cm2 (3 sf) -- A1 [final answer with units]

(b) (i) Given that $ABCD$ is a parallelogram, $DA = CB$.

Given $DA = DE$, therefore $CB = DE$. -- M1

$\angle DAB = \angle BCD$ (opposite angles of parallelogram)

$\angle DAB = \angle EDC$ ($\angle DAB \equiv \angle EDC$)

$\therefore \angle BCD = \angle EDC$ -- M1

In $\triangle DEC$ and $\triangle CBD$,

$CB = DE$ (S)

$\angle BCD = \angle EDC$ (A)

$DC = CD$ (common) (S)

$\therefore \triangle DEC \equiv \triangle CBD$ (SAS) -- M1

(ii) In $\triangle DEF$ and $\triangle CBF$,

$DE = CB$ (from bi) (S)

$\angle DFE = \angle CFB$ (vertically opposite angles) (A)

$\angle DEF = \angle CBF \Rightarrow \angle EDF = \angle BCF$ (A)

$\therefore \triangle DEF \equiv \triangle CBF$ (ASA) -- M2
2 (i) Scheme A:

Interest at the end of year 1 = \(\frac{1.5}{100} \times 50000 = $750 \)

Interest at the end of year 2 = \(\frac{2}{100} \times 50000 = $1000 \)

Total amount payable = $50000 + 5000 \times 3 \times \frac{2.5}{100} + 750 + 1000 -- M1

= $ 55500 -- A1

Scheme B:

Total amount payable = \(50000 \times \left(1 + \frac{2}{100}\right)^5 \)

= $ 55 204.04 (2dp) -- B1

He should take up Scheme B because the total amount payable at the end of 5 years is lesser than that of Scheme A. -- A2

(ii) (a) Unity Bank:

Amount needed = SGD 650 \times 1.342

= SGD 872.30 -- B1

Dedicated Bank:

Amount needed without commission = SGD 650 \times 1.361

= SGD 884.65

0.5% of SGD 884.65 = SGD 4.42 (< SGD 12) --

Total amount needed = SGD 884.65 + SGD 12 = SGD896.65 -- M1

Thus, the least amount needed = SGD 896.65 -- A1

(b) Amount received = SGD 150 \times 1.340 - 12 -- M1

= SGD 189 -- A1
3 (a) (i) \(\overrightarrow{OA} = \left(\frac{6}{2}, 7 \right), \overrightarrow{OB} = \left(\frac{-3}{8}, 8 \right), \overrightarrow{AB} = \left(\frac{-9}{6}, 6 \right) \)

\[
\overrightarrow{AB} = \sqrt{(-9)^2 + 6^2} = \sqrt{117} \quad -- \text{M1}
\]

\[= 10.8 \text{ units (to 3 sf)} \quad -- \text{A1}\]

(ii) \(\overrightarrow{BC} = \left[\begin{array}{c} 5 \\ -7 \end{array} \right] \)

\[
\overrightarrow{BO} + \overrightarrow{OC} = \left[\begin{array}{c} 5 \\ -7 \end{array} \right]
\]

\[
\overrightarrow{OC} = \left[\begin{array}{c} 5 \\ -7 \end{array} \right] - \left[\begin{array}{c} 3 \\ -8 \end{array} \right]
\]

\[= \left[\begin{array}{c} 2 \\ 1 \end{array} \right] \quad -- \text{B1}\)

(iii) \(\overrightarrow{OD} = \left[\begin{array}{c} -1 \\ 3 \end{array} \right], \overrightarrow{CD} = \left[\begin{array}{c} -3 \\ 2 \end{array} \right] \)

Since \(\overrightarrow{AB} = 3 \overrightarrow{CD} \), so \(AB \parallel CD \). \quad -- \text{M1}

\[
\overrightarrow{BD} = \left[\begin{array}{c} 2 \\ -5 \end{array} \right], \overrightarrow{AC} = \left[\begin{array}{c} -4 \\ -1 \end{array} \right] \quad -- \text{M1}
\]

Since \(\overrightarrow{BD} \neq k \overrightarrow{AC} \), where \(k \) is a constant, so \(BD \) is not parallel to \(AC \).

Given that there is only one pair of parallel sides, \(ABCD \) is a trapezium. \quad -- \text{A1}

(b) (i) \(P = \left[\begin{array}{ccc} 5 & 8 & 3 \\ 6 & 4 & 5 \end{array} \right] \quad -- \text{B1}\)

(ii) \(Q = \left[\begin{array}{c} 9.80 \\ 6.20 \\ 8 \end{array} \right] \quad -- \text{B1} \quad \text{and} \quad PQ = \left[\begin{array}{c} 122.60 \\ 123.60 \end{array} \right] \quad -- \text{B1}\)

(iii) Matrix is \(\left[\begin{array}{cc} 1 & 1 \end{array} \right] \). \quad -- \text{B1}

Product \[= \left[\begin{array}{cc} 1 & 1 \end{array} \right] \left[\begin{array}{cc} 122.60 \\ 123.60 \end{array} \right] = (246.20) \quad -- \text{B1}\)

The total amount spent on the three types of ice-cream by April and May respectively.
4 (i) \(p = 17, q = 68, r = 289 \) -- B2 for 3 correct, B1 for 2 correct

(ii) \(n = 2N - 1 \) -- B1
\(T = 4(2N - 1) \) -- B1
\(A = (2N - 1)^2 \) -- B1

(iii) If \(A = 169, (2N - 1)^2 = 169 \)
\(2N - 1 = \pm 13 \) -- M1
\(N = 7 \) or \(N = -6 \) (rejected) -- A1

(iv) \(4(2N - 1) \leq 168 \) -- M1
\(2N - 1 \leq 42 \)
\(2N \leq 43 \)
\(N \leq 21.5 \) -- A1
Largest possible value of \(N = 21 \)
Hence, largest possible area = 1681 units\(^2\) -- A1

5 (a) (i) \(6x^2 + 22x - 40 = 2(3x - 4)(x + 5) \) -- B2

(ii) \(3a^2 + 3b^2 + 11a - 11b - 6ab - 20 = 0 \)
\(6(a^2 - 2ab + b^2) + 22(a - b) - 40 = 0 \) -- M1
\(6(a - b)^2 + 22(a - b) - 40 = 0 \)
\(2[3(a - b) - 4][(a - b) + 5] = 0 \)
\(a - b = \frac{4}{3} \) (rejected) or \(a - b = -5 \) -- A1
Hence, \(2a - 2b = 2(a - b) = 2(-5) = -10 \) -- A1
(b) (i) \[
\frac{4x - 2}{x + 1} - \frac{6x + 12}{2x^2 - 2} = \frac{4x - 2}{x + 1} - \frac{6(x + 2)}{2(x + 1)(x - 1)} \]
\[
= \frac{(4x - 2)(x - 1) - 3(x + 2)}{(x + 1)(x - 1)} \]
\[
= \frac{4x^2 - 6x + 2 - 3x - 6}{x^2 - 1} \quad \text{-- M1 [simplification]} \]
\[
= \frac{4x^2 - 9x - 4}{x^2 - 1} \quad \text{-- A1 [answer]} \]

(ii) \[
\frac{2x - 1}{x + 1} - \frac{3x + 6}{2x^2 - 2} = 3
\]
\[
2 \left(\frac{2x - 1}{x + 1} - \frac{3x + 6}{2x^2 - 2} \right) = 6 \]
\[
\frac{4x^2 - 9x - 4}{x^2 - 1} = 6 \quad \text{-- M1} \]
\[
4x^2 - 9x - 4 = 6x^2 - 6 \]
\[
2x^2 + 9x - 2 = 0 \quad \text{-- M1} \]
\[
x = \frac{-9 \pm \sqrt{9^2 - 4(2)(-2)}}{2(2)} \quad \text{-- M1} \]
\[
= 0.21 \quad \text{or} \quad -4.71 \quad \text{(answers to 2 dp)} \quad \text{-- A1} \]
6 (a) (i) \(\angle BAD = 90^\circ \) (angle in semi-circle)
\(\angle CAD = 90^\circ - 55^\circ = 35^\circ \) -- M1
\(\angle CBX = \angle CAD \) (angles in same segment)
\[= 35^\circ \] -- A1

(ii) \(\angle ADC = 180^\circ - 75^\circ \) (angles in opposite segment)
\[= 105^\circ \] -- A1

(iii) \(\angle ABD = 75^\circ - 35^\circ = 40^\circ \)
\(\angle DBT = 90^\circ \) (tangent perpendicular to radius) -- M1
\(\therefore \angle ABT = 90^\circ - 40^\circ = 50^\circ \) -- M1
\(\angle ATB = 180^\circ - 2(50^\circ) \) (angles sum of triangle)
\[= 80^\circ \] -- A1

(b) \(\tan 40^\circ = \frac{OB}{8} \)
\(OB = 8 \tan 40^\circ \)
Diameter = \(2(8 \tan 40^\circ) \) -- M1
\[= 13.4 \text{ cm (to 3 sf)} \] -- A1

7 (a) \(p = 73 081 \) (nearest whole number), \(q = 52 801 \) (nearest whole number) -- B1

(b) Graph – Plotted points A1
Smooth curve A1
Axes + Eqn + Scale A1

(c) \(V \geq \frac{60}{100} \times 140000 \)
\(V \geq 84000 \) -- M1
From graph, \(0 \leq n \leq 3.2 \) -- A1

(d) Gradient = \(\frac{125000 - 60000}{0.5 - 4.5} = -16250 \) -- M1 + A1

The value of the car is depreciating at a rate of $16 250 at \(n = 2 \). -- A1
[The rate of depreciation of the car at \(n = 2 \).]
(a) (i) \[\angle ACB = 180^\circ - 50^\circ - 60^\circ \text{ (angles sum of triangle)} \]

\[\angle ACB = 70^\circ \]

\[\frac{AB}{\sin 70^\circ} = \frac{50}{\sin 60^\circ} \quad \text{-- M1} \]

\[AB = \frac{50}{\sin 60^\circ} \times \sin 70^\circ = 54.25317\ldots \]

\[= 54.3 \text{ m (to 3 sf)} \quad \text{-- A1} \]

(ii) \[30^2 = 50^2 + 70^2 - 2(50)(70)\cos \angle CAD \quad \text{-- M1} \]

\[\cos \angle CAD = \frac{-6500}{-7000} \]

\[\angle CAD = \cos^{-1}\left(\frac{13}{14}\right) = 21.7867\ldots \]

\[= 21.8^\circ \text{ (to 1 dp)} \quad \text{-- A1} \]

(iii) Bearing of \(D \) from \(A \) = \[090^\circ - 050^\circ - 021.7867^\circ \]

\[= 018.2^\circ \text{ (to 1 dp)} \quad \text{-- A1} \]

(b) Let the shortest distance from \(A \) to \(CD \) be \(x \).

\[\frac{1}{2}(30)x = \frac{1}{5}(50)(70)\sin 21.7867^\circ \]

\[x = 43.3011 \text{ (to 6sf)} \quad \text{-- M1} \]

Let the largest angle of depression be \(\theta \).

\[\tan \theta = \frac{30 - 1.75}{43.3011} \quad \text{-- M1} \]

\[\theta = 33.1^\circ \text{ (to 1 dp)} \quad \text{-- A1} \]

The largest angle of depression is 33.1°.
(c) Triangle BCP is an equilateral triangle.
\[\angle APC = 180^\circ - 60^\circ \text{ (angles on a straight line)} \]
\[= 120^\circ \]
\[\frac{AP}{\sin 10^\circ} = \frac{50}{\sin 120^\circ} \quad \text{-- M1} \]
\[AP = 10.02558 \text{ m (to 7 sf)} \quad \text{-- A1} \]
\[PB = 54.25317 - 10.02558 \]
\[= 44.2 \text{ m (to 3 sf)} \quad \text{-- A1} \]

9

(a) Lowest score = $82 - 39 = 43$
So, $s = 3$ \quad \text{-- B1}

(b) Median = 61 marks \quad \text{-- B1}

(c) Number of students awarded Distinction $= \frac{20}{100} \times 25 = 5$ \quad \text{-- M1}
So, $x = 71$ \quad \text{-- A1}

(d) Mean $= \frac{1511}{25} = 60.44$ marks \quad \text{-- B1}

Standard Deviation $= \sqrt{\frac{93919}{25} - 60.44^2}$ \quad \text{-- M1}
\[= 10.2 \text{ marks (to 3 sf)} \quad \text{-- A1} \]

(e) The median will increase by 4 marks to become 65 marks. \quad \text{-- A1}
The there will be no change in the standard deviation. \quad \text{-- A1}

(f) $P \text{ (both with different scores)}$
\[= 1 - P \text{ (both with same scores)} \]
\[= 1 - [P \text{ (45, 45)} + P \text{ (56, 56)} + P \text{ (71, 71)}] \]
\[= 1 - \left(\frac{2}{25} \times \frac{1}{24} + \frac{2}{25} \times \frac{1}{24} - 3 \times \frac{2}{25} \times \frac{2}{24} \right) \quad \text{-- M1} \]
\[= \frac{59}{60} \quad \text{-- A1} \]
10 (a) By similar triangles,

\[
\frac{x}{x + 12} = \frac{6}{9}
\]

\[9x = 6x + 72\]

\[3x = 72\]

\[x = 24 \quad \text{-- M1}\]

Volume of teak used = \(\frac{1}{3} \pi (9)^2 (36) - \frac{1}{3} \pi (6)^2 (24)\) -- M1

\[= 2148.849 \text{ cm}^3 \text{(7 sf)}\]

\[= 2150 \text{ cm}^3 \text{ (to 3 sf)} \quad \text{-- A1}\]

(b) Total volume of teak needed = \(2 \times 2148.849 + \frac{4}{3} \pi (2)^3\)

\[= 4331.208 \text{ cm}^3 \text{ (7 sf)}\]

Mass of teak needed = 4331.208 \times 0.63 = 2728.661 g \text{ (7 sf)} -- M1

Total volume of oak needed = \(\pi (3)^2 (15) + \pi (9)^2 (5)\)

\[= 1696.46 \text{ cm}^3 \text{ (to 6 sf)} \quad \text{-- M1}\]

Mass of oak needed = 1696.46 \times 2.7 = 4580.44 g \text{ (to 6 sf)} -- M1

\[
\frac{\text{Mass of teak}}{\text{Mass of oak}} = \frac{2728.661}{4580.44} = 0.596 \text{ (to 3 sf)} \quad (<1.1) \quad \text{-- M1}\]

The trophy will not be unstable. – A1

End of marking scheme
INSTRUCTIONS TO CANDIDATES
Write your name, class and index number on the question paper.
Write in dark blue or black ink on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answer in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

INFORMATION FOR CANDIDATES
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.
Mathematical Formulae

Compound Interest

Total amount = \(P \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4 \pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of a triangle = \(\frac{1}{2} ab \sin C \)

Arc length = \(r \theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\(a^2 = b^2 + c^2 - 2bc \cos A \)

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
1 (a) Calculate \(7 \frac{1}{3} - \sqrt{5.25 + 13.5^2} \div \sin 28^\circ \).

Write down the first six digits on your calculator display.

(b) Write your answer to part (a) correct to 2 significant figures.

Answer (a) ... [1]

(b) ... [1]

2 (a) Arrange the following numbers in ascending order:

\(\frac{1}{20} \), \(5 \frac{1}{4} \% \), \(5.22 \times 10^{-3} \), \(0.05 \).

Answer (a) .. [1]

(b) State which of the following number(s) is / are irrational:

\(0.\overline{3} \), \(\frac{\pi}{5} \), \(\sqrt{7} \times 2\sqrt{7} \), \(3\sqrt{3} \).

Answer (b) .. [1]

3 The length of each side of a cube is increased by 40%.

Find the percentage increase in the total surface area of the cube.

Answer % [2]
4 Given that \((2x - 5)(x + a) = 2x^2 + bx - 5\) for all values of \(x\), find the values of \(a\) and \(b\).

Answer \(a = \ldots \), \(b = \ldots\) [2]

5 Two numbers \(p\) and \(q\), written as the products of their prime factors, are
\[p = 2^2 \times 3^5 \times 5^6 \quad \text{and} \quad q = 2^2 \times 3^3. \]

(a) Find the HCF of \(p\) and \(q\).
(b) Find the smallest positive integer \(k\) such that \((p \times q \times k)\) is a perfect cube.

Answer (a) \(\ldots\) [1]
(b) \(k = \ldots\) [1]

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 19 16 London time. The flight arrived at Singapore on Tuesday at 15 51 Singapore time. Calculate how long the flight took, giving your answer in hours and minutes.

Answer \(\ldots\) hours \(\ldots\) minutes [2]
7 The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres, of the micro-organism, giving your answer in standard form.

Answer ………………………… mm² [2]

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016.

![Graph showing sales of computer notebooks]

Explain why the graph is misleading.

Answer …… [2]

9 Two of the interior angles of a hexagon are \(2x°\) and \((5x - 200)°\). The remaining interior angles are \(90°\) each. By forming an equation in \(x\), find the value of \(x\).

Answer \(x = \) …………………… [2]
In the diagram, the points B, C, D and E lie on a circle with centre O. PQ is a tangent to the circle at D. ABC and $AEOD$ are straight lines. $\angle OCB = 54^\circ$ and $\angle OAB = 30^\circ$.

Find, giving reasons for each answer,

(a) $\angle ADC$,
(b) $\angle CDQ$,
(c) $\angle ACE$,
(d) $\angle CBE$.

Answer

(a) $\cdots \cdots [2]$

(b) $\cdots \cdots [1]$

(c) $\cdots \cdots [2]$

(d) $\cdots \cdots [1]$
11 \(ABCD\) is a quadrilateral. \(ABC\) and \(CDE\) are equilateral triangles. Using a pair of congruent triangles, show that \(AD = BE\). State your reasons clearly.

![Diagram of quadrilateral and equilateral triangles]

\(Answer\) In triangles ………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

[2]

12 Janet has $50000 to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months. Calculate the amount of interest she will get at the end of 3 years.

\(Answer\) $ …………………. [2]
13 (a) Given that \(\left(\frac{1}{4} \right)^p \times 8 = 1 \), find the value of \(p \).

(b) Simplify \(\left(\frac{2^{p+1} \sqrt{2}}{2^p} \right)^{-2} \).

\[Answer \ (a) \ p = \ldots \ldots \ldots [2] \]

\[(b) \ldots [2] \]
14 The equations of the three graphs shown below are in the form \(y = n + x^{n-1} \).
State the value of \(n \) for each of the following graph.

(a)

(b)

(c)

\[Answer (a) \quad n = \ldots \ldots \ldots \quad [1] \]

\[Answer (b) \quad n = \ldots \ldots \ldots \quad [1] \]

\[Answer (c) \quad n = \ldots \ldots \ldots \quad [1] \]

15 In the answer space, sketch the graph of \(y = 5 - (x + 1)^2 \), indicate clearly the turning point and the intercepts on the \(x \) and \(y \)-axes (if any).

\[Answer \quad [2] \]
16 (a) \[\varepsilon = \{ x : x \text{ is an integer and } 1 \leq x < 24 \} \]
\[A = \{ x : x \text{ is a perfect square} \} \]
\[B = \{ x : x \text{ is a factor of the number 24} \} \]
\[C = \{ x : x + 1 \text{ is divisible by } 6 \} \]

(i) List the elements in \(A \cap C \).

(ii) Find \(n \left(B' \cup C \right) \).

(b) State the set notation of the shaded region in following Venn Diagram.

Answer (a)(i) [1]

Answer (a)(ii) [1]

Answer (b)... [1]
17 Given that point $A(4, 2)$ and $\overrightarrow{AC} = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$.

(a) Find $\left| \overrightarrow{CA} \right|$.

Answer (a) ………………… units [1]

(b) The point P lies on CA such that $\overrightarrow{PA} = k \overrightarrow{CA}$.

(i) Show that $\overrightarrow{OP} = \begin{pmatrix} 4 - 7k \\ 2 + 3k \end{pmatrix}$.

Answer (b)(i) [1]

(ii) Given that point P lies on the y-axis, find the coordinates of P.

Answer (b)(ii) $P(\ldots\ldots, \ldots\ldots)$ [2]
18 Consider the number patterns in the table below. The first three terms of each column have been given.

<table>
<thead>
<tr>
<th>Row, (n)</th>
<th>(S)</th>
<th>(T)</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>(p)</td>
<td>(q)</td>
<td>(r)</td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Find values of \(p\), \(q\) and \(r\).

(b) Write down the equation connecting \(S\) and \(T\).

(c) Write down the equation connecting \(U\) and \(n\).

(d) Betty said that 256 can be found in column \(U\).

Write whether you agree or disagree with Betty. Give reason(s) for your answer.

Answer (a) \(p = \ldots \ldots\), \(q = \ldots \ldots\), \(r = \ldots \ldots\) [1]

(b) .. [1]

(c) .. [1]

(d) I ……………………with Betty. This is because ...

...

...

...

... [1]
The frequency table shows the number of countries that a group of students had visited.

<table>
<thead>
<tr>
<th>Number of countries</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>x</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Given that the mode is 1, state the largest possible value of \(x \).

(b) Given that the median number of countries visited is 2, find the largest possible value of \(x \).

(c) Given that the mean number of countries is more than 2, find the smallest possible value of \(x \).

\[\text{Answer (a)} \quad x = \ldots \ldots \ldots \ldots \ldots \quad [1] \]

\[\text{Answer (b)} \quad x = \ldots \ldots \ldots \ldots \ldots \quad [1] \]

\[\text{Answer (c)} \quad x = \ldots \ldots \ldots \ldots \ldots \quad [2] \]
20 (a) The air resistance, R, is directly proportional to the square of the speed, V, of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.

(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?

Answer (a) newtons [2]

(b) men [2]
21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

![Speed-time graph](image)

(a) Find the deceleration of the train as it enters station J.

(b) Calculate
 (i) the total distance travelled by the train in the first 3 minutes,
 (ii) the average speed of the train, in km/h, in the first 3 minutes.

Answer (a) m/s\(^2\) [1]

(b)(i) m [1]

(ii) km/h [2]

(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c)
22 P and R are points on the x-axis. TQR is a straight line parallel to the y-axis. Area of $\Delta PQR = 30 \text{ units}^2$.

(a) Find the coordinates of
(i) point R,
(ii) point P.

(b) Find the length of PQ.

(c) Find $\cos \angle PQT$, giving your answer as a fraction.

(d) Given that $PR = TR$, find the equation of PT.

\[\text{Answer (a)(i)} \quad R (\ldots, \ldots) \quad [1] \\
\text{(ii)} \quad P (\ldots, \ldots) \quad [2] \\
\text{(b)} \quad \ldots \ldots \ldots \ldots \ldots \ldots \text{ units} \quad [1] \\
\text{(c)} \quad \ldots \ldots \ldots \ldots \ldots \ldots \quad [1] \\
\text{(d)} \quad \ldots \ldots \ldots \ldots \ldots \ldots \quad [1] \]
Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.

(a) Complete the following probability tree diagram.

Answer (a)

First draw

\[
\begin{align*}
&\begin{cases}
3 \quad \text{Odd} \\
4 \quad \text{Even}
\end{cases} \\
\frac{3}{5}
\end{align*}
\]

Second draw

\[
\begin{align*}
&\begin{cases}
1 \quad \text{Even} \\
2 \quad \text{Odd}
\end{cases} \\
\frac{1}{2}
\end{align*}
\]

(b) Find

(i) the probability that one disc is odd and the other is even,

(ii) the probability that both numbers drawn are smaller than 4.

(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.

Answer (b)(i) [1]

(ii) [1]

(c) [2]
24 The diagram below shows a horizontal field ABC.
A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m, show all the constructions clearly.

(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
(i) By construction, mark and label clearly the position of the lamp post L. [1]
(ii) Measure and write down the bearing of the lamp post L from point C.

(b) A gate, G, is located along the path of BC, equidistant from B and C.
By construction, mark and label clearly the position of the gate G. [1]

(c) A circular flower bed is built such that it touches each side of the field at one point.
(i) By constructing two angle bisectors, draw the circular flower bed and label its centre O. [2]
(ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(i)
(b)
(c)(i)

![Diagram of the field ABC with marked points A, B, C, lamp post L, gate G, and flower bed O.]

Answer (a)(ii) ° [1]
(c)(ii) m [1]

End of Paper 1
INSTRUCTIONS TO CANDIDATES
Write your name, class and index number on the question paper.
Write in dark blue or black ink on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give
the answer to three significant figures. Give your answer in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in
terms of π.

INFORMATION FOR CANDIDATES
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.

Marks

80
Mathematical Formulae

Compound Interest

Total amount = \(P \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4 \pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of a triangle = \(\frac{1}{2} ab \sin C \)

Arc length = \(r \theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\(a^2 = b^2 + c^2 - 2bc \cos A \)

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
Answer all the questions.

1. (a) Calculate $7 \frac{1}{3} - \sqrt[3]{\frac{5.25 + 13.5^2}{\sin 28^\circ}}$.

Write down the first six digits on your calculator display.

(b) Write your answer to part (a) correct to 2 significant figures.

Answer (a) \(-0.03095\) \[1\]

(b) \(-0.031\) \[1\]

2. (a) Arrange the following numbers in ascending order:

\[
\frac{1}{20}, \quad 5 \frac{1}{4} \%, \quad 5.22 \times 10^{-3}, \quad 0.05, \quad 0.0525, \quad 0.00522, \quad 0.050505\ldots
\]

Answer (a) \[1\]

(b) State which of the following number(s) is / are irrational:

\[
0.\overline{3}, \quad \frac{\pi}{5}, \quad \sqrt[5]{2}, \quad 3\sqrt{3}.
\]

\[
\frac{\pi}{5}, \quad 3\sqrt{3}
\]

Answer (b) \[1\]

3. The length of each side of a cube is increased by 40%.

Find the percentage increase in the total surface area of the cube.

\[
\text{% increase in surface area} = \frac{6(1.4l)^2 - 6l^2}{6l^2} \times 100\%
\]

\[
= \frac{11.76 - 6}{6} \times 100\%
\]

\[
= 96\%
\]

Answer \[96\% \] \[2\]
4 Given that \((2x - 5)(x + a) = 2x^2 + bx - 5\) for all values of \(x\), find the values of \(a\) and \(b\).

\[
2x^2 + 2ax - 5x - 5a = 2x^2 + bx - 5
\]

\[-5a = -5 \quad \Rightarrow \quad a = 1\]

\[2a - 5 = b \quad \Rightarrow \quad b = 2(1) - 5 = -3 \]

Answer \(a = 1 \, \ldots \ldots \ldots \, , \ b = \ldots \ldots \ldots \, [2]\]

5 Two numbers \(p\) and \(q\), written as the products of their prime factors, are

\[p = 2^2 \times 3^5 \times 5^6 \quad \text{and} \quad q = 2^3 \times 3 \times 5^3\, .\]

(a) Find the HCF of \(p\) and \(q\).

(b) Find the smallest positive integer \(k\) such that \((p \times q \times k)\) is a perfect cube.

(a) \(\text{HCF} = 2^2 \times 3^3 = 108\)

(b) \((p \times q \times k) = 2^4 \times 3^5 \times 5^6 \times k \)

\[k = 2^2 \times 3 = 12\]

Answer (a) …………………. \[1\]

(b) \(k = \ldots \ldots \ldots \, [1]\)

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 19 16 London time. The flight arrived at Singapore on Tuesday at 15 51 Singapore time. Calculate how long the flight took, giving your answer in hours and minutes.

Departure time from London (Singapore time)
\[= \quad 02 \ 16 \ \text{Tuesday} \quad \text{M1}\]

Arrival time at Singapore (Singapore time)
\[= \quad 15 \ 51 \ \text{Tuesday} \]

Duration of Journey
\[= \quad 13 \ h \ 35 \ min\]

Answer \(\ldots \ldots \) hours \(\ldots \ldots \) minutes \[2\]
7 The diameter of a spherical micro-organism is 9.04 \text{ micrometres}. Find the surface area in square \text{ millimetres}, of the micro-organism, giving your answer in standard form.

Radius \(= \frac{1}{2} \times 9.04 \times 10^{-6} \text{ m}\)
\[= 4.52 \times 10^{-6} \times 10^3 \text{ mm}\]
\[= 4.52 \times 10^{-3} \text{ mm} \quad \text{M1}\]

Surface area \(= 4\pi (4.52 \times 10^{-3})^2\)
\[= 2.57 \times 10^{-4} \text{ mm}^2\]

\text{Answer} \quad 2.57 \times 10^{-4} \quad \text{mm}^2 \quad [2]

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016.

Explain why the graph is misleading.

\text{Answer}\quad \text{The scale of the vertical axis is not consistent.} \quad \text{B1}

\text{This distorts the graph, making the sales from May to June (16 \(-\) 4 = 12 units)}
\text{seemed to be less than the sales from March to April (8 \(-\) 0 = 8 units).} \quad \text{[2]}

9 Two of the interior angles of a hexagon are \(2x^\circ\) and \((5x - 200)^\circ\). The remaining interior angles are \(90^\circ\) each. By forming an equation in \(x\), find the value of \(x\).

\[2x + (5x - 200) + 4(90) = (6 - 2) \times 180 \quad \text{M1}\]
\[7x + 160 = 720\]
\[7x = 560\]
\[x = 80\]

\text{Answer} \quad x = 80 \quad \text{[2]}
10 In the diagram, the points B, C, D and E lie on a circle with centre O. PQ is a tangent to the circle at D. ABC and $AEOD$ are straight lines. $\angle OCB = 54^\circ$ and $\angle OAB = 30^\circ$.

Find, giving reasons for each answer,

(a) $\angle ADC$,
(b) $\angle CDQ$,
(c) $\angle ACE$,
(d) $\angle CBE$.

(a) $\angle COD = 54^\circ + 30^\circ \ (\text{Ext } \angle \text{ of } \triangle) \ \{\text{M1}\}$

$\angle ADC = \frac{180^\circ - 84^\circ}{2} \ (\text{Base } \angle \text{s of isos. } \triangle) \ \{\text{A1}\}$

$= 48^\circ$

(b) $\angle CDQ = 90^\circ - 48^\circ \ (\text{tan } \perp \text{ rad}) \ \{\text{A1}\}$

$= 42^\circ$

(c) $\angle DCE = 90^\circ \ (\text{Rt. } \angle \text{ in semi-circle}) \ \{\text{M1}\}$

$\angle ADC = 180^\circ - 90^\circ - 48^\circ - 30^\circ \ (\text{sum of } \triangle) \ \{\text{A1}\}$

$= 12^\circ$

or $\angle COE = 48^\circ \times 2 \ (\angle \text{ at centre } = 2 \angle \text{ at circumference})$

$= 96^\circ$

$\angle ACE = \frac{180^\circ - 96^\circ}{2} \ (\text{Base } \angle \text{s of isos. } \triangle)$

$= 42^\circ$

$\angle ADC = 54^\circ - 42^\circ$

$= 12^\circ$

(d) $\angle CBE = 180^\circ - 48^\circ \ (\angle \text{s in opp segments are supp}) \ \{\text{A1}\}$

$= 132^\circ$

Answer

(a) $48^\circ \ [2]$

(b) $42^\circ \ [1]$

(c) $12^\circ \ [2]$

(d) $132^\circ \ [1]$
11 \(ABCD\) is a quadrilateral. \(ABC\) and \(CDE\) are equilateral triangles. Using a pair of congruent triangles, show that \(AD = BE\). State your reasons clearly.

\[\begin{align*}
\angle ACD &= 60^\circ - \angle ACE \quad (\angle \text{ of equil. } \triangle CDE) \\
\angle BCE &= 60^\circ - \angle ACE \quad (\angle \text{ of equil. } \triangle ABC) \\
\therefore \angle ACD &= \angle BCE \\
\therefore \triangle ACD &= \triangle BCE \quad (\text{SAS}) \quad (\text{criteria must tally with test}) \\
\therefore AD &= BE
\end{align*}\]

Answer In triangles \(\triangle ACD\) and \(\triangle BCE\),
- \(CD\) and \(CE\) \((\text{sides of equil. } \triangle CDE)\)
- \(AB\) and \(BC\) \((\text{sides of equil. } \triangle ABC)\)
- \(\angle ACD = 60^\circ - \angle ACE \quad (\angle \text{ of equil. } \triangle CDE)\)
- \(\angle BCE = 60^\circ - \angle ACE \quad (\angle \text{ of equil. } \triangle ABC)\)

\[\therefore \angle ACD = \angle BCE \quad (\text{all criteria must be correct})
\]

\[\begin{align*}
\therefore \triangle ACD &= \triangle BCE \\
\therefore AD &= BE
\end{align*}\]

12 Janet has $50000 to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months. Calculate the amount of interest she will get at the end of 3 years.

\[\text{Amount} = 50000 \left(1 + \frac{0.02}{4}\right)^{12} \quad \text{M1}
\]

\[\begin{align*}
&= 53083.8905 \\
\text{Interest} &= 53083.8905 - 50000 \\
&= 3083.89 \text{ (to 2 dp)}
\end{align*}\]

\[\text{Answer} \quad \$3083.89 \quad [2]\]
13 (a) Given that \(\left(\frac{1}{4} \right)^p \times 8 = 1 \), find the value of \(p \).

\[
\left(2^{-2} \right)^p \times 2^3 = 2^0 \\
2^{-2p+3} = 2^0 \quad \text{M1} \\
-2p + 3 = 0 \\
p = 1 \frac{1}{2}
\]

(b) Simplify \(\left(\frac{2^{y+1} \sqrt{2}}{2^y} \right)^{-2} \).

\[
\left(\frac{2^{y+1} \sqrt{2}}{2^y} \right)^{-2} \\
= \left(2^{y+1+\frac{1}{2}y} \right)^{-2} \quad \text{M1} \\
= \left(2^{\frac{3}{2}} \right)^{-2} \\
= 2^{-3} \\
= \frac{1}{8}
\]

Answer (a) \(p = \frac{1}{2} \) \[2\]

(b) \(\frac{1}{8} \) \[2\]
14 The equations of the three graphs shown below are in the form $y = n + x^{n-1}$.
State the value of n for each of the following graphs.

(a)

(b)

(c)

Answer (a) $n = \ldots \ldots \ldots \text{B1}$ [1]
(b) $n = \ldots \ldots \ldots \text{B1}$ [1]
(c) $n = \ldots \ldots \ldots \text{B1}$ [1]

15 In the answer space, sketch the graph of $y = 5 - (x+1)^2$, indicate clearly the turning point and the intercepts on the x and y-axes (if any).

Answer

G1 correct shape

G1 label turning point and x-y-intercepts
16 (a) \[\varepsilon = \{ x : x \text{ is an integer and } 1 \leq x < 24 \} = \{ 1, 2, 3, \ldots, 23 \} \]
\[A = \{ x : x \text{ is a perfect square } \} = \{ 1, 4, 9, 16 \} \]
\[B = \{ x : x \text{ is a factor of the number 24 } \} = \{ 1, 2, 3, 4, 6, 8, 12 \} \]
\[C = \{ x : x + 1 \text{ is divisible by 6 } \} = \{ 5, 11, 17, 23 \} \]

(i) List the elements in \(A \cap C \).

(ii) Find \(n(B' \cup C) \).

(a) (ii) \[B' = \{ 5, 7, 9, 10, 11, 13, 14, 16, \ldots, 23 \} \]
\[n(B' \cup C) = n(B') \]
\[= n(\varepsilon) - n(B) \]
\[= 23 - 7 \]
\[or \ \{ \} \]

Answer (a)(i) \…………………………. [1]

(ii) \…………………………. [1]

(b) State the set notation of the shaded region in following Venn Diagram.

\[L' \cup M \]

Answer (b) \………………. [1]
17 Given that point \(A(4, 2) \) and \(\overrightarrow{AC} = \begin{pmatrix} -7 \\ 3 \end{pmatrix} \).

(a) Find \(|\overrightarrow{CA}| \).

\[
\overrightarrow{CA} = \begin{pmatrix} 7 \\ -3 \end{pmatrix}
\]

\[
|\overrightarrow{CA}| = \sqrt{7^2 + (-3)^2} = \sqrt{58}
\]

Answer (a) \(\boxed{7.62} \) units [1]

(b) The point \(P \) lies on \(CA \) such that \(\overrightarrow{PA} = k \overrightarrow{CA} \).

(i) Show that \(\overrightarrow{OP} = \begin{pmatrix} 4 - 7k \\ 2 + 3k \end{pmatrix} \).

Answer (b)(i) \[1\]

\[
\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}
\]

\[
\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}
\]

\[
= \begin{pmatrix} 4 \\ 2 \end{pmatrix} + k \overrightarrow{AC}
\]

\[
= \begin{pmatrix} 4 \\ 2 + 3k \end{pmatrix} + k \begin{pmatrix} -7 \\ 3 \end{pmatrix}
\]

\[
= \begin{pmatrix} 4 - 7k \\ 2 + 3k \end{pmatrix} \quad \text{(shown)}
\]\n
(ii) Given that point \(P \) lies on the \(y \)-axis, find the coordinates of \(P \).

\[
4 - 7k = 0
\]

\[
k = \frac{4}{7}
\]

\[
2 + 3 \left(\frac{4}{7} \right) = \frac{3 \cdot 5}{7}
\]

Answer (b)(ii) \(P(0, \frac{3 \cdot 5}{7}) \) [2]
18 Consider the number patterns in the table below. The first three terms of each column have been given.

<table>
<thead>
<tr>
<th>Row, n</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Find values of p, q and r.

(b) Write down the equation connecting S and T.

(c) Write down the equation connecting U and n.

(d) Betty said that 256 can be found in column U. Write whether you agree or disagree with Betty. Give reason(s) for your answer.

\[
\begin{align*}
14n + 2 &= 256 \\
14n &= 254 \\
n &= \frac{254}{14} \\
&= 18\frac{1}{7}
\end{align*}
\]

\[\text{B1} \quad (\text{All 3 must be correct})\]

Answer (a) $p = \ldots..., \quad q = \ldots..., \quad r = \ldots... \quad [1]$

(b) \(T = 4S \) \text{ B1} \quad [1]

(c) \(U = 14n + 2 \) \text{ B1} \quad [1]

(d) I \ldots...with Betty. This is because \ldots...

If $N = 256$, $n = 18\frac{1}{7}$ which is not a natural number. \text{B1}

\[\text{OR}\]

When 2 is deducted from 256, the result 254 is not divisible by 14. \text{(is not a multiple of 14).} \quad [1]
19 The frequency table shows the number of countries that a group of students had visited.

<table>
<thead>
<tr>
<th>Number of countries</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>x</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Given that the mode is 1, state the largest possible value of \(x\).

(b) Given that the median number of countries visited is 2, find the largest possible value of \(x\).

(c) Given that the mean number of countries is more than 2, find the smallest possible value of \(x\).

(b) \[2 + 8 + (6 - 1) = x + 4 \]
\[15 = x + 4 \]
\[x = 11 \]

(c) \[\text{Mean} = \frac{0(2) + 1(8) + 2(6) + 3x + 4(4)}{2 + 8 + 6 + x + 4} > 2 \]
\[\frac{3x + 36}{x + 20} > 2 \quad \text{M1} \]
\[3x + 36 > 2(x + 20) \]
\[3x + 36 > 2x + 40 \]
\[x > 4 \]
smallest \(x = 5\)

Answer (a) \(x = \ldots \ldots \ldots \ldots \ldots \ldots \) [1]

(b) \(x = \ldots \ldots \ldots \ldots \ldots \ldots \) [1]

(c) \(x = \ldots \ldots \ldots \ldots \ldots \ldots \) [2]
20 (a) The air resistance, \(R \), is directly proportional to the square of the speed, \(V \), of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.

(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?

(a) \[R = k V^2 \, , \, \text{k constant} \]

\[
24 = k V^2 \implies k = \frac{24}{V^2} \quad \text{M1}
\]

\[
R_{\text{new}} = k (1.5V)^2
\]

\[
= \frac{24}{V^2} \times 2.25V^2
\]

\[
= 54 \text{ newtons}
\]

(b) No. of men required to build 3 huts in 72 h

\[
= \frac{3 \times 60 \times 48}{2 \times 72}
\]

\[
= 60
\]

\[
\therefore \text{ Extra no. of men needed } = 60 - 48
\]

\[
= 12
\]

OR

48 men ---- 2 huts ---- 60 h
48 men ---- 1 hut ---- 30 h
1 man ---- 1 hut ---- 1440 h \quad \text{M1}
1 man ---- 3 huts ---- 4320 h
60 men ---- 3 huts ---- 72 h

\[
\therefore \text{ Extra no. of men needed } = 60 - 48
\]

\[
= 12
\]

Answer (a) newtons [2]

(b) .. men [2]
21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.

(b) Calculate
(i) the total distance travelled by the train in the first 3 minutes,
(ii) the average speed of the train, in km/h, in the first 3 minutes.

(a) Acceleration $= \frac{40 - 0}{0 - 90} = -\frac{4}{9} \text{ m/s}^2$ \therefore Deceleration $= \frac{4}{9} \text{ m/s}^2$

(b) (i) Total distance $= \frac{1}{2}(90)(40) + \frac{1}{2}(30)(80)$
$= 1800 + 1200$
$= 3000 \text{ m}$

(ii) Average speed $= \frac{3000 \text{ m}}{3 \text{ min}} = \frac{3000 \text{ m}}{3 \times 60 \text{ s}}$
$= 60 \text{ km/h}$

Answer (a) $\frac{4}{9} \text{ m/s}^2$ [1]

(b)(i) 3000 m [1]

(ii) 60 km/h [2]

(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c) [2]

G1 correct shape

G1 label correct distance
22 \hspace{1cm} P \text{ and } R \text{ are points on the } x\text{-axis. } TQR \text{ is a straight line parallel to the } y\text{-axis.}
\text{Area of } \Delta PQR = 30 \text{ units}^2.

(a) \hspace{1cm} \text{Find the coordinates of}
(i) \hspace{1cm} \text{point } R, \\
(ii) \hspace{1cm} \text{point } P.

(b) \hspace{1cm} \text{Find the length of } PQ.

(c) \hspace{1cm} \text{Find } \cos \angle PQT, \text{ giving your answer as a fraction.}

(d) \hspace{1cm} \text{Given that } PR = TR, \text{ find the equation of } PT.

(a)(i) \hspace{1cm} R \hspace{1cm} (4, 0) \\
(ii) \hspace{1cm} \frac{1}{2} \times PR \times 5 = 30 \hspace{1cm} \text{M1}
\hspace{1cm} \frac{2 \times 30}{5} = 12 \text{ units}
\hspace{1cm} \therefore \hspace{1cm} P \hspace{1cm} (-8, 0)

(b) \hspace{1cm} P \hspace{1cm} (-8, 0) \hspace{1cm} Q \hspace{1cm} (4, 5)
\hspace{1cm} PQ = \sqrt{[4 - (-8)]^2 + (5 - 0)^2}
\hspace{1cm} = \sqrt{144 + 25}
\hspace{1cm} = 13 \text{ units}

(c) \hspace{1cm} \cos \angle PQT = -\cos \angle PQR
\hspace{1cm} = -\frac{5}{13}

(d) \hspace{1cm} P \hspace{1cm} (-8, 0) \hspace{1cm} T \hspace{1cm} (4, 12)
\hspace{1cm} m = \frac{12 - 0}{4 - (-8)} = 1
\hspace{1cm} \text{Equation of } PT \hspace{1cm} \text{is}
\hspace{1cm} y - 0 = 1 [x - (-8)]
\hspace{1cm} y = x + 8

Answer (a)(i) \hspace{1cm} R \hspace{1cm} (......... \hspace{1cm} , \hspace{1cm}) \hspace{1cm} [1] \hspace{1cm} B1
\hspace{1cm} (ii) \hspace{1cm} P \hspace{1cm} (......... \hspace{1cm} , \hspace{1cm}) \hspace{1cm} [2] \hspace{1cm} A1
\hspace{1cm} (b) \hspace{1cm} \hspace{1cm} units \hspace{1cm} [1] \hspace{1cm} B1
\hspace{1cm} (c) \hspace{1cm} \hspace{1cm} [1]
\hspace{1cm} (d) \hspace{1cm} \hspace{1cm} [1] \hspace{1cm} A1
23 Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.

(a) Complete the following probability tree diagram.

\[\text{First draw} \quad \frac{1}{2} \quad \text{Second draw} \quad \frac{3}{5} \quad \text{Odd} \]

\[\frac{2}{5} \quad \text{Even} \]

\[\frac{3}{4} \quad \text{Odd} \]

\[\frac{1}{4} \quad \text{Even} \]

(b) Find

(i) the probability that one disc is odd and the other is even,

(ii) the probability that both numbers drawn are smaller than 4.

(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.

\[
\begin{array}{cccccc}
+ & 1 & 3 & 4 & 6 & 7 \\
1 & 4 & 5 & 7 & 8 & \\
3 & 4 & 7 & 9 & 10 & \\
4 & 5 & 7 & 10 & 11 & \\
6 & 7 & 9 & 10 & 13 & \\
7 & 8 & 10 & 11 & 13 & \\
\end{array}
\]

\[P(\text{sum} = \text{prime no.}) = \frac{10}{20} \]

\[= \frac{1}{2} \]

Answer (b)(i) \[\frac{3}{5} \quad \text{B1} \]

(ii) \[\frac{1}{10} \quad \text{B1} \]

(c) \[\frac{1}{2} \quad \text{B1} \]

[2]
24 The diagram below shows a horizontal field ABC.
A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m, show all the constructions clearly.

(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
 (i) By construction, mark and label clearly the position of the lamp post L. [1]
 (ii) Measure and write down the bearing of the lamp post L from point C.

(b) A gate, G, is located along the path of BC, equidistant from B and C.
By construction, mark and label clearly the position of the gate G. [1]

(c) A circular flower bed is built such that it touches each side of the field at one point.
 (i) By constructing two angle bisectors, draw the circular flower bed and label its centre O. [2]
 (ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(i)
(b)
(c)(i)

Answer (a)(ii) ° [1]

(c)(ii) m [1]

End of Paper 1
INSTRUCTIONS TO CANDIDATES
Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

INFORMATION FOR CANDIDATES
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets \([\]\) at the end of each question or part question.
The total number of marks for this paper is 100.
Mathematical Formulae

Compound interest

Total amount = \(P \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r\theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\(a^2 = b^2 + c^2 - 2bc \cos A \)

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
Answer all the questions.

1 (a) Given that $8 \leq x \leq 4$ and $3 \leq y \leq 2$, find
 (i) the least value of xy, [1]
 (ii) the greatest value of $x^2 - y^2$. [1]

(b) Express as a single fraction in its simplest form
 (i) $\frac{x - y}{xy} + \frac{y - z}{yz}$, [2]
 (ii) $\frac{2x^3}{x + y + z} - \frac{(x + y)^2}{6x} \cdot z^2$. [2]

(c) It is given that $2pq = \sqrt{\frac{4q^2 + p^2}{2}}$.
 Express q in terms of p. [3]

2 In the diagram, $OABCD$ is a semicircle with centre at O.

$AD \parallel BC$, angle $CDA = angle BAD = \frac{3}{10}$ radians and $OA = 20$ mm.

(a) Show that angle $BOA = \frac{2}{5}$ rad. [1]

(b) Find the length of arc AB, leaving your answer in terms of π. [1]

(c) Find angle BOC. [1]

(d) Calculate the area of the shaded region. [3]

(e) Find angle BOA in degrees. [1]

(f) The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, $AD = 60$ mm. Find the area of the enlarged logo. [2]
3. The cash price of a car is $74 000. Mr Smith is introduced to two types of payment schemes.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Down payment</th>
<th>Simple interest rate (per annum)</th>
<th>Loan period (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40%</td>
<td>3.28%</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>60%</td>
<td>R%</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) Find the total amount that Mr Smith has to pay for the car, if he chose **Scheme A**. [2]

(b) If Mr Smith chose **Scheme B**, the monthly instalment he has to pay over 5 years is $572.76. Calculate the value of R. [3]

(c) One day the exchange rate between US dollar (US$) and Singapore dollars (S$) was US$1 = S$1.27 .

On the same day, the exchange rate between British pound (£) and US dollar was £1 = US$1.33.

Calculate the cash price of the car in pounds, correct to the nearest pound. [2]
In the diagram, \(WXYZ \) is a trapezium and \(WX \) is parallel to \(ZY \).

The point \(P \) on \(XZ \) is such that \(ZP : PX = 1 : 3 \) and \(WX : ZY = 3 : 4 \).

It is given that \(WX = 9a \) and \(WZ = b \).

(a) Express, as simply as possible, in terms of \(a \) and \(b \),

(i) \(ZX \),
(ii) \(WP \),
(iii) \(YW \).

(b) Show that the line \(XY \) is parallel to the line \(WP \).

(c) Find, as a fraction in its simplest form,

(i) \(\frac{\text{area of } WZP}{\text{area of } WXP} \),
(ii) \(\frac{\text{area of } WZP}{\text{area of } YXZ} \).
5 Answer the whole of this question on a sheet of graph paper.
A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

<table>
<thead>
<tr>
<th>Week (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>p</td>
<td>90</td>
<td>145</td>
<td>230</td>
<td>400</td>
</tr>
</tbody>
</table>

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for $0 \leq x \leq 7$.
Using a scale of 2 cm to 50 members, draw a vertical y-axis for $0 \leq y \leq 400$.
On your axes, plot the points given in the table and join them with a smooth curve.

(b) Use your graph to estimate
(i) the value of p,
(ii) the week that the total number of members reaches 300.

(c) (i) By drawing a tangent, find the gradient of the curve at $x = 4$.
(ii) What does this gradient represent?

(d) The group of friends wish to estimate what the total number of members will be in one year’s time. They propose to extend the graph line up to week, $x = 52$.
Explain why it is not possible to estimate the total number of members in this way.

6 The distance between two houses, P and Q, is 200 km. Joe travelled by car from P to Q at an average speed of x km/h.
(a) Write down an expression, in terms of \(x \), for the number of hours he took to travel from \(P \) to \(Q \). \[1\]

(b) He returned from \(Q \) to \(P \) at an average speed of which was 5 km/h more than the first journey.
Write down an expression, in terms of \(x \), for the number of hours he took to travel from \(Q \) to \(P \). \[1\]

(c) The difference between the two times was 24 minutes.
Write down an equation in \(x \) to represent this information, and show that it reduces to
\[x^2 + 5x - 2500 = 0. \] \[3\]

(d) Solve the equation \(x^2 + 5x - 2500 = 0 \), giving each answer correct to three decimal places. \[3\]

(e) Calculate the time that Joe took to travel from \(P \) to \(Q \), giving your answer in hours, minutes and seconds, correct to the nearest second. \[2\]

7 (a) Jim exercises on Monday and Wednesday.
On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes.
On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes.

This information can be represented by the matrix \(\mathbf{Q} = \begin{pmatrix} 10 & 20 & 30 \\ 20 & 10 & 15 \end{pmatrix} \).

(i) Evaluate the matrix \(\mathbf{P} = 60 \mathbf{Q} \). [1]

(ii) Jim’s exercising speeds are the same for Monday and Wednesday.

His jogging speed is 4 m/s, cycling speed is 5.5 m/s and swimming speed is 1.3 m/s.

Represent his exercising speeds in a 3 \times 1 column matrix \(\mathbf{S} \). [1]

(iii) Evaluate the matrix \(\mathbf{R} = \mathbf{PS} \). [2]

(iv) State what the elements of \(\mathbf{R} \) represent. [1]

(b) The cost of a shirt is \(\$C \). If the shirt is sold at \$60, a shop makes a profit of \(x \)% on the cost price.

(i) Write down an equation in \(C \) and \(x \) to represent this information and show that it simplifies to

\[6000 - 100C = Cx. \] [1]

If the shirt is sold at \$24, the shop makes a loss of 2\(x \)% on the cost price.

(ii) Write down an equation in \(C \) and \(x \) to represent this information. [1]

(iii) Solve these two equations to find the value of \(C \) and the value of \(x \). [3]

(iv) Calculate the selling price of the shirt if the profit is 45% of the cost price. [2]
8 The diagram shows a triangular park BCD and the route that Ali has cycled. Ali cycles from his home, A, on a bearing of 220° towards point B of the park. The distance from A to B is 4.8 km. From B, he cycles to C, which is 6 km away, and he continues to D. C is due north of B. Reflex angle $ABD = 210^\circ$ and angle $BDC = 35^\circ$.

(a) Show that BCD is an isosceles triangle.

(b) Calculate the
(i) distance of AC,
(ii) area of the park BCD,
(iii) angle BAC,
(iv) shortest distance from B to CD.

(c) A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building.
9 120 visitors took a survey on the number of hours they spent at the Gardens by the Bay in February 2016.

The cumulative frequency curve below shows the distribution of the time spent.

(a) Use the curve to estimate
(i) the median time, [1]
(ii) the interquartile range of the times, [2]
(iii) the percentage of visitors who spent at least 4 hours at the Gardens by the Bay. [2]
(b) It was discovered that the number of hours has been recorded incorrectly. The correct number of hours was all 1 hour less than those recorded.

The box-and-whisker plot shows the correct distribution of hours.

\[\begin{align*}
\text{Find the value of} \\
\text{(i) } c, \quad [1] \\
\text{(ii) } e - a. \quad [1]
\end{align*} \]

(c) The table below shows the results of the survey conducted on another 120 visitors on the number of hours they spent at the Gardens by the Bay in June 2016.

<table>
<thead>
<tr>
<th>Number of hours spent (x h)</th>
<th>Number of visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 < x \leq 4$</td>
<td>33</td>
</tr>
<tr>
<td>$4 < x \leq 6$</td>
<td>46</td>
</tr>
<tr>
<td>$6 < x \leq 8$</td>
<td>30</td>
</tr>
<tr>
<td>$8 < x \leq 10$</td>
<td>11</td>
</tr>
</tbody>
</table>

Calculate an estimate of the

(i) mean time that the visitors spent in June, \[1\]

(ii) standard deviation. \[2\]

(d) The programme management team at the Gardens by the Bay commented that the visitors generally spent longer hours in February 2016 than in June 2016.

Justify if the comment is valid. \[2\]
A solid cone is cut into 2 parts, X and Y, by a plane parallel to the base. The length of $AB = \text{the length of } BC$.

(a) Given that the volume of the solid cone is $\frac{64}{3}$ m3, find the volume, in terms of π, of the frustum, Y.

(b) In Diagram II, a rocket can be modelled from a cylinder of height, h, 94.2 m with a cone, X, on top and a frustum, Y, at the bottom. The cone, X, has a diameter, d_2, of 4 m and the frustum, Y, has a base diameter, d_1, of 8 m. The parts X and Y are taken from Diagram I above.

(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter.

(ii) Calculate the volume, in cubic metres, of the rocket.
(iii) The rocket is designed to launch to the moon.

```
Useful information

- Distance of moon from earth: 384 400 km
- Speed of rocket: 800 km /minute
- 1 m³ = 264 gallon
- The rocket is filled with liquid fuel to a maximum of 95% of its volume.
- Rate of fuel consumption: 20 000 gallons /minute
- Capacity of each external fuel tank: 3.2 \( \times 10^6 \) gallons
```

How many external fuel tanks will the rocket require to sustain its journey to the moon?

Justify your answer with calculations. [4]
INSTRUCTIONS TO CANDIDATES
Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give
the answer to 3 significant figures. Give answers in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer
in terms of \(\pi \).

INFORMATION FOR CANDIDATES
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100.
Mathematical Formulae

Compound interest

Total amount = \(P \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r\theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[a^2 = b^2 + c^2 - 2bc \cos A\]

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
Methodist Girls’ School
Mathematics
Sec 4 Preliminary Examination 2016

Answer **all** the questions.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Given that $8 \leq x \leq 4$ and $3 \leq y \leq 2$, find</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) the least value of xy, -16</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>(ii) the greatest value of $x^2 - y^2$, 64</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>(b) Express as a single fraction in its simplest form</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) $\frac{x - z}{xz}$</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td>(ii) $\frac{x^2(x + y - z)}{3}$</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td>(c) It is given that $2pq = \sqrt{\frac{4q^2 + p^2}{2}}$. Express q in terms of p.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$q = \pm \frac{p^2}{4(2p^2 - 1)}$ or $q = \pm \frac{p}{2\sqrt{2p^2 - 1}}$ or $q = \pm \frac{p^2}{8p^2 - 4}$</td>
<td>[3]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>In the diagram, $OABCD$ is a semicircle with centre at O. $AD \parallel BC$, angle $CDA = angle BAD = \frac{3}{10}$ radians and $OA = 20$ mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) Show that angle $BOA = \frac{2}{5}$ rad. $\triangle BOA$ is an isosceles triangle</td>
</tr>
</tbody>
</table>
(b) Find the length of arc \(AB \), leaving your answer in terms of \(\pi \).
\[8\pi \text{ mm} \] [1]

(c) Find angle \(BOC \).
\[\frac{\pi}{5} \text{ rad} \] [1]

(d) Calculate the area of the shaded region.
\[69.2 \text{ mm}^2 \] [3]

(e) Find angle \(BOA \) in degrees.
\[72^\circ \] [1]

(f) The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, \(AD = 60 \text{ mm} \). Find the area of the enlarged logo.
\[1260 \text{ mm}^2 \] [2]

3 The cash price of a car is $74 000. Mr Smith is introduced to two types of payment schemes.

<table>
<thead>
<tr>
<th></th>
<th>Scheme A</th>
<th>Scheme B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down payment</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Simple interest rate (per annum)</td>
<td>3.28%</td>
<td>(R %)</td>
</tr>
<tr>
<td>Loan period (years)</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) Find the total amount that Mr Smith has to pay for the car, if he chose Scheme A.
\[$81281.60 \] [2]

(b) If Mr Smith chose Scheme B, the monthly instalment he has to pay over 5 years is $572.76. Calculate the value of \(R \).
\[R = 3.22 \] [3]

(c) One day the exchange rate between US dollar (US$) and Singapore dollars (S$) was US$1 = S$1.27.
On the same day, the exchange rate between British pound (£) and US dollar was £1 = US$1.33.
Calculate the cash price of the car in pounds, correct to the nearest pound.

£43810

4 In the diagram, $WXYZ$ is a trapezium and WX is parallel to ZY.
The point P on XZ is such that $ZP : PX = 1 : 3$ and $WX : ZY = 3 : 4$.
It is given that $WX = 9a$ and $WZ = b$.

(a) Express, as simply as possible, in terms of a and b,

(i) $\overrightarrow{ZX} = -b + 9a$

(ii) $\frac{3}{4}(b + 3a)$

(iii) $-b - 12a$

(b) Show that the line XY is parallel to the line WP.

Since $\overrightarrow{WP} = \frac{3}{4} \overrightarrow{XY}$,
XY is parallel to WP.

(c) Find, as a fraction in its simplest form,

(i) $\frac{\text{area of } WZP}{\text{area of } WXP} = \frac{1}{3}$

(ii) $\frac{3}{6}$
5 Answer the whole of this question on a sheet of graph paper.

A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

<table>
<thead>
<tr>
<th>Week (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of members (y)</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>p</td>
<td>90</td>
<td>145</td>
<td>230</td>
<td>400</td>
</tr>
</tbody>
</table>

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for $0 \leq x \leq 7$. Using a scale of 2 cm to 50 members, draw a vertical y-axis for $0 \leq y \leq 400$. On your axes, plot the points given in the table and join them with a smooth curve. [3]

(b) Use your graph to estimate

(i) the value of p, [1]

(ii) the week that the total number of members reaches 300. [1]

(c) (i) By drawing a tangent, find the gradient of the curve at $x = 4$. [2]

(ii) What does this gradient represent? [2]

(d) The group of friends wish to estimate what the total number of members will be in one year’s time. They propose to extend the graph line up to week, $x = 52$. Explain why is it not possible to estimate the total number of members in this way. [1]
6 The distance between two houses, P and Q, is 200 km. Joe travelled by car from P to Q at an average speed of \(x \) km/h.

(a) Write down an expression, in terms of \(x \), for the number of hours he took to travel from P to Q.

\[
\text{time} = \frac{200}{x} \text{h}
\]

(b) He returned from Q to P at an average speed of which was 5 km/h more than the first journey.

Write down an expression, in terms of \(x \), for the number of hours he took to travel from Q to P.

\[
\text{time} = \frac{200}{x+5} \text{h}
\]

(d) Solve the equation \(x^2 + 5x - 2500 = 0 \), giving each answer correct to three decimal places.

47.562 or -52.562

(e) Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second.

4h 12min 18sec (nearest sec)

7 Jim exercises on Monday and Wednesday.

On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes.

On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes.

This information can be represented by the matrix \(Q = \begin{pmatrix} 10 & 20 & 30 \\ 20 & 10 & 15 \end{pmatrix} \).

(i) Evaluate the matrix \(P = 60Q \).

\[
\begin{pmatrix} 600 & 1200 & 1800 \\ 1200 & 600 & 900 \end{pmatrix}
\]

(ii) Jim’s exercising speeds are the same for Monday and Wednesday.
His jogging speed is 4 m/s, cycling speed is 5.5 m/s and swimming speed is 1.3 m/s.

Represent his exercising speeds in a 3 1 column matrix S.

$$S = \begin{pmatrix} 4 \\ 5.5 \\ 1.3 \end{pmatrix}$$

(iii) Evaluate the matrix $R = PS$.

$$R = \begin{pmatrix} 11340 \\ 9270 \end{pmatrix}$$

(iv) State what the elements of R represent.

The elements of R represent the distance, in metres, that Jim has exercised on Monday and Wednesday, respectively.

(b) The cost of a shirt is C. If the shirt is sold at $60, a shop makes a profit of $x\%$ on the cost price.

(i) Write down an equation in C and x to represent this information and show that it simplifies to $6000 - 100C = Cx$.

If the shirt is sold at $24, the shop makes a loss of $2x\%$ on the cost price.

(ii) Write down an equation in C and x to represent this information.

$$100C - 2400 = 2Cx$$

(iii) Solve these two equations to find the value of C and the value of x.

$C = 48$

$x = 25$

(iv) Calculate the selling price of the shirt if the profit is 45% of the cost price.

69.60
8 The diagram shows a triangular park BCD and the route that Ali has cycled.
Ali cycles from his home, A, on a bearing of 220° towards point B of the park. The distance from A to B is 4.8 km. From B, he cycles to C, which is 6 km away, and he continues to D.
C is due north of B. Reflex angle $ABD = 210^\circ$ and angle $BDC = 35^\circ$.

(b) Calculate the

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>distance of AC, 3.86 km2 (to 3 sf)</td>
</tr>
<tr>
<td>(ii)</td>
<td>area of the park BCD, 16.9 km2</td>
</tr>
<tr>
<td>(iii)</td>
<td>angle BAC, 87.0$^\circ$ (to 1 dp)</td>
</tr>
<tr>
<td>(iv)</td>
<td>shortest distance from B to CD, 3.44 km (to 3 sf)</td>
</tr>
</tbody>
</table>

(c) A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building.
5.03 km (to 3 sf)
120 visitors took a survey on the number of hours they spent at the Gardens by the Bay in February 2016.

The cumulative frequency curve below shows the distribution of the time spent.

(a) Use the curve to estimate

(i) the median time,
 median = 6.9 hours [1]

(ii) the interquartile range of the times,
 2.3 hours [2]

(iii) the percentage of visitors who spent at least 4 hours at the Gardens by the Bay. [2]
(b) It was discovered that the number of hours has been recorded incorrectly. The correct number of hours was all 1 hour less than those recorded. The box-and-whisker plot shows the correct distribution of hours.

\[a \quad b \quad c \quad d \quad e \]

Find the value of

(i) \(c \) ,
\[c = 5.9 \text{ hours} \]

(ii) \(e - a \).
\[e - a = 8 \text{ hours} \]

(c) The table below shows the results of the survey conducted on another 120 visitors on the number of hours they spent at the Gardens by the Bay in June 2016.

<table>
<thead>
<tr>
<th>Number of hours spent ((x) h)</th>
<th>Number of visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 < x \leq 4)</td>
<td>33</td>
</tr>
<tr>
<td>(4 < x \leq 6)</td>
<td>46</td>
</tr>
<tr>
<td>(6 < x \leq 8)</td>
<td>30</td>
</tr>
<tr>
<td>(8 < x \leq 10)</td>
<td>11</td>
</tr>
</tbody>
</table>

Calculate an estimate of the

(i) mean time that the visitors spent in June,
\[5.32 \text{ hours (to 3 sf)} \]

(ii) standard deviation.
\[\text{standard deviation} = 1.86 \text{ hours (to 3 sf)} \]

(d) The programme management team at the Gardens by the Bay commented that the visitors generally spent longer hours in February 2016 than in June 2016. Justify if the comment is valid.

Median in June is \(4 < x \leq 6 \).
| | The comment is invalid as median is in February (5.9 hours) is within the median class in June \((4 < x \leq 6)\). |

A solid cone is cut into 2 parts, X and Y, by a plane parallel to the base. The length of \(AB \) = the length of \(BC \).

(a) Given that the volume of the solid cone is \(\frac{64}{3} \) \(m^3 \), find the volume, in terms of \(\pi \), of the frustum, Y.

\[
\frac{56}{3} \pi \ m^3
\]

(b) In Diagram II, a rocket can be modelled from a cylinder of height, \(h \), 94.2 m with a cone, X, on top and a frustum, Y, at the bottom. The cone, X, has a diameter, \(d_2 \), of 4 m and the frustum, Y, has a base diameter, \(d_1 \), of 8 m. The parts X and Y are taken from Diagram I above.

(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter.

1305 \(m^2 \) (to nearest square metre)
(ii) Calculate the volume, in cubic metres, of the rocket.

1250 m\(^3\) (to 3 sf)

(iii) The rocket is designed to launch to the moon.

<table>
<thead>
<tr>
<th>Useful information</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Distance of moon from earth: 384 400 km</td>
</tr>
<tr>
<td>- Speed of rocket: 800 km/minute</td>
</tr>
<tr>
<td>- 1 m(^3) = 264 gallon</td>
</tr>
<tr>
<td>- The rocket is filled with liquid fuel to a maximum of 95% of its volume.</td>
</tr>
<tr>
<td>- Rate of fuel consumption: 20 000 gallons/minute</td>
</tr>
<tr>
<td>- Capacity of each external fuel tank: 3.2 (10^6) gallons</td>
</tr>
</tbody>
</table>

How many external fuel tanks will the rocket require to sustain its journey to the moon?

Justify your answer with calculations.

Therefore, number of external tanks required is 3.
O-Level Centre / Index Number

Class

Name

MARIS STELLA HIGH SCHOOL
PRELIMINARY EXAMINATION TWO
SECONDARY FOUR

MATHEMATICS
Paper 1

4048/1
15 August 2016
2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give
the answer to three significant figures. Give your answers in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in
terms of \(\pi \).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.

For Examiner’s Use

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>Deduction</td>
<td>80</td>
</tr>
</tbody>
</table>

This document consists of 18 printed pages.
Mathematical Formulae

Compound Interest

Total amount = \(p \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r\theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
a^2 = b^2 + c^2 - 2bc \cos A
\]

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
1 The Basal Metabolic Rate (BMR) is the number of calories one would burn with NO activity. It is given by the following formula:

\[
\text{BMR for males} = 66 + 13.7 \times m + 5.0 \times h - 6.8 \times a,
\]

where \(m \) is mass in kg, \(h \) is height in cm and \(a \) is age in years.

Given that \(m = 65.5 \), \(h = 170 \) and \(a = 29 \),

(a) Calculate the BMR and write down the first five digits on your calculator display.

AnswerCalories [1]

(b) Write your answer to part (a) correct to 3 significant figures.

AnswerCalories [1]

2 (a) Write down the next two terms in the sequence

\[
21, \frac{18}{3}, \frac{16}{3}, 14, 11\frac{2}{3}, ...
\]

Answer [1]

(b) Write down an expression, in terms of \(n \), for the \(n \)th term of the sequence

\[
8, 3, -2, -7, -12, ...
\]

Answer [1]

3 (a) Given that \(243 \div 9^x = 3^8 \), find the value of \(x \).

Answer [1]

(b) A StarHub Smart TV Digital Video Storage Device has a capacity of 1 terabyte. If a drama television series episode takes up 2.94 gigabytes of storage space, how many episodes can be recorded on the storage device? Give your answer in standard form.

Answer [1]
4 In the diagram, $AB = AC$, $\angle ABC = 51^\circ$, AB is parallel to DC and AC is parallel to ED.

(a) Find x.

Answer $x = \ldots \ldots \ldots \ldots \ldots \ldots \ldots\ldots\ldots\ldots\ldots\ldots$ [1]

(b) Find y.

Answer $y = \ldots \ldots \ldots \ldots \ldots \ldots \ldots\ldots\ldots\ldots\ldots\ldots$ [1]

5 A True Fitness Branch Manager reported that there has been a marked improvement in the monthly sales of gym membership from May to July by presenting the following graph.

Explain why the graph is misleading and how the graph can be rectified.

Answer
..
..
..
..
.. [2]
6 Simplify \((p^2 - 4)^2 - (p^2 + 4)^2\).

Answer .. [2]

7 (a) Identify the set shaded in the Venn diagram below.

Answer .. [1]

(b) Shade \((C \cap D)'\) in the Venn diagram below.

Answer .. [1]

(c) If \(P \subset Q\) and \(Q \cap R = \{\}\), illustrate this information on the Venn diagram below and shade \(P \cup Q\).

Answer .. [1]
8 By Coulomb’s law, the electric force, F N, between two balloons is inversely proportional to the square of the distance, d m, between them.

(a) If $F = 0.626$ N, when $d = 2$, find an equation for F in terms of d.

Answer $F =$ ……………………………. [2]

(b) Calculate the distance between the balloons when the electric force is 1N.

Answer ……………………………….m $[1]$

9 The Soup Spoon Restaurant sells soup in geometrically similar bowls of different sizes. The regular sized bowl has a height of 8cm and capacity 250ml. The large sized bowl has a height of 12cm and a base diameter of 21cm.

(a) Calculate the base diameter of the regular sized bowl.

Answer ……………………………….cm $[1]$

(b) Calculate the capacity of the large sized bowl.

Answer ……………………………….ml $[2]$

10 (a) Factorise completely $2.25x^2 - 0.64y^2$.

Answer ………………………………. $[1]$

(b) Factorise completely $9x^2 - 4xy - 18xyz + 8y^2z$.

Answer ………………………………. $[2]$
7
11 The angles, in degrees of a quadrilateral ABCD are represented by these
expressions: Angle A = 3y + 40, angle B = 5y −10, angle C = 6y − 20, and angle
D = 2y + 30 .
(a) Calculate the value of y .

Answer y = ………………….…….……. [2]

ru

(b) What is the name of the quadrilateral?

gu

Answer …………………………….……. [1]

12 Calculate the sum of the angles a, b, c, d, e, f , g, h, i, j, k, l and m in this
diagram.
a

ex
am

c

b

m

d

l

j

e

g

f

k

i

h

Answer …………………………….……. [3]

Carousell-examguru

162


13 W, X, Y, Z are points on the circumference of a circle with centre O. Given that $\angle XYZ = 135^\circ$ and $\angle OXW = 27^\circ$,

(a) Find $Z\hat{W}X$. Give a reason for your answer.

Answer $Z\hat{W}X =$……………….. because …………………………………………..
……………………………………………..…………………………………… [1]

(b) Find $Z\hat{W}O$.

Answer ………………………….……. [2]

14 Two fair dice are tossed. Calculate the probability that

(a) both numbers obtained are even,

Answer ………………………….……. [1]

(b) the product of the two numbers obtained is a prime number,

Answer ………………………….……. [1]

(c) the sum of the two numbers obtained is a prime number.

Answer ………………………….……. [1]
15 In the diagram, \(AB = CD = 12 \text{ cm} \), \(BC = CE = z \text{ cm} \) and \(AB \) is parallel to \(EC \).

Name the triangle that is congruent to triangle \(ABC \). Justify your answer.

\[\text{Answer} \quad \text{because} \quad \text{………………………………………………..} \]

\[\text{…………………………………………………………………………………………..} \]

\[\text{…………………………………………………………………………………………..} \]

\[\text{…………………………………………………………………………………………..} \] [3]

\[\text{…………………………………………………………………………………………..} \]

\[\text{…………………………………………………………………………………………..} \]

16 (a) Sketch the graph of \(y = -(2x+1)(x-3) \).

\[\text{Answer} \]

\[\begin{array}{c}
\text{y}
\end{array} \]

\[\begin{array}{c}
\text{x}
\end{array} \]

0

\[\text{[2]} \]

(b) Write down the equation of the line of symmetry of the graph \(y = -(2x+1)(x-3) \).

\[\text{Answer} \quad \text{………………………………………………..} \] [1]
17 In order to maintain a healthy lifestyle, 5 students in a certain neighbourhood cycle to the same school.

(a) Below are four graphs and accounts by 4 students. Match each of the graphs to the student’s name that best fit each of the accounts.

Distance (km) Distance (km) Distance (km) Distance (km)
0738 0738 0738 0738
Graph I Graph II Graph III Graph IV

Aloysius: I was on my way to school when a cat suddenly cut into my path! Luckily, I managed to brake on time. After I got over the shock, I realized I was going to be late. So, I sped up!

Benedict: My teacher warned me not to be late again, so this time round, I cycled faster and I was among the first few to reach school.

Charles: I just left home and discovered that I did not bring my wallet! So I went home again but I still managed to reach school on time.

Dominic: I cycled to school as usual and reached school before morning assembly.

Answer Graph I Graph II
Graph III Graph IV [2]

(b) Write down what Edward might say based on the sketch of his travel graph below.

Distance (km)
0738

Answer ..
..
..
.. [1]
The cumulative frequency curve and box plot show the distributions of marks scored by 320 students in a Mathematics examination and 300 students in an Additional Mathematics examination respectively.
(a) Find the interquartile range for the Mathematics examination.

\[\text{Answer} \quad \text{..........................} \quad [1] \]

(b) Here are two statements comparing the marks for the two examinations.

For each one, write whether you agree or disagree.
Give a reason for each answer, stating clearly which statistic you use to make your decision.

(i) On average, students performed better for the Additional Mathematics examination than the Mathematics examination.

\[\text{Answer} \quad \text{.......................... because} \quad \text{..........................} \quad [1] \]

(ii) A smaller proportion of the students scored less than 35 marks at the Mathematics examination than at the Additional Mathematics examination.

\[\text{Answer} \quad \text{.......................... because} \quad \text{..........................} \quad [1] \]

19 (a) Express \(-x^2 + 7x - 5\) in the form \(-(x - a)^2 + b\).

\[\text{Answer} \quad \text{..........................} \quad [2] \]

(b) Hence solve the equation \(-x^2 + 7x - 5 = 0\), giving your answers correct to two decimal places.

\[\text{Answer} \quad \text{.................. and} \quad \text{..........} \quad [2] \]
20 In the diagram, \(\angle QPS = \angle QRP = 90^\circ \), \(PQ = 24 \) cm, \(QS = 25 \) cm, \(PST \) and \(QRS \) are straight lines.

Calculate

(a) \(PS \)

\[
\text{Answer} \quad \text{cm} \quad [1]
\]

(b) \(PR \)

\[
\text{Answer} \quad \text{cm} \quad [2]
\]

(c) \(\cos \angle QST \)

\[
\text{Answer} \quad \text{[1]}
\]
Challenger offers discounts to customers who pay $30 for a 2-year ValueClub membership.

<table>
<thead>
<tr>
<th>Item</th>
<th>Members’ discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>11” Apple MacBook Air</td>
<td>5% off</td>
</tr>
<tr>
<td>Seagate Backup Plus Slim Portable Drive 2TB</td>
<td>15% off</td>
</tr>
<tr>
<td>Valore Bluetooth Speaker</td>
<td>25% off</td>
</tr>
</tbody>
</table>

Dory wants to buy a MacBook Air which costs $1188. The salesperson suggests that she joins as a member.

(a) How much less does she pay in total if she joins as a member and buys the MacBook Air?

Answer $ \ldots [2]$

After she joined as a member and bought the MacBook, the salesperson offers Dory a further 10% discount on the members’ price for a portable drive and Bluetooth speaker in view of the Great Singapore Sale.

(b) Write down and simplify a formula for the total amount, T, that she needs to pay for a portable drive and Bluetooth speaker. Use d and s to represent the original price of a portable drive and a Bluetooth speaker respectively.

Answer $T = \ldots [2]$
22 A pill box is in the shape of a regular heptagon with sides of length 3cm and has a hole in the centre in the shape of a regular heptagon with sides of length 1cm.

The height of the pill box is 2cm. Calculate the volume of the pill box.

Answer cm3 [4]
23 (a) Solve the equation \[
\frac{4(7a - 3)}{5} + \frac{5(2a + 7)}{3} = \frac{5(5a - 2)}{2}.
\]

Answer \[a = \ldots \ldots \ldots \ldots \ldots \ldots [3]\]

(b) Given that 2 is a solution of the quadratic equation \[6(x - 5)^2 + k = 38\], where \(k\) is a constant, find the

(i) value of \(k\),

Answer \[k = \ldots \ldots \ldots \ldots \ldots \ldots [1]\]

(ii) other solution.

Answer \[x = \ldots \ldots \ldots \ldots \ldots \ldots [1]\]
24 In the diagram, D is the point $(8, 3)$ and the line passing through the points D and F intersects the x-axis at the point E. Point G is on the x-axis such that the line DG is perpendicular to the x-axis. Given that the area of the triangle DEG is 6 units2, find

(a) the coordinates of E,

Answer $E(..................) [2]$

(b) the equation of line FD,

Answer $....................... [2]$

(c) the coordinates of F.

Answer $F(..................) [1]$
In 2008, the International Court of Justice (ICJ) awarded the sovereignty of the island, Pedra Branca (P) to Singapore. There are two maritime features near the island: Middle Rocks (M) and South Ledge (S). Middle Rocks is due west of Pedra Branca. The bearing of S from P is 200° with a distance of 1.0 Nautical Miles (nm) between them.

(a) (i) Construct a scaled drawing of the Triangle MPS using the scale 1 cm to represent 0.1 nm. Line MP has been drawn for you. [2]
(ii) Construct the perpendicular bisector of line MP. [1]
(iii) Construct the angle bisector of $\angle SMP$. [1]

(b) A ship in distress sends a SOS signal for help at a location within the Triangle MPS. The ship is known to be located in the triangle at a point that is nearer to MS than MP and equidistant from M and P. Mark a possible point with a cross and label the point as W. [1]
O-Level Centre / Index Number /
Class
Name Solution

新加坡海星中学
MARIS STELLA HIGH SCHOOL
PRELIMINARY EXAMINATION TWO
SECONDARY FOUR

MATHMATICS
Paper 1
4048/1
15 August 2016
2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answers in degrees to one decimal place. For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.

For Examiner’s Use

| Subtotal |
| Presentation |
| Accuracy |
| Units |
| Deduction |

80

This document consists of 18 printed pages.
Mathematical Formulae

Compound Interest

Total amount = \(p \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi l \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3}\pi r^2 h \)

Volume of a sphere = \(\frac{4}{3}\pi r^3 \)

Area of triangle \(ABC = \frac{1}{2}ab \sin C \)

Arc length = \(r\theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2}r^2\theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[a^2 = b^2 + c^2 - 2bc \cos A\]

Statistics

\[
\text{Mean} = \frac{\sum fx}{\sum f}
\]

\[
\text{Standard deviation} = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}
\]
1 The Basal Metabolic Rate (BMR) is the number of calories one would burn with NO activity. It is given by the following formula:
BMR for males = $66 + 13.7 \times m + 5.0 \times h - 6.8 \times a$, where m is mass in kg, h is height in cm and a is age in years.
Given that $m = 65.5$, $h = 170$ and $a = 29$,

(a) Calculate the BMR and write down the first five digits on your calculator display.

Answer $616.1 \ldots \ldots \text{Calories}[1]$

(b) Write your answer to part (a) correct to 3 significant figures.

Answer $620 \ldots \ldots \text{Calories}[1]$

2 (a) Write down the next two terms in the sequence

\[21, \frac{18}{3}, \frac{16}{3}, 14, \frac{12}{3} \ldots\]

Answer $9, \frac{7}{3} \ldots \ldots [1]$

(b) Write down an expression, in terms of n, for the nth term of the sequence

\[8, 3, -2, -7, -12, \ldots\]

Answer $13 - 5n \ldots \ldots [1]$

3 (a) Given that $243 = 9^3 = 3^8$; find the value of x.

\[
\begin{align*}
3^2 &= 3^{-2x} = 3^8 \\
3^{5+2x} &= 3^9 \\
5+2x &= 9 \\
x &= \frac{9}{2} = 1.5
\end{align*}
\]

Answer $1.5 \ldots \ldots [1]$

(b) A StarHub Smart TV Digital Video Storage Device has a capacity of 1 terabyte. If a drama television series episode takes up 2.94 gigabytes of storage space, how many episodes can be recorded on the storage device? Give your answer in standard form.

Number of episodes $= 1 \times 10^2 \div 2.94 \times 10^9$

$= 340.14$ (5 sig figs)

$= 3.40 \times 10^2$ (3 sig figs)

Answer $3.40 \times 10^2 \ldots \ldots [1]$
4 In the diagram, $AB = AC$, $\angle ABC = 51^\circ$, AB is parallel to DC and AC is parallel to ED.

(a) Find x.

$$x = 180^\circ - 2 \times 51^\circ \quad \text{(sum of \angle s in \Delta)}$$

$$= 78^\circ$$

$$\therefore \ x = 78$$

Answer $x = 78$ \hspace{1cm} [1]

(b) Find y.

$$\angle DCB = y = 51^\circ \quad \text{(alt \angle s, AB \parallel CD)}$$

$$y = 180^\circ - 78^\circ \quad \text{(int \angle s, AC \parallel ED)}$$

$$\therefore \ y = 102$$

Answer $y = 102$ \hspace{1cm} [1]

5 A True Fitness Branch Manager reported that there has been a marked improvement in the monthly sales of gym membership from May to July by presenting the following graph.

![Bar graph](image)

Explain why the graph is misleading and how the graph can be rectified.

Answer The graph is misleading as the vertical axis does not start at zero. From this graph, it may show marked improvement in the sales, but if the graph were to start from zero, the improvement will not be significant. The graph can be rectified if the vertical axis starts from zero. \hspace{1cm} [2]
6 Simplify \((p^2 - 4)^2 - (p^2 + 4)^2\).
\[
= (p^2 - 4 - p^2 - 4)(p^2 - 4 + p^2 + 4)
= (-8)(2p^2)
= -16p^2
\]

Answer \(-16p^2\) \[2\]

7 (a) Identify the set shaded in the Venn diagram below.

\[\text{Answer } (A \cap B) \cap (A \cup B)\] \[1\]

(b) Shade \((C \cap D)'\) in the Venn diagram below.

\[\text{Answer } C\] \[1\]

(c) If \(P \subseteq Q\) and \(Q \cap R = \{\}\), illustrate this information on the Venn diagram below and shade \(P \cup Q\).

\[\text{Answer } P\] \[1\]
8 By Coulomb’s law, the electric force, \(F \) N, between two balloons is inversely proportional to the square of the distance, \(d \) m, between them.

(a) If \(F = 0.626 \), when \(d = 2 \), find an equation for \(F \) in terms of \(d \).

\[
F = \frac{k}{d^2}, \text{ where } k \text{ is a constant}
\]

\[
0.626 = \frac{k}{2^2}
\]

\[
k = 2.504
\]

\[
F = \frac{2.504}{d^2}
\]

Answer \(F = \ldots \) \(\frac{2.504}{d^2} \) \[2\]

(b) Calculate the distance between the balloons when the electric force is 1 N.

\[
\text{when } F = 1, \quad 1 = \frac{2.504}{d^2}
\]

\[
d^2 = 2.504
\]

\[
d = 1.58 \text{ m } (\text{3 sig fig})
\]

Answer \(d = 1.58 \) \[1\]

9 A Soup Spoon regular size bowl has a height of 8 cm and capacity 250 ml. A geometrically similar Soup Spoon large size bowl has a height of 12 cm and a base diameter of 21 cm.

(a) Calculate the base diameter of the regular size bowl.

Let \(r \) be regular and \(R \) be large

\[
\frac{d_r}{d_l} = \frac{h_r}{h_l}
\]

\[
\frac{d_r}{21} = \frac{8}{12}
\]

\[
d_r = 14 \text{ cm}
\]

Answer \(d_r = 14 \) \[1\]

(b) Calculate the capacity of the large size bowl.

\[
\frac{V_l}{V_r} = \left(\frac{h_l}{h_r} \right)^3
\]

\[
\frac{250}{V_r} = \left(\frac{8}{2} \right)^3
\]

\[
V_r = \frac{250 \times 8}{2^3}
\]

\[
= 843.75 \text{ ml}
\]

Answer \(V_r = 843.75 \) \[2\]

10 (a) Factorise completely \(2.25x^2 - 0.64y^2 \).

\[
= \frac{9}{4}x^2 - \frac{16}{25}y^2
\]

\[
= \left(\frac{3}{2}x - \frac{4}{5}y \right) \left(\frac{3}{2}x + \frac{4}{5}y \right)
\]

Answer \(\left(\frac{3}{2}x - \frac{4}{5}y \right) \left(\frac{3}{2}x + \frac{4}{5}y \right) \) \[1\]

(b) Factorise completely \(9x^2 - 4xy - 18xyz + 8y^2z \).

\[
= 9x^2 - 4xy - 18xyz + 8y^2z
\]

\[
= (9x - 4y - 2y)(9x - 4y)
\]

\[
= (9x - 2y)(9x - 4y)
\]

Answer \((9x - 2y)(9x - 4y) \) \[2\]
The angles, in degrees of a quadrilateral $ABCD$ are represented by these expressions: Angle $A = 3y + 40$, angle $B = 5y - 10$, angle $C = 6y - 20$, and angle $D = 2y + 30$.

(a) Calculate the value of y.

\[
(3y + 40)^\circ + (5y - 10)^\circ + (6y - 20)^\circ + (2y + 30)^\circ = 360^\circ \text{ (sum of } \angle \text{ in quad.)}
\]

\[
16y + 30^\circ = 360^\circ
\]

\[
y = 20^\circ
\]

\[
\therefore y = 20
\]

Answer $y = 20$. ... [2]

(b) What is the name of the quadrilateral?

\[
\angle A = 100^\circ
\]

\[
\angle B = 90^\circ
\]

\[
\angle C = 100^\circ
\]

\[
\angle D = 70^\circ
\]

Answer $Kite$. ... [1]

12 Calculate the sum of the angles $a, b, c, d, e, f, g, h, i, j, k, l$ and m in this diagram.

\[
\text{Sum of } \angle s \text{ at } 12 \text{ points } = 360^\circ \times 12
\]

\[
= 4320^\circ
\]

Sum of interior \angle of Decagon $= (10 - 2) \times 180^\circ$

\[
= 1440^\circ
\]

Sum of interior \angle of triangle $= 180^\circ$

\[
\hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} = 4320^\circ - 1440^\circ - 180^\circ
\]

\[
> 2700^\circ
\]

\[
\text{Answer } 2700^\circ \text{.................................} [3]
\]
13 \(W, X, Y, Z \) are points on the circumference of a circle with centre \(O \). Given that \(\angle XYZ = 135^\circ \) and \(\angle OXW = 27^\circ \),

(a) Find \(\angle ZWX \). Give a reason for your answer.

\[\text{Answer} \quad \angle ZWX = 180^\circ - 135^\circ = 45^\circ \quad \text{because \ angles \ in \ opposite \ segments} \]

\[\text{are \ supplementary}. \quad [1] \]

(b) Find \(\angle ZWO \).

\[\angle OWX = 27^\circ \quad \text{(base \ \angle \ \text{of} \ \triangle)} \]

\[\angle ZWO = 180^\circ - 27^\circ = 153^\circ \]

\[\text{Answer} \quad 153^\circ \quad [2] \]

14 Two fair dice are tossed. Calculate the probability that

(a) both numbers obtained are even,

\[\text{Req'd prob} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \]

\[\text{Answer} \quad \frac{1}{4} \quad [1] \]

(b) the product of the two numbers obtained is a prime number,

\[\text{Req'd prob} = \frac{1}{6} \]

\[\text{Answer} \quad \frac{1}{6} \quad [1] \]

(c) the sum of the two numbers obtained is a prime number.

\[\text{Req'd prob} = \frac{5}{36} = \frac{5}{12} \]

\[\text{Answer} \quad \frac{5}{12} \quad [1] \]
15 In the diagram, $AB = CD = 12\text{ cm}$, $BC = CE = z\text{ cm}$ and AB is parallel to EC.

Name the triangle that is congruent to triangle ABC. Justify your answer.

Answer: Triangle DCE because $AB = DC = 12\text{ cm}$ (S)

$\angle ABC = \angle DCE$ (corr \angles, $CE \parallel BG$) (A)

$BC = CE = z\text{ cm}$ (S)

$\triangle ABC \cong \triangle DCE$ (SAS) [3]

16 (a) Sketch the graph of $y = -(2x+1)(x-3)$.

Answer

When $x = 0$,

$y = -(1)(-3) = 3$

y-intercept: $(0,3)$

When $y = 0$

$-(2x+1)(x-3) = 0$

$x = -\frac{1}{2}$ or 3

x-intercepts:

$(-\frac{1}{2}, 0)$ and $(3, 0)$

x-intercept cut $-\frac{1}{2}$ and 3

y-intercept cut 3

(b) Write down the equation of the line of symmetry of the graph

$y = -(2x+1)(x-3)$.

eqn of line symmetry: $x = \frac{3 - (-\frac{1}{2})}{2} = \frac{\frac{7}{2}}{2} = \frac{7}{4} = \frac{1}{4}$

Answer $x = \frac{1}{4}$ [1]
17 In order to maintain a healthy lifestyle, 5 students in a certain neighbourhood cycle to the same school.

(a) Below are four graphs and accounts by 4 students. Match each of the graphs to the student’s name that best fit each of the stories.

Distance (km) Distance (km) Distance (km) Distance (km)

Graph I Graph II Graph III Graph IV

Aloysius: I was on my way to school when a cat suddenly cut into my path! Luckily, I managed to brake on time. After I got over the shock, I realized I was going to be late. So, I sped up!

Benedict: My teacher warned me not to be late again, so this time round, I cycled faster and I was among the first few to reach school.

Charles: I just left home and discovered that I did not bring my wallet! So I went home again but I still managed to reach school on time.

Dominic: I cycled to school as usual and reached school before morning assembly.

Answer Graph I Dominic Graph II Charles
Graph III Benedict Graph IV Aloysius [2]

(b) Write down what Edward might say when given a sketch of his travel graph below.

Answer I was cycling to school when my tyre was punctured.
I walked to school thereafter pulling along my bicycle as quickly as I could so that I will not be late school. [1]
The cumulative frequency curve and box plot show the distributions of the marks of 320 students for a Mathematics examination and 300 students for an Additional Mathematics examination respectively.
(a) Find the interquartile range for the Mathematics examination.

\[
\text{Interquartile range} = 74 - 48 = 26 \text{ marks}
\]

Answer: 26 marks [1]

(b) Here are two statements comparing the marks for the two examinations.

For each one, write whether you agree or disagree.
Give a reason for each answer, stating clearly which statistic you use to make your decision.

(i) On average, students performed better for the Additional Mathematics examination than the Mathematics examination.

Answer: Disagree because the median for Additional Mathematics examination is lower than the median for the Mathematics examination. [1]

(ii) A smaller proportion of the students scored less than 35 marks at the Mathematics examination than at the Additional Mathematics examination.

Answer: Agree because the lower quartile for Mathematics examination is higher than the lower quartile for the Additional Mathematics examination [1]

19 (a) Express \(-x^2 + 7x - 5\) in the form \(-(x - a)^2 + b\).

\[
\begin{align*}
-x^2 + 7x - 5 &= -(x^2 - 7x + 2) - 5 + 2\left(\frac{3}{2}\right)^2 \\
&= -(x - \frac{3}{2})^2 + \frac{29}{4}
\end{align*}
\]

Answer: \(-(x - \frac{3}{2})^2 + \frac{29}{4}\) [2]

(b) Hence solve the equation \(-x^2 + 7x - 5 = 0\), giving your answers correct to two decimal places.

\[
\begin{align*}
-x^2 + 7x - 5 &= 0 \\
(x - \frac{3}{2})^2 + \frac{29}{4} &= 0 \\
(x - \frac{3}{2})^2 &= \frac{-29}{4} \\
\end{align*}
\]

\[
\begin{align*}
x - \frac{3}{2} &= \pm \sqrt{\frac{29}{4}} \\
x &= 0.81 \text{ and } 6.19 \text{ (2 dec. pl.)}
\end{align*}
\]

Answer: 0.81 and 6.19 [2]
20 In the diagram, $\angle QPS = \angle QRP = 90^\circ$, $PQ = 24\text{ cm}$, $QS = 25\text{ cm}$, PST and QRS are straight lines.

Calculate
(a) PS

By Pythagoras' Theorem,

$PS^2 = 25^2 - 24^2$

$PS = 7\text{ cm}$

Answer $..............................\text{cm}$ [1]

(b) PR

Area of $\triangle PQS = \frac{1}{2} \times PQ \times PS$

$\frac{1}{2} \times 25 \times PR = \frac{1}{2} \times 24 \times 7$

$PR = \frac{168}{25}$

$= 6.72\text{ cm}$

Answer $..............................\text{cm}$ [2]

(c) $\cos \angle QST$

$\cos \angle QST = -\cos \angle QSP$

$= -\frac{7}{25}$

Answer $..............................\text{[1]}$
Challenger offers discounts to customers who pay $30 for a 2-year ValueClub membership.

<table>
<thead>
<tr>
<th>Item</th>
<th>Members' discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>11" Apple MacBook Air</td>
<td>5% off</td>
</tr>
<tr>
<td>Seagate Backup Plus Slim</td>
<td>15% off</td>
</tr>
<tr>
<td>Portable Drive 2TB</td>
<td></td>
</tr>
<tr>
<td>Valore Bluetooth Speaker</td>
<td>25% off</td>
</tr>
</tbody>
</table>

Dory wants to buy a MacBook Air which costs $1188. The salesperson suggests that he joins as a member.

(a) How much less does she pay in total if he joins as a member and buys the MacBook Air?

\[
\text{Total Amount Payable} = 30 + \frac{1188 \times 95}{100} = 1158.60
\]

Amount less she paid as a member

\[
= 1188 - 1158.60 = 29.40
\]

Answer $29.40 [2]

After he joined as a member and bought the MacBook, the salesperson offers Dory a further 10% discount on the members' price for a portable drive and Bluetooth speaker in view of the Great Singapore Sale.

(b) Write down and simplify a formula for the total amount, \(T \), that she needs pay for a portable drive and Bluetooth speaker. Use \(d \) and \(s \) to represent the original price of a portable drive and a Bluetooth speaker respectively.

\[
T = 0.9 \left(0.85d + 0.75s \right) = 0.765d + 0.675s
\]

Answer \(T = 0.765d + 0.675s \) [2]
22 A pill box is in the shape of a regular heptagon with sides of length 3 cm and has a hole in the centre in the shape of a regular heptagon with sides of length 1 cm.

The height of the pill box is 2 cm. Calculate the volume of the pill box.

Size of an interior L of heptagon

\[L = \frac{(7-2) \times 180^\circ}{7} \]

\[L = \frac{900^\circ}{7} \]

\[L = \frac{900^\circ}{7} \approx 128.57^\circ \]

Let h be height of trapezium

\[\tan \theta = \frac{h}{\frac{450^\circ}{7}} \]

\[h = \tan \frac{450^\circ}{7} \text{ cm} \]

Area of trapezium

\[\frac{1}{2} (1 + 3) \tan \frac{450^\circ}{7} \]

\[= 2 \cdot \tan \frac{450^\circ}{7} \text{ cm}^2 \]

Area of cross-section

\[= 7 \times 2 \cdot \tan \frac{450^\circ}{7} \]

\[= 14 \cdot \tan \frac{450^\circ}{7} \text{ cm}^2 \]

Volume of pill box

\[= 2 \times 14 \cdot \tan \frac{450^\circ}{7} \]

\[= 58.1 \text{ cm}^3 \text{ (3 sig fig.)} \]

Answer: 58.1 cm3 [5]
23 (a) Solve the equation \(\frac{4(7a-3)}{5} + \frac{5(2a+7)}{3} = \frac{5(5a-2)}{2} \).

\[
\begin{align*}
24(7a-3) + 50(2a+7) &= 75(5a-2) \\
168a - 72 + 100a + 350 &= 375a - 150 \\
268a &= 428 \\
a &= 4
\end{align*}
\]

Answer \(a = 4 \) \hspace{1cm} [3]

(b) Given that 2 is a solution of the quadratic equation \(6(x-5)^2 + k = 38 \), where \(k \) is a constant, find the

(i) value of \(k \),

\[
\begin{align*}
\text{When } x &= 2, \\
6(2-5)^2 + k &= 38 \\
k &= 38 - 54 \\
 &= -16
\end{align*}
\]

Answer \(k = -16 \) \hspace{1cm} [1]

(ii) other solution.

\[
\begin{align*}
x &= 5 + (5-2) \\
 &= 5 + 3 \\
 &= 8
\end{align*}
\]

Answer \(x = 8 \) \hspace{1cm} [1]
24 In the diagram, D is the point (8, 3) and the line passing through the points D and F intersects the x-axis at the point E. Point G is on the x-axis such that the line DG is perpendicular to the x-axis. Given that the area of the triangle DEG is 6 units², find

(a) the coordinates of E,

\[\text{Area of } \triangle DEG = \frac{1}{2} \times EG \times DG \]
\[b = \frac{1}{2} \times 3 \times 3 \]
\[EG = 4 \text{ units} \]
\[\therefore E(8-4, 0) \]
\[= E(4, 0) \]

\[\text{Answer } E(4, 0) \] [2]

(b) the equation of line FD,

gradient of FD: \[\frac{3 - 0}{8 - 4} = \frac{3}{4} \]

eqn of line FD: \[y = \frac{3}{4}x + c \]
when \(x = 4, y = 0 \)
\[0 = \frac{3}{4}(4) + c \]
\[c = -3 \]
\[\therefore y = \frac{3}{4}x - 3 \]

\[\text{Answer } y = \frac{3}{4}x - 3 \] [2]

(c) the coordinates of F,

y-intercept = F(0, -3)

\[\text{Answer } F(0, -3) \] [1]
25 In 2008, the International Court of Justice (ICJ) awarded the sovereignty of the island, Pedra Branca (P) to Singapore. There are two maritime features near the island: Middle Rocks (M) and South Ledge (S). Middle Rocks is due west of Pedra Branca. The bearing of S from P is 200° with a distance of 1.0 Nautical Miles (nm) between them.

(a) (i) Construct a scaled drawing of the Triangle MPS using the scale 1 cm to represent 0.1 nm. Line MP has been drawn for you. [2]
(ii) Construct the perpendicular bisector of line MP. [1]
(iii) Construct the angle bisector of ∠SMP. [1]

(b) A ship in distress sends a SOS signal for help at a location within the Triangle MPS. The ship is known to be located in the triangle at a point that is nearer to MS than MP and equidistant from M and P. Mark a possible point with a cross and label the point as W. [1]
MARIS STELLA HIGH SCHOOL
PRELIMINARY EXAMINATION TWO
SECONDARY FOUR

MATHEMATICS
Paper 2

Additional Materials: Writing Paper (7 sheets)
Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.
Write your answers on the separate Answer Paper provided.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the
case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of 12 printed pages.
Mathematical Formulae

Compound Interest

Total amount = \(P \left(1 + \frac{r}{100} \right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3}\pi r^2h \)

Volume of a sphere = \(\frac{4}{3}\pi r^3 \)

Area of triangle \(\triangle ABC = \frac{1}{2}ab\sin C \)

Arc length = \(r\theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2}r^2\theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
a^2 = b^2 + c^2 - 2bc\cos A
\]

Statistics

Mean = \(\frac{\Sigma fx}{\Sigma f} \)

Standard deviation = \(\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma fx}{\Sigma f} \right)^2} \)
1. (a) Simplify \(\frac{3a - 6}{2a^2 - 7a + 6} \). [2]

(b) Solve the inequality \(\frac{3x - 1}{5} \geq \frac{6x + 1}{7} \). [2]

(c) It is given that \(q = \sqrt{\frac{4p^2 - 5q}{p^2 + 2}} \). Express \(p \) in terms of \(q \). [3]

(d) (i) Express 4536 as the product of its prime factors. [1]

(ii) Given that \(\frac{4536}{k^2} = p \), where \(k \) and \(p \) are integers and \(k \) is as large as possible, find the values of \(k \) and \(p \). [1]

(iii) The lowest common multiple of two numbers is 4536. The highest common factor of these two numbers is 189. Both numbers are greater than 189.

Find the two numbers. [2]
(a) \(P = \begin{pmatrix} 2 & -8 \\ 0 & 4 \end{pmatrix} \) and \(Q = \begin{pmatrix} \frac{1}{2} & x \\ 0 & \frac{1}{4} \end{pmatrix} \)

Find the value of \(x \) given that \(PQ \) is an identity matrix. [2]

(b) The price of a ticket in each category at the River Safari is given below:

- Child: $20
- Adult: $30
- Senior Citizen: $14

(i) Represent the above information as a \(3 \times 1 \) column matrix \(A \). [1]

The number of tickets sold on one particular weekend is given as follows:

<table>
<thead>
<tr>
<th></th>
<th>Child</th>
<th>Adult</th>
<th>Senior Citizen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday</td>
<td>500</td>
<td>800</td>
<td>480</td>
</tr>
<tr>
<td>Sunday</td>
<td>700</td>
<td>1000</td>
<td>580</td>
</tr>
</tbody>
</table>

This information can be represented by the matrix

\[B = \begin{pmatrix} 500 & 800 & 480 \\ 700 & 1000 & 580 \end{pmatrix} \]

(ii) Given that \(C = BA \), find \(C \) and describe what is represented by the elements of \(C \). [2]

(iii) On that particular weekend, the River Safari decided to donate 40% of Saturday’s ticket sales and 50% of Sunday’s ticket sales to charity. Write a matrix \(D \) such that the product of \(DC \) will give the total amount donated. Hence find the total amount donated. [2]
3. A, B, C and D are four points on level ground. A is due west of D and the bearing of C from A is 050°. $AD = 25\text{ m}, DC = 45\text{ m}, DB = 70\text{ m}$ and $BC = 90\text{ m}.$

(a) Calculate

(i) \(\angle DCA\), \[2\]
(ii) \(\angle CDB\), \[2\]
(iii) the bearing of C from D, \[2\]
(iv) the area of $\triangle BDC$. \[1\]

(b) A tower of height h metres stands at D and the angle of elevation of the top of the tower from B is 37°. Calculate

(i) the value of h, \[2\]
(ii) the shortest distance of D from BC. \[2\]

(c) A man walks along a straight path from B to C until he reaches a point E where the angle of elevation of the top of the tower from E is at its greatest. Calculate the distance of BE. \[2\]
Two taps A and B run water at different speed. Tap A runs water at x litres per minute. Tap B runs water at a rate of 5 litres per minute faster than tap A. A rectangular tank with a capacity of 9000 litres is to be filled with water. It takes 5 hours longer to fill the tank with water using tap A as compared to using tap B.

(a) Write down an expression, in terms of x, the time taken to fill the tank by using

(i) Tap A. [1]

(ii) Tap B. [1]

(b) Form an equation in x and show that it reduces to $x^2 + 5x - 150 = 0$. [3]

(c) Solve the equation $x^2 + 5x - 150 = 0$. [2]

(d) Hence find the time taken, in hours, to fill the rectangular tank if both taps A and B are turned on at the same time. [2]

5 Map A is drawn to a scale of 1 : 250 000.

(a) Find the length, in centimetres, represented by a 12.4 km road on Map A. [1]

(b) Calculate the area of a town on Map A if its actual area is 60 km2. [2]

(c) The very same town occupies an area of $6\frac{2}{3}$ cm2 on Map B, find the scale of Map B, giving your answer in the format of $1 : n$. [2]
6 (a) $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and $\overrightarrow{BC} = \begin{pmatrix} -5 \\ -7 \end{pmatrix}$.

(i) Find the column vector \overrightarrow{AC}. [1]

(ii) Find the value of $|\overrightarrow{BC} - 2\overrightarrow{AB}|$. [2]

(b) \overrightarrow{OPC} and \overrightarrow{OQA} are straight lines and PA intersects QC at B.

Given that $\overrightarrow{OA} = 3\overrightarrow{OQ}$, $\overrightarrow{OP} = \overrightarrow{PC}$, $PB : BA = 1 : 4$, $\overrightarrow{OP} = p$ and $\overrightarrow{OQ} = q$, express the following vectors as simply as possible in terms of p and/or q.

(i) \overrightarrow{AP}. [1]

(ii) \overrightarrow{PB}. [1]

(iii) \overrightarrow{OB}. [1]

(iv) \overrightarrow{QB}. [1]

(c) Find the value of $\frac{\text{Area of } \triangle OBC}{\text{Area of } \triangle QBA}$. [2]
7 Answer the whole of this question on a sheet of graph paper.

The following table gives the corresponding values of \(x\) and \(y\) which are connected by the equation \(y = \frac{2x^3}{5} - 4x + 2\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(-7.6)</td>
<td>(3.2)</td>
<td>(6.8)</td>
<td>(5.6)</td>
<td>(2)</td>
<td>(-1.6)</td>
<td>(-2.8)</td>
<td>(a)</td>
<td>(11.6)</td>
</tr>
</tbody>
</table>

(a) Find the value of \(a\), giving your answer correct to 1 decimal place. [1]

(b) Using a scale of 2 cm to represent 1 unit on the \(x\)-axis and 1 cm to represent 1 unit on the \(y\)-axis, draw the graph of \(y\) against \(x\) for values of \(x\) in the range \(-4 \leq x \leq 4\). [3]

(c) Use your graph to find the solutions of \(\frac{2x^3}{5} - 4x + 2 = 0\). [2]

(d) By drawing a tangent, find the gradient of the curve when \(x = -3\). [2]

(e) By drawing a suitable straight line on your graph, solve \(2x^3 - 25x + 20 = 0\). [3]
In the figure above, the sector CAB has centre C and radius 8 cm. CD bisects $\angle ACB$ and O is the midpoint of CD. An arc with centre O, is drawn to meet CA and CB at E and F respectively. Given that $\angle EOF = \frac{5\pi}{12}$,

(i) find in terms of π,

(a) the angle ACB, [1]

(b) the length of arc ADB, [1]

(c) the area of the sector CAB. [1]

(ii) find the area of the shaded region $ADBF$, correct to 2 significant figures. [3]
The line CE is a diameter of the circle $ABCDE$, centre O. The tangent at A meets CE produced at Z.

Angle $CBA = 116^\circ$ and angle $DCZ = 39^\circ$.

Find, giving reasons for each answer,

(i) $\angle CDA$,
(ii) $\angle COA$,
(iii) $\angle DAE$,
(iv) $\angle EAZ$,
(v) $\angle CAZ$.

[1]
[1]
[1]
[2]
[2]
A group of students was asked to complete a class test. The time taken to complete the test is shown in the following table:

<table>
<thead>
<tr>
<th>Time in minutes (x)</th>
<th>$30 < x \leq 35$</th>
<th>$35 < x \leq 40$</th>
<th>$40 < x \leq 45$</th>
<th>$45 < x \leq 50$</th>
<th>$50 < x \leq 55$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of students</td>
<td>12</td>
<td>40</td>
<td>81</td>
<td>42</td>
<td>25</td>
</tr>
</tbody>
</table>

(i) State the median class. [1]

(ii) Calculate

(a) the estimated mean time taken for a student to complete the test, [1]

(b) the estimated standard deviation of the time taken to complete the test. [2]

(iii) If one more question is added to the test, each student took 5 more minutes to complete the test. Comment on how this will affect the mean and standard deviation of the data found in part (ii). [2]

(b) 15 red balls, 5 blue balls and 2 white balls were placed in a bag. Two balls were drawn at random.

(i) Draw a tree diagram to show the possible outcomes and their probabilities. [2]

(ii) Expressing each of your answers as a fraction in its lowest term, calculate the probability that when two balls are drawn,

(a) both of them will be red, [1]

(b) only one of the ball drawn is blue, [2]

(c) both are of different colours. [2]
10 (a) Mr Ng bought a new car that cost $100 000. Each year the value of the car decreases by 10% of its value at the start of the year. At the end of 5 years, Mr Ng decides to sell the car.

Calculate the overall percentage reduction in the value of the car compared with the original purchase price.

(b) Mr Wong wishes to purchase a new 4-Room Flat at the upcoming Bidadari estate near the school. The flat can be bought on a hire purchase scheme with a down payment of 10% of the purchase price and the remaining amount to be paid by monthly instalments throughout the loan period.

Useful information:

- Simple Interest rate for housing loan: 1.8% per annum
- Maximum loan period allowed: 25 years

The selling price of a new 4-Room Flat starts from $440,000 for a 2nd floor unit and increases at a constant rate to $520,000 for a highest 18th floor unit.

With his savings, Mr Wong is able to pay the 10% down payment for the flat. With his current income, Mr Wong can only afford to spend at most $2100 per month to service future instalments.

Using the information provided in the question, determine what is the highest floor unit that Mr Wong can afford to purchase.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all the questions. Write your answers on the separate Answer Paper provided. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.
Solution to Prelim 2 EM Paper 2

1. (a)
\[
\frac{3a - 6}{2a^2 - 7a + 6} = \frac{3(a - 2)}{(2a - 3)(a - 2)} \quad [M1]
\]
\[
= \frac{3}{2a - 3} \quad [A1]
\]

(b)
\[
\frac{3x - 1}{5} \geq \frac{6x + 1}{7}
\]
\[
21x - 7 \geq 30x + 5 \quad [M1]
\]
\[
-12 \geq 9x
\]
\[
x \leq -\frac{1}{3} \quad [A1]
\]

(c)
\[
q = \sqrt{\frac{4p^2 - 5q}{p^2 + 2}}
\]
\[
q^2 = \frac{4p^2 - 5q}{p^2 + 2} \quad [M1]
\]
\[
q^2(p^2 + 2) = 4p^2 - 5q
\]
\[
p^2(q^2 - 4) = -2q^2 - 5q
\]
\[
p^2 = \frac{-2q^2 - 5q}{q^2 - 4} \quad \text{or} \quad \frac{2q^2 + 5q}{4 - q^2} \quad [M1]
\]
\[
p = \pm \sqrt{\frac{-2q^2 - 5q}{q^2 - 4}} \quad \text{or} \quad \pm \sqrt{\frac{2q^2 + 5q}{4 - q^2}} \quad [A1, \text{ minus 0.5 if no } \pm]
\]

(d) (i)
\[
4536 = 2^3 \times 3^4 \times 7 \quad [B1]
\]

(ii)
\[
k = 18, p = 14 \quad [B1]
\]

(iii)
\[
189 = 3^3 \times 7 \quad [M1]
\]

The 2 numbers are 567 and 1512 \quad [A1]
2 (a)

\[
\begin{pmatrix} 2 & -8 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{[M1]}
\]

\[
\begin{pmatrix} 1 & 2x-2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[2x - 2 = 0\]

\[x = 1 \quad \text{[A1]}\]

(b)(i)

\[A = \begin{pmatrix} 20 \\ 30 \\ 14 \end{pmatrix} \quad \text{[B1]}\]

(ii)

\[C = \begin{pmatrix} 500 & 800 & 480 \\ 700 & 1000 & 580 \end{pmatrix} \begin{pmatrix} 20 \\ 30 \\ 14 \end{pmatrix}
\]

\[= \begin{pmatrix} 40720 \\ 52120 \end{pmatrix} \quad \text{[B1]}\]

The elements in C represents the total ticket sales on Saturday and Sunday respectively. [B1]

(iii)

\[D = \begin{pmatrix} 0.4 & 0.5 \end{pmatrix} \quad \text{[B1]}\]

\[DC = \begin{pmatrix} 0.4 & 0.5 \end{pmatrix} \begin{pmatrix} 40720 \\ 52120 \end{pmatrix}
\]

\[= \begin{pmatrix} 42348 \end{pmatrix}\]

The amount donated is $42348. [A1, P if no statement]
3(a)

(i) \(\angle CAD = 40^\circ \)

\[
\frac{45}{\sin 40^\circ} = \frac{25}{\sin \angle DCA} \quad [M1]
\]

\[
\sin \angle DCA = 0.35710
\]

\[
\angle DCA = 20.922^\circ
\]

\[
= 20.9^\circ \quad (1 \text{ d.p}) \quad [A1]
\]

(ii) \(90^2 = 70^2 + 45^2 - 2(70)(45)\cos \angle CDB \quad [M1] \)

\[
\cos \angle CDB = \frac{-1175}{6300}
\]

\[
\angle CDB = 100.749^\circ
\]

\[
= 100.7^\circ \quad (1 \text{ d.p}) \quad [A1]
\]

(iii) Bearing of \(C \) from \(D = 180^\circ - 130^\circ - \angle DCA \) \([M1]\)

\[
= 29.078^\circ
\]

\[
= 029.1^\circ \quad [A1, \text{no mark if no } 0]
\]

(iv) Area of \(\triangle BDC = \frac{1}{2} (70)(45)\sin 100.749^\circ \)

\[
= 1547.36
\]

\[
= 1550 \text{ m}^2 \quad [3 \text{ s.f.}] \quad [B1, \text{R if not to 3 s.f.}]
\]

(b)

(i) \(\tan 37^\circ = \frac{h}{70} \quad [M1] \)

\[
h = 70 \tan 37^\circ
\]

\[
= 52.749
\]

\[
= 52.7 \quad (3 \text{ s.f}) \quad [A1]
\]

(ii) Let the shortest distance be \(x \) m.

\[
\frac{1}{2}(90)(x) = 1547.36 \quad [M1]
\]

\[
x = 34.386
\]

\[
= 34.4 \quad (3 \text{ s.f.})
\]

The shortest distance is 34.4 m. \([A1]\)
(c) Area of $\triangle BDC = \frac{1}{2}(70)(90)\sin \angle DBC$

$$= 1547.36$$

$\sin \angle DBC = 0.49123$

$\angle DBC = 29.421°$ [M1]

$$\tan \angle DBC = \frac{x}{BE}$$

$$BE = \frac{34.386}{\tan 29.421°}$$

$$= 60.973$$

$$= 61.0 \text{ m (3.s.f)} \quad [A1, R \text{ is never give to 3 s.f }]$$
(a)

(i) Time taken by Tap A = \(\frac{9000}{x} \) mins [B1, unit error applicable]

(ii) Time taken by Tap B = \(\frac{9000}{x+5} \) mins [B1, unit error applicable]

(b)

\[
\frac{9000}{x} - \frac{9000}{x+5} = 5 \times 60 \quad [M1]
\]

\[
9000(x+5) - 9000x = 300x(x+5) \quad [M1]
\]

\[
45000 = 300x^2 + 1500x
\]

\[
x^2 + 5x - 150 = 0 \quad \text{(shown)} \quad [A1]
\]

(c) Solve the equation \(x^2 + 5x - 150 = 0 \). [2]

\[
x^2 + 5x - 150 = 0
\]

\[
(x-10)(x+15) = 0 \quad [M1]
\]

\[
x = 10 \quad \text{or} \quad -15 \quad [A1]
\]

(d)

\[
x = 10
\]

Combined rate = 25 litres per min [M1]

Time taken to fill the tank = \(\frac{9000 \div 25}{60} \)

= 6 hours [A1]

5

(a)

1 cm : 250 000 cm

= 1 cm : 2.5 km

Length of road on Map A = \(\frac{12.4}{2.5} \)

= 4.96 cm ---- [A1]

(b)

1 \(\text{cm}^2 \) : 6.25 \(\text{km}^2 \) ---- [M1]

Area of town on Map A = \(\frac{60}{6.25} \)

= 9.6 \(\text{cm}^2 \) ---- [A1]
6

(a)

(i) \(\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \)

\[
= \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} -5 \\ -7 \end{pmatrix}
\]

\[
= \begin{pmatrix} -8 \\ -5 \end{pmatrix}
\]

[B1]

(ii) \(|\overrightarrow{BC} - 2\overrightarrow{AB}| = \left| \begin{pmatrix} -5 \\ -7 \end{pmatrix} - 2 \begin{pmatrix} -3 \\ 2 \end{pmatrix} \right| \)

\[
= \left| \begin{pmatrix} 1 \\ -11 \end{pmatrix} \right|
\]

[M1]

\[
= \sqrt{1^2 + (-11)^2}
\]

\[
= 11.0 \text{ units} \quad (3 \text{ s.f.)} \quad [A1, \text{ P if no unit}]
\]

(b)

(i) \(\overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OP} \)

\[
= -3\overrightarrow{OQ} + \overrightarrow{OP}
\]

\[
= p - 3q
\]

[B1]

(ii) \(\overrightarrow{PB} = -\frac{1}{5} \overrightarrow{PA} \)

\[
= \frac{1}{5}(3q - p)
\]

[B1]

(iii) \(\overrightarrow{OB} = \overrightarrow{OP} + \overrightarrow{PB} \)

\[
= p + \frac{1}{5}(3q - p)
\]

\[
= \frac{1}{5}(3q + 4p)
\]

[B1]
(iv) \[QB = QO + OB \]
\[= -q + \frac{1}{5}(3q + 4p) \]
\[= \frac{2}{5}(2p - q) \quad [B1] \]

(c)
\[
\frac{\text{Area of } \Delta OBC}{\text{Area of } \Delta QBA} = \frac{2 \times \text{Area of } \Delta OPB}{\text{Area of } \Delta OBA} \times \frac{\text{Area of } \Delta OBA}{\text{Area of } \Delta QBA} \quad [M1]
\]
\[= 2 \times \frac{1}{4} \times \frac{3}{2} \]
\[= \frac{3}{4} \quad [A1] \]
The following parts of Q7 is to be answered on the back of graph paper

Q7(a) \(a = 0.8 \) \[B1\]

(c) From the graph, the solution is \(-3.3, 0.5, 2.9\). (Accept ±0.1) \[B2\]

(d) Gradient of the curve at \(x = -3\) is

\[
\frac{12 - (-4)}{-1.8 - (-4)} = 7.27 \text{ (3s.f)} \quad \text{(Accept 6.12 to 7.48)} \quad [A1]
\]

(e) \[2x^3 - 25x + 20 = 0\]

\[
\frac{2x^3}{5} - 5x + 4 = 0
\]

\[
\frac{2x^3}{5} - 4x + 2 = x - 2 \quad [M1]
\]

Draw the line \(y = x - 2 \)

From the graph, the solution is \(x = -3.8, 0.85, 3.05\) Accept [±0.1] \[A1\]
8 (a)(i)

(a) \(\angle ACB = \frac{1}{2} \left(\frac{5\pi}{12} \right) \) (\(\angle \) at center = 2\(\angle \) at circumference)
\[= \frac{5\pi}{24} \text{ [B1]} \]

(b) Arc \(\text{ADB} = 8 \times \angle ACB \)
\[= \frac{5\pi}{3} \text{ cm } \text{ [B1]} \]

(c) Area of sector \(\text{CAB} = \frac{1}{2} \times (8)^2 \left(\frac{5\pi}{24} \right) \)
\[= \frac{20\pi}{3} \text{ cm}^2 \text{ [B1]} \]

(ii) Area of shaded region
\[= \text{Area of sector CAB} - \text{Area of sector OEF} - 2 \times \text{Area of } \triangle OCF \text{ [M1]} \]
\[= \frac{20\pi}{3} - \frac{1}{2} \left(4 \right)^2 \left(\frac{5\pi}{12} \right) \cdot 2 \times \frac{1}{2} \left(4 \right)^2 \sin \left(\frac{5\pi}{24} \right) \text{ [M1]} \]
\[= 0.73179 \]
\[= 0.73 \text{ cm}^2 \text{ (2 s.f.) [A1]} \]

(b)(i) \(\angle CDA + \angle CBA = 180^\circ \) (\(\angle \)s in opp. segment)
\(\angle CDA = 180^\circ - 116^\circ \)
\[= 64^\circ \text{ [B1]} \]

(b)(ii) \(\angle COA = 2 \times \angle CDA \) (\(\angle \) at centre = 2\(\times \)\(\angle \) at circumference)
\[= 128^\circ \text{ [B1]} \]

(b)(iii) \(\angle DAE = \angle DCE \) (\(\angle \)s in same segment)
\[= 39^\circ \text{ [B1]} \]

(b)(iv) \(\angle AOE = 180^\circ - \angle COA \) (adj \(\angle \)s on a st. line)
\[= 52^\circ \]
\(\angle OAE = \frac{180^\circ - \angle AOE}{2} \) (Base \(\angle \)s isos \(\triangle OAE \))
\[= 64^\circ \text{ [M1]} \]
\(\angle OAZ = 90^\circ \) (tangent \perp radius)
\(\angle EAZ = 90^\circ - \angle OAE \)
\[= 26^\circ \text{ [A1]} \]
(b)(v) \(\angle CAE = 90^\circ \) (\(\angle \) in semi circle) \[M1\]
\[\angle CAZ = \angle CAE + \angle EAZ\]
\[= 90^\circ + 26^\circ\]
\[= 116^\circ \] \[A1\]

9(a) (i) Median class is \(40 < x \leq 45 \) \[B1\]

(ii)

\((a) \) \(\text{Mean} = \frac{\sum fx}{\sum f} \)
\[= \frac{8640}{200} \]
\[= 43.2 \text{ mins} \] \[B1\]

\((b) \) \(\text{Mean} = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
\[= \sqrt{\frac{378900}{200} - (43.2)^2} \]
\[= 5.32 \text{ mins (3 s.f)} \] \[A1\]

(iii) The mean time taken will increase to 48.2 mins.

The standard deviation will remain the same at 5.32 mins.

[1 mark for each correct statement]
9(b)(i)

(ii)(a) \(P(\text{both are red}) = \frac{15}{22} \times \frac{14}{21} \)
\[= \frac{5}{11} \quad [B1] \]

(ii)(b) \(P(\text{only one blue ball}) = 2 \times \frac{5}{22} \times \frac{17}{21} \)
\[= \frac{85}{231} \quad [A1] \]

(iii)(c) \(P(\text{both are of different colour}) = 1 - P(\text{both red}) - P(\text{both blue}) - P(\text{both white}) \)
\[= 1 - \frac{15}{22} \times \frac{14}{21} - \frac{5}{22} \times \frac{4}{21} - \frac{2}{22} \times \frac{1}{21} \]
\[= \frac{115}{231} \quad [A1] \]
10(a) Value of the car at the end of 5 years = $(0.9)^5 \times 100000$

\[= $59049 \quad [M1] \]

Overall percentage reduction = \[\frac{100000 - 59049}{100000} \times 100\% \quad [M1] \]

\[= 40.951\% \quad [A1] \]

(b) Let x be the floor number of the flat to be purchased.

Price of a flat = $440000 + 5000(x - 2)$

\[= 430000 + 5000x \quad [M1] \]

Loan amount = $0.9(430000 + 5000x)$

\[= 4500x + 387000 \quad [M1] \]

Interest charge = \[\frac{(4500x + 387000) \times 1.8 \times 25}{100} \]

\[= 2025x + 174150 \quad [M1] \]

Monthly instalment = \[\frac{6525x + 561150}{25 \times 12} \]

\[= 21.75x + 1870.50 \quad [M1] \]

\[21.75x + 1870.50 \leq 2100 \quad [M1] \]

\[x \leq 10.55\]

∴ the highest floor Mr Wong can purchase is a 10th floor unit. [A1]

(Can accept other logical method presented by students)
Answer **all** the questions.

1 Write the following numbers in order of size, starting with the **smallest**.

\[-\frac{4}{7}, -\frac{4}{5}, -0.8^2, -0.8\]

Answer ………., ………., ………., ……… [1]

2 During a children’s day celebration, a charity organization distributed 825 files, 495 pens and 660 pencils equally among the children in a children’s home. Each child received the same number of files, pens and pencils.

(a) Find the largest possible number of children.

Answer (a) ……………………… [2]

(b) Hence, find the number of files, pens and pencils each child received.

Answer (b) ………files, ………pens, ………pencils [1]

3 It is given that \(\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \).

(a) Find \(f \) when \(u = 1.2 \) and \(v = 0.4 \).

Answer (a) \(f = \) …………………… [1]

(b) Express \(u \) in terms of \(f \) and \(v \).

Answer (b) …………………… [2]
A restaurant charges $27.80 per person for buffet lunch. On a particular day, 114 people dined in the restaurant. By approximating both the charge and the number of diners to 2 significant figures, estimate the total amount received by the restaurant on that particular day.

Show your working and give your answer to a reasonable degree of accuracy.

Answer $\ldots\ldot
7 The current, \(I \) amperes, passing through a circuit is inversely proportional to its resistance, \(R \) ohms. When the resistance of the circuit is 3 ohms, the current passing through it is 2 amperes.

(a) Find an equation connecting \(I \) and \(R \).

Answer (a) ………………………………… [2]

(b) Calculate the resistance of the circuit when 1.5 amperes of current passes through it.

Answer (b)………………………ohms [1]

(c) Sketch the graph of \(I \) against \(R \).

Answer (c)

8 Two containers are geometrically similar. The surface area of the larger container is 63 cm\(^2\) and the surface area of the smaller container is 28 cm\(^2\). The height of the smaller container is 5 cm.

Calculate the height of the larger container.

Answer…………………………. cm [2]
9 Between 2014 and 2015, the number of pupils who applied for a particular school as their first choice increased by 25%.
In 2015, the number of applicants for that school was 425.

Calculate the number of applicants in 2014.

Answer ... [2]

10 The probability that it will rain on any particular day is 0.3.

Calculate the probability that on two consecutive days, it will rain on only one of the days.

Answer ... [2]

11 The table below shows the number of internet-connected devices in some households.

<table>
<thead>
<tr>
<th>Number of devices</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of households</td>
<td>2</td>
<td>4</td>
<td>x</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) If the modal number of devices is 4, state the maximum possible value of x.

Answer (a) [1]

(b) If the mean number of devices is 3.6, calculate the value of x.

Answer (b) [2]

(c) If the median number of devices is 4, write down all the possible values of x.

Answer (c) [1]
12 Peter drove from Town X to Town Z, passing by Town Y along the way. He took 40 minutes to drive from Town X to Town Y at an average speed of 72 km/h. He rested in Town Y for 10 minutes before continuing his journey to Town Z. The distance between Town Y and Town Z is 52 km. His average speed for the whole journey was 60 km/h.

Calculate

(a) the distance between Town X and Town Y,

\[\text{Answer (a)} \] \[\text{………………… km} \text{ [1]} \]

(b) the average speed for the journey between Town Y and Town Z,

\[\text{Answer (b)} \] \[\text{………………… km/h} \text{ [3]} \]

13 The point (1, 1) is marked on the diagram.

Sketch the graph of \(y = 8 - x^3 \) in the answer space below.

\[\text{Answer} \]

\(y \) \[\bullet (1, 1) \] \(x \) [1]
14 David wants to invest $500 for 3 years.
Company A offers 8% simple interest per year.
Company B offers 6% interest per year compounded quarterly.

In which company should David invest his money? Justify your answer.

Answer …… [3]

15 \(\xi = \{ x: x \text{ is an integer, } 1 \leq x \leq 100 \} \)

 A = \{ x: x \text{ is divisible by 11} \}
 B = \{ x: x \text{ is divisible by 22} \}
 C = \{ x: x \text{ is divisible by 33} \}

(a) List the elements of \(A \cap (B \cup C)'. \)

Answer (a) …………………………….. [1]

(b) Draw, in the answer space, a clearly labelled Venn diagram to illustrate the three sets A, B and C.

Answer (b) [2]
On the axes shown, P is $(-4, 3)$, Q is $(-3, -2)$ and R is $(2, -2)$.

Find

(a) the gradient of PQ,

\[\text{Answer (a)} \]

(b) \(\tan \hat{PQR} \),

\[\text{Answer (b)} \]

(c) the equation of the line PR,

\[\text{Answer (c)} \]

(d) the area of triangle PQR,

\[\text{Answer (d)} \]

(e) the coordinates of two possible points S, such that the four points P, Q, R and S are the four vertices of a parallelogram.

\[\text{Answer (e)} \]
The figures T_1, T_2, T_3, \ldots are made up of squares.

N is the number of rows of squares in each shape.

S is the number of squares in each shape.

D is the number of dots in each shape.

The values of N, S and D in T_1, T_2, T_3 and T_4 are recorded in the table below.

<table>
<thead>
<tr>
<th>Figure</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>4</td>
<td>p</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>10</td>
<td>q</td>
<td>28</td>
</tr>
<tr>
<td>$D-N^2$</td>
<td>3</td>
<td>6</td>
<td>r</td>
<td>s</td>
</tr>
</tbody>
</table>

(a) Find the values of p, q, r and s.

Answer (a) $p = \ldots \ldots \ldots,$ $q = \ldots \ldots \ldots,$ $r = \ldots \ldots \ldots,$ $s = \ldots \ldots \ldots$ [2]

(b) Express S in terms of N.

Answer (b) \ldots \ldots \ldots \ldots \ldots \ldots [1]

(c) Express D in terms of N.

Answer (c) \ldots \ldots \ldots \ldots \ldots \ldots [1]

(d) Explain why the number of dots cannot be 42.

Answer \ldots \ldots \ldots \ldots \ldots \ldots [1]
Three points A, B and C are shown below.

Answer (a), (b), (c) and (d)

(a) Construct the perpendicular bisector of BC.

(b) Construct the bisector of angle ABC.

(c) Mark clearly the point, P, which is equidistant from the lines AB and BC, and equidistant from B and C.

(d) The point D is such that $ABCD$ is a parallelogram. Find and label the position of D.

19 A gold solid is formed by joining the plane faces of a cone, a cylinder and a hemisphere. The cone and cylinder have a base radius of 3 cm and height 6 cm. The hemisphere has a radius of 7 cm.

Calculate

(a) the length of the slant height of the cone,

Answer (a) cm [2]

(b) the surface area of the gold solid,

Answer (b) cm2 [3]

(c) the volume of the gold solid.

Answer (c) cm3 [2]
The density of gold is 19.32 g/cm^3.

A gold bar has length 25 cm, width 7 cm and height 3.5 cm. Five gold bars were melted down and all the gold was used to make a large number of these gold solids.

(d) Calculate the mass of gold that remains after the gold solids are made, giving your answer correct to two significant figures.

Answer (d) ... g [4]

20 O is the origin. A is the point $(3, p)$. B is the point $(-4, 5)$. $\mathbf{BC} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$.

(a) If \mathbf{BC} is parallel to \mathbf{OA}, find the value of p.

Answer (a) $p =$... [2]

(b) Find the ratio $OA : BC$.

Answer (b) ... [1]

(c) Find the position vector of M such that $OAMB$ is a parallelogram.

Answer (c) ... [2]
21 The diagram, not drawn to scale, shows the speed-time graph of a car and a bus during a period of 48 seconds. The car and the bus start from the same point, at the same time and travel in the same direction.

(a) Calculate the value(s) of \(t \) when the car and bus have the same speed.

\[\text{Answer (a)} \]

(b) Find the value of \(t \) when the car overtakes the bus.

\[\text{Answer (b)} \]

(c) Use the grid below to sketch the distance-time graph of the car for the same journey.

\[\text{Answer (c)} \]
15a) \(A \cap (B \cup C)' = \{11,55,77\} \)

15b) \(\xi \)

\[A \quad B \quad C \]

16a) \(-5\)

16b) \(\frac{5}{6}\)

16c) \(y = -\frac{5}{6}x - \frac{1}{3}\)

16d) 12.5 square units

16e) \(S(1,3), S(3,-7) \text{ or } S(-9,3)\)

17a) \(p = 9, q = 18, r = 9, s = 12\)

17b) \(S = N^2\)

17c) \(D = 3N + N^2\)

17d) \(N = \frac{-3\pm\sqrt{9+168}}{2}\) which is no a whole number

19a) 6.71 cm

19b) 610 cm²

19c) 945 cm³

19d) 4400 g

20a) \(p = 2.5\)

20b) \(OA : BC = 1 : 2\)

20c) \(\begin{pmatrix} -1 \\ 7.5 \end{pmatrix}\)

21a) 38.4

21b) 30

21c) \(\text{Distance travelled} \text{ (meters)}\)

\[\text{Time (seconds)} \]

\[0 \quad 12 \quad 24 \quad 36 \quad 48 \]

\[0 \quad 480 \quad 960 \quad 1440 \quad 1520 \]

15b) \(f = 0.3\)

16b) \(\frac{u}{v} = \frac{f}{v - f}\)

4) $3100

5) 10 min

6a) \(-\frac{1}{2} \leq x < 3\)

6b) \(-1, 0, 1, 2\)

7a) \(I = \frac{6}{R}\)

7b) \(R = 4 \text{ ohms}\)

7c) \(I \text{ (amperes)}\)

8) \(h_1 = 7.5 \text{ cm}\)

9) 340

10) 0.42

11a) 6

11b) 9

11c) 0, 1, 2, 3, ..., 8

12a) 48 km

12b) 62.4 km/h

13

14 Company A

15a) \(A \cap (B \cup C)' = \{11,55,77\} \)

15b) \(\xi \)

\[A \quad B \quad C \]

16a) \(-5\)

16b) \(\frac{5}{6}\)

16c) \(y = -\frac{5}{6}x - \frac{1}{3}\)

16d) 12.5 square units

16e) \(S(1,3), S(3,-7) \text{ or } S(-9,3)\)

17a) \(p = 9, q = 18, r = 9, s = 12\)

17b) \(S = N^2\)

17c) \(D = 3N + N^2\)

17d) \(N = \frac{-3\pm\sqrt{9+168}}{2}\) which is no a whole number

19a) 6.71 cm

19b) 610 cm²

19c) 945 cm³

19d) 4400 g

20a) \(p = 2.5\)

20b) \(OA : BC = 1 : 2\)

20c) \(\begin{pmatrix} -1 \\ 7.5 \end{pmatrix}\)

21a) 38.4

21b) 30

21c) \(\text{Distance travelled} \text{ (meters)}\)

\[\text{Time (seconds)} \]

\[0 \quad 12 \quad 24 \quad 36 \quad 48 \]

\[0 \quad 480 \quad 960 \quad 1440 \quad 1520 \]
Answer all the questions.

1. (a) Express as a single fraction in its simplest form \(1 - \frac{2x}{2x-7} + \frac{7}{(2x-7)^2}\). [3]

(b) Simplify \(5a^{-3}b^5 + \frac{10}{9}a^3b^{-2}\). [2]

(c) Factorise fully
 (i) \(11p^2 - 44pq + 4q - p\), [2]
 (ii) \(30m^2 + 14mn - 4n^2\). [2]

(d) Solve the equation \(\frac{1}{x} - \frac{x-5}{2x-3} = 1\). [3]

2. Twenty five boys took a quiz.
The marks are shown in the stem-and-leaf diagram.

```
1 | 4 7
2 | 3 5 7 7 9
3 | 0 1 2 3 3 5 7 7 8 9 9 9
4 | 3 4 6 6 7
5 | 0
```

Key
1 | 4 means 14 marks

(a) Find
 (i) the median mark, [1]
 (ii) the interquartile range. [3]

Twenty five girls took the same quiz.
The median mark and interquartile range of the girls’ marks are 35 and 6 respectively.

(b) Compare and comment on the performance of the boys and girls in this quiz. [2]
3 \(PQRS \) is a quadrilateral. \(M \) is the mid-point of \(PQ \).
\[\vec{PQ} = a, \quad \vec{PS} = b \text{ and } \vec{QR} = \frac{6}{5} b - \frac{1}{3} a. \]

(a) Find \(\vec{SR} \) in terms of \(a \) and \(b \). \[1\]
(b) Use vectors to show that \(PS \) and \(MR \) are not parallel. \[2\]

4 In the diagram, \(PXR, QYR, \) and \(XYZ \) are straight lines.
\(PQ \) is parallel to \(XZ \), \(QZ = RZ \), \(\frac{YZ}{XZ} = \frac{3}{5} \) and \(\angle PQR = 90^\circ \).

(a) Show that triangles \(QYZ \) and \(RYZ \) are congruent. \[3\]
(b) Show that triangles \(PQR \) and \(XYR \) are similar. \[2\]
(c) Find

(i) \[\frac{\text{area of } \triangle XYZ}{\text{area of } \triangle RYZ}, \]
(ii) \[\frac{\text{area of } \triangle XYZ}{\text{area of } \triangle PQR} \]. \[1\]
5 Jeannie bought some health drink for $6400. She paid $x for each litre of the drink.

(a) Find, in terms of x, an expression for the number of litres she bought. [1]

(b) She gave away 8 litres of the drink to her friends. She sold the remainder of the drink for $50 per litre more than she paid for it. Write down an expression, in terms of x, for the sum of money she received. [1]

(c) She made a profit of $2960.

(i) Write down an equation in x to represent this information, and show that it reduces to $x^2 + 420x - 40000 = 0$. [2]

(ii) Solve the equation $x^2 + 420x - 40000 = 0$. [3]

(d) Find the number of litres of drink Jeannie sold. [1]

6 Two satay stalls sell 3 types of satay. The number of sticks of each type of satay sold per day is given by the matrix S.

\[
S = \begin{pmatrix}
400 & 300 & 200 \\
200 & 500 & 300
\end{pmatrix}
\]

(a) The price of each stick of chicken, mutton and beef satay is $0.35, $0.45 and $0.40 respectively. Represent these prices in a 3×1 column matrix P. [1]

(b) Evaluate the matrix $T = SP$. [1]

(c) State what the elements of T represent. [1]

(d) In June 2016, Stall A operated 20 days and Stall B operated 25 days. Use matrix multiplication to find the total amount of money collected by the two stalls in June 2016. [2]

(e) In July, the number of sticks of each type of satay sold per day is increased by 10%. The information is given by the matrix Q.

\[
Q = \begin{pmatrix}
440 & 330 & 220 \\
220 & 550 & 330
\end{pmatrix}
\]

Write down the matrix R such that $Q = SR$. [1]
A box contains 5 Chocolate doughnuts, 3 Glazed doughnuts and 1 Strawberry doughnut.

(a) Two doughnuts were taken out of the box at random, without replacement.

Copy and complete the tree diagram to show this information. [3]

(b) Find, as a fraction in its simplest form, the probability that

(i) the two doughnuts are the same flavour, [3]

(ii) at least one of the doughnuts is Chocolate. [2]
8 In the diagram, the points P, Q, R, S and T lie on a circle, centre O. XTY is a tangent to the circle. Angle $PRS = 109^\circ$ and angle $PST = 41^\circ$.

(a) Find, giving reasons for each answer,

(i) \hat{SQP},
(ii) \hat{STP},
(iii) \hat{STY},
(iv) \hat{PTO}.

(b) $OABC$ is a sector of a circle, centre O and radius 8 cm. The perimeter of the sector is 30 cm.

(i) Show that angle $AOC = 1.75$ radians.
(ii) Calculate the area of the shaded region.
The diagram shows a field, $ABCDE$, which is crossed by two paths, AC and AD. AD is perpendicular to CD. $AB = 42$ m, $AD = 60$ m, $DE = 55$ m, angle $BAC = 48^\circ$ and angle $ACB = 32^\circ$.

(a) Show that $AC = 78.05$ m, correct to four significant figures. [2]

(b) Calculate CD. [2]

(c) A bird is at P, which is 8 m vertically above E. Calculate the angle of depression of D from P. [2]

(d) Given that the area of triangle ADE is 1300 m2, calculate angle ADE. [2]

(e) D is due east of A. Calculate the bearing of E from A. [3]
10 Answer the whole of this question on a sheet of graph paper.

The variables \(x \) and \(y \) are connected by the equation \(y = \frac{5x^2}{4} + \frac{60}{x} - 40 \).

Some corresponding values of \(x \) and \(y \) are given in the following table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(p)</td>
<td>2.81</td>
<td>-5</td>
<td>-8.75</td>
<td>-7.54</td>
<td>-5</td>
<td>-1.35</td>
<td>3.25</td>
<td>15</td>
</tr>
</tbody>
</table>

(a) Find the value of \(p \). [1]

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal \(x \)-axis for \(1 \leq x \leq 6 \).
Using a scale of 2 cm to represent 5 units, draw a vertical \(y \)-axis for \(-15 \leq y \leq 25 \).
On your axes, plot the points given in the table and join them with a smooth curve. [2]

(c) Using your graph, find the range of values of \(x \) for which \(\frac{5x^2}{4} + \frac{60}{x} - 40 < 0 \). [3]

(d) By drawing a tangent, find the gradient of the curve at the point where \(x = 4 \). [2]

(e) Draw the tangent to the curve at the point where the gradient is \(-10 \).
Write down the equation of this tangent. [2]

(f) The line \(l \) intersects the curve \(y = \frac{5x^2}{4} + \frac{60}{x} - 40 \) at \(x = 2 \) and \(x = 6 \).

(i) Find the equation of \(l \). [2]

It is given that \(x = 2 \) and \(x = 6 \) are solutions of the equation \(5x^3 + Ax^2 + Bx + 240 = 0 \).

(ii) By using your answer from (f)(i), find the value of \(A \) and of \(B \). [3]
11 Diagram I shows a pencil before it is sharpened. It is made up of a piece of cylindrical carbon encased in wood. The length of the pencil is 19 cm.
Diagram II shows the cross-sectional area of the pencil. ABCDEF is a regular hexagon with side 0.45 cm. The diameter of the carbon is 0.2 cm.

(a) Find

(i) the interior angle of the regular hexagon ABCDEF, [2]

(ii) CF. [1]

(b) Show that $AE = 0.7794$ cm. [2]

(c) Calculate the area of the regular hexagon ABCDEF. [2]

(d) Calculate the volume of the carbon as a percentage of the volume of the pencil. [2]

Diagram III shows ten of these pencils which just fit into a rectangular box which is open on one side.
Diagram IV shows ten of these pencils which just fit into a box whose cross-sectional area is an equilateral triangle which is open on one side.

(e) The boxes are made of cardboard which cost $10 per m2. Determine which box will be cheaper to produce for 1000 boxes. Justify your decision with calculations. [5]
1a) $\frac{56 - 14x}{(2x - 7)^2}$

1b) $9b^7 \div 2a^6$

1c) (i) $(11p - 1)(p - 4q)$
 (ii) $2(3m + 2n)(5m - n)$

1d) $x = \frac{1}{3}$ or 3

2a) 35 marks

2b) 13 marks

3a) $\frac{2}{3}a + \frac{1}{5}b$

4c) (i) area of $\triangle XYR = \frac{2}{3}$ area of $\triangle RYZ$
 (ii) area of $\triangle XYR = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ area of $\triangle PQR$

5a) $6400 \div x$

5b) $\left(\frac{320000}{x} - 8x + 6000\right)$

5c) (ii) $x = -500$ or $x = 80$

5d) 72

6a) $\begin{pmatrix} 0.35 \\ 0.45 \\ 0.40 \end{pmatrix}$

6b) $\begin{pmatrix} 355 \\ 415 \end{pmatrix}$

6c) The total amount of money collected by each stall (per day from the selling the satay)

6d) 17475

6e) $\begin{pmatrix} 1.1 & 0 & 0 \\ 0 & 1.1 & 0 \\ 0 & 0 & 1.1 \end{pmatrix}$

7b) (i) $\frac{5}{6}$
 (ii) $\frac{13}{36}$

8a) (i) 109°
 (ii) 71°
 (iii) 68°
 (iv) 49°

8b) (ii) 24.5 cm^2

9b) 49.9 cm

9c) 8.3°

9d) 52.0°

9e) 148.9°

10a) 21.25

10c) $1.65 < x < 4.65$

10d) $m = 6.25$

10e) $y = -10x + 15$

10f) (i) $y = 5x - 15$
 (ii) $A = -20$ & $B = -100$

11a) (i) 120°
 (ii) 0.9 cm

11c) 0.526 cm^2

11d) 5.97%

11e) Design IV will be cheaper to produce for 1000 boxes

Carousell-examguru
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact,
give the answer to three significant figures. Give answers in degrees to one decimal place.
For , use either your calculator value or 3.142, unless the question requires the answer in terms of .

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.
Mathematical Formulae

Compound interest

Total amount =

Mensuration

Curved surface area of a cone =
Surface area of a sphere =
Volume of a cone =
Volume of a sphere =
Area of triangle $ABC =$
Arc length $= r \theta$, where θ is in radians
Sector area $= r \theta$, where θ is in radians

Trigonometry

Statistics

Mean $=\overline{x}$
Standard deviation $=\sigma$
1 Calculate giving your answer correct to
(a) 5 decimal places,

Answer (a).............................. [1]

(b) 5 significant figures.

Answer (b).............................. [1]

2 A sequence of numbers is given as follows;

1st line: \(1^2 + 1 - 1 = 1 \)
2nd line: \(2^2 + 2 - 1 = 5 \)
3rd line: \(3^2 + 3 - 1 = 11 \)
4th line: \(4^2 + 4 - 1 = 19 \)

(a) Write down an expression, in terms of \(n \), for the \(n \)th term in the sequence.

Answer (a).............................. [1]

(b) Calculate the value of the 67th term of the sequence.

Answer (b).............................. [1]

3 (a) Given that find the value of \(x \).

Answer (a).............................. [1]

(b) Light travels 1 metre in 3.3 nanoseconds.
Find the total distance, in metres, that light will travel in 6.6 microseconds.

Answer (b).............................. m [1]
PQ is parallel to RS.

(a) Find

$Answer (a)$ ……………………………………….. [1]

(b) Find

$Answer (b)$ ……………………………………….. [1]

5 A group of students were asked to determine which of the following allows more water to flow through in a given time:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Two hoses with diameters of 5 cm each.</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>A hose with a diameter of 8 cm.</td>
</tr>
</tbody>
</table>

Paul chooses A. His reasoning is that the two hoses have a bigger combined diameter of $5 + 5 = 10 > 8$. Is Paul right? Explain.

$Answer$………[2]

6 Simplify

$Answer$ ………………………… [2]

7 Some students were interviewed to find out the languages they spoke at home.
(a) Describe, as simply as possible, in words, the set

Answer (a) ...[1]

(b) On the Venn Diagram, shade the region which represents

[1]

It is given that , and

(c) If , find the number of students who did not speak either English or their Mother Tongue.

Answer (c)...[1]

8 (a) Factorise

Answer (a).................................[1]

(b) Factorise completely

Answer (b).................................[2]

9 Boris and Bram jog on a circular track with radius 15 m. Boris jogs with a constant speed of and Bram jogs with a constant speed of If both boys start jogging in the opposite direction from point A at 08 10, when will they meet again at A?
Two similar marbles made from the same material have radii in the ratio of 2 : 5.

(a) If it costs $2 to paint the small marble, calculate the cost to paint the large marble using the same paint.

Answer (a) $ \ldots [1]

(b) If the mass of the larger marble is 250 g, what is the mass of the smaller marble?

Answer (b) \ldots [2]

A painter takes 4 days to paint a house. His apprentice takes 2 more days to paint the same house.

(a) Find the number of similar houses that the apprentice can paint in 30 days.
(a) \[\text{houses} \] [1]

(b) If the painter and the apprentice paint the house together, how many days will it take the both of them to complete painting 1 house?

(b) \[\text{days} \] [2]

12 (a) Sketch the graph of \[\text{Answer (a)} \] [2]

(b) Write down the equation of the line of symmetry of the graph of \[\text{Answer (b)} \] [1]

13 The cumulative frequency curve below shows the marks obtained, out of 100, by 60 students in an Elementary Mathematics paper.
(a) Find interquartile range of the distribution.

\[\text{Answer (a)} \text{…………………………marks } [1] \]

(b) The same 60 students also sat for the Additional Mathematics paper. The box-and-whisker diagram below illustrates the marks obtained. The maximum mark was again 100.

![Box-and-whisker diagram](image)

A parent commented that the Elementary Mathematics paper was easier than the Additional Mathematics paper.

Do you agree? Give a reason for your answer.

\[\text{Answer (b) ……………………………because} \text{……………………………………} \]

\[\text{…………………………………………………………………………………………} \]

[2]

14 The period of oscillation, \(T \) seconds of a string varies directly as the square root of the length of the string, \(l \) cm. When the length of the string is 36 cm, the period of the oscillation is 0.3 seconds.

(a) Find the length of the string when the period of oscillation is 0.4 seconds.
(b) Calculate the percentage change in l if T is decreased by 30%.

Answer (b) ..% [2]

15 (a) The lowest point of a quadratic curve is it intersects the y-axis at Write down the equation of the curve in the form , where a, b, c are integers.

Answer (a) y .. [2]

(b) Hence solve the equation , giving your answers correct to two decimal places.

Answer (b) x .. [2]

16 (a) Is it possible to draw a regular polygon whose exterior angle is ? Give a reason for your answer.

Answer (a) .. [2]

(b)
In the diagram above, \(ABC \ldots \) is part of a polygon. \(\theta \) The size of the remaining interior angles are each equal to \(\theta \) Find the number of sides of this polygon.

\[Answer \ (b) \]……………………………………[2]

17 Vernon travels to school either by bus or by car. The probability of being late for school is \(\frac{1}{3} \) if he travels by bus and \(\frac{2}{5} \) if he travels by car.

(a) Find the probability that he will be late on just two out of three days if he travels by bus on three consecutive days.

\[Answer \ (a) \]……………………………………[2]

(b) If the probability that he travels by bus is \(\frac{3}{5} \), find the probability that he will be late for school on any given day.

\[Answer \ (b) \]……………………………………[2]

18 The graph shows the charges made by a telecommunication company for making local phone calls lasting up to 70 minutes. The total cost is made up of a fixed charge, \(\$3.00 \), together with a charge of \(\$x \) per minute for making local phone calls.
(a) State the cost of making 44 minutes of local phone call.

Answer (a) $ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots [1]

(b) (i) A second telecommunication company that does not have a fixed charge, charges 8¢ per minute for the first 50 minutes and 15¢ per minute after that.

Draw a graph, on the same axes, to represent the charge made by this second company.

(ii) Find the range of times, T, for which it would be cheaper to subscribe to the second company.

Answer (b)(ii) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots [1]

19 In the diagram, $ABCD$ is a parallelogram with, and EF intersects HD and HC at G and K respectively.

If the area of , find the area of

(a) ,

Answer (a) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots [2]
20 The diagram shows a circle with centre \(O \) and radius 7 cm inscribed in a regular octagon of sides 5.8 cm each.

(a) Calculate the area of the octagon.

Answer (a) [2]

(b) Find the total area of the shaded region between the circle and the octagon.

Answer (b) [2]

21 (a) Solve the equation

Answer (a) [2]

(b) 216 cubes, each having edges of 2.6 cm, measured to the nearest 0.1 cm, fit exactly into a larger cubic box. Find the

(i) greatest possible length of the cubic box,
22 The equation of a straight line is

(a) Find the gradient of the line.

Answer (a) ... [1]

(b) Find the equation of the line, parallel to , which passes through the point

Answer (b) ... [2]

(c) Find the distance between the points at which these two lines cut the x-axis.

Answer (c) ... units [2]

23 (a) In the diagram, O is the centre of the circle $ADBC$. AB and CD are two perpendicular diameters. L and R are points on AB. N and P are points on CD. M and Q are points on the circumference of the circle. $LMNO$ and $OPQR$ are two rectangles.

Explain briefly why LN and PR are equal in length.

Answer (a) ..

..

.. [2]

(b) In the diagram, the points A, B, C, D and E lie on a circle, centre O.

VICTORIA SCHOOL 16/S4PR2/EM/1

Carousell-examguru
BOE is a diameter,
AE is parallel to CD.

(i) Find

(ii) Hence show that triangle ACE is an equilateral triangle.

Answer $b(i)$ ……………………………………………………………………………… [2]

Answer $b(ii)$ ……………………………………………………………………………… [1]

24 The point H represents the position of a harbour located along a coastline. Another point J represents the position of a jetty situated along the same coastline. The point L represents the position of a lighthouse.

It is given that

(a) Using a scale of 1: 20000, construct the [2]

Answer (a) and (c)
(b) Measure and write down the distance LH.

Answer (b) ____________________ m [1]

(c) A yacht sails directly from H to L. By drawing a suitable line, measure and write down its closest distance to the jetty.

Answer (c) ____________________ m [2]

End of Paper

This document is intended for internal circulation in Victoria School only. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the Victoria School Internal Exams Committee.

2016 Victoria School Prelim 2 Mathematics Paper 1 Answer Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0.00504</td>
</tr>
<tr>
<td>1b</td>
<td>0.0050408</td>
</tr>
<tr>
<td>2a</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>4555</td>
</tr>
<tr>
<td>3a</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>2000 m</td>
</tr>
<tr>
<td>4a</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>No, Paul is wrong. The hose in B with a larger cross sectional area allows more water to flow through than in A.</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>is the set of students who spoke only in their Mother Tongue at home</td>
</tr>
<tr>
<td>7b</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>61 students</td>
</tr>
<tr>
<td>8a</td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10a</td>
<td>$12.50</td>
</tr>
<tr>
<td>10b</td>
<td>16g</td>
</tr>
<tr>
<td>11a</td>
<td>5 days</td>
</tr>
<tr>
<td>11b</td>
<td>days</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>12a</td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td></td>
</tr>
<tr>
<td>13a</td>
<td>39 marks</td>
</tr>
<tr>
<td>13b</td>
<td>Disagree. Median marks in Elementary Mathematics paper is lower.</td>
</tr>
<tr>
<td>14a</td>
<td>64</td>
</tr>
<tr>
<td>14b</td>
<td>Increase by 69%</td>
</tr>
<tr>
<td>15a</td>
<td></td>
</tr>
<tr>
<td>15b</td>
<td></td>
</tr>
<tr>
<td>16a</td>
<td>No. is not divisible by 7</td>
</tr>
<tr>
<td>16b</td>
<td>9 sides</td>
</tr>
<tr>
<td>17a</td>
<td></td>
</tr>
<tr>
<td>17b</td>
<td></td>
</tr>
<tr>
<td>18a</td>
<td>$5.20</td>
</tr>
<tr>
<td>18bi</td>
<td>i</td>
</tr>
<tr>
<td>19i</td>
<td>50</td>
</tr>
<tr>
<td>19ii</td>
<td>20</td>
</tr>
<tr>
<td>20a</td>
<td>162.4</td>
</tr>
<tr>
<td>20b</td>
<td>8.4</td>
</tr>
<tr>
<td>21a</td>
<td></td>
</tr>
<tr>
<td>21bi</td>
<td>15.9</td>
</tr>
<tr>
<td>21bi</td>
<td>i</td>
</tr>
<tr>
<td>22a</td>
<td></td>
</tr>
<tr>
<td>22b</td>
<td></td>
</tr>
<tr>
<td>22c</td>
<td></td>
</tr>
<tr>
<td>23b</td>
<td></td>
</tr>
<tr>
<td>24a</td>
<td>Constructions</td>
</tr>
<tr>
<td>24b</td>
<td>2055 m</td>
</tr>
<tr>
<td>24c</td>
<td>790 m</td>
</tr>
</tbody>
</table>
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact,
give the answer to three significant figures. Give answers in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.
Mathematical Formulae

Compound interest

Total amount = \(P \left(1 + \frac{r}{100} \right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r \theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
a^2 = b^2 + c^2 - 2bc \cos A
\]

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2} \)
1. Calculate \(\frac{\sqrt{0.00234 \times 9.45}}{29.5} \), giving your answer correct to
 (a) 5 decimal places.
 \(0.00504 \) ---- [B1]
 (b) 5 significant figures.
 \(0.0050408 \) ---- [B1]

2. A sequence of numbers is given as follows;

 1st line: \(1^2 + 1 - 1 = 1 \)
 2nd line: \(2^2 + 2 - 1 = 5 \)
 3rd line: \(3^2 + 3 - 1 = 11 \)
 4th line: \(4^2 + 4 - 1 = 19 \)

 (a) Write down an expression, in terms of \(n \), for the \(n \)th term in the sequence.
 \(n^2 + n - 1 \) ---- [B1]
 (b) Calculate the value of the 67th term of the sequence.
 \(4555 \) ---- [B1]

3. (a) Given that \(3^4 \times 3^x = 3^{\frac{2}{3}} \), find the value of \(x \).

 \[
 \frac{2}{3} = 3^x
 \Rightarrow 4 + \frac{2}{x} = \frac{1}{2}
 8x + 4 = -x
 9x = -4
 x = \frac{-4}{9}
 \]
 \(\) ---- [A1]

 (b) Light travels 1 metre in 3.3 nanoseconds. Find the total distance, in metres, that light will travel in 6.6 microseconds.

 \[
 3.3 \text{ nanoseconds} = 3.3 \times 10^{-9} \text{ seconds}
 6.6 \text{ microseconds} = 6.6 \times 10^{-6} \text{ seconds}
 \]
 \[
 \therefore \text{Distance travelled} = \frac{6.6 \times 10^{-6}}{3.3 \times 10^{-9}}
 = 2000 \text{ m} \) ---- [A1]
PQ is parallel to RS.

(a) Find x.

$x = 180^\circ - 46^\circ - 24^\circ$

$= 110$ ------- [A1]

(b) Find y.

$y = 180^\circ - 46^\circ - 52^\circ$

$= 82$ ------- [A1]

5 A group of students were asked to determine which of the following allows more water to flow through in a given time:

- A Two hoses with diameters of 5 cm each.
- OR B A hose with a diameter of 8 cm.

Paul chooses A. His reasoning is that the two hoses have a bigger combined diameter of $5 + 5 = 10 > 8$. Is Paul right? Explain.

No, Paul is wrong. ------ [B1]

Total cross-sectional area of $A = 2\pi (2.5)^2 = 12.5\pi$ cm2.

Total cross-sectional area of $B = 2\pi (4)^2 = 16\pi$ cm2.

\therefore The hose in B with a larger cross sectional area allows more water to flow through than in A. ---- [A1]

6 Simplify $36b^2 - 25(1-b)^2$.

$36b^2 - 25(1-b)^2 = (6b)^2 - [5(1-b)]^2$

$= [6b - 5(1-b)][6b + 5(1-b)]$ ------ [B1 - Identity]

$= (6b - 5b)(6b + 5 - 5b)$

$= (11b - 5)(b + 5)$ ------ [A1]
Some students were interviewed to find out the languages they spoke at home.

\(\varepsilon = \{ \text{The set of students who were interviewed} \} \)

\(E = \{ \text{The set of students who spoke English} \} \)

\(M = \{ \text{The set of students who spoke their Mother Tongue} \} \)

(a) Describe, as simply as possible, in words, the set \(M \cap E' \).

\(M \cap E' \) is the set of students who spoke only in their Mother Tongue at home. [B1]

(b) On the Venn Diagram, shade the region which represents \(E \cup (M \cup E)' \).

![Venn Diagram](image)

It is given that \(n(\varepsilon) = 256 \), \(n(E) = 195 \) and \(n(M) = 123 \).

(c) If \(M \subset E \), find the number of students who did not speak either English or their Mother Tongue.

Number of students who did not speak either English or their Mother Tongue

\[= 256 - 195 \]

\[= 61 \text{ [B1]} \]

8 (a) Factorise completely \(x^2 - 2xy + y^2 \).

\[x^2 - 2xy + y^2 = (x - y)^2 \text{ [B1]} \]

(b) Factorise completely \(x^3 - 3x^2 - 4x + 12 \).

\[x^3 - 3x^2 - 4x + 12 = x^2(x - 3) - 4(x - 3) \text{ [B1]} \]

\[= (x^2 - 4)(x - 3) \]

\[= (x - 2)(x + 2)(x - 3) \text{ [A1]} \]
9 Boris and Bram jog on a circular track with radius 15 m. Boris jogs with a constant speed of \(0.15\pi\) ms\(^{-1}\) and Bram jogs with a constant speed of \(0.25\pi\) ms\(^{-1}\). If both boys start jogging in the opposite direction from point A at 08 10, when will they meet again at A?

\[
\begin{align*}
\text{Time taken for Boris to finish 1 lap} & = \frac{2\pi(15)}{0.15\pi} \\
& = 200 \text{ s} \\
\text{Time taken for Bram to finish 1 lap} & = \frac{2\pi(15)}{0.25\pi} \\
& = 120 \text{ s}
\end{align*}
\]

\[
\therefore 200 = 2^3 \times 5^2, 120 = 2^3 \times 3 \times 5
\]

\[
\text{LCM of 200 and 120} = 2^3 \times 3 \times 5^2 \quad \text{[M1]}
\]

\[
= 600 \text{ s} \Rightarrow = 10 \text{ mins}
\]

Time they will meet again = 10 min after 08 10

\[
= 08 20 \quad \text{[A1]}
\]

10 Two similar marbles made from the same material have radii in the ratio of 2 : 5.

(a) If it costs $2 to paint the small marble, calculate the cost to paint the large marble using the same paint.

Since the marbles are similar,

\[
\begin{align*}
\text{Surface area of large marble} & = \left(\frac{5}{2}\right)^2 \\
\text{Surface area of small marble} & = \left(\frac{2}{5}\right)^2
\end{align*}
\]

\[
\therefore \text{Cost to paint larger marble} = \left(\frac{5}{2}\right)^2 \times 2 = \$12.50 \quad \text{[A1]}
\]

(b) If the mass of the larger marble is 250 g, what is the mass of the smaller marble?

Since the marbles are similar,

\[
\text{Mass of small marble} = \left(\frac{2}{5}\right)^3 \times 250 \quad \text{[B1]}
\]

\[
\therefore \text{Mass of small marble} = \left(\frac{2}{5}\right)^3 \times 250 = 16 \text{ g} \quad \text{[A1]}
\]
11 A painter takes 4 days to paint a house. His apprentice takes 2 more days to paint the same house.

(a) Find the number of similar houses that the apprentice can paint in 30 days.

No. of days the apprentice takes = 4 + 2 = 6

\[\therefore \text{No. of houses he can paint in 30 days} = \frac{30}{6} = 5 \] [A1]

(b) If the painter and the apprentice paint the house together, how many days will it take the both of them to complete painting 1 house?

Rate for painter = \(\frac{1}{4} \), Rate for apprentice = \(\frac{1}{6} \)

\[\therefore \text{No. of days taken if they paint together} = \frac{\frac{1}{4} + \frac{1}{6}}{\frac{1}{4} + \frac{1}{6}} \] [M1]

\[= \frac{12}{5} \]

\[= 2 \frac{2}{5} \] [A1]

12 (a) Sketch the graph of \(y = 2 - \frac{1}{2} (x + 2)^2 \).

Answer (a)

[Diagram of a parabola with vertex at (-2, 2) and axis of symmetry at \(x = -2 \)]

(b) Write down the equation of the line of symmetry of the graph of \(y = 2 - \frac{1}{2} (x + 2)^2 \).

Equation of the line of symmetry \(x = -2 \) [B1]
13 The cumulative frequency curve below shows the marks obtained, out of 100, by 60 students in an Elementary Mathematics paper.

(a) Find interquartile range of the distribution.

Interquartile range = 69 – 30 [or 68 – 30 = 38 marks]
= 39 marks

(b) The same 60 students also sat for the Additional Mathematics paper. The box-and-whisker diagram below illustrates the marks obtained. The maximum mark was again 100.

A parent commented that the Elementary Mathematics paper was easier than the Additional Mathematics paper.

Do you agree? Give a reason for your answer.

Disagree. Median marks in Elementary Mathematics paper is lower. ------- [B1, B1]
The period of oscillation, \(T \) seconds of a string varies directly as the square root of the length of the string, \(l \) cm. When the length of the string is 36 cm, the period of the oscillation is 0.3 seconds.

(a) Find the length of the string when the period of oscillation is 0.4 seconds.

\[T = k\sqrt{l}, \quad k \text{ is a constant} \]

When \(T = 0.3, l = 36 \)

\[\Rightarrow k = \frac{0.3}{\sqrt{36}} = 0.05 \quad \text{------ [B1 for finding } k = 0.05\text{]} \]

\[\therefore T = 0.05\sqrt{l} \]

When \(T = 0.4, \)

\[0.4 = 0.05\sqrt{l} \]

\[\sqrt{l} = 8 \therefore l = 64 \text{ cm}^2 \quad \text{------ [A1]} \]

(b) Calculate the percentage change in \(l \) if \(T \) is decreased by 30%.

Old : \(T_{\text{old}} = 0.05\sqrt{l} \Rightarrow l = (20T_{\text{old}})^2 \)

When \(T \) is decreased by 30%,

New: \(0.7T_{\text{old}} = 0.05\sqrt{l} \Rightarrow l = (14T_{\text{old}})^2 \)

\[\therefore \% \text{ change in } l = \frac{(14T_{\text{old}})^2 - (20T_{\text{old}})^2}{(20T_{\text{old}})^2} \times 100\% \quad \text{------ [M1]} \]

\[= -51\% \quad \text{------ [A1]} \]

15 (a) The lowest point of a quadratic curve is \((-1, -6)\). It intersects the \(y \)-axis at -5. Write down the equation of the curve in the form \(y = a(x + b)^2 + c \), where \(a, b, c \) are integers.

Since \((-1, -6)\) is the lowest point \(\Rightarrow b = 1, c = -6 \)

\[y = a(x+1)^2 - 6 \quad \text{------ [B1]} \]

At \(x = 0, y = -5, \Rightarrow a = 1 \)

\[y = (x+1)^2 - 6 \quad \text{------ [A1]} \]

(b) Hence solve the equation \(a(x + b)^2 + c = 0 \), giving your answers correct to two decimal places.
\[(x + 1)^2 - 6 = 0 \quad \text{[M1]}\]
\[(x + 1)^2 = 6\]
\[x + 1 = \pm \sqrt{6}\]
\[\Rightarrow x = -1 - \sqrt{6} \quad \text{or} \quad x = -1 + \sqrt{6}\]
\[\therefore x = -3.45 \quad \text{or} \quad x = 1.45 \quad \text{[A1]}\]

16 (a) Is it possible to draw a regular polygon whose exterior angle is 7°?
Give a reason for your answer.

No. 360° is not divisible by 7 \quad \text{[B1, B1]}

(b) In the diagram above, \(ABC\)… is part of a polygon. \(\angle ABC\) is 148°. The size of the remaining interior angles are each equal to 139°. Find the number of sides of this polygon.

<table>
<thead>
<tr>
<th>Exterior (\angle ABC) = 180° - 148° = 32°</th>
<th>Number of sides of polygon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (n) be the number of sides of the polygon.</td>
<td></td>
</tr>
<tr>
<td>Since the sum of exterior angles of polygon = 360°</td>
<td></td>
</tr>
<tr>
<td>(\therefore 32° + (n - 1)(180° - 139°) = 360° \quad \text{[B1]})</td>
<td></td>
</tr>
<tr>
<td>(32 + 41n - 41 = 360)</td>
<td></td>
</tr>
<tr>
<td>(41n = 369)</td>
<td></td>
</tr>
<tr>
<td>(n = 9 \quad \text{[A1]})</td>
<td></td>
</tr>
</tbody>
</table>

17 Vernon travels to school either by bus or by car. The probability of being late for school is \(\frac{1}{5}\) if he travels by bus and \(\frac{1}{20}\) if he travels by car.

(a) Find the probability that he will be late on just two out of three days if he travels by bus on three consecutive days.

Probability \(= \frac{1}{5} \times \frac{1}{5} \times \frac{4}{5} \times 3 \quad \text{[M1]}\)

\[= \frac{12}{125} \quad \text{[A1]}\]

(b) If the probability that he travels by bus is \(\frac{2}{3}\), find the probability that he will be late for school on any given day.
The graph shows the charges made by a telecommunication company for making local phone calls lasting up to 70 minutes. The total cost is made up of a fixed charge, $3.00, together with a charge of $x per minute for making local phone calls.

(a) State the cost of making 44 minutes of local phone call.

The cost is $5.20

(b) (i) A second telecommunication company that does not have a fixed charge, charges 8¢ per minute for the first 50 minutes and 15¢ per minute after that.

Draw a graph, on the same axes, to represent the charge made by this second company.

(ii) Find the range of times for which it would be cheaper to subscribe to the second company.

The range of time is $0 \leq T < 65$.

19 In the diagram, \(ABCD\) is a parallelogram with \(EF \parallel AB\), \(AH = GH = 3\) cm and \(HB = DG = 2\) cm. \(EF\) intersects \(HD\) and \(HC\) at \(G\) and \(K\) respectively.

If the area of \(\triangle GHK = 18\) cm\(^2\), find the area of

(i) triangle \(DHC\),

\[
\frac{\text{Area } \triangle GHK}{\text{Area } \triangle DHC} = \left(\frac{5}{3}\right)^2
\]

\[
\text{Area } \triangle DCH = \frac{18 \times \frac{25}{9}}{18} = 50\text{ cm}^2
\]

(ii) triangle \(BCH\).

Let \(h\) be the perpendicular height of \(\triangle DCH\).
\(\triangle BCH\) shares the same height as \(\triangle DCH\).

\[
\text{Area } \triangle DCH = \frac{1}{2} \times DC \times h
\]

\[50 = \frac{1}{2} \times 5 \times h \quad \text{[M1]}
\]

\[h = 20
\]

\[\therefore \text{Area } \triangle BCH = \frac{1}{2} \times 2 \times 20
\]

\[= 20\text{ cm}^2
\]

20 The diagram shows a circle with centre \(O\) and radius 7 cm inscribed in a regular octagon of sides 5.8 cm each.

(a) Calculate the area of the octagon.

\[
\text{Area of octagon} = \frac{1}{2} \times 5.8 \times 7 \times 8 \quad \text{[M1]}
\]

\[= 162.4\text{ cm}^2
\]

\[\text{[A1]}
\]
(b) Find the total area of the shaded region between the circle and the octagon.

\[
\text{Area of shaded region} = 162.4 - \pi \times 7^2 \quad \text{[M1]}
\]
\[
= 8.46 \text{ cm}^2 \quad \text{[A1]}
\]

21 (a) Solve the equation \(\frac{x - 3}{2} - 5 = \frac{7}{2}x \).

\[
\frac{x - 3}{2} - 5 = \frac{7}{2}x
\]
\[
x - 3 - 10 = 7x \quad \text{[M1]}
\]
\[
6x = -13
\]
\[
x = -\frac{13}{6}
\]
\[
= -2\frac{1}{6} \quad \text{[A1]}
\]

(c) 216 cubes, each having edges of 2.6 cm, measured to the nearest 0.1 cm, fit exactly into a larger cubic box. Find the

(i) greatest possible length of the cubic box.

\[
\text{Greatest possible length of cubic box}
\]
\[
= 2.65 \times 6 \quad \text{[M1]}
\]
\[
= 15.9 \text{ cm} \quad \text{[A1]}
\]

(ii) least possible volume of the cubic box.

\[
\text{Least possible volume of cubic box}
\]
\[
= 216 \times 2.55^3
\]
\[
= 3581.577 \text{ cm}^3 \quad \text{[A1]}
\]
22 The equation of a straight line is \(\frac{x}{3} - \frac{y}{4} = 1 \).

(a) Find the gradient of the line.

\[
\frac{x}{3} - \frac{y}{4} = 1
\]

\[
y = \frac{4}{3}x - 4
\]

\[
\therefore \text{Gradient is } 1 \frac{1}{3} \quad \text{[A1]}
\]

(b) Find the equation of the line, parallel to \(\frac{x}{3} - \frac{y}{4} = 1 \), which passes through the point \(\left(\frac{1}{2}, \frac{1}{2} \right) \).

\[
y - \frac{1}{2} = \frac{4}{3} \left(x - \frac{3}{2} \right) \quad \text{[M1]}
\]

\[
y = \frac{4}{3}x - 2 + \frac{1}{2}
\]

\[
\Rightarrow y = \frac{4}{3}x - 1 \frac{1}{2} \quad \text{[A1 o.e]}
\]

(c) Find the distance between the points at which these two lines cut the \(x \)-axis.

At \(y = 0 \),

For \(y = \frac{4}{3}x - 4 \): \(x = 3 \)

For \(y = \frac{4}{3}x - 3 \): \(x = \frac{9}{2} \)

\[
\therefore \text{Distance between the two points } = 3 - \frac{9}{8} \quad \text{[M1]}
\]

\[
= 1 \frac{7}{8} \text{ units} \quad \text{[A1]}
\]
23 (a) In the diagram, O is the centre of the circle $ABCD$. AB and CD are two perpendicular diameters. L and R are points on AB. N and P are points on CD. M and Q are points on the circumference of the circle. $LMNO$ and $OPQR$ are two rectangles.

Explain briefly why LN and PR are equal in length.

OM and OQ are radii to the circle. ----- [B1]

Since OM is the diagonal of rectangle $LMNO$ and OQ is the diagonal of rectangle $OPQR$

$\Rightarrow OM = LN = OQ = PR$. ----- [A1]

(b) In the diagram, the points A, B, C, D and E lie on a circle, centre O.

BOE is a diameter, $AB = BC$, $\angle ECD = 60^\circ$.

AE is parallel to CD.

(i) Find $\angle AEB$.

$\angle ABC = 120^\circ$ (opp \angles of cyclic quad)

$\angle BAC = \angle BCA = \frac{1}{2}(180^\circ - 120^\circ)$ ------ [M1]

$= 30^\circ$ (base \angles of isos \triangle)

$\angle AEB = \angle ACB = 30^\circ$ (\angles in same segment) ----- [A1]

(ii) Hence show that triangle ACE is an equilateral triangle.

$\angle AEC = 60^\circ$ (alt. \angle, $AE \parallel CD$)

$\angle BCE = 90^\circ$ (Right \angle in semicircle)

$\angle BCA = 30^\circ$ (base \angles of isos \triangle)

$\angle ACE = 90^\circ - 30^\circ = 60^\circ$

$\therefore \triangle ACE$ is an equilateral triangle.
The point H represents the position of a harbour located along a coastline. Another point J represents the position of a jetty situated along the same coastline. The point L represents the position of a lighthouse.

It is given that $HJ = 1800\,\text{m}$, $\angle LHJ = 26^\circ$ and $\angle HJL = 93^\circ$.

(a) Using a scale of 1: 20000, construct the $\triangle HJL$. [2]

Answer (a) and (c)

(b) Measure and write down the distance LH.

Answer (b) $2055\,\text{m}$ [1]

(c) A yacht sails directly from H to L. By drawing a suitable line, measure and write down its closest distance to the jetty.

Answer (c) $790\,\text{m}$ [2]
READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical
expressions.
If the degree of accuracy is not specified in the question, and if the answer is not
exact, give the answer to three significant figures. Give answers in degrees to one
decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the
answer in terms of \(\pi \).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets \([\]\) at the end of each question or part
question.
The total number of marks for this paper is 100.
Mathematical Formulae

Compound interest

Total amount = \(P \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)
Surface area of a sphere = \(4\pi r^2 \)
Volume of a cone = \(\frac{1}{3} \pi r^2 h \)
Volume of a sphere = \(\frac{4}{3} \pi r^3 \)
Area of triangle \(ABC = \frac{1}{2} ab \sin C \)
Arc length = \(r\theta \), where \(\theta \) is in radians
Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]
\[a^2 = b^2 + c^2 - 2bc \cos A \]

Statistics

Mean = \(\frac{\sum fx}{\sum f} \)
Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2} \)
Answer all the questions.

1 (a) Victor and Gloria are in an organic farm in Murai Farmway with their families. Victor buys five pieces of tofu and four packets of mushroom for $23.55. Gloria buys four pieces of tofu and three packets of mushroom. She pays with two $10 notes and receives change of $1.80.

(i) Write down a pair of simultaneous equations to represent this information. Use \(t \) to represent the cost, in dollars, of a piece of tofu and \(m \) to represent the cost, in dollars, of a packet of mushrooms.

(ii) Solve your simultaneous equations to find \(t \) and \(m \).

(iii) Calculate the total cost of buying two pieces of tofu and five packets of mushroom.

(b) Solve the equation \(3 + 13x - 4x^2 = 0 \), giving the answers correct to three decimal places.

2 (a) (i) Express 8064 as the product of its prime factors.

(ii) Find the value of \(k \) such that \(\frac{8064}{k} \) is the largest possible perfect cube. Given that \(p = 2^3 \times 3^3 \times 7 \). Write down the

(iii) lowest common multiple of 8064 and \(p \), giving your answer as the product of its prime factors.

(iv) greatest integer that will divide both 8064 and \(p \) exactly.

(b) When \(n \) is a whole number, \(2n + 1 \) is an odd number.

(i) Write down an expression for the next two consecutive odd numbers after \(2n + 1 \).

(ii) Find and simplify an expression for the difference between the squares of the two consecutive odd numbers found in (b)(i).

(iii) Hence, explain why the difference between the squares of two consecutive odd numbers is always a multiple of 8.
3 The table below shows the ticket prices at the Singapore Garden Festival held at Gardens by the Bay.

<table>
<thead>
<tr>
<th>Ticket</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>$20</td>
</tr>
<tr>
<td>Child</td>
<td>$12</td>
</tr>
<tr>
<td>Senior Citizen</td>
<td>$15</td>
</tr>
</tbody>
</table>

(a) Represent the ticket price for adult, child and senior citizen by a column matrix \(Q \).

(b) Mr Ang bought 4 adults, 2 children and 1 senior citizen tickets to the festival. Write down a matrix \(P \) such that the matrix multiplication \(R = PQ \) gives the total amount Mr Ang paid for the tickets. Hence, find \(R \).

(c) The table below shows the number of tickets sold at the festival.

<table>
<thead>
<tr>
<th>Number of tickets sold</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>Adult</td>
<td>Child</td>
<td>Senior Citizen</td>
</tr>
<tr>
<td>Monday</td>
<td>81</td>
<td>(c)</td>
<td>36</td>
</tr>
<tr>
<td>Tuesday</td>
<td>85</td>
<td>42</td>
<td>(s)</td>
</tr>
</tbody>
</table>

(i) The ticket sales collected on Monday and Tuesday was $2724 and $2744 respectively. Represent these ticket sales in a \(2 \times 1 \) matrix \(T \).

(ii) Form a matrix multiplication such that the product will be \(T \).

(iii) Find the value of \(c \) and of \(s \).

Gardens by the Bay donated part of their ticket sales to a charity organization. \(U \) represents the total amount of money donated to the organization on Monday and Tuesday.

(iv) Evaluate the matrix \(U = (0.15 \ 0.1)T \).

(v) Explain what the elements of the matrix \((0.15 \ 0.1) \) represent.
ABD and BCD are two horizontal triangular plots of land.
BD = 48 m and CD = 86 m.
Angle BAD = 40° and angle BDA = 54°.
A is due north of B and ADC is a straight line.

(a) Calculate

(i) AD, \[2\]
(ii) the total area of the plots of land ABCD, \[2\]
(iii) BC. \[2\]

(b) Given that Z is a point on CD such that ZD = 48 m, calculate the bearing of B from Z. \[2\]

(c) The base of a vertical mast is at B.
The greatest angle of elevation of the top of the mast from a point on AC is 17.4°.
Calculate the angle of depression of C when viewed from the top of the mast. \[3\]
5 (a) Simplify \(\frac{16a^3b^4}{7c^4} \div \frac{4ab^3}{21c^3} \times \frac{27a^{n+1}}{8a^{n-2}} \). \[2\]

(b) Simplify \(\frac{2u+18v}{(u+4v)^2-25v^2} \). \[2\]

(c) (i) Solve the inequality \(\frac{6x}{7} - \frac{3}{8} \leq x + 2 \frac{1}{4} \). \[1\]

(ii) Hence, state the smallest integer value of \(x \) such that \(\frac{6x}{7} - \frac{3}{8} \leq x + 2 \frac{1}{4} \). \[1\]

(d) (i) Express as a single fraction in its simplest form \(\frac{h}{4-h} - \frac{1}{h+3} \). \[2\]

(ii) Solve the equation \(\frac{h}{4-h} - \frac{1}{h+3} = \frac{4}{5} \). \[3\]

6 Answer the whole of this question on a sheet of graph paper.

The variables \(x \) and \(y \) are connected by the equation

\[y = x + \frac{12}{x} - 5. \]

Some corresponding values of \(x \) and \(y \) are given in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>8</td>
<td>(p)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>3</td>
<td>3.7</td>
<td>4.5</td>
</tr>
</tbody>
</table>

(a) Calculate the value of \(p \). \[1\]

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal \(x \)-axis for \(0 \leq x \leq 8 \). Using a scale of 2 cm to represent 1 unit, draw a vertical \(y \)-axis for \(0 \leq y \leq 8 \).

On your axes, plot the points given in the table and join them with a smooth curve. \[3\]

(c) Use your graph to find the solutions of \(x + \frac{12}{x} = 8 \frac{1}{5} \). \[1\]

(d) By drawing a tangent, find the gradient of the curve at \((6, 3) \). \[2\]

(e) By drawing a suitable straight line on your graph, solve \(2x^2 - 11x + 12 = 0 \). \[2\]
7 (a) A is a point \((-4, 1)\), \(\overrightarrow{AB} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}\) and \(\overrightarrow{AC} = \begin{pmatrix} -3 \\ 8 \end{pmatrix}\).

(i) Write down the column vector \(\overrightarrow{BC}\). \([1]\)

(ii) Find \(|\overrightarrow{BC}|\). \([2]\)

(iii) \(P\) is a point such that \(\overrightarrow{BP} = 2\overrightarrow{PC}\).

Find the column vector \(\overrightarrow{AP}\). \([2]\)

(iv) Given \(\overrightarrow{OQ} = \begin{pmatrix} 2 \\ 3 \\ 11/3 \end{pmatrix}\).

What type of quadrilateral is \(APQB\)?
Justify your answer using vectors. \([3]\)

(b) \(OABC\) is a parallelogram,
\(\overrightarrow{OA} = \mathbf{p}, \overrightarrow{OC} = \mathbf{q}\) and \(CT = 4AC\).

\(ACT, BRT\) and \(OCR\) are straight lines.

(i) Express each of the following, as simply as possible, in terms of \(\mathbf{p}\) and/or \(\mathbf{q}\).

(a) \(\overrightarrow{OB}\). \([1]\)

(b) \(\overrightarrow{OT}\). \([1]\)

(c) \(\overrightarrow{BT}\). \([1]\)

(ii) Given that \(\overrightarrow{BR} = \frac{4}{5}\mathbf{q} - \mathbf{p}\), find \(k\) if \(\overrightarrow{OC} = k\overrightarrow{CR}\). \([1]\)

(iii) Find the value of \(\frac{\text{area of } \triangle BCR}{\text{area of } \triangle OCT}\). \([1]\)
The line DF is a diameter of the circle $BDEF$ with centre O.

ABC is a tangent to the circle at B.

X is the point of intersection of DF and BE.

Angle $DBE = 30^\circ$ and angle $BEF = 58^\circ$.

(i) Find

(a) angle FBO, [2]

(b) angle ABF, [1]

(c) angle DXE. [1]

(ii) Given that the radius of the circle is 14 cm, find the area of triangle BDF. [2]

(b) In the diagram, POR is a quadrant of a circle with radius 6 cm.

OR and PQ are parallel.

QR is an arc of a circle with centre P.

Calculate the area and the perimeter of the shaded region. [4]
9 (a) The ages of 50 employees in Company V is shown in the table below.

<table>
<thead>
<tr>
<th>Age in years</th>
<th>24 < x ≤ 28</th>
<th>28 < x ≤ 32</th>
<th>32 < x ≤ 36</th>
<th>36 < x ≤ 40</th>
<th>40 < x ≤ 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>p</td>
</tr>
</tbody>
</table>

(i) State the value of \(p \). [1]

(ii) Hence, calculate the

(a) mean age of the employees, [1]

(b) standard deviation. [1]

(iii) The age distribution of 50 employees in Company W is summarized below.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>29.6 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard deviation</td>
<td>7.13 years</td>
</tr>
</tbody>
</table>

Make two comparisons between the ages of employees in both companies. [2]

(b) A box contains 5 red flags and 8 yellow flags. Two flags are taken from the bag at random without replacement.

(i) Draw a tree diagram to show the probabilities of the possible outcomes. [2]

(ii) Find, as a fraction in its simplest form, the probability that

(a) the first flag is red and the second flag is yellow, [1]

(b) both flags are the same colour, [1]

(c) at least one flag is yellow. [1]
Class 4V has chosen the ‘Go Green’ theme for their Social Innovation Project. The diagram above shows the recycling bins structure that they have built.

The whole structure consists of 3 open identical cylindrical plastic containers fit into a wooden cuboid crate. All the containers and the crate are of negligible thickness.

3 circles had to be cut from the top of the crate to fit the containers. Each plastic container is placed in the crate such that they are 20 cm away from the sides of the crate, $ADHE$ and $BCGF$, as well as 20 cm apart from each other. Each plastic container touches the base and sides, $ABFE$ and $DCGH$, of the crate too. The radius and height of the plastic container are 30 cm and 120 cm respectively.

(a) Write down the dimensions of the crate.
(b) Calculate the
 (i) exact total surface area of the crate that was cut out,
 (ii) exact total internal surface area of each cylindrical container,
 (iii) total exposed external surface area of the crate.
(c) The class would like to paint all the exposed external surfaces of the crate yellow. One tin of paint can cover an area of 3.75 m2. How many tins do they need to purchase? Justify your answer.
(d) If each cylindrical container is filled to the brim, what is the maximum volume of recyclables that can be collected by the class in a single collection?

End of Paper
2016 Victoria School Prelim 2 Mathematics Paper 2 Answer Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **1a(i)** | $5t + 4m = 23.55$
| | $4t + 3m = 18.20$
| **1a(ii)** | $t = 2.15$ and $m = 3.20$
| **1a(iii)** | $\$ 20.30
| **1b** | $x = -0.216$ (3 d.p.) or $x = 3.466$ (3 d.p.)
| **2a(i)** | $8064 = 2^7 \times 3^2 \times 7$
| **2a(ii)** | $k = 126$
| **2a(iii)** | $2^7 \times 3^4 \times 7$
| **2a(iv)** | 504
| **2b(i)** | $(2n + 3)$ and $(2n + 5)$
| **2b(ii)** | $8(n + 2)$
| **2b(iii)** | Since 8 is a factor of $8(n + 2)$, the difference between two consecutive odd numbers will always be a multiple of 8.
| **3(a)** | $Q = \begin{pmatrix} 20 \\ 12 \\ 15 \end{pmatrix}$
| **3(b)** | $P = \begin{pmatrix} 4 & 2 & 1 \\ \end{pmatrix}$
| **3(c)(i)** | $R = \begin{pmatrix} 4 & 2 & 1 \\ \end{pmatrix} \begin{pmatrix} 20 \\ 12 \\ 15 \end{pmatrix} = \begin{pmatrix} 119 \end{pmatrix}$
| **3(c)(ii)** | $T = \begin{pmatrix} 2724 \\ 2744 \end{pmatrix}$
| **3(c)(iii)** | $81c + 85s = 2724$
| **3(c)(iv)** | $12c + 15s = 2744$
| **3(c)(v)** | $c = 47$ and $s = 36$
| **3(c)(vi)** | 683
| **3(c)(v)** | Elements of $(0.15 \ 0.1)$ represent the percentage of the total ticket sales that Gardens by the Bay had donated to the charity organization on Monday and Tuesday respectively.
| **4(a)(i)** | 74.5 m (3 s.f.)
| **4(a)(ii)** | 3120 m3 (3 s.f.)
| **4(a)(iii)** | 121 m (3 s.f.)
| **4(b)** | 293°
| **4(c)** | 5.8° (1 d.p.)

VICTORIA SCHOOL 16/S4PR2/EM/2

Carousell-examguru 283
5(a) \[\frac{81a^2b^2}{2c} \]

5(b) \[\frac{2}{u-v} \]

5(c)(i) \[x \geq -18 \frac{3}{8} \]

5(c)(ii) \[-18 \]

5(d)(i) \[\frac{h^2 + 4h - 4}{(4-h)(h+3)} \]

5(d)(ii) \[h = -3 \frac{7}{9} \text{ or } h = 2 \]

6(a) \[p = 4.5 \]

6(c) \[x = 1.9 \text{ or } x = 6.3 \]

6(d) \[0.660 \text{ (3 s.f.)} \]

6(e) \[x = 1.5 \text{ or } x = 4 \]

7(a)(i) \[\begin{pmatrix} -8 \\ 4 \end{pmatrix} \]

7(a)(ii) \[8.94 \text{ units (3 s.f.)} \]

7(a)(iii) \[\begin{pmatrix} -1 \\ 3 \\ 6 \frac{2}{3} \end{pmatrix} \]

7(a)(iv) \[\overrightarrow{AP} = \overrightarrow{BQ} \text{ and } \overrightarrow{AB} = \overrightarrow{PQ} \]

Thus, \(APQB \) is a parallelogram.

7(b)(i)(a) \[\frac{p + q}{2} \]

7(b)(i)(b) \[5q - 4p \]

7(b)(i)(c) \[4q - 5p \]

7(b)(ii) \[k = 1 \frac{1}{4} \]

7(b)(iii) \[\frac{1}{5} \]

8(a)(i)(a) \[32^\circ \]

8(a)(i)(b) \[58^\circ \]

8(a)(i)(c) \[88^\circ \]

8(a)(ii) \[176 \text{ cm}^2 \text{ (3 s.f.)} \]

8(b) Area of shaded region = 18 cm\(^2\)

Perimeter of shaded region = 24.6 cm (3 s.f.)
<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9(a)(i)</td>
<td>$p = 12$</td>
</tr>
<tr>
<td>9(a)(ii)(a)</td>
<td>34.64 years</td>
</tr>
<tr>
<td>9(a)(ii)(b)</td>
<td>5.45 years (3 s.f.)</td>
</tr>
<tr>
<td>9(a)(iii)</td>
<td>The employees in company W are younger than those in company V since the mean age of employees in company W is lower than that of company V. The spread of ages of employees in company W is wider since the standard deviation of ages of employees in company W is larger than that of company V.</td>
</tr>
<tr>
<td>9(b)(ii)(a)</td>
<td>$\frac{10}{39}$</td>
</tr>
<tr>
<td>9(b)(ii)(b)</td>
<td>$\frac{19}{39}$</td>
</tr>
<tr>
<td>9(b)(ii)(c)</td>
<td>$\frac{34}{39}$</td>
</tr>
<tr>
<td>10(a)</td>
<td>260 cm by 60 cm by 120 cm</td>
</tr>
<tr>
<td>10(b)(i)</td>
<td>2700π cm²</td>
</tr>
<tr>
<td>10(b)(ii)</td>
<td>8100π cm²</td>
</tr>
<tr>
<td>10(b)(iii)</td>
<td>83900 cm² (3 s.f.)</td>
</tr>
<tr>
<td>10(c)</td>
<td>3</td>
</tr>
<tr>
<td>10(d)</td>
<td>1020000 cm³ (3 s.f.)</td>
</tr>
</tbody>
</table>
This paper consists of 28 printed pages, including the cover page.

VICTORIA SCHOOL
PRELIMINARY EXAMINATION TWO
SECONDARY FOUR

Additional Materials: Answer Paper
Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100.
Mathematical Formulae

Compound interest

Total amount = \(P \left(1 + \frac{r}{100}\right)^n \)

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r \theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
a^2 = b^2 + c^2 - 2bc \cos A
\]

Statistics

\[
\text{Mean} = \frac{\sum fx}{\sum f}
\]

Standard deviation = \(\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \)
Answer all the questions.

1 (a) Victor and Gloria are in an organic farm in Murai Farmway with their families. Victor buys five pieces of tofu and four packets of mushroom for $23.55. Gloria buys four pieces of tofu and three packets of mushroom. She pays with two $10 notes and receives change of $1.80.

(i) Write down a pair of simultaneous equations to represent this information. Use \(t \) to represent the cost, in dollars, of a piece of tofu and \(m \) to represent the cost, in dollars, of a packet of mushrooms. [2]

(ii) Solve your simultaneous equations to find \(t \) and \(m \). [2]

(iii) Calculate the total cost of buying two pieces of tofu and five packets of mushroom. [1]

(b) Solve the equation \(3 + 13x - 4x^2 = 0 \), giving the answers correct to three decimal places. [4]

Solutions:

(a) (i) \[5t + 4m = 23.55 \]
\[4t + 3m = 18.20\]

(ii) \[5t + 4m = 23.55 \quad \ldots \quad (1)\]
\[4t + 3m = 18.20 \quad \ldots \quad (2)\]
\[(1) \times 3: \quad 15t + 12m = 70.65 \quad \ldots \quad (3)\]
\[(2) \times 4: \quad 16t + 12m = 72.80 \quad \ldots \quad (4)\]
\[(4) - (3): \quad t = 2.15\]

Sub. \(t = 2.15 \) into (2):
\[4(2.15) + 3m = 18.20\]
\[3m = 9.6\]
\[m = 3.20\]

\[t = 2.15 \text{ and } m = 3.20\]
(a) (iii)
Cost = 2(2.15) + 5(3.20)
= $ 20.30 \quad \rightarrow \text{A1}

(b)
\[3 + 13x - 4x^2 = 0\]

\[x = \frac{-13 \pm \sqrt{(13)^2 - 4(-4)(3)}}{2(-4)} \quad \text{or} \quad x = \frac{-(-13) \pm \sqrt{(-13)^2 - 4(4)(-3)}}{2(4)}\]

\[x = \frac{-13 \pm \sqrt{217}}{-8} \quad \quad \quad \quad \quad \quad \quad x = \frac{13 \pm \sqrt{217}}{8}\]

\[x = -0.216 \text{ (3 d.p.) or } x = 3.466 \text{ (3 d.p.)} \quad \rightarrow \text{A2} \]
2 (a) (i) Express 8064 as the product of its prime factors. [1]

(ii) Find the value of \(k \) such that \(\frac{8064}{k} \) is the largest possible perfect cube. [1]

Given that \(p = 2^3 \times 3^4 \times 7 \). Write down the

(iii) lowest common multiple of 8064 and \(p \), giving your answer as the product of its prime factors, [1]

(iv) greatest integer that will divide both 8064 and \(p \) exactly. [1]

(b) When \(n \) is a whole number, \(2n+1 \) is an odd number.

(i) Write down an expression for the next two consecutive odd numbers after \(2n+1 \). [1]

(ii) Find and simplify an expression for the difference between the squares of the two consecutive odd numbers found in (b)(i). [2]

(iii) Hence, explain why the difference between the squares of two consecutive odd numbers is always a multiple of 8. [1]

Solutions:

(a) (i) \(8064 = 2^7 \times 3^3 \times 7 \) \(\quad \text{B1} \)

(ii) For \(\frac{8064}{k} \) to be the largest perfect cube, \(k \) needs to be the smallest possible value.

Largest \(\frac{8064}{k} \) will be \(2^6 \).

\(k = 2 \times 3^2 \times 7 \)

\(k = 126 \) \(\quad \text{B1} \)

(iii) \(8064 = 2^7 \times 3^3 \times 7 \)

\(p = 2^3 \times 3^4 \times 7 \)

Lowest common multiple = \(2^7 \times 3^4 \times 7 \) \(\quad \text{B1} \)
(iv) \[8064 = 2^7 \times 3^2 \times 7 \]
\[p = 2^3 \times 3^4 \times 7 \]

Greatest integer = \(2^3 \times 3^2 \times 7 \)
\[= 504 \quad \text{B1} \]

(b) (i) The next two numbers are \((2n+3)\) and \((2n+5)\). \quad \text{B1}

(ii) \[
(2n+5)^2 - (2n+3)^2 = 4n^2 + 20n + 25 - (4n^2 + 12n + 9)
= 4n^2 + 20n + 25 - 4n^2 - 12n - 9
= 8n + 16
= 8(n + 2) \quad \text{B1}
\]

(iii) Since 8 is a factor of \(8(n+2)\), the difference between two consecutive odd numbers will always be a multiple of 8. \quad \text{B1}
The table below shows the ticket prices at the Singapore Garden Festival held at Gardens by the Bay.

<table>
<thead>
<tr>
<th>Ticket</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>$20</td>
</tr>
<tr>
<td>Child</td>
<td>$12</td>
</tr>
<tr>
<td>Senior Citizen</td>
<td>$15</td>
</tr>
</tbody>
</table>

(a) Represent the ticket price for adult, child and senior citizen by a column matrix Q.

(b) Mr Ang bought 4 adults, 2 children and 1 senior citizen tickets to the festival. Write down a matrix P such that the matrix multiplication $R = PQ$ gives the total amount Mr Ang paid for the tickets. Hence, find R.

(c) The table below shows the number of tickets sold at the festival.

<table>
<thead>
<tr>
<th>Number of tickets sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
</tr>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
</tbody>
</table>

(i) The ticket sales collected on Monday and Tuesday was $2724 and $2744 respectively. Represent these ticket sales in a 2×1 matrix T.

(ii) Form a matrix multiplication such that the product will be T.

(iii) Find the value of c and of s.

Gardens by the Bay donated part of their ticket sales to a charity organization. U represents the total amount of money donated to the organization on Monday and Tuesday.

(iv) Evaluate the matrix $U = (0.15 0.1)T$.

(v) Explain what the elements of the matrix $(0.15 0.1)$ represent.
Solutions:

(a) \[Q = \begin{pmatrix} 20 \\ 12 \\ 15 \end{pmatrix} \] \[\text{B1} \]

(b) \[P = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}, \quad R = \begin{pmatrix} 4 \\ 2 \\ 1 \\ 20 \\ 12 \\ 15 \end{pmatrix} \]
\[= \begin{pmatrix} 119 \end{pmatrix} \] \[\text{A1} \]

(c) (i) \[T = \begin{pmatrix} 2724 \\ 2744 \end{pmatrix} \] \[\text{B1} \]

(ii) \[\begin{pmatrix} 81 & c & 36 \\ 85 & 42 & s \end{pmatrix} \begin{pmatrix} 20 \\ 12 \\ 15 \end{pmatrix} = \begin{pmatrix} 2724 \\ 2744 \end{pmatrix} \] \[\text{B1} \]

(iii) \[1620 + 12c + 540 = 2724 \]
\[12c = 564 \]
\[c = 47 \] \[\text{A1} \]
\[1700 + 504 + 15s = 2744 \]
\[15s = 540 \]
\[s = 36 \] \[\text{A1} \]

(iv) \[U = (0.15 \ 0.1)T \]
\[= (0.15 \ 0.1) \begin{pmatrix} 2724 \\ 2744 \end{pmatrix} \]
\[= \begin{pmatrix} 683 \end{pmatrix} \] \[\text{A1} \]

(v) Elements of \((0.15 \ 0.1)\) represent the \textbf{percentage} of the \textbf{total ticket sales} that Gardens by the Bay had \textbf{donated} to the charity organization on \textbf{Monday and Tuesday respectively}. \[\text{[B1]} \]
ABD and BCD are two horizontal triangular plots of land. $BD = 48\,\text{m}$ and $CD = 86\,\text{m}$. Angle $BAD = 40^\circ$ and angle $BDA = 54^\circ$. A is due north of B and ADC is a straight line.

(a) Calculate

(i) AD, [2]

(ii) the total area of the plots of land $ABCD$, [2]

(iii) BC. [2]

(b) Given that Z is a point on CD such that $ZD = 48\,\text{m}$, calculate the bearing of B from Z. [2]

(c) The base of a vertical mast is at B. The greatest angle of elevation of the top of the mast from a point on AC is 17.4°. Calculate the angle of depression of C when viewed from the top of the mast. [3]

Solutions:

(a) (i)

$\angle ABD = 180^\circ - 54^\circ - 40^\circ \quad (\angle \text{sum of } \Delta)$

$= 86^\circ$

$\frac{AD}{\sin 86^\circ} = \frac{48}{\sin 40^\circ}$

$AD = \frac{48 \sin 86^\circ}{\sin 40^\circ}$

$AD \approx 74.4928$

$AD = 74.5\,\text{m} \quad (3\,\text{s.f.})$
(ii) \[\angle ABD = 180^\circ - 54^\circ \text{ (adj. } \angle \text{s on a str. line)} \]
\[= 126^\circ \]
Total area \[\approx \frac{1}{2} (74.49) (48) \sin 54^\circ + \frac{1}{2} (48) (86) \sin 126^\circ \]
\[\approx 3116.139 \]
\[= 3120 \text{ m}^2 \text{ (3 s.f.)} \]

(iii) \[BC^2 = 48^2 + 86^2 - 2(48)(86) \cos 126^\circ \]
\[BC \approx 120.6348 \]
\[BC = 121 \text{ m} \text{ (3 s.f.)} \]

(b) \[\angle AZN = 40^\circ \text{ (alt. } \angle \text{s, } BA \parallel ZN) \]
\[\angle DBZ = \angle DZB \text{ (base } \angle \text{s of isos. } \triangle) \]
\[\angle DBZ = \frac{180^\circ - 126^\circ}{2} \text{ (} \angle \text{ sum of } \triangle) \]
\[= 27^\circ \]

Bearing of B from Z = 360° - 40° - 27° (\angle \text{s at a pt.})
\[= 293^\circ \]
(c) Let the point on AC be Y and the top of the mast be T.

\[
\frac{1}{2} \times BY \times AC = 3116
\]

\[
\frac{1}{2} \times BY \times (74.49 + 86) = 3116 \quad \text{M1}
\]

\[
BY = \frac{2 \times 3116}{160.49}
\]

\[
BY \approx 38.83 \text{ m}
\]

\[
\tan 17.4^\circ = \frac{BT}{38.83} \quad \text{M1}
\]

\[
BT \approx 12.168584 \text{ m}
\]

Let the angle of depression be θ.

\[
\tan \theta = \frac{12.17}{120.6}
\]

\[
\theta = 5.8^\circ \quad (1 \text{ d.p.}) \quad \text{A1}
\]
5 (a) Simplify \(\frac{16a^3b^4}{7c^4} \div \frac{4ab^2}{21c^3} \times \frac{27a^{n+1}}{8a^{n-2}} \). [2]

(b) Simplify \(\frac{2u+18v}{(u+4v)^2-25v^2} \). [2]

(c) (i) Solve the inequality \(\frac{6x}{7} - \frac{3}{8} \leq x + 2 \frac{1}{4} \). [1]

(ii) Hence, state the smallest integer value of \(x \) such that \(\frac{6x}{7} - \frac{3}{8} \leq x + 2 \frac{1}{4} \). [1]

(d) (i) Express as a single fraction in its simplest form \(\frac{h}{4-h} - \frac{1}{h+3} \). [2]

(ii) Solve the equation \(\frac{h}{4-h} - \frac{1}{h+3} = \frac{4}{5} \). [3]

Solutions:

(a) \[
\frac{16a^3b^4}{7c^4} \div \frac{4ab^2}{21c^3} \times \frac{27a^{n+1}}{8a^{n-2}} = \frac{16a^3b^4}{7c^4} \times \frac{21c^3}{4ab^2} \times \frac{27a^{n+1}}{8a^{n-2}} = \frac{81a^5b^2}{2c} \]

(b) \[
\frac{2u+18v}{(u+4v)^2-25v^2} = \frac{2u+18v}{(u+4v)^2-(5v)^2} = \frac{2u+18v}{(u+4v+5v)(u+4v-5v)} = \frac{2(u+9v)}{(u+9v)(u-v)} = \frac{2}{u-v} \]

M1 (factorising the denominator)
(c) (i) \[
\frac{6x}{7} - \frac{3}{8} \leq x + 2\frac{1}{4}
\]
\[
\frac{-x}{7} \leq \frac{21}{8}
\]
x \geq -\frac{147}{8}
x \geq -18\frac{3}{8} \quad \text{(A1)}

(ii) The smallest integer value of \(x\) is \(-18\). \quad \text{(B1)}

(d) (i) \[
\frac{h}{4-h} - \frac{1}{h+3} = \frac{h(h+3)-(4-h)}{(4-h)(h+3)} \quad \text{(M1)}
\]
\[
= \frac{h^2+3h-4+h}{(4-h)(h+3)}
\]
\[
= \frac{h^2+4h-4}{(4-h)(h+3)} \quad \text{(A1)}
\]

(ii) \[
\frac{h}{4-h} - \frac{1}{h+3} = \frac{4}{5}
\]
\[
\frac{h^2+4h-4}{(4-h)(h+3)} = \frac{4}{5}
\]
\[
5(h^2+4h-4) = 4(12+h-h^2)
\]
\[
5h^2+20h-20 = 48 + 4h - 4h^2
\]
\[
9h^2 + 16h - 68 = 0
\]
\[
(9h+34)(h-2) = 0 \quad \text{(M1)}
\]
\[
9h+34 = 0 \quad \text{or} \quad h-2 = 0
\]
\[
h = -\frac{34}{9} \quad \text{or} \quad h = 2 \quad \text{(A1)}
\]
6 Answer the whole of this question on a sheet of graph paper.

The variables \(x \) and \(y \) are connected by the equation

\[
y = x + \frac{12}{x} - 5.\]

Some corresponding values of \(x \) and \(y \) are given in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>8</td>
<td>(p)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>3</td>
<td>3.7</td>
<td>4.5</td>
</tr>
</tbody>
</table>

(a) Calculate the value of \(p \). \[1\]

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal \(x \)-axis for \(0 \leq x \leq 8 \).
Using a scale of 2 cm to represent 1 unit, draw a vertical \(y \)-axis for \(0 \leq y \leq 8 \).

On your axes, plot the points given in the table and join them with a smooth curve. \[3\]

(c) Use your graph to find the solutions of \(x + \frac{12}{x} = 8 \frac{1}{5} \). \[1\]

(d) By drawing a tangent, find the gradient of the curve at \((6, 3) \). \[2\]

(e) By drawing a suitable straight line on your graph, solve \(2x^2 - 11x + 12 = 0 \). \[2\]

Solutions:

(a) \(p = 4.5 \) \hspace{1cm} B1

(b) Correct scale \hspace{0.5cm} B1
Correct plotting of points \hspace{0.5cm} B1
Smooth curve \hspace{0.5cm} B1

\(-1: \text{ missing labels } (x, y, O)\)

(c) \[x + \frac{12}{x} = 8 \frac{1}{5} \]
\[x + \frac{12}{x} - 5 = 3 \frac{1}{5}\]

Draw the line \(y = 3 \frac{1}{5} \).

\(x = 1.9 \) or \(x = 6.3 \) \hspace{1cm} B1 (with correct line drawn)
(d) Draw a tangent at \((6, 3)\).

Gradient:
\[
\frac{4.3 - 1}{8 - 3} = 0.660 \quad (3 \text{ s.f.})
\]

(e) \[2x^2 - 11x + 12 = 0\]
\[2x - 11 + \frac{12}{x} = 0\]
\[2x + \frac{12}{x} - 11 = \frac{12}{x} - x + 6 = -x + 6\]
\[x + \frac{12}{x} - 5 = 6 - x\]

Draw the line \(y = 6 - x\).

\(x = 1.5\) or \(x = 4\)
The graph shows two functions:

1. \(y = x + \frac{1}{x} - 5 \)
2. \(y = 8 - x \)

The points of intersection are marked as \((3, 1)\) and \((8, 3)\).
7 (a) A is a point \((-4, 1)\), \(\overrightarrow{AB} = \left(\frac{5}{4}\right)\) and \(\overrightarrow{AC} = \left(-\frac{3}{8}\right)\).

(i) Write down the column vector \(\overrightarrow{BC}\).

(ii) Find \(|\overrightarrow{BC}|\).

(iii) \(P\) is a point such that \(\overrightarrow{BP} = 2 \overrightarrow{PC}\). Find the column vector \(\overrightarrow{AP}\).

(iv) Given \(\overrightarrow{OQ} = \begin{pmatrix} 2 \\ 3 \\ \frac{11}{2} \\ \frac{3}{3} \end{pmatrix}\). What type of quadrilateral is \(APQB\)? Justify your answer using vectors.

(b) \(OABC\) is a parallelogram. \(\overrightarrow{OA} = \mathbf{p}, \overrightarrow{OC} = \mathbf{q}\) and \(CT = 4 \overrightarrow{AC}\). \(ACT, BRT\) and \(OCR\) are straight lines.

(i) Express each of the following, as simply as possible, in terms of \(\mathbf{p}\) and/or \(\mathbf{q}\).

(a) \(\overrightarrow{OB}\).

(b) \(\overrightarrow{OT}\).

(c) \(\overrightarrow{BT}\).

(ii) Given that \(\overrightarrow{BR} = \frac{4}{5} \mathbf{q} - \mathbf{p}\), find \(k\) if \(\overrightarrow{OC} = k \overrightarrow{CR}\).

(iii) Find the value of \(\frac{\text{area of } \triangle BCR}{\text{area of } \triangle OCT}\).
Solutions:
7 (a) (i) \[\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} \]
\[= \begin{pmatrix} -5 \\ -4 \end{pmatrix} + \begin{pmatrix} -3 \\ 8 \end{pmatrix} \]
\[= \begin{pmatrix} -8 \\ 4 \end{pmatrix} \]
\[\rightarrow \text{B1} \]

(ii) \[|\overrightarrow{BC}| = \sqrt{(-8)^2 + 4^2} \]
\[= \sqrt{80} \]
\[= 8.94 \text{ units (3 s.f.)} \]
\[\rightarrow \text{A1} \]

(iii) \[BP = 2PC \]
\[\overrightarrow{BA} + \overrightarrow{AP} = 2(\overrightarrow{PA} + \overrightarrow{AC}) \]
\[\overrightarrow{AP} - \overrightarrow{AB} = 2(\overrightarrow{AC} - \overrightarrow{AP}) \]
\[\overrightarrow{AP} - \overrightarrow{AB} = 2\overrightarrow{AC} - 2\overrightarrow{AP} \]
\[3\overrightarrow{AP} = 2\overrightarrow{AC} + \overrightarrow{AB} \]
\[= 2\begin{pmatrix} -3 \\ 8 \end{pmatrix} + \begin{pmatrix} 5 \\ 4 \end{pmatrix} \]
\[= \begin{pmatrix} -1 \\ 20 \end{pmatrix} \]
\[\overrightarrow{AP} = \frac{1}{3} \begin{pmatrix} -1 \\ 20 \end{pmatrix} \]
\[= \begin{pmatrix} -1/3 \\ 2/3 \end{pmatrix} \]
\[\rightarrow \text{A1} \]

\[\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP} \]
\[= \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} \]
\[= \begin{pmatrix} 5 \\ 4 \end{pmatrix} + \frac{2}{3}\begin{pmatrix} -8 \\ 4 \end{pmatrix} \]
\[= \begin{pmatrix} 5 \\ 4 \end{pmatrix} + \begin{pmatrix} -5 \frac{1}{3} \\ 2 \frac{2}{3} \end{pmatrix} \]
\[= \begin{pmatrix} -1/3 \\ 4/3 \end{pmatrix} \]
\[\rightarrow \text{Alternative method} \]
7 (a) (iv)

\[\overrightarrow{AB} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \]

\[\overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \]

\[\overrightarrow{OB} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \end{pmatrix} \]

\[= \begin{pmatrix} 1 \\ 5 \end{pmatrix} \]

\[\overrightarrow{BQ} = \overrightarrow{OQ} - \overrightarrow{OB} \]

\[= \begin{pmatrix} 2 \\ 3 \\ 11 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix} \]

\[= \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \]

\[\therefore \overrightarrow{AP} = \overrightarrow{BQ} \]

\[\overrightarrow{PQ} = \overrightarrow{PA} + \overrightarrow{AB} + \overrightarrow{BQ} \]

\[= \begin{pmatrix} 1 \\ 3 \\ -6 \end{pmatrix} + \begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \]

\[= \begin{pmatrix} 5 \\ 4 \end{pmatrix} \]

\[\therefore \overrightarrow{AB} = \overrightarrow{PQ} \]

\[|\overrightarrow{AP}| = |\overrightarrow{BQ}| = \sqrt{\left(-\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2} \]

\[= \sqrt{\frac{401}{9}} \]

\[= 6.67 \text{ units (3 s.f)} \]

\[|\overrightarrow{AB}| = |\overrightarrow{PQ}| = \sqrt{(5)^2 + (4)^2} \]

\[= \sqrt{41} \]

\[= 6.40 \text{ units (3 s.f)} \]

Thus, \(APQB\) is a parallelogram.
7 (b) (i) (a) \[\overline{OB} = \overline{OA} + \overline{AB} \]
\[= \overline{OA} + \overline{OC} \]
\[= p + q \quad \text{B1} \]

(b) \[\overline{AC} = \overline{OC} - \overline{OA} \]
\[= q - p \]
\[\overline{OT} = \overline{OA} + \overline{AT} \]
\[= p + 5\overline{AC} \]
\[= p + 5(q - p) \]
\[= 5q - 4p \quad \text{A1} \]

(c) \[\overline{BT} = \overline{OT} - \overline{OB} \]
\[= 5q - 4p - p - q \]
\[= 4q - 5p \quad \text{A1} \]

(ii) \[\overline{BR} = \frac{4}{5}q - p \]
\[\overline{OR} - \overline{OB} = \frac{4}{5}q - p \]
\[\overline{OR} = \frac{4}{5}q - p + p + q \]
\[\overline{OR} = \frac{9}{5}q \]
\[\therefore \overline{OC} = \frac{5}{4} \overline{CR} \]
\[k = 1 \frac{1}{4} \quad \text{A1} \]
(iii)

\[BR = \frac{4}{5}q - p \]

\[= \frac{1}{5}(4q - 5p) \]

\[= \frac{1}{5}BT \]

\[
\begin{align*}
\text{area of } \triangle OCT &= \frac{OC}{CR} \\
\text{area of } \triangle CTR &= \frac{5}{4} \\
\end{align*}
\]

\[
\begin{align*}
\text{area of } \triangle BCR &= \frac{RB}{TR} \\
\text{area of } \triangle CTR &= \frac{1}{4} \\
\end{align*}
\]

\[\therefore \quad \frac{\text{area of } \triangle BCR}{\text{area of } \triangle OCT} = \frac{1}{5} \]

\[A1 \]
The line DF is a diameter of the circle $BDEF$ with centre O. ABC is a tangent to the circle at B. X is the point of intersection of DF and BE. Angle $DBE = 30^\circ$ and angle $BEF = 58^\circ$.

(i) Find

(a) angle FBO, [2]
(b) angle ABF, [1]
(c) angle DXE. [1]

(ii) Given that the radius of the circle is 140 cm, find the area of triangle BDF. [2]

(b) In the diagram, POR is a quadrant of a circle with radius 6 cm. OR and PQ are parallel. QR is an arc of a circle with centre P.

Calculate the area and the perimeter of the shaded region. [4]
Solutions:

(a)(i)(a)
\[\angle FOB = 2 \times 58^\circ \ (\angle \text{ at centre} = 2 \angle \text{ at circumference}) \]
\[= 116^\circ \]
\[\angle OFB = \angle OBF \ (\text{base } \angle s \text{ of isos. } \Delta) \]
\[\angle FBO = \frac{180^\circ - 116^\circ}{2} \ (\angle \text{ sum of } \Delta) \]
\[= 32^\circ \]

(a)(i)(b)
\[\angle OBA = 90^\circ \ (\tan \perp \text{ rad}) \]
\[\angle ABF = 90^\circ - 32^\circ \ (\text{complementary } \angle s) \]
\[= 58^\circ \]

Alternative working:
\[\angle ABF = 58^\circ \ (\angle \text{ in alt. segment}) \]

(a)(i)(c)
\[\angle DFE = 30^\circ \ (\angle \text{ in the same segment}) \]
\[\angle DXE = 30^\circ + 58^\circ \ (\text{ext. } \angle \text{ of } \Delta) \]
\[= 88^\circ \]

(a)(ii)
\[\angle BDF = 58^\circ \ (\angle \text{ in the same segment}) \]
\[\angle DBF = 90^\circ \ (\text{rt. } \angle \text{ in a semicircle}) \]
\[\text{In } \Delta BDF, \ \cos 58^\circ = \frac{BD}{DF} \]
\[\sin 58^\circ = \frac{BF}{DF} \]

\[BD = 28 \cos 58^\circ \]
\[\approx 14.84 \ \text{cm} \]

\[BF = 28 \sin 58^\circ \]
\[\approx 23.75 \ \text{cm} \]

Area of \(\Delta BDF = \frac{1}{2} (14.84)(28) \sin 58^\circ \) or Area of \(\Delta BDF = \frac{1}{2} (14.84)(23.75) \]
\[= 176 \ \text{cm}^2 \ (3 \text{ s.f.}) \]
\[\angle PRO = \angle RPO \; (\text{base } \angle \text{s of isos. } \Delta) \]

\[\angle PRO = \frac{\pi}{2} - \frac{\pi}{2} = \frac{\pi}{4} \; (\angle \text{ sum of } \Delta) \]

\[\angle RPQ = \frac{\pi}{4} \; (\text{alt. } \angle \text{s, } PQ \parallel OR) \]

\[PR = \sqrt{6^2 + 6^2} = \sqrt{72} \; \text{cm} \]

Area of shaded region
\[= \frac{1}{2} \left(\sqrt{72} \right)^2 \left(\frac{\pi}{4} \right) - \frac{1}{2} (6)^2 \left(\frac{\pi}{2} - \sin \frac{\pi}{2} \right) \]
\[= 18 \; \text{cm}^2 \]

Perimeter of shaded region
\[= \sqrt{72} + \left(\sqrt{72} \right) \left(\frac{\pi}{4} \right) + 6 \left(\frac{\pi}{2} \right) \]
\[= 24.6 \; \text{cm} \; (3 \; \text{s.f.}) \]
The ages of 50 employees in Company V is shown in the table below.

<table>
<thead>
<tr>
<th>Age in years</th>
<th>24 < x ≤ 28</th>
<th>28 < x ≤ 32</th>
<th>32 < x ≤ 36</th>
<th>36 < x ≤ 40</th>
<th>40 < x ≤ 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>p</td>
</tr>
</tbody>
</table>

(i) State the value of p. [1]

(ii) Hence, calculate the

(a) mean age of the employees, [1]

(b) standard deviation. [1]

(iii) The age distribution of 50 employees in Company W is summarized below.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>29.6 years</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>7.13 years</td>
<td></td>
</tr>
</tbody>
</table>

Make two comparisons between the ages of employees in both companies. [2]

(b) A box contains 5 red flags and 8 yellow flags. Two flags are taken from the bag at random without replacement.

(i) Draw a tree diagram to show the probabilities of the possible outcomes. [2]

(ii) Find, as a fraction in its simplest form, the probability that

(a) the first flag is red and the second flag is yellow, [1]

(b) both flags are the same colour, [1]

(c) at least one flag is yellow. [1]

Solutions:

(a) (i) \[p = 12 \]

(ii) (a) \[\text{Mean} = \frac{1732}{50} = 34.64 \text{ years} \]

(b) \[\text{Standard deviation} = \sqrt{\frac{61480}{50} - 34.64^2} \]

\[= 5.45 \text{ years (3 s.f.)} \]
(a) (iii) The employees in company W are younger than those in company V since the mean age of employees in company W is lower than that of company V. [B1]

The spread of ages of employees in company W is wider since the standard deviation of ages of employees in company W is larger than that of company V. [B1]

(b) (i)

<table>
<thead>
<tr>
<th>First flag</th>
<th>Second flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>(5/13)</td>
<td>(1/3)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>(8/13)</td>
<td>(2/3)</td>
</tr>
<tr>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>(5/12)</td>
<td>(7/12)</td>
</tr>
</tbody>
</table>

(ii) (a)

\[
\text{Probability} = \frac{5}{13} \times \frac{2}{3} = \frac{10}{39} \rightarrow \text{A1}
\]

(b)

\[
\text{Probability} = \left(\frac{5}{13} \times \frac{1}{3} \right) + \left(\frac{8}{13} \times \frac{7}{12} \right) = \frac{19}{39} \rightarrow \text{A1}
\]

(c)

\[
\text{Probability} = 1 - \left(\frac{5}{13} \times \frac{1}{3} \right) = \frac{34}{39} \rightarrow \text{A1}
\]
Class 4V has chosen the ‘Go Green’ theme for their Social Innovation Project. The diagram above shows the recycling bins structure that they have built.

The whole structure consists of 3 open identical cylindrical plastic containers fit into a wooden cuboid crate. All the containers and the crate are of negligible thickness.

3 circles had to be cut from the top of the crate to fit the containers. Each plastic container is placed in the crate such that they are 20 cm away from the sides of the crate, \(ADHE \) and \(BCGF \), as well as 20 cm apart from each other. Each plastic container touches the base and sides, \(ABFE \) and \(DCGH \), of the crate too. The radius and height of the plastic container are 30 cm and 120 cm respectively.

(a) Write down the dimensions of the crate. \([1]\)

(b) Calculate the

(i) exact total surface area of the crate that was cut out, \([1]\)

(ii) exact total internal surface area of each cylindrical container, \([2]\)

(iii) total exposed external surface area of the crate. \([2]\)

(c) The class would like to paint all the exposed external surfaces of the crate yellow. One tin of paint can cover an area of 3.75 m\(^2\). How many tins do they need to purchase? Justify your answer. \([2]\)

(d) If each cylindrical container is filled to the brim, what is the maximum volume of recyclables that can be collected by the class in a single collection? \([2]\)
Solutions:

(a) Dimensions are 260 cm by 60 cm by 120 cm. \[\text{B1}\]

(b) (i) Area that was cut out \[= 3 \times \pi \times 30^2 = 2700 \pi \text{ cm}^2 \] \[\text{A1}\]

(ii) Internal surface area of cylinder \[= \left(\pi \times 30^2 \right) + \left(2 \times \pi \times 30 \times 120 \right) = 900 \pi + 7200 \pi = 8100 \pi \text{ cm}^2 \] \[\text{A1}\]

(iii) Total exposed surface area of the crate \[= 2 \left(260 \times 120 \right) + 2 \left(60 \times 120 \right) + \left(260 \times 60 = 2700 \pi \right) \] \[= 62400 + 14400 + 15600 = 92400 - 2700 \pi \] \[\approx 83917.7 \] \[= 83900 \text{ cm}^2 \text{ (3 s.f.)} \] \[\text{A1}\]

(c) \[\frac{8.3917}{3.75} \approx 2.2378 \] \[\text{M1}\]
Number of tins of paint they need to buy is 3. \[\text{A1}\]

(d) Maximum volume of recyclables \[= 2700 \pi \times 120 \] \[= 1020000 \text{ cm}^3 \text{ (3 s.f.)} \] \[\text{A1}\]

End of Paper
(a)

Find \(\angle BAC \).

(b)

Find \(\angle BAC \).

The given table below shows the number of accidents involving cars and motorcycles from April to June.

<table>
<thead>
<tr>
<th>Month</th>
<th>Total</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>121</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>195</td>
<td>19</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Do you agree with the given conclusions for your answer?
[1] The diagram below shows a solid pyramid which is cut horizontally into two portions A and B. The shaded area of A is 13 cm² and the shaded area of portion C.

[2] Find the volume of portion C, given that the volume of the whole pyramid is \(\frac{1}{3} \) cm³. And the volume of the whole pyramid is \(37.5 \) cm³. What is the volume of the other portion?
Without solving for x, find the value of x if $x = 4 - \frac{x}{2} + 2\sqrt{6}$.

Given that $x = 4 - \frac{x}{2} + 2\sqrt{6}$.

Hence, substitute completely $12x^2 - 36x^2 + 24$.

Answer: (a)
(c) Sketch the distance-time graph of Tony's journey.

Answer:

(d) Find Tony's speed at 30 minutes.

Answer: \(\text{Speed} = \frac{\text{Distance}}{\text{Time}} \)
1. Find the probability that a name will not reach the cell.

2. Find the probability that a name will reach the cell if the arrow does not stop.

Answer:

(a) Find the probability that all three show different numbers.

(b) Find the probability that at least one even number is obtained.

A rain can enter the borehole only if the next or water is reached.
Find the area of ABCDEFGH.

The height of the shape is 5 cm. The length of the sides of each hexagon is 5 cm.

The points with the cross-section in the shape of a regular hexagon are joined together as shown in the diagram below. The length of the side of each hexagon is 5 cm.

21. The following table shows the number of students and their grades in the grades of students.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Math</th>
<th>Science</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

20. Explain what RP represents.

If the given data in the table above is expressed by the matrix A and P = \[\frac{1}{2} \]

(\text{Grade: 4, 2, 1, 10, 30})
Answer

The coordinates of \(S \) are \((-1, -1)\) and \(PQRS \) is a rectangle. Shade the two possible answers.

\[\text{Answer: } \theta = \theta \]

Find the equation of the circle.

\[\text{Answer: } \theta = \theta \]

\[\text{Equation of circle: } (x - a)^2 + (y - b)^2 = r^2 \]

Consider \(\theta \), find the exact value of \(\theta \).

\[\text{Complementary angle of } \theta \]

The diagram below shows a circle with centre \(O \). It is given that \(OD = 8 \text{ cm}, \ BC = 10 \text{ cm} \).

\[\angle CDB = 90^\circ \text{ and } c \text{ is the midpoint of } BC. \]

The points \(P \) and \(Q \) are shown in the diagram. State on the x-axis.
(2) Find the time taken to fill the cone.

1.6 cm

At 35 minutes for the liquid to completely fill the mould.

(3) The diagram below shows the radius of the cone and the height of the cone.

Liquid metal is poured into a mould in the shape of a cone and a hemisphere as shown in the diagram.

(4) a. Find the position of X, giving your answer in terms of X.

b. Find the position of X, giving your answer in terms of X.

(5) Given that DAX = 90°, find the position of X, giving your answer in terms of X.

6. Answer

7. Answer

8. Answer

9. Answer
1. Make two comparisons between the heights of the girls in school X and school Y.

<table>
<thead>
<tr>
<th>School</th>
<th>Height (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>School X</td>
<td>150, 160, 170</td>
<td>Clean haircut</td>
</tr>
<tr>
<td>School Y</td>
<td>160, 170, 180</td>
<td>16.5 cm</td>
</tr>
</tbody>
</table>

2. The heights of 180 girls in school X are measured and summarized below.

- The mean height is 160 cm, with a standard deviation of 15 cm.

If you have any questions, please ask the teacher.

Read these instructions first.

Additional materials: Answer Paper

Pre-Primary Examination 2016
Secondary Four
Crecent Girls' School

Name: [Name]
Register No: [Register No]
Class: [Class]

Date: 16 August 2016
Page 2
[Q] Find the value of \(\frac{1}{x^2 + 2x + 1} \).

Given that \(x = -2 \) and \(y = 0 \),

Given that \(x + y = 8 \),

Solve the equation \(\frac{6 + x}{x} = 0 \).

Find the sum of the terms \(3 + 3 + 5 + 3 + 3 + 8 + 7 + 2 \).

Write down the value of \(5 + 6 + 7 + 5 + 7 + 1 + 2 + 1 \) in terms of \(a \).

Given that \(\frac{a}{x} = 4 \), make the subject.

Given that \(a = \frac{8}{5 + \sqrt{3}} \), make the subject.

Form 2 equations in terms of \(a \) and \(b \).

Let \(a \) be the number of normal page and \(b \) be the overtime page.

Study the number pattern below.

<table>
<thead>
<tr>
<th>20</th>
<th>5</th>
<th>9</th>
<th>8</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

When 3 pages total 20, find \(x \) and \(y \).
1. Calculate the volume of the hemisphere.

2. Find the area of the spherical cap.

3. Find the surface area of the hemisphere.

4. Calculate the volume of the frustum.

5. Calculate the volume of the frustum.

6. Show that \(A_1 = \frac{1}{3} \pi r^2 \).

The volume of the frustum is given by the formula:

\[\frac{1}{3} \pi h (R^2 + Rr + r^2) \]

Where \(R \) is the radius of the base of the frustum, \(r \) is the radius of the top of the frustum, and \(h \) is the height of the frustum.
1. Calculate the area of the shaded portion ABCD.

2. Given that the radius of the larger circle AECB is 7 cm, find the length of segment AD.

3. (a) Find the length of the side AD of the quadrilateral ABCD.

 (b) Find the length of the side CD of the quadrilateral ABCD.

4. (a) Show that DC is an angle bisector of angle ADF.

 (b) Show that DC is an angle bisector of angle ADF.

 (c) The length of the angle bisector DC is 5 cm.

 (d) The length of the angle bisector DC is 5 cm.

5. (a) The value of x when the volume of the solid is 150 cm³.

 (b) The value of x when the volume of the solid is 150 cm³.

 (c) The value of x when the volume of the solid is 150 cm³.

6. (a) Calculate the volume of the solid.

 (b) Calculate the volume of the solid.

 (c) Calculate the volume of the solid.

7. (a) Answer the whole of the question on a sheet of graph paper.

 (b) Answer the whole of the question on a sheet of graph paper.

 (c) Answer the whole of the question on a sheet of graph paper.
[1] Find the exact value of θ.

[2] Find the exact value of $\sin \theta$.

[3] Find the exact value of $\cos \theta$.

[4] Find the exact value of $\tan \theta$.

[5] Find the exact value of $\sec \theta$.

[6] Find the exact value of $\csc \theta$.

[7] Find the exact value of $\cot \theta$.

[8] Find the exact value of $\sin^2 \theta$.

[9] Find the exact value of $\cos^2 \theta$.

[10] Find the exact value of $\tan^2 \theta$.

[12] Find the exact value of $\csc^2 \theta$.

[13] Find the exact value of $\cot^2 \theta$.

[14] Find the exact value of $\sin \theta + \cos \theta$.

[15] Find the exact value of $\sin \theta - \cos \theta$.

[16] Find the exact value of $\sin \theta \cdot \cos \theta$.

[17] Find the exact value of $\sin \theta / \cos \theta$.

[18] Find the exact value of $\sin \theta \cdot \sin \theta$.

[19] Find the exact value of $\cos \theta \cdot \cos \theta$.

[20] Find the exact value of $\sec \theta \cdot \sec \theta$.

[21] Find the exact value of $\csc \theta \cdot \csc \theta$.

[22] Find the exact value of $\cot \theta \cdot \cot \theta$.

[23] Find the exact value of $\sin \theta + \sin \theta$.

[24] Find the exact value of $\cos \theta + \cos \theta$.

[25] Find the exact value of $\sin \theta - \sin \theta$.

[26] Find the exact value of $\cos \theta - \cos \theta$.

[27] Find the exact value of $\sin \theta \cdot \sin \theta$.

[28] Find the exact value of $\cos \theta \cdot \cos \theta$.

[29] Find the exact value of $\sec \theta \cdot \sec \theta$.

[30] Find the exact value of $\csc \theta \cdot \csc \theta$.

[31] Find the exact value of $\cot \theta \cdot \cot \theta$.

[32] Find the exact value of $\sin \theta + \sin \theta$. (cont'd)
END OF PAPER

1. Do you agree? Support your answer with mathematical reasoning.

2. Given a sequence of numbers, find the sum of all numbers divisible by 3.

3. Suppose you have a rectangle with a length of 12 units and a width of 8 units. What is the area of this rectangle?

4. In a survey, 60% of students said they like math. If there are 1,200 students in the school, how many students like math?

5. A recipe for cookies requires 2 cups of flour and 1 cup of sugar. If you have 8 cups of flour, how many sets of cookies can you make?

6. If the temperature outside is 20°C and it drops 5°C every hour, what will the temperature be in 3 hours?

7. A car travels 150 miles in 3 hours. What is the average speed of the car?

8. A right triangle has one angle of 90°. If the hypotenuse is 10 units long, what are the lengths of the other two sides?

9. A square has a side length of 5 units. What is the perimeter of the square?

10. A rectangle has a length of 10 units and a width of 5 units. What is the area of the rectangle?
END OF ANSWER KEYS

<table>
<thead>
<tr>
<th>Problem</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a)</td>
</tr>
<tr>
<td>2</td>
<td>(b)</td>
</tr>
<tr>
<td>3</td>
<td>(c)</td>
</tr>
<tr>
<td>4</td>
<td>(d)</td>
</tr>
<tr>
<td>5</td>
<td>(e)</td>
</tr>
<tr>
<td>6</td>
<td>(f)</td>
</tr>
<tr>
<td>7</td>
<td>(g)</td>
</tr>
<tr>
<td>8</td>
<td>(h)</td>
</tr>
<tr>
<td>9</td>
<td>(i)</td>
</tr>
<tr>
<td>10</td>
<td>(j)</td>
</tr>
</tbody>
</table>

Percent answer: 68

Percentage of the 200 problems: 68%

ONE MAIN MARKING POINT FOR EACH ANSWER - NO PARTIAL CREDIT.
The pie chart below shows the sales for different brands of paperback:

Brands
- Brand A: 32%
- Brand B: 12%
- Brand C: 38%

1. Write down the brand that has the highest sales.

2. What is the percentage of Brand C?

3. Calculate \[\frac{60.09}{2.99 \times 2.09} \]

4. Answer all questions in pencil. No corrections allowed.
Standard Form.

Calculate the total surface area of the metal-cylinder in m². Then, your answer in cm² is.

The difference or apparent inertia-rotation is 6610 mm².

1. Answer:

Find the volume of air when the pressure is 99 units.

2. Answer:

For the formula of the force, F = ma, when 0.01 m/s² is the acceleration, find the equation.

The volume of air A cm³ is inside a bicycle pump. It varies proportionally to the cubic...
\[\frac{S_1}{S} = \frac{\text{area}}{\text{base}} \]
(q) Express p in terms of a and b.

\[p = \frac{a}{b} \]

Answer: $p = \frac{a}{b}$

(m) Evaluate the integral $\int_0^b \frac{x^2}{5} \, dx$ when $x = b$ and $x = 1$.

\[\int_0^b \frac{x^2}{5} \, dx = \frac{b^3}{15} \]

Answer: $\frac{b^3}{15}$
Answer:

\[y = \frac{1}{2}x - \frac{3}{2} \]

Identify the equation of the line of symmetry of the graph.

Answer:

\[y = \frac{1}{2}x - \frac{3}{2} \]

The graph shows the volume of water in a water bucket for the first 10 minutes.

The bucket was filled with water.

When the bucket was full, the bucket睦。all the bucket睦。was emptied out instantly.

The bucket睦。 was filled with water at a constant rate.

In 15 minutes, the graph shows the volume of water bucket睦。was emptied out instantly.
The mean and the standard deviation of the marks of

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0.001</td>
</tr>
<tr>
<td>140</td>
<td>0.001</td>
</tr>
<tr>
<td>160</td>
<td>0.001</td>
</tr>
<tr>
<td>180</td>
<td>0.001</td>
</tr>
<tr>
<td>200</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The information below shows the mean of 100 packets of chips packed by two machines, A and B.
11. The diagram below shows a semicircle and two quadrants inscribed in a square of side 6 cm.

(a) Show the area of the semicircle is $\frac{9\pi}{2}$ cm2.

(b) Find the area of $\triangle ABC$ and the difference in area between the shaded sector and the quadrants.

(c) \[\text{Area of } \triangle ABC = \frac{1}{2} \times 6 \times \frac{9}{2} = 8.125 \text{ cm}^2 \]

(d) \[\text{Difference in area} = \frac{9\pi}{2} - 8.125 \approx 4.539 \text{ cm}^2 \]

12. \[\text{If } \triangle ABC \text{ is a right-angled triangle at } C, \text{ find } \angle ACB \text{ when } \angle BAC = 30^\circ \text{ and } AB = 6 \text{ cm}. \]

(a) \[\cos \angle ACB = \frac{AC}{AB} = \frac{6}{6} = 1 \]

(b) \[\angle ACB = 90^\circ \]

(c) \[\text{Hence, } \angle ACB = 90^\circ \]
Answer (c) \(a = \ldots \) \(\beta \ldots \)

\[a = \ldots \]

2. \[\triangle \]

3. \[\triangle \]

4. \[\triangle \]

5. \[\triangle \]

6. \[\triangle \]

7. \[\triangle \]

8. \[\triangle \]

9. \[\triangle \]

10. \[\triangle \]

11. \[\triangle \]

12. \[\triangle \]

13. \[\triangle \]

14. \[\triangle \]

15. \[\triangle \]

16. \[\triangle \]

17. \[\triangle \]

18. \[\triangle \]

19. \[\triangle \]

20. \[\triangle \]

21. \[\triangle \]

22. \[\triangle \]

23. \[\triangle \]

24. \[\triangle \]

25. \[\triangle \]

26. \[\triangle \]

27. \[\triangle \]

28. \[\triangle \]

29. \[\triangle \]

30. \[\triangle \]

31. \[\triangle \]

32. \[\triangle \]

33. \[\triangle \]

34. \[\triangle \]

35. \[\triangle \]

36. \[\triangle \]

37. \[\triangle \]

38. \[\triangle \]

39. \[\triangle \]

40. \[\triangle \]

41. \[\triangle \]

42. \[\triangle \]

43. \[\triangle \]

44. \[\triangle \]

45. \[\triangle \]

46. \[\triangle \]

47. \[\triangle \]

48. \[\triangle \]

49. \[\triangle \]

50. \[\triangle \]

51. \[\triangle \]

52. \[\triangle \]

53. \[\triangle \]

54. \[\triangle \]

55. \[\triangle \]

56. \[\triangle \]

57. \[\triangle \]

58. \[\triangle \]

59. \[\triangle \]

60. \[\triangle \]

61. \[\triangle \]

62. \[\triangle \]

63. \[\triangle \]

64. \[\triangle \]

65. \[\triangle \]

66. \[\triangle \]

67. \[\triangle \]

68. \[\triangle \]

69. \[\triangle \]

70. \[\triangle \]

71. \[\triangle \]

72. \[\triangle \]

73. \[\triangle \]

74. \[\triangle \]

75. \[\triangle \]

76. \[\triangle \]

77. \[\triangle \]

78. \[\triangle \]

79. \[\triangle \]

80. \[\triangle \]

81. \[\triangle \]

82. \[\triangle \]

83. \[\triangle \]

84. \[\triangle \]

85. \[\triangle \]

86. \[\triangle \]

87. \[\triangle \]

88. \[\triangle \]

89. \[\triangle \]

90. \[\triangle \]

91. \[\triangle \]

92. \[\triangle \]

93. \[\triangle \]

94. \[\triangle \]

95. \[\triangle \]

96. \[\triangle \]

97. \[\triangle \]

98. \[\triangle \]

99. \[\triangle \]

100. \[\triangle \]
(c) Find the equation of the line which is parallel to AC and passes through B.

Answer:

(d) Find the area of triangle ABC.

Answer:

Given \(M = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} \), calculate \(M^2 \).

The information can be represented by the matrix:

\[
\begin{pmatrix}
22 & 18 \\
22 & 16 \\
21 & 19 \\
20 & 17 \\
18 & 15 \\
23 & 21 \\
22 & 20 \\
21 & 19 \\
20 & 18 \\
20 & 19
\end{pmatrix}
\]

Write below:

- The total number of each item sold on three different days is given in the table.
- They are apple, mango, and banana cakes.
- A mall sells two different types of fruit cake.
Calculate the area of the sector

The angle of the sector \(OPQ \) is \(\frac{180}{\pi} \) in

An arc of a circle with centre \(O \) is drawn through the points \(C \), \(O \) and \(Q \).

Find the value of \(a \) and \(b \).
The diagram below shows the possible angle of deviation of the balloon from C.

(a) Find the tangent of \(\angle BFC \).

(b) Find the angle \(\angle CDF \).

(c) Show that \(\angle CDF = 2 \angle C \).

The table below shows the number of times the face from the ground is seen from different angles.

<table>
<thead>
<tr>
<th>Angle ((\angle CDF))</th>
<th>Number of Times Seen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>1</td>
</tr>
<tr>
<td>30°</td>
<td>4</td>
</tr>
<tr>
<td>45°</td>
<td>6</td>
</tr>
<tr>
<td>60°</td>
<td>2</td>
</tr>
</tbody>
</table>

The first row in each column shows the number of times the face from the ground is seen from different angles.

(a) What is the probability that two people, chosen at random, will be a man and a woman?

(b) Find the probability that two people, chosen at random, will be a woman.

(c) If a survey is carried out on a group of 50 people, how many of them are men?
[Image]
1 (a) Calculate \(7 \frac{1}{3} - \sqrt[3]{\frac{5.25 + 13.52}{\sin 28^\circ}} \).

Write down the first six digits on your calculator display.

(b) Write your answer to part (a) correct to 2 significant figures.

\[\text{Answer (a)} \] [1]

\[\text{Answer (b)} \] [1]

2 (a) Arrange the following numbers in ascending order:

\(\frac{1}{20}, \quad 5 \frac{1}{4} \%, \quad 5.22 \times 10^{-3}, \quad 0.05 \).

\[\text{Answer (a)} \] [1]

(b) State which of the following number(s) is/are irrational:

\(0.3, \quad \frac{\pi}{5}, \quad \sqrt{7} \times 2\sqrt{7}, \quad 3\sqrt{3} \).

\[\text{Answer (b)} \] [1]

3 The length of each side of a cube is increased by 40%.
Find the percentage increase in the total surface area of the cube.

\[\text{Answer} \] \% [2]
4 Given that \((2x - 5)(x + a) = 2x^2 + bx - 5\) for all values of \(x\), find the values of \(a\) and \(b\).

\[
\text{Answer } a = \ldots \ldOTS
7 The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres, of the micro-organism, giving your answer in standard form.

Answer mm2 [2]

8 The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016.

![Graph showing sales of computer notebooks]

Explain why the graph is misleading.

Answer ... [2]

9 Two of the interior angles of a hexagon are $2x^\circ$ and $(5x - 200)^\circ$. The remaining interior angles are 90° each. By forming an equation in x, find the value of x.

Answer $x =$ [2]
10 In the diagram, the points B, C, D and E lie on a circle with centre O. PQ is a tangent to the circle at D. ABC and $AEOD$ are straight lines. $\angle OCB = 54^\circ$ and $\angle OAB = 30^\circ$.

Find, giving reasons for each answer,

(a) $\angle ADC$,
(b) $\angle CDQ$,
(c) $\angle AOE$,
(d) $\angle CBE$.

Answer

(a) $\ldots \ldots ^\circ$ [2]
(b) $\ldots \ldots ^\circ$ [1]
(c) $\ldots \ldots ^\circ$ [2]
(d) $\ldots \ldots ^\circ$ [1]
11 \(ABCD\) is a quadrilateral. \(ABC\) and \(CDE\) are equilateral triangles. Using a pair of congruent triangles, show that \(AD = BE\). State your reasons clearly.

\[\text{Answer} \quad \text{In triangles}\]

[Diagram]

12 Janet has $50,000 to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months. Calculate the amount of interest she will get at the end of 3 years.

\[\text{Answer} \quad \text{S}\]

[2]
13 (a) Given that \(\left(\frac{1}{4} \right)^{p} \times 8 = 1 \), find the value of \(p \).

\(\)

(b) Simplify \(\left(\frac{2^{p} \sqrt{2}}{2^{p}} \right)^{2} \).

Answer (a) \(p = \) [2]

(b) [2]
The equations of the three graphs shown below are in the form \(y = n + x^{n-1} \). State the value of \(n \) for each of the following graph.

(a) [Graph image]

(b) [Graph image]

(c) [Graph image]

\[\text{Answer (a)} \quad n = \ldots \quad [1] \]

\[\text{Answer (b)} \quad n = \ldots \quad [1] \]

\[\text{Answer (c)} \quad n = \ldots \quad [1] \]

15 In the answer space, sketch the graph of \(y = 5 - (x + 1)^2 \), indicate clearly the turning point and the intercepts on the \(x \) and \(y \)-axes (if any).

\[\text{Answer} \quad [2] \]

16 (a) \(\mathcal{E} = \{ x : x \text{ is an integer and } 1 \leq x < 24 \} \)

\(A = \{ x : x \text{ is a perfect square} \} \)

\(B = \{ x : x \text{ is a factor of the number } 24 \} \)

\(C = \{ x : x + 1 \text{ is divisible by } 6 \} \)

(i) List the elements in \(A \cap C \).

(ii) Find \(n (B' \cup C) \).

(b) State the set notation of the shaded region in following Venn Diagram.

Answer (a)(i) \[[1] \]

(ii) \[[1] \]

Answer (b) \[[1] \]
Given that point $A(4, 2)$ and $\overrightarrow{AC} = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$.

(a) Find $|\overrightarrow{CA}|$.

Answer (a) units [1]

(b) The point P lies on CA such that $\overrightarrow{PA} = k \overrightarrow{CA}$.

(i) Show that $\overrightarrow{OP} = \begin{pmatrix} 4 - 7k \\ 2 + 3k \end{pmatrix}$.

Answer (b)(i) [1]

(ii) Given that point P lies on the y-axis, find the coordinates of P.

Answer (b)(ii) $P(...........,)$ [2]
Consider the number patterns in the table below. The first three terms of each column have been given.

<table>
<thead>
<tr>
<th>Row, n</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Find values of p, q and r.
(b) Write down the equation connecting S and T.
(c) Write down the equation connecting U and n.
(d) Betty said that 256 can be found in column U.
 Write whether you agree or disagree with Betty. Give reason(s) for your answer.

Answer (a) $p = \ldots, q = \ldots, r = \ldots$ [1]
(b) .. [1]
(c) .. [1]
(d) I with Betty. This is because .. [1]
19 The frequency table shows the number of countries that a group of students had visited.

<table>
<thead>
<tr>
<th>Number of countries</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>x</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Given that the mode is 1, state the largest possible value of \(x \).

(b) Given that the median number of countries visited is 2, find the largest possible value of \(x \).

(c) Given that the mean number of countries is more than 2, find the smallest possible value of \(x \).

Answer (a) \(x = \ldots \) [1]

(b) \(x = \ldots \) [1]

(c) \(x = \ldots \) [2]
20 (a) The air resistance, \(R \), is directly proportional to the square of the speed, \(V \), of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.

(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?

Answer (a) \(________________ \) newtons [2]

(b) \(________________ \) men [2]
The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.

(b) Calculate
(i) the total distance travelled by the train in the first 3 minutes,
(ii) the average speed of the train, in km/h, in the first 3 minutes.

Answer (a) \(\text{m/s}^2 \) [1]

(b)(i) \(\text{m} \) [1]

(ii) \(\text{km/h} \) [2]

(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c) [2]
22. \(P \) and \(R \) are points on the \(x \)-axis. \(TQR \) is a straight line parallel to the \(y \)-axis. Area of \(\triangle PQR = 30 \) units\(^2\).

(a) Find the coordinates of
 (i) point \(R \),
 (ii) point \(P \).

(b) Find the length of \(PQ \).

(c) Find \(\cos \angle PQT \), giving your answer as a fraction.

(d) Given that \(PR = TR \), find the equation of \(PT \).

Answer
(a)(i) \(R (......... ,) \) [1]
 (ii) \(P (......... ,) \) [2]

(b) units [1]

(c) [1]

(d) [1]
23 Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.

(a) Complete the following probability tree diagram.

\[\text{Answer (a)} \]

(b) Find

(i) the probability that one disc is odd and the other is even,

(ii) the probability that both numbers drawn are smaller than 4.

(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.

\[\text{Answer (b)(i)} \] [1]

\[\text{Answer (b)(ii)} \] [1]

\[\text{Answer (c)} \] [2]
The diagram below shows a horizontal field ABC.
A is due north of B and C is due west of B.

Use a scale of 1 cm to 40 m, show all the constructions clearly.

(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
 (i) By construction, mark and label clearly the position of the lamp post L. [1]
 (ii) Measure and write down the bearing of the lamp post L from point C. [1]

(b) A gate, G, is located along the path of BC, equidistant from B and C.
 By construction, mark and label clearly the position of the gate G. [1]

(c) A circular flower bed is built such that it touches each side of the field at one point.
 (i) By constructing two angle bisectors, draw the circular flower bed and label its centre O. [2]
 (ii) Hence, measure and write down the actual radius of the flower bed.

Answer (a)(i) (b) (c)(i)

Answer (a)(ii) $^\circ$ [1]
 (c)(ii) m [1]

End of Paper 1
INSTRUCTIONS TO CANDIDATES
Write your name, class and index number on the question paper.
Write in dark blue or black ink on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answer in degrees to one decimal place. For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms of \(\pi \).

INFORMATION FOR CANDIDATES
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets \([\text{]}\) at the end of each question or part question.
The total number of marks for this paper is 80.
Mathematical Formulae

Compound Interest

Total amount = \[P \left(1 + \frac{r}{100}\right)^n \]

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4 \pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of a triangle = \(\frac{1}{2} ab \sin \theta \)

Arc length = \(r \theta \) where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \) where \(\theta \) is in radians

Trigonometry

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[a^2 = b^2 + c^2 - 2bc \cos A \]

Statistics

Mean = \[\frac{\sum fx}{\sum f} \]

Standard deviation = \[\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \]
1 (a) Calculate \(\frac{1}{3} \sqrt[5.25 + 13.5^2]}{\sin 28^\circ} \).

Write down the first six digits on your calculator display.

(b) Write your answer to part (a) correct to 2 significant figures.

\[
\text{Answer (a)} = -0.03095 \quad \text{[1]}
\]
\[
\text{Answer (b)} = -0.031 \quad \text{[1]}
\]

2 (a) Arrange the following numbers in ascending order:

\[
\frac{1}{20}, 5\frac{1}{4}, 5.22 \times 10^{-3}, 0.05, 0.0525, 0.00522, 0.050505... \]

\[
\text{Answer (a)} = \frac{1}{20}, 0.05, 5\frac{1}{4}, 5.22 \times 10^{-3}, 0.0525, 0.00522, 0.050505... \quad \text{[1]}
\]

(b) State which of the following number(s) is / are irrational:

\[
0.3, \frac{\pi}{5}, \sqrt{7} \times 2\sqrt{7}, 3\sqrt{3} \]

\[
\text{Answer (b)} = \frac{\pi}{5}, 3\sqrt{3} \quad \text{[1]}
\]

3 The length of each side of a cube is increased by 40%.

Find the percentage increase in the total surface area of the cube.

\[
\% \text{ increase in surface area} = \frac{6(1.4l)^2 - 6l^2}{6l^2} \times 100\% \quad \text{M1}
\]
\[
= \frac{11.76l^2}{6l^2} \times 100\%
\]
\[
= 196\%
\]

\[
\text{Answer} = 96 \quad \% \quad \text{[2]}
\]
4 Given that \((2x - 5)(x + a) = 2x^2 + bx - 5\) for all values of \(x\), find the values of \(a\) and \(b\).

\[
2x^2 + 2ax - 5x - 5a = 2x^2 + bx - 5
\]

\[
-5a = -5 \\
a = 1
\]

\[
2a - 5 = b \\
b = 2(1) - 5 = -3
\]

Answer \(a = 1\) \(.....\), \(b = -3\) \(.....\) [2]

5 Two numbers \(p\) and \(q\), written as the products of their prime factors, are \(p = 2^2 \times 3^5 \times 5^6\) and \(q = 2^2 \times 3^3\).

(a) Find the HCF of \(p\) and \(q\).

(b) Find the smallest positive integer \(k\) such that \((p \times q \times k)\) is a perfect cube.

\[
\text{(a) HCF} = 2^2 \times 3^3 = 108
\]

\[
\text{(b) } (p \times q \times k) = 2^4 \times 3^5 \times 5^6 \times k \\
k = 2^2 \times 3 = 12
\]

Answer (a) 108 \(.....\) [1]

(b) \(k = 12\) \(.....\) [1]

6 Local time in Singapore is 7 hours ahead of local time in London. Singapore Airlines SQ007 departed London on Monday at 19 16 London time. The flight arrived at Singapore on Tuesday at 15 51 Singapore time. Calculate how long the flight took, giving your answer in hours and minutes.

Departure time from London (Singapore time) = 02 16 Tuesday \(M1\)

Arrival time at Singapore (Singapore time) = 15 51 Tuesday

Duration of Journey = 13 h 35 min

Answer 13 \(.....\) hours 35 \(.....\) minutes [2]
The diameter of a spherical micro-organism is 9.04 micrometres. Find the surface area in square millimetres of the micro-organism, giving your answer in standard form.

\[\text{Radius} = \frac{1}{2} \times 9.04 \times 10^{-6} \text{ m} \]
\[= 4.52 \times 10^{-6} \times 10^3 \text{ mm} \]
\[= 4.52 \times 10^{-3} \text{ mm} \quad \text{M1} \]

Surface area = \[4\pi \times (4.52 \times 10^{-3})^2 \]
\[= 2.57 \times 10^{-4} \text{ mm}^2 \quad \text{Answer} \]

The graph below shows the sales of computer notebooks made by Angie over a period of 6 months in 2016.

![Graph](image)

Explain why the graph is misleading.

Answer

The scale of the vertical axis is not consistent.

This distorts the graph, making the sales from May to June (16 - 4 = 12 units) seemed to be less than the sales from March to April (8 - 0 = 8 units).

Two of the interior angles of a hexagon are \(2x^\circ\) and \((5x - 200)^\circ\). The remaining interior angles are \(90^\circ\) each. By forming an equation in \(x\), find the value of \(x\).

\[2x + (5x - 200) + 4(90) = (6 - 2) \times 180 \quad \text{M1} \]
\[7x + 160 = 720 \]
\[7x = 560 \]
\[x = 80\]

Answer \(x = 80\) \quad \text{A1}
In the diagram, the points B, C, D and E lie on a circle with centre O. PQ is a tangent to the circle at D. ABC and AEOD are straight lines. \(\angle OCB = 54^\circ \) and \(\angle OAB = 30^\circ \).

Find, giving reasons for each answer,

(a) \(\angle ADC \),
(b) \(\angle CDQ \),
(c) \(\angle ACE \),
(d) \(\angle CBE \).

(a) \(\angle COD = 54^\circ + 30^\circ \) (Ext \(\angle \) of \(\triangle \)) \(\rightarrow \) M1
 \[\angle ADC = \frac{180^\circ - 84^\circ}{2} \] (Base \(\angle \)s of isos. \(\triangle \)) \(\rightarrow \) A1
 = 48°

(b) \(\angle CDQ = 90^\circ - 48^\circ \) (tan \(\perp \) rad) \(\rightarrow \) A1
 = 42°

(c) \(\angle DCE = 90^\circ \) (Rt. \(\angle \) in semi-circle) M1
 \[\angle ADC = 180^\circ - 90^\circ - 48^\circ - 30^\circ \] (\(\angle \) sum of \(\triangle \)) \(\rightarrow \) A1
 = 12°

or \(\angle COE = 48^\circ \times 2 \) (\(\angle \) at centre = 2 \(\angle \) at circumference)
 = 96°

\[\angle ACE = \frac{180^\circ - 96^\circ}{2} \] (Base \(\angle \)s of isos. \(\triangle \))
 = 42°

\[\angle ADC = 54^\circ - 42^\circ \]
 = 12°

(d) \(\angle CBE = 180^\circ - 48^\circ \) (\(\angle \)s in opp segments are supp) \(\rightarrow \) A1
 = 132°

Answer
(a) \(48^\circ \) [2]
(b) \(42^\circ \) [1]
(c) \(12^\circ \) [2]
(d) \(132^\circ \) [1]
11 $ABCD$ is a quadrilateral. ABC and CDE are equilateral triangles. Using a pair of congruent triangles, show that $AD = BE$. State your reasons clearly.

Answer In triangles ACD and BCE,

- CD and CE \((\text{sides of equil. } \triangle CDE) \)
- AB and BC \((\text{sides of equil. } \triangle ABC) \)

\[\angle ACD = 60^\circ - \angle ACE \quad (\angle \text{ of equil. } \triangle CDE) \]
\[\angle BCE = 60^\circ - \angle ACE \quad (\angle \text{ of equil. } \triangle ABC) \]

\[\therefore \angle ACD = \angle BCE \quad \text{M1} \]

\[\therefore \triangle ACD \cong \triangle BCE \quad \text{B1} \]

Hence, $AD = BE$ \[\text{[2]} \]

12 Janet has $50000 to invest for 3 years. She invests her money in a unit trust with returns equivalent to 2% per annum interest, compounded every 3 months. Calculate the amount of interest she will get at the end of 3 years.

\[
\text{Amount} = 50000 \left(1 + \frac{0.02}{4} \right)^{12} \quad \text{M1}
\]

\[
= $53083.8905
\]

\[
\text{Interest} = $53083.8905 - $50000
\]

\[
= $3083.89 \text{ (to 2 dp)}
\]

Answer $3083.89 \text{ } \text{[2]}$
13. (a) Given that \((\frac{1}{4})^p \times 8 = 1\), find the value of \(p\).

\[
(2^{-2})^p \times 2^3 = 2^0
\]
\[
2^{-2p+3} = 2^0 \quad \text{M1}
\]
\[-2p + 3 = 0
\]
\[
p = \frac{3}{2}
\]

(b) Simplify \(\left(\frac{2^{x+1}\sqrt{2}}{2^y}\right)^{-2}\).

\[
\left(\frac{2^{x+1}\sqrt{2}}{2^y}\right)^{-2} = \left(2^{x+1+y+1}\right)^{-2} \quad \text{M1}
\]
\[
= \left(2^{\frac{1}{2}}\right)^{-2}
\]
\[
= 2^{-3}
\]
\[
= \frac{1}{8}
\]

Answer (a) \(p = \frac{3}{2}\) \[2\]
(b) \(\frac{1}{8}\) \[2\]
14 The equations of the three graphs shown below are in the form $y = n + x^{n-1}$.
State the value of n for each of the following graph.

(a)
\[
\begin{array}{c}
\text{Graph } (a) \\
\text{Answer: } n = 2 \\
\end{array}
\]

(b)
\[
\begin{array}{c}
\text{Graph } (b) \\
\text{Answer: } n = 3 \\
\end{array}
\]

(c)
\[
\begin{array}{c}
\text{Graph } (c) \\
\text{Answer: } n = 0 \\
\end{array}
\]

15 In the answer space, sketch the graph of $y = 5 - (x+1)^2$, indicate clearly the turning point and the intercepts on the x and y-axes (if any).

\[
\begin{array}{c}
\text{Answer: } \\
\text{G1 correct shape} \\
\text{G1 label turning point and x-y-intercepts} \\
\end{array}
\]
16 (a) \(\mathcal{E} = \{ x : x \text{ is an integer and } 1 \leq x < 24 \} = \{1, 2, 3, \ldots, 23\} \)

\(A = \{ x : x \text{ is a perfect square} \} = \{1, 4, 9, 16\} \)

\(B = \{ x : x \text{ is a factor of the number 24} \} = \{1, 2, 3, 4, 6, 8, 12\} \)

\(C = \{ x : x + 1 \text{ is divisible by 6} \} = \{5, 11, 17, 23\} \)

(i) List the elements in \(A \cap C \).

(ii) Find \(n(B' \cup C) \).

(a) (ii) \(B' = \{5, 7, 9, 10, 11, 13, 14, 15, 16, \ldots, 23\} \)

\[
n(B' \cup C) = n(B')
= n(\mathcal{E}) - n(B)
= 23 - 7
\]

or \{ \}

Answer (a)(i) \(\phi \) [1]

(ii) \(16 \) [1]

(b) State the set notation of the shaded region in following Venn Diagram.

\[
\text{Answer (b)} \quad L' \cup M \quad \text{B1}
\]

Answer (b) \(L' \cup M \) [1]
17. Given that point $A(4, 2)$ and $\overrightarrow{AC} = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$.

(a) Find $|\overrightarrow{CA}|$.

$$\overrightarrow{CA} = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$$

$$|\overrightarrow{CA}| = \sqrt{7^2 + (-3)^2} = 7.62 \text{ (to 3 sf)}$$

Answer (a) 7.62 units [1]

(b) The point P lies on CA such that $\overrightarrow{PA} = k \overrightarrow{CA}$.

(i) Show that $\overrightarrow{OP} = \begin{pmatrix} 4 - 7k \\ 2 + 3k \end{pmatrix}$.

Answer (b)(i)

$$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$$

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$

$$= \begin{pmatrix} 4 \\ 2 \end{pmatrix} + k \overrightarrow{AC}$$

$$= \begin{pmatrix} 4 - 7k \\ 2 + 3k \end{pmatrix}$$

(shown)

(ii) Given that point P lies on the y-axis, find the coordinates of P.

$$4 - 7k = 0$$

$$k = \frac{4}{7}$$

$$2 + 3 \left(\frac{4}{7} \right) = \frac{5}{7}$$

Answer (b)(ii) $P\left(0, \frac{5}{7} \right)$ [2]
Consider the number patterns in the table below. The first three terms of each column have been given.

<table>
<thead>
<tr>
<th>Row, n</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
</tbody>
</table>

(a) Find values of p, q and r.

(b) Write down the equation connecting S and T.

(c) Write down the equation connecting U and n.

(d) Betty said that 256 can be found in column U. Write whether you agree or disagree with Betty. Give reason(s) for your answer.

\[
14n + 2 = 256 \\
14n = 254 \\
n = \frac{254}{14} \\
= 18 \frac{1}{7}
\]

\[B1\]

1. (All 3 must be correct)

Answer (a) \(p = \ldots, q = \ldots, r = \ldots \) [1]

(b) \(T = 4S \) [1]

(c) \(U = 14n + 2 \) [1]

(d) I disagree with Betty. This is because \[\text{If } N = 256, \ n = 18 \frac{1}{7} \text{ which is not a natural number.} \]

\(\text{(is not a positive integer).} \) [B1]

OR

When 2 is deducted from 256, the result 254 is not divisible by 14.

\(\text{(is not a multiple of 14).} \) [1]
19 The frequency table shows the number of countries that a group of students had visited.

<table>
<thead>
<tr>
<th>Number of countries</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>x</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Given that the mode is 1, state the largest possible value of \(x \).

(b) Given that the median number of countries visited is 2, find the largest possible value of \(x \).

(c) Given that the mean number of countries is more than 2, find the smallest possible value of \(x \).

\[
\begin{align*}
(b) \quad 2 + 8 + (6 - 1) &= x + 4 \\
15 &= x + 4 \\
x &= 11 \\
(c) \quad \text{Mean} &= \frac{0(2) + 1(8) + 2(6) + 3x + 4(4)}{2 + 8 + 6 + x + 4} > 2 \\
&= \frac{3x + 36}{x + 20} > 2 \\
&= 3x + 36 > 2(x + 20) \\
&= 3x + 36 > 2x + 40 \\
x &> 4 \\
\text{smallest } x &= 5
\end{align*}
\]

Answer (a) \(x = 7 \) \(\text{B1} \) \([1] \)

(b) \(x = 11 \) \(\text{B1} \) \([1] \)

(c) \(x = 5 \) \(\text{B1} \) \([2] \)
20 (a) The air resistance, \(R \), is directly proportional to the square of the speed, \(V \), of an object when it is falling. The air resistance is 24 newtons at a certain speed. Find the air resistance when the speed is increased by 50%.

(b) 48 men can build 2 huts in 60 hours. How many more men are needed if 3 huts are to be built in 72 hours?

(a) \(R = kV^2 \), \(k \) constant

\[
24 = kV^2 \Rightarrow k = \frac{24}{V^2} \quad \text{M1}
\]

\[
R_{\text{new}} = k(1.5V)^2
\]

\[
= \frac{24}{V^2} \times 2.25V^2
\]

\[
= 54 \text{ newtons}
\]

(b) No. of men required to build 3 huts in 72 h

\[
\frac{3 \times 60}{72} \times 48
\]

\[
= 60
\]

\[\therefore \text{Extra no. of men needed} = 60 - 48 = 12\]

OR

48 men --- 2 huts --- 60 h
48 men --- 1 hut --- 30 h
1 man --- 1 hut --- 1440 h
1 man --- 3 huts --- 4320 h
60 men --- 3 huts --- 72 h

\[\therefore \text{Extra no. of men needed} = 60 - 48 = 12\]

Answer (a) newtons [2]

(b) men [2]
21 The diagram below shows the speed-time graph of the journey for the first 3 minutes of a train. The train slows down to a stop when entering station J. After a brief stop of 60 seconds, it starts to move off with acceleration for 30 seconds before it gets out of station J.

(a) Find the deceleration of the train as it enters station J.

(b) Calculate:
 (i) the total distance travelled by the train in the first 3 minutes,
 (ii) the average speed of the train, in km/h, in the first 3 minutes.

 (a) \[\text{Acceleration} = \frac{40 - 0}{0 - 90} = -\frac{4}{9} \text{ m/s}^2 \] \[\therefore \text{Deceleration} = -\frac{4}{9} \text{ m/s}^2 \]

 (b) (i) \[\text{Total distance} = \frac{1}{2}(90)(40) + \frac{1}{2}(30)(80) \]
 \[= 1800 + 1200 \]
 \[= 3000 \text{ m} \]

 (ii) \[\text{Average speed} = \frac{3000 \text{ m}}{\frac{3}{60} \text{ h}} \]
 \[= 60 \text{ km/h} \]

 Answer (a) \[\frac{4}{9} \text{ m/s}^2 \] [1]
 (b)(i) \[3000 \text{ m} \] [1]
 (ii) \[60 \text{ km/h} \] [2]

(c) On the axes below, sketch the distance-time graph of the train for the first 3 minutes of its journey.

Answer (c)

Distance (m) G1 correct shape

G1 label correct distance
22. \(P \) and \(R \) are points on the \(x \)-axis. \(TQR \) is a straight line parallel to the \(y \)-axis. Area of \(\Delta PQR = 30 \text{ units}^2 \).

(a) Find the coordinates of
(i) point \(R \),
(ii) point \(P \).

(b) Find the length of \(PQ \).

(c) Find \(\cos \angle PQT \), giving your answer as a fraction.

(d) Given that \(PR = TR \), find the equation of \(PT \).

\[(a)\ (i) \ R \ (4, \ 0) \]
\[(ii) \ \frac{1}{2} \times PR \times 5 = 30 \]
\[PR = 2 \times 30 = 12 \text{ units} \]
\[\therefore \ P \ (-8, \ 0) \]

\[(c) \ \cos \angle PQT = - \cos \angle PQR \]
\[= -\frac{5}{13} \]

\[(d) \ \ P \ (-8, \ 0) \quad T \ (4, \ 12) \]
\[m = \frac{12 - 0}{4 - (-8)} = \frac{3}{4} \]
Equation of \(PT \) is
\[y - 0 = 1 [x - (-8)] \]
\[y = x + 8 \]
Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. A disc is drawn out of the bag at random. Without replacing the first disc into the bag, a second disc is drawn.

(a) Complete the following probability tree diagram.

\[\begin{array}{c}
\text{First draw} \\
\frac{3}{5} \\
\frac{2}{5} \\
\text{Odd} \\
\frac{1}{2} \\
\text{Even} \\
\frac{1}{2} \\
\text{Second draw} \\
\frac{3}{4} \\
\frac{1}{4} \\
\text{Odd} \\
\text{Even} \\
\end{array} \]

(b) Find

(i) the probability that one disc is odd and the other is even,
(ii) the probability that both numbers drawn are smaller than 4.

(c) By drawing a possibility diagram in the space below, find the probability that the sum of both numbers is a prime number.

(b) (i) \[P(\text{odd, even}) + P(\text{even, odd}) = \frac{3}{5} \times \frac{1}{2} + \frac{2}{5} \times \frac{3}{4} = \frac{3}{5} \]

(ii) \[P(\text{both nos. < 4}) = \frac{2 \times 1}{5 \times 4} = \frac{1}{10} \]

(c) \[
\begin{array}{ccccccc}
+ & 1 & 3 & 4 & 6 & 7 & 8 \\
1 & 4 & 5 & 7 & 8 & & \\
3 & 4 & 7 & 9 & 10 & & \\
4 & 5 & 7 & 10 & 11 & & \\
6 & 7 & 9 & 10 & 13 & & \\
7 & 8 & 10 & 11 & 13 & & \\
\end{array}
\]

P(sum = prime no.) = \frac{10}{20} = \frac{1}{2}

Answer (b)(i) \[\frac{3}{5} \]

(ii) \[\frac{1}{10} \]

(c) \[\frac{1}{2} \]
24 The diagram below shows a horizontal field ABC. A is due north of B and C is due west of B.
Use a scale of 1 cm to 40 m, show all the constructions clearly.

(a) A lamp post, L, is located on a bearing of 290° from A, and 300 m from A.
 (i) By construction, mark and label clearly the position of the lamp post L. [1]
 (ii) Measure and write down the bearing of the lamp post L from point C.

(b) A gate, G, is located along the path of BC, equidistant from B and C.
 By construction, mark and label clearly the position of the gate G. [1]

(c) A circular flower bed is built such that it touches each side of the field at one point.
 (i) By constructing two angle bisectors, draw the circular flower bed and label its centre O. [2]
 (ii) Hence, measure and write down the actual radius of the flower bed.

\[\text{Answer (a)(i)}\]
\[\text{(b)}\]
\[\text{(c)(i)}\]

\[\text{Answer (a)(ii)} \quad \text{°} \quad [1]\]
\[\text{(c)(ii)} \quad \text{m} \quad [1]\]

End of Paper 1
Answer all the questions.

1. (a) Given that \(-8 \leq x \leq 4\) and \(-3 \leq y \leq 2\), find
 (i) the least value of \(xy\), [1]
 (ii) the greatest value of \(x^2 - y^2\). [1]

(b) Express as a single fraction in its simplest form
 (i) \(\frac{x - y + y - z}{xy} - \frac{y - y}{yz}\) [2]
 (ii) \(\frac{2x^3}{x + y + z} \times \frac{(x + y)^2 - z^2}{6x}\) [2]

(c) It is given that \(2pq = \sqrt{\frac{4q^2 + p^2}{2}}\).
 Express \(q\) in terms of \(p\). [3]

2. In the diagram, \(OABCD\) is a semicircle with centre at \(O\).
 \(AD \parallel BC\), angle \(CDA = \angle BAD = \frac{3}{10} \pi\) radians and \(OA = 20\) mm.

 (a) Show that angle \(BOA = \frac{2}{5} \pi\) rad. [1]
 (b) Find the length of arc \(AB\), leaving your answer in terms of \(\pi\). [1]
 (c) Find angle \(BOC\). [1]
 (d) Calculate the area of the shaded region. [3]
 (e) Find angle \(BOA\) in degrees. [1]
 (f) The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, \(AD = 60\) mm. Find the area of the enlarged logo. [2]

Methodist Girls' School Mathematics Sec 4 Preliminary Examination 2016
The cash price of a car is $74 000. Mr Smith is introduced to two types of payment schemes.

<table>
<thead>
<tr>
<th></th>
<th>Scheme A</th>
<th>Scheme B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down payment</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Simple interest rate (per annum)</td>
<td>3.28%</td>
<td>R %</td>
</tr>
<tr>
<td>Loan period (years)</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) Find the total amount that Mr Smith has to pay for the car, if he chose Scheme A. [2]

(b) If Mr Smith chose Scheme B, the monthly instalment he has to pay over 5 years is $572.76. Calculate the value of R. [3]

(c) One day the exchange rate between US dollar (US$) and Singapore dollars (S$) was US$1 = S$1.27.

On the same day, the exchange rate between British pound (£) and US dollar was £1 = US$1.33.

Calculate the cash price of the car in pounds, correct to the nearest pound. [2]

Methodist Girls’ School Mathematics Sec 4 Preliminary Examination 2016
In the diagram, $WXYZ$ is a trapezium and WX is parallel to ZY.

The point P on XZ is such that $ZP : PX = 1 : 3$ and $WX : ZY = 3 : 4$.

It is given that $WX = 9a$ and $WZ = b$.

(a) Express, as simply as possible, in terms of a and b,

(i) ZX,

(ii) WP,

(iii) YW.

(b) Show that the line XY is parallel to the line WP.

(c) Find, as a fraction in its simplest form,

(i) $\frac{\text{area of } \triangle WZP}{\text{area of } \triangle WXP}$,

(ii) $\frac{\text{area of } \triangle WZP}{\text{area of } \triangle YXZ}$.
5 Answer the whole of this question on a sheet of graph paper.
A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

<table>
<thead>
<tr>
<th>Week (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of members (y) 5</td>
<td>15</td>
<td>35</td>
<td>p</td>
<td>90</td>
<td>145</td>
<td>230</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for \(0 \leq x \leq 7\).
Using a scale of 2 cm to 50 members, draw a vertical y-axis for \(0 \leq y \leq 400\).
On your axes, plot the points given in the table and join them with a smooth curve.

(b) Use your graph to estimate
(i) the value of \(p\),
(ii) the week that the total number of members reaches 300.

(c) (i) By drawing a tangent, find the gradient of the curve at \(x = 4\).
(ii) What does this gradient represent?

(d) The group of friends wish to estimate what the total number of members will be in one year’s time. They propose to extend the graph line up to week, \(x = 52\).
Explain why it is not possible to estimate the total number of members in this way.
6. The distance between two houses, P and Q, is 200 km. Joe travelled by car from P to Q at an average speed of x km/h.

(a) Write down an expression, in terms of x, for the number of hours he took to travel from P to Q. \[\text{[1]} \]

(b) He returned from Q to P at an average speed of which was 5 km/h more than the first journey.
 Write down an expression, in terms of x, for the number of hours he took to travel from Q to P. \[\text{[1]} \]

(c) The difference between the two times was 24 minutes.
 Write down an equation in x to represent this information, and show that it reduces to \[x^2 + 5x - 2500 = 0. \] \[\text{[3]} \]

(d) Solve the equation $x^2 + 5x - 2500 = 0$, giving each answer correct to three decimal places. \[\text{[3]} \]

(e) Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second. \[\text{[2]} \]
7 (a) Jim exercises on Monday and Wednesday.
On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes.
On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes.

This information can be represented by the matrix

\[
Q = \begin{pmatrix}
10 & 20 & 30 \\
20 & 10 & 15
\end{pmatrix}
\]

Mon. Wed.

(i) Evaluate the matrix \(P = 60Q \).

(ii) Jim's exercising speeds are the same for Monday and Wednesday.
His jogging speed is 4 m/s, cycling speed is 5.5 m/s and swimming speed is 1.3 m/s.

Represent his exercising speeds in a \(3 \times 1 \) column matrix \(S \).

(iii) Evaluate the matrix \(R = PS \).

(iv) State what the elements of \(R \) represent.

(b) The cost of a shirt is \(\$C \). If the shirt is sold at \$60, a shop makes a profit of \(x\% \) on the cost price.

(i) Write down an equation in \(C \) and \(x \) to represent this information and show that it simplifies to

\[6000 - 100C = Cx. \]

If the shirt is sold at \$24, the shop makes a loss of \(2x \% \) on the cost price.

(ii) Write down an equation in \(C \) and \(x \) to represent this information.

(iii) Solve these two equations to find the value of \(C \) and the value of \(x \).

(iv) Calculate the selling price of the shirt if the profit is 45% of the cost price.
The diagram shows a triangular park BCD and the route that Ali has cycled.

Ali cycles from his home, A, on a bearing of 220° towards point B of the park. The distance from A to B is 4.8 km. From B, he cycles to C, which is 6 km away, and he continues to D.

C is due north of B. Reflex angle $ABD = 210^\circ$ and angle $BDC = 35^\circ$.

(a) Show that $\triangle ABCD$ is an isosceles triangle.

(b) Calculate the

(i) distance of AC,

(ii) area of the park BCD,

(iii) angle BAC,

(iv) shortest distance from B to CD.

(c) A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building.
9 120 visitors took a survey on the number of hours they spent at the Gardens by the Bay in February 2016.

The cumulative frequency curve below shows the distribution of the time spent.

(a) Use the curve to estimate

(i) the median time, [1]

(ii) the interquartile range of the times, [2]

(iii) the percentage of visitors who spent at least 4 hours at the Gardens by the Bay. [2]
(b) It was discovered that the number of hours has been recorded incorrectly. The correct number of hours was all 1 hour less than those recorded.

The box-and-whisker plot shows the correct distribution of hours.

Find the value of
(i) \(c \),
(ii) \(e - a \).

(c) The table below shows the results of the survey conducted on another 120 visitors on the number of hours they spent at the Gardens by the Bay in June 2016.

<table>
<thead>
<tr>
<th>Number of hours spent (x h)</th>
<th>Number of visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (< x \leq 4)</td>
<td>33</td>
</tr>
<tr>
<td>4 (< x \leq 6)</td>
<td>46</td>
</tr>
<tr>
<td>6 (< x \leq 8)</td>
<td>30</td>
</tr>
<tr>
<td>8 (< x \leq 10)</td>
<td>11</td>
</tr>
</tbody>
</table>

Calculate an estimate of the
(i) mean time that the visitors spent in June,
(ii) standard deviation.

(d) The programme management team at the Gardens by the Bay commented that the visitors generally spent longer hours in February 2016 than in June 2016.

Justify if the comment is valid.
10 A solid cone is cut into 2 parts, X and Y, by a plane parallel to the base. The length of $AB = \text{the length of } BC$.

![Diagram I]

(a) Given that the volume of the solid cone is $\frac{64}{3} \pi \text{ m}^3$, find the volume, in terms of π, of the frustum, Y. [3]

(b) In Diagram II, a rocket can be modelled from a cylinder of height, h, 94.2 m with a cone, X, on top and a frustum, Y, at the bottom. The cone, X, has a diameter, d_2, of 4 m and the frustum, Y, has a base diameter, d_1, of 8 m. The parts X and Y are taken from Diagram I above.

![Diagram II]

(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter. [5]

(ii) Calculate the volume, in cubic metres, of the rocket. [1]
The rocket is designed to launch to the moon.

Useful information

- Distance of moon from earth: 384 400 km
- Speed of rocket: 800 km /minute
- $1 \text{ m}^3 = 264 \text{ gallon}$
- The rocket is filled with liquid fuel to a maximum of 95% of its volume.
- Rate of fuel consumption: 20 000 gallons /minute
- Capacity of each external fuel tank: $3.2 \times 10^6 \text{ gallons}$

How many external fuel tanks will the rocket require to sustain its journey to the moon?

Justify your answer with calculations.
INSTRUCTIONS TO CANDIDATES

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give
the answer to 3 significant figures. Give answers in degrees to one decimal place.
For \(\pi \), use either your calculator value or 3.142, unless the question requires the answer in
terms of \(\pi \).

INFORMATION FOR CANDIDATES

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100.
Compound interest

\[\text{Total amount} = P \left(1 + \frac{r}{100}\right)^n \]

Mensuration

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)

Area of triangle \(ABC = \frac{1}{2} ab \sin C \)

Arc length = \(r\theta \), where \(\theta \) is in radians

Sector area = \(\frac{1}{2} r^2 \theta \), where \(\theta \) is in radians

Trigonometry

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

\[a^2 = b^2 + c^2 - 2bc \cos A \]

Statistics

\[\text{Mean} = \frac{\sum fx}{\sum f} \]

\[\text{Standard deviation} = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \]
Answer all the questions.

<table>
<thead>
<tr>
<th>1</th>
<th>(a)</th>
<th>Given that (-8 \leq x \leq 4) and (-3 \leq y \leq 2), find</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i)</td>
<td>the least value of (xy),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Least value of (xy = (-8)(2) = -16) ---- B1</td>
</tr>
<tr>
<td></td>
<td>(ii)</td>
<td>the greatest value of (x^2 - y^2),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greatest value of (x^2 - y^2 = (-8)^2 - 0 = 64) ---- B1</td>
</tr>
<tr>
<td>(b)</td>
<td>Express as a single fraction in its simplest form</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i)</td>
<td>(\frac{x-y}{xy} + \frac{y-z}{yz}),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{xyz}{x} - \frac{yz}{x} + \frac{xy-xz}{xyz}) ---- M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{xy-yz}{xyz})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{y(x-z)}{xyz})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{x-z}{xz}) ---- A1</td>
</tr>
<tr>
<td></td>
<td>(ii)</td>
<td>(\frac{2x^3}{x+y+z} \left(\frac{(x+y)^3-z^2}{6x}\right)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{2x^3}{x+y+z} \left(\frac{(x+y-z)(x+y+z)}{6x}\right)) ---- M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{x^2(x+y-z)}{3}) ---- A1</td>
</tr>
<tr>
<td>(c)</td>
<td>It is given that (2pq = \sqrt{\frac{4q^2+p^2}{2}}).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Express (q) in terms of (p).</td>
<td></td>
</tr>
</tbody>
</table>
2. In the diagram, $OABCD$ is a semicircle with centre at O.

$AD \parallel BC$, angle $CDA = angle BAD = \frac{3}{10} \pi$ radians and $OA = 20$ mm.

(a) Show that angle $BOA = \frac{2}{5} \pi$ rad.

ΔBOA is an isosceles triangle

$\angle BOA = \pi - 2 \left(\frac{3\pi}{10} \right)$ ---- B1

$= \frac{2\pi}{5}$ rad

(b) Find the length of arc AB, leaving your answer in terms of π.

arc length $AB = (20) \left(\frac{2\pi}{5} \right)$

$= 8\pi$ mm ---- B1

(c) Find angle BOC. [1]
\[\angle BOC = \pi - \frac{2\pi}{5} \] (adj \(\angle \)s on a straight line)

\[= \frac{3\pi}{5} \text{ rad} \quad \text{(or 0.628 rad (3 s.f.) or 36°)} \]

(d) Calculate the area of the shaded region.

\[\angle BOD = \pi - \frac{2\pi}{5} \]

\[= \frac{3\pi}{5} \text{ rad} \]

Area of sector \(BOD = \frac{1}{2} (20)^2 \left(\frac{3\pi}{5} \right) \]

\[= 120\pi \text{ mm}^2 \]

Area of \(\Delta BOD \) and \(\Delta COD = \frac{1}{2} (20)^2 \left(\sin \frac{\pi}{5} + \sin \frac{2\pi}{5} \right) \]

Shaded area = \(120\pi - 200 \left(\sin \frac{\pi}{5} + \sin \frac{2\pi}{5} \right) \)

\[= 69.2 \text{ mm}^2 \quad \text{(3 s.f.)} \]

OR

Shaded area = \(\frac{1}{2} (20)^2 \left(\frac{\pi}{5} - \sin \frac{\pi}{5} \right) + \frac{1}{2} (20)^2 \left(\frac{2\pi}{5} - \sin \frac{2\pi}{5} \right) \)

\[= 69.2 \text{ mm}^2 \quad \text{(3 s.f.)} \]

(e) Find angle \(\angle BOA \) in degrees.

\[\angle BOA = \frac{2\pi}{5} \]

\[= 72° \quad \text{B1} \]

(f) The unshaded region forms a company logo. An enlarged copy of the logo is made. In the enlargement, \(AD = 60 \text{ mm} \). Find the area of the enlarged logo.

\[\text{shaded area} = \frac{1}{2} (20)^2 (\angle - \sin \angle) + \frac{1}{2} (20)^2 (2\angle - \sin 2\angle) \]

\[= 69.2 \text{ mm}^2 \quad \text{(3 s.f.)} \]

\[\text{Area of enlarged logo} = \frac{20^2}{60^2} \times 69.2 \text{ mm}^2 \]

\[= 5.86 \text{ mm}^2 \quad \text{(3 s.f.)} \]

Methodist Girls' School Mathematics Sec 4 Preliminary Examination 2016
The unshaded area is \[\frac{1}{2} \pi (20)^2 - 69.22276 = 559.0957 \text{ mm}^2 \] (M1)

The area of the enlarged logo is \[\left(\frac{AD}{AO} \right)^2 \cdot \frac{9}{4} \cdot 559.0957 = 1260 \text{ mm}^2 \] (3 s.f.) (A1)

or by using the enlarged radius = 30

3. The cash price of a car is $74,000. Mr Smith is introduced to two types of payment schemes.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Scheme B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down payment</td>
<td>40%</td>
</tr>
<tr>
<td>Simple interest rate</td>
<td>3.28%</td>
</tr>
<tr>
<td>(per annum)</td>
<td></td>
</tr>
<tr>
<td>Loan period (years)</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) Find the total amount that Mr Smith has to pay for the car, if he chose Scheme A.

Amount loaned = \[0.6 \times 74000 = 44400 \]

Simple interest = \[44400 \times \frac{3.28}{100} \times 5 = 7281.60 \] (M1)

Total amount = \[7281.60 + 74000 = 81281.60 \] (A1)

(b) If Mr Smith chose Scheme B, the monthly instalment he has to pay over 5 years is $572.76. Calculate the value of \(R\).

Methodist Girls' School Mathematics Sec 4 Preliminary Examination 2016
Amount loaned = 0.4 \times 74000 \\
= 29600 \\
572.76 \times 12 \times 5 = 29600 + 29600 \times \frac{R}{100} \times 5 \\
M1 - \text{instalments paid (LHS)} \\
+ M1 - \text{simple interest (RHS)} \\
R = 3.22 \quad \text{----- A1}

(c) One day the exchange rate between US dollar (US$) and Singapore dollars (S$) was US$1 = S$1.27.

On the same day, the exchange rate between British pound (£) and US dollar was £1 = US$1.33.

Calculate the cash price of the car in pounds, correct to the nearest pound. [2]

Amount in US$ = \frac{74000}{1.27} \quad \text{----- M1 here} \\
= US$58267.71654 \\
Amount in pounds = \frac{58267.71654}{1.33} \quad \text{----- or M1 here} \\
= £43810 \text{ (to nearest pound) ----- A1}

or

£1 = US$1.33 \times 1.27 \quad \text{----- M1} \\
= US$1.6891 \\
\text{cost of car in pounds} = \frac{74000}{1.6891} \\
= £43810 \text{ (to nearest pound)}
In the diagram, WXYZ is a trapezium and WX is parallel to ZY.
The point P on XZ is such that ZP : PX = 1 : 3 and WX : ZY = 3 : 4.

It is given that WX = 9a and WZ = b.

(a) Express, as simply as possible, in terms of a and b,

- (i) \overrightarrow{ZX},

 $\overrightarrow{ZX} = -b + 9a$ ---- B1

- (ii) \overrightarrow{WP},

 $\overrightarrow{WP} = b + \overrightarrow{ZP}$

 $= b + \frac{1}{3}(-b + 9a)$

 $= \frac{3}{4}(b + 3a)$ ---- B1

- (iii) \overrightarrow{YW},

 $\overrightarrow{YW} = b + \overrightarrow{ZY}$

 $= b + \frac{4}{3}(9a)$

 $= b + 12a$

 $\overrightarrow{YW} = -b - 12a$ ---- B1

 or

 $\overrightarrow{YW} = \overrightarrow{YZ} - b$

 $= -b - 12a$

(b) Show that the line XY is parallel to the line WP. [2]
\[
\overline{XY} = \overline{XW} + \overline{WY} \\
= -9a + 12a + b \\
= 3a + b \\
\overline{WP} = \frac{9}{4}a + \frac{3}{4}b \\
= \frac{3}{4}(3a + b) \\
\text{Since } \overline{WP} = \frac{3}{4} \overline{XY}, \text{ } \overline{XY} \text{ is parallel to } \overline{WP}.
\]

\(\text{(c) Find, as a fraction in its simplest form,} \)

\(\text{(i) } \frac{\text{area of } \triangle WZP}{\text{area of } \triangle WXP} = \frac{1}{3} \tag{1} \)

\(\text{(ii) } \frac{\text{area of } \triangle WZP}{\text{area of } \triangle YXZ} \)

\[
\begin{align*}
WZP : WXZ : YXZ &= 1 : 4 \\
\text{area of } \triangle WZP &= \frac{3}{4} \\
\text{area of } \triangle YXZ &= \frac{16}{4} \\
\text{area of } \triangle WZP &= \frac{3}{4} \\
\text{area of } \triangle YXZ &= \frac{16}{4} \\
\end{align*}
\]

\[
\begin{align*}
\text{Or } \frac{\text{area of } \triangle WZP}{\text{area of } \triangle YXZ} &= \frac{1 \times 3}{4 \times 4} = \frac{3}{6} \tag{2}
\end{align*}
\]
5 Answer the whole of this question on a sheet of graph paper.
A group of friends founded a new social networking website. The table below shows the number of members at the beginning of each week over a period of 7 weeks.

<table>
<thead>
<tr>
<th>Week (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of members (y)</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>p</td>
<td>90</td>
<td>145</td>
<td>230</td>
<td>400</td>
</tr>
</tbody>
</table>

(a) Using a scale of 2 cm to 1 week, draw a horizontal x-axis for \(0 \leq x \leq 7\). Using a scale of 2 cm to 50 members, draw a vertical y-axis for \(0 \leq y \leq 400\). On your axes, plot the points given in the table and join them with a smooth curve. [3]

(b) Use your graph to estimate
(i) the value of \(p\), [1]
(ii) the week that the total number of members reaches 300. [1]

(c) (i) By drawing a tangent, find the gradient of the curve at \(x = 4\). [2]
(ii) What does this gradient represent? [2]

(d) The group of friends wish to estimate what the total number of members will be in one year’s time. They propose to extend the graph line up to week, \(x = 52\). Explain why it is not possible to estimate the total number of members in this way. [1]
The distance between two houses, P and Q, is 200 km. Joe travelled by car from P to Q at an average speed of \(x \) km/h.

(a) Write down an expression, in terms of \(x \), for the number of hours he took to travel from P to Q.
\[
\text{time} = \frac{200}{x} \text{ hours}
\]

(b) He returned from Q to P at an average speed of which was 5 km/h more than the first journey.
Write down an expression, in terms of \(x \), for the number of hours he took to travel from Q to P.
\[
\text{time} = \frac{200}{x + 5} \text{ hours}
\]

(c) The difference between the two times was 24 minutes.
Write down an equation in \(x \) to represent this information, and show that it reduces to
\[
x^2 + 5x - 2500 = 0.
\]

\[
\frac{200}{x} - \frac{200}{x+5} = \frac{24}{60}
\]
\[
200(x+5) - 200x = \frac{2}{5}(x)(x+5)
\]
\[
1000(x+5) - 1000x = 2x^2 + 10x
\]
\[
1000x + 5000 - 1000x = 2x^2 + 10x
\]
\[
2x^2 + 10x - 5000 = 0
\]
\[
x^2 + 5x - 2500 = 0
\]

(d) Solve the equation \(x^2 + 5x - 2500 = 0 \), giving each answer correct to three decimal places.
\[
x = \frac{-5 \pm \sqrt{5^2 - 4(1)(-2500)}}{2(1)}
\]
\[
x = 47.562 \text{ or } -52.562
\]

(e) Calculate the time that Joe took to travel from P to Q, giving your answer in hours, minutes and seconds, correct to the nearest second.
\[
\text{time} = \frac{200}{47.562} = 4 \text{ hours 12 minutes 18 seconds (nearest sec)}
\]

Methodist Girls' School Mathematics Sec 4 Preliminary Examination 2016
Jim exercises on Monday and Wednesday.
On Monday, he jogs for 10 minutes, cycles for 20 minutes and swims for 30 minutes.
On Wednesday, he jogs for 20 minutes, cycles for 10 minutes and swims for 15 minutes.

This information can be represented by the matrix \(Q = \begin{pmatrix} 10 & 20 & 30 \\ 20 & 10 & 15 \end{pmatrix} \) for Mon and Wed.

(i) Evaluate the matrix \(P = 60Q \).

\[
P = 60 \begin{pmatrix} 10 & 20 & 30 \\ 20 & 10 & 15 \end{pmatrix} = \begin{pmatrix} 600 & 1200 & 1800 \\ 1200 & 600 & 900 \end{pmatrix}
\]

(ii) Jim’s exercising speeds are the same for Monday and Wednesday. His jogging speed is 4 m/s, cycling speed is 5.5 m/s and swimming speed is 1.3 m/s.

Represent his exercising speeds in a \(3 \times 1 \) column matrix \(S \).

\[
S = \begin{pmatrix} 4 \\ 5.5 \\ 1.3 \end{pmatrix}
\]

(iii) Evaluate the matrix \(R = PS \).

\[
R = \begin{pmatrix} 600 & 1200 & 1800 \\ 1200 & 600 & 900 \end{pmatrix} \begin{pmatrix} 4 \\ 5.5 \\ 1.3 \end{pmatrix} = \begin{pmatrix} 11340 \\ 9270 \end{pmatrix}
\]

(iv) State what the elements of \(R \) represent. The elements of \(R \) represent the distance, in metres, that Jim has exercised on Monday and Wednesday, respectively.
(b) The cost of a shirt is $C. If the shirt is sold at $60, a shop makes a profit of $x\%$ on the cost price.

(i) Write down an equation in C and x to represent this information and show that it simplifies to:

\[6000 - 100C = Cx.\]

Percentage profit = $x\%$

\[
\frac{60 - C}{C} \times 100 = x \quad \text{(M1)}
\]

\[100(60 - C) = Cx \quad \text{(shown)}\]

If the shirt is sold at $24, the shop makes a loss of $2x\%$ on the cost price.

(ii) Write down an equation in C and x to represent this information.

\[2x = \frac{C - 24}{C} \times 100 \quad \text{(A1)}
\]

\[2x = \frac{100C - 2400}{C} \quad \text{(A1)}
\]

\[100C - 2400 = 2Cx \quad \text{(A1)}
\]

(iii) Solve these two equations to find the value of C and the value of x.

\[6000 - 100C = Cx \quad \text{(1)}
\]

\[100C - 2400 = 2Cx \quad \text{(2)}
\]

\[(1) \times 2 - (2)
\]

\[12000 - 200C - (100C - 2400) = 0 \quad \text{(M1)}
\]

\[1400 = 300C \quad \text{(A1 + A1)}
\]

\[C = 48 \quad \text{(A1)}
\]

\[x = 25 \quad \text{(A1 + A1)}
\]

(iv) Calculate the selling price of the shirt if the profit is 45% of the cost price.

Selling price = $1.45 \times 48 \quad \text{(M1)}$

= $69.60 \quad \text{(A1)}$
The diagram shows a triangular park BCD and the route that Ali has cycled.

Ali cycles from his home, A, on a bearing of 220° towards point B of the park. The distance from A to B is 4.8 km. From B, he cycles to C, which is 6 km away, and he continues to D.

C is due north of B. Reflex angle $ABD = 210^\circ$ and angle $BDC = 35^\circ$.

(a) Show that $\triangle BCD$ is an isosceles triangle.

$\angle CBA = 180^\circ - (360^\circ - 220^\circ)$ (int $\angle s$, $\angle s$ at a point)

$= 40^\circ$

$\angle DBC = 360^\circ - 210^\circ - 40^\circ$ ($\angle s$ at a point)

$= 110^\circ$

$\angle DCB = 180^\circ - 35^\circ - 110^\circ$ ($\angle \text{sum of } \Delta$)

$= 35^\circ$

Since $\angle DCB = \angle CDB = 35^\circ$, $\triangle BCD$ is an isosceles triangle.

(b) Calculate the

(i) distance of AC,

$AC^2 = 6^2 + 4.8^2 - 2(6)(4.8)\cos 40^\circ$ \hspace{1cm} M2, 1

$AC = \sqrt{14.91584008}$

$= 3.86$ km \hspace{1cm} (to 3 sf) \hspace{1cm} A1

(ii) area of the park BCD,

Area of $\triangle ABCD = \frac{1}{2}(6)(6)\sin 110^\circ$ \hspace{1cm} M1

$= 16.9$ km2 \hspace{1cm} (to 3 sf) \hspace{1cm} A1

(iii) angle BAC,
\[
\sin \angle BAC = \sin 40^\circ \\
\frac{6}{3.862103}
\]

\[
\angle BAC = \sin^{-1}\left(\frac{\sin 40^\circ}{3.862103} \times 6\right)
\]

\[
= 87.0^\circ \quad \text{(to 1 dp)} \quad A1
\]

iv) shortest distance from B to CD.

\[
\text{Shortest distance} = 60 \times \sin 35^\circ M1
\]

\[
= 3.44 \text{ km} \quad \text{(to 3 sf)} \quad A1
\]

c) A building stands vertically at B. The angle of depression of C when viewed from the top of the building is 40°. Find the height of the building.

\[
\text{Height of the building} = 6 \times \tan 40^\circ M1
\]

\[
= 5.03 \text{ km} \quad \text{(to 3 sf)} \quad A1
\]
9 120 visitors took a survey on the number of hours they spent at the Gardens by the Bay in February 2016. The cumulative frequency curve below shows the distribution of the time spent.

<table>
<thead>
<tr>
<th>(a)</th>
<th>Use the curve to estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>the median time,</td>
</tr>
<tr>
<td></td>
<td>median = 6.9 hours B1</td>
</tr>
<tr>
<td>(ii)</td>
<td>the interquartile range of the times,</td>
</tr>
<tr>
<td></td>
<td>IQR = 8 - 5.7 M1</td>
</tr>
<tr>
<td></td>
<td>= 2.3 hours A1</td>
</tr>
<tr>
<td>(iii)</td>
<td>the percentage of visitors who spent at least 4 hours at the Gardens by the Bay.</td>
</tr>
</tbody>
</table>
It was discovered that the number of hours has been recorded incorrectly. The correct number of hours was all 1 hour less than those recorded.

The box-and-whisker plot shows the correct distribution of hours.

Find the value of:

(i) \(c \)
\[c = 5.9 \text{ hours} \] B1

(ii) \(e - a \)
\[e - a = 8 \text{ hours} \] B1

(c) The table below shows the results of the survey conducted on another 120 visitors on the number of hours they spent at the Gardens by the Bay in June 2016.

<table>
<thead>
<tr>
<th>Number of hours spent (x h)</th>
<th>Number of visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 < x \leq 4)</td>
<td>33</td>
</tr>
<tr>
<td>(4 < x \leq 6)</td>
<td>46</td>
</tr>
<tr>
<td>(6 < x \leq 8)</td>
<td>30</td>
</tr>
<tr>
<td>(8 < x \leq 10)</td>
<td>11</td>
</tr>
</tbody>
</table>

Calculate an estimate of the

(i) mean time that the visitors spent in June,
\[mean = \frac{3 \times 33 + 5 \times 46 + 7 \times 30 + 9 \times 11}{120} \]
\[= 5.32 \text{ hours (to 3 sf)} \] B1

(ii) standard deviation.
\[\text{standard deviation} = 1.86 \text{ hours (to 3 sf)} \] B2 or M1+A1
<table>
<thead>
<tr>
<th>(d)</th>
<th>The programme management team at the Gardens by the Bay commented that the visitors generally spent longer hours in February 2016 than in June 2016. Justify if the comment is valid.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median in June is $4 < x \leq 6$. M1</td>
</tr>
<tr>
<td></td>
<td>The comment is invalid as median is in February (5.9 hours) is within the median class in June $(4 < x \leq 6)$. A1</td>
</tr>
</tbody>
</table>
A solid cone is cut into 2 parts, X and Y, by a plane parallel to the base. The length of $AB = $ the length of BC.

Given that the volume of the solid cone is $\frac{64}{3} \pi$ m3, find the volume, in terms of π, of the frustum, Y.

\[
\left(\frac{\text{length of } AB}{\text{length of } BC} \right)^2 = \frac{\text{vol of } X}{\text{vol of } X + Y}
\]

\[
\left(\frac{1}{2} \right)^2 = \frac{\text{vol of } X}{\frac{64}{3}} \quad \text{M1}
\]

Vol of $X = \frac{8\pi}{3}$

Vol of $Y = \frac{64\pi}{3} - \frac{8\pi}{3} \quad \text{M1}
\]

\[
= \frac{56}{3} \pi \quad \text{m}^3 \quad \text{A1}
\]
(b) In Diagram II, a rocket can be modelled from a cylinder of height, \(h \), 94.2 m with a cone, \(X \), on top and a frustum, \(Y \), at the bottom. The cone, \(X \), has a diameter, \(d_2 \), of 4 m and the frustum, \(Y \), has a base diameter, \(d_1 \), of 8 m. The parts \(X \) and \(Y \) are taken from Diagram I above.

\[h = 94.2 \]

\[d_2 = 4 \]

\[d_1 = 8 \]

Diagram II

(i) Calculate the total surface area of the rocket. Give your answer correct to the nearest square meter.

\[
\text{total surface area} = \pi (4)\left(\sqrt{4^2 + 4^2}\right) + 2\pi (2)(94.2) + \pi (4)^2
\]

\[= 1305.1037 \ldots \]

\[= 1305 \text{ m}^2 \] (to nearest square metre) A1

(ii) Calculate the volume, in cubic metres, of the rocket.

\[
\text{vol} = \frac{1}{3} \pi (4)^2 (4) + \pi (2)^2 (94.2)
\]

\[= 1250.7727 \ldots \]

\[= 1250 \text{ m}^3 \] (to 3 sf) A1

(iii) The rocket is designed to launch to the moon.
Useful information

- Distance of moon from earth: 384 400 km
- Speed of rocket: 800 km/minute
- $1 \text{ m}^3 = 264 \text{ gallon}$
- The rocket is filled with liquid fuel to a maximum of 95% of its volume.
- Rate of fuel consumption: 20 000 gallons/minute
- Capacity of each external fuel tank: $3.2 \times 10^6 \text{ gallons}$

How many external fuel tanks will the rocket require to sustain its journey to the moon?

Justify your answer with calculations.

Amount of fuel in rocket

$$= 0.95 \times 1250.7727$$
$$= 1188.234 \text{ m}^3$$

Gallons of fuel

$$= 1188.234 \times 264$$
$$= 313693.807 \text{ gallons}$$

Time taken to travel to moon

$$= \frac{384400 \text{ km}}{800 \text{ km/minute}}$$
$$= 480.5 \text{ minutes}$$

Amount of fuel needed

$$= 20000 \times 480.5$$
$$= 9610000 \text{ gallons}$$

Number of tanks

$$= \frac{9610000 - 313693.807}{3.2 \times 10^6}$$
$$\approx 2.905...$$
$$= 3$$

Therefore, number of external tanks required is 3.
Answer scheme

1a)

1b)

\[
\begin{align*}
\text{Solving: } & \quad x = 2, \quad y = 3 \\
\end{align*}
\]

1ci) Let \(x \) be the tens digit and \(y \) be the units digit.

1cii) Therefore number is 23 (Answer can also be 32)

1di)

1dii)
2a)

2b)

2c)

2d) \(x = 1.20, x = -36 \)

3a(i) 1\(^{st}\) Draw 2\(^{nd}\) Draw
3a(ii)(a) \[P(\text{both discs are yellow}) = \]

3a(ii)(b) \[P(\text{one is blue and one is red}) \]

3a(ii)(c) \[P(\text{both discs are of different colour}) \]
\[= 1 - P(\text{both blue}) - P(\text{both yellow}) - P(\text{both red}) \]

3b(i) \[\text{Mean} = 54.6 \]
\[\text{SD} = 13.6 \]
3b(ii) Mega Sec performed better as their mean is greater than mean for Faith Sec.

Results for Faith Sec is more consistent as their SD is less than SD for Mega Sec.

4a) \(a = 21 , b = 1 \)

4c) \(x = 0.6 , 4.3 \)

4d)

4e) Draw line
\(x = 6.1 \)

5a(i) \(= 2b + a \)

5a(ii) \(= = (2b + a) \)
5a(iii) \(= (6b + a) \)

5a(iv) \(= a \)

5(b), where \(a \) is a scalar and FE is parallel to BC.

5c(i)

5c(ii)

5c(iii)

6a)

6b)

6c) The total amount collected from the sales of the four types of doughnuts in each of the outlet respectively.

7(a) \(\angle BAC = 120^\circ \)
= 153m (3sf)

7(b) Area = 3390 m²

7(c) \(\angle ADC = 40.2° \)

7(d) length of mast = 92\tan27°
Angle of elevation = 17.0°

8a(i) Median = 68 marks

8a(ii) 65th percentile mark = 76 marks

8(b)

8(c) \(P(\text{both obtained more than 88 marks}) \)

9(a)(i) No of apprentices = 425

9(a)(ii) number of workers = 1020
9a(iii) 12.5% increase

9bi(a) Amount owed after first payment
=

9bi(b) Amount owed after second payment
=

9b(ii) Final settlement =

9b(iii) The final settlement will be different. This is because if $2000 is paid at the end of the first month, the principal sum used to calculate the next payment will be different and will eventually lead to a different final settlement.

10a) Perimeter =
Area =
=
= 11.3 cm²

10b(i) Vol of spherical ball = 4.19 cm³
10b(ii) Depth of water = 17.9 cm
10b(iii) Depth of water = 3.51 cm
11(i) From the distance time graph, the police car and the speeding car will meet somewhere between the 2nd and 3rd minute. Hence the police car will be able to overtake the speeding car and arrest the driver.

11(ii) Possible assumptions:
- The flow of traffic on the expressway is smooth
- Both cars did not stop along the way
- Both cars are travelling on the same expressway
READ THESE INSTRUCTIONS FIRST

Write your name, registration number and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact,
give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 100.
Mathematical Formulae

Compound Interest

Total amount =

Mensuration

Curved surface area of a cone =

Surface area of a sphere =

Volume of a cone =
Volume of a sphere =

Area of triangle $ABC =$

Arc length $= r\theta$, where θ is in radians

Sector area $= \frac{1}{2} r^2 \theta$, where θ is in radians

Trigonometry

Statistics

Mean $=$

Standard deviation $=$
1. (a) Factorise completely.

Express as a single fraction in its simplest form.

(c) For a two-digit number, the sum of the units digit and tens digit is 5 and the difference between the units digit and tens digit is 1.

(i) Form two simultaneous equations and solve them.

(ii) Hence state the two-digit number.

Make \(m \) the subject of the formula .

(ii) Hence find the value of \(m \), given that \(s = 2 \), \(r = 1 \) and \(p = 3 \).

2. Peter bought some lychees for $360. He paid x for each kilogram of lychees.

(a) Write down an expression, in terms of \(x \), for the number of kilogram of lychees that he bought.

During the delivery, 5 kilogram of his lychees were squashed. He sold the remainder of the lychees at 60 cents more per kilogram than he paid for.

(b) Write down, in terms of \(x \), for the sum of money he received for the remaining lychees.

He made a profit of $171.

(c) Write down an equation in \(x \) to represent this information and show that it reduces to \(5x^2 + 174x - 216 = 0 \).

(d) Solve the equation and hence find the price that he paid for each kilogram of lychees.

3. (a) A bag contains 20 coloured discs. Out of these 20 discs, 8 are blue, 7 are red and 5 are yellow. Jane draws two discs from the bag at random.

(i) Draw a tree diagram to show the probabilities of the possible outcomes.

SMSS 2016

Carousell-examguru
(ii) Find, as a fraction in its simplest form, the probability that

(a) both discs are yellow, \[1\]
(b) one disc is red and the other is blue, \[1\]
(c) both discs are of different colour. \[2\]

(b) 120 students from Mega Secondary School took a Science Test and their marks are given in the following table.

<table>
<thead>
<tr>
<th>Marks</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 < x \leq 20)</td>
<td>2</td>
</tr>
<tr>
<td>(20 < x \leq 30)</td>
<td>5</td>
</tr>
<tr>
<td>(30 < x \leq 40)</td>
<td>8</td>
</tr>
<tr>
<td>(40 < x \leq 50)</td>
<td>35</td>
</tr>
<tr>
<td>(50 < x \leq 80)</td>
<td>70</td>
</tr>
</tbody>
</table>

(i) Calculate an estimate of the mean and standard deviation. \[3\]

(ii) The mean mark for another group of student from Faith Secondary School is 42 and the standard deviation is 12.8 mark. Make two comparisons between the marks for the 2 different groups of students. \[2\]

4. **Answer the whole of this question on a sheet of graph paper.**

This following is a table of values for the graph of:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>15</td>
<td>19</td>
<td>21</td>
<td>(a)</td>
<td>19</td>
<td>15</td>
<td>9</td>
<td>(b)</td>
<td>−9</td>
</tr>
</tbody>
</table>

(a) Calculate the value of \(a\) and of \(b\). \[1\]

(b) Using a scale of 2 cm to 1 unit on the \(x\) axis and 2 cm to 5 unit on the \(y\) axis, draw the graph of for. \[3\]

(c) Use your graph to find the values of \(x\) when \(y = 18\). \[2\]

(d) By drawing a tangent, find the gradient of the curve where \(x = 4.5\). \[2\]

(e) By drawing a suitable straight line on the same axes, use your graph to find the solutions of the equation. \[3\]

5.
\(ABCD\) is a rectangle. \(= 2b \text{ and } = a\).

\(M\) is the midpoint of \(AC\) and \(AC = 2CE\).

\(F\) is a point on \(AB\) extended such that \(AF : AB = 3:2\).

(a) Express each of the following, as simply as possible, in terms of \(a\) and/or \(b\).

(i)

(ii)

(iii)

(iv)

(b) Write down 2 facts about \(BC\) and \(FE\).

(c) Calculate the value of

(i)

(ii)

(iii)

The number of doughnuts sold by a bakery in three of its most popular outlets for the first week of June is shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Outlet A</th>
<th>Outlet B</th>
<th>Outlet C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salted Caramel</td>
<td>300</td>
<td>280</td>
<td>250</td>
</tr>
<tr>
<td>Chocolate</td>
<td>450</td>
<td>385</td>
<td>355</td>
</tr>
<tr>
<td>Sugared coated</td>
<td>255</td>
<td>275</td>
<td>310</td>
</tr>
<tr>
<td>Strawberry</td>
<td>150</td>
<td>140</td>
<td>185</td>
</tr>
</tbody>
</table>
(a) Write down a 4×3 matrix N that represents the information given in the table. [1]

(b) The selling price of salted caramel doughnuts, chocolate doughnuts, sugared coated doughnuts and strawberry doughnuts are $2, $1.80, $1.30 and $1.40 respectively. Write down a matrix P that represents this information and hence evaluate PN. [3]

(c) Explain what the elements of matrix PN represents. [1]

7 In the diagram below, A, B, C and D are points on level ground. $AB = 85$ m, $AC = 92$ m and B is due North of A and the bearing of D from A is 205°.

(a) Find BC. [3]

(b) Calculate the area of triangle ABC. [1]

(c) Calculate . [2]

(d) A vertical mast is at C. The angle of elevation of the top of the mast from A is 27°. Calculate the angle of elevation of the top of the mast from B. [3]

8 The cumulative frequency graph shows the distribution of marks of 60 students in a spelling test.
(a) Find

(i) the median mark. [1]

(ii) 65th percentile mark. [1]

(b) Find the percentage of students who obtained more than 48 marks. [2]

(c) Two students are chosen at random to go through to the next round of competition. Find the probability that both students obtain more than 88 marks. [2]
In 2014, a factory employed 1275 workers consisting of Foreman, Craftsman and Apprentice in the ratio 1:9:5.

Find the number of Apprentices employed in 2014. [1]

The number of workers employed in 2014 was 25% more than it was in 2013. Find the number of workers employed in 2013. [1]

70% of the factory’s total expense are for wages and the rest is for raw materials. In 2015, wages increased by 8% and the cost of the raw material increased by 23%. Calculate the percentage increase in the total expense, assuming that the number of workers employed remained the same. [3]

Tom borrowed $4000 from a bank at the interest rate of 15% per annum compounded monthly. He repaid $1500 at the end of the first month, $2000 at the end of the second month, and made a final settlement at the end of the third month.

How much did he owe the bank just after

the first payment, [2]
the second payment? [2]

How much was the final settlement payment? [2]

If Tom has repaid $2000 at the end of the first month and $1500 at the end of the second month, would the final settlement payment at the end of the third month remain the same? Explain briefly. [1]

In the diagram, each circle centered A, B and C is of the same radius of 4 cm. Calculate the perimeter and the area of the shaded region.
A spherical ball of radius 1 cm is completely submerged in a cylindrical container of height 30 cm and radius 3 cm. Water is then poured into the container to a depth of 18 cm. Calculate

the volume of the spherical ball,

the depth of water in the container if the spherical ball is removed from the container.

If the water in the cylindrical container is poured into a rectangular trough of length 18 cm and breadth 8 cm, what is the depth of the water in the trough?

Table

<table>
<thead>
<tr>
<th>Time</th>
<th>Speed of Speeding Car (km/h)</th>
<th>Speed of Police Car (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st minute</td>
<td>105</td>
<td>90</td>
</tr>
<tr>
<td>2nd minute</td>
<td>140</td>
<td>135</td>
</tr>
</tbody>
</table>
(a) Based on the information given, using a distance-time graph, determine whether the police car will be able to overtake the speeding car and arrest the driver during the high-speed chase. Show how you arrive at your conclusion. [4]

(b) Are there any assumptions that you may have to make? [1]
READ THESE INSTRUCTIONS FIRST

Write your name, registration number and class on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give
the answer to three significant figures. Give answers in degrees to one decimal place. For
\(\pi \), use either your calculator value or 3.142, unless the question requires the answer in terms
of \(\pi \).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80.
Mathematical Formulae

Compound Interest

Total amount =

Mensuration

Curved surface area of a cone =

Surface area of a sphere =

Volume of a cone =

Volume of a sphere =

Area of triangle $ABC =$

Arc length = , where θ is in radians

Sector area = , where θ is in radians

Trigonometry

Statistics

Mean =

Standard deviation =
1. Factorise each of the following expressions completely
 (a) _____________________ [2]
 (b) _____________________ [2]

2. (a) Petrol costs y cents per litre. Desmond buys some petrol and it costs him x dollars. Find an expression, in terms of x and y, for the number of litres that he buys.

 Answer (a) _________________ litres [1]

 (b) Rashid’s best timing for 2.4 km run was 9 minutes and 34 seconds. Convert his speed into metres per second.

 Answer (b) _________________ m/s [1]
3 Express the following expressions in their simplest form

(a)

(b)

4 Solve the equation,

Answer \[x = \] [3]

5 (a) Solve the equation
5 Answer (a) \(x = \underline{\hspace{2cm}} \) \[2\]

(b) Given that and , find the value of .

Answer (b) \(\underline{\hspace{2cm}} \) \[2\]

6 The speed of light is .
(a) Express this speed in \(\text{km/h} \), giving your answer in standard form.

Answer (a) \(\underline{\hspace{2cm}} \) \[1\]

(b) Find the time taken in nanoseconds, for light to travel one kilometre.

Answer (b) \(\underline{\hspace{2cm}} \) ns \[2\]

7 Given find the smallest possible value of \(x \) if \(x \) is a perfect
square.

Answer (a) \(x = \) \[2\]

(b) Given that \(-3 \leq x \leq 4\) and where \(x\) and \(y\) are integers, find
(i) the least value of

Answer (b)(i) \[1\]

(ii) the greatest value of.

Answer (b)(ii) \[1\]

8 (a) Express 504 as the product of its prime factors.

Answer (a) \[1\]

(b) Find the smallest positive integer value of \(k\) for which 504\(k\) is a multiple of 240.

Answer (b) \(k = \) \[1\]

(c) Given that the lowest common multiple of 504 and \(n\) is 12 600, find the smallest value of \(n\).
9 The first five terms of a sequence are
0, 3, 8, 15, 24
Find
(a) the next term,

Answer (a) _____________________ [1]

(b) an expression for the \(n \)th term,

Answer (b) _____________________ [1]

(c) the 50th term.

Answer (c) _____________________ [1]

10 In the figure, \(QRST \) is a straight line. \(\text{Angle} = 90^\circ, PS = 5 \text{ cm}, RS = 2 \text{ cm} \) and the area of triangle \(PRS = 3 \text{ cm}^2 \).
(a) Calculate
 (i) PQ,

 Answer (a)(i)__________________cm \ [1]

 (ii) PR.

 Answer (a)(ii)_________________ cm \ [2]

(b) Express, as a fraction in the lowest term, the value of

 Answer (b) ____________________ \ [1]

11 A scale of 2 cm to 1 km is used for a map.
 (a) Express the scale in the form $1 : n$.

(b) The distance between town A and town B measures 16 cm on the map. Find the actual distance, in metres, between the two towns.

Answer (b) __________________m [1]

(c) A playground covers an actual area of 8 km2. Find the area of the playground on the map, leaving your answer in cm2.

Answer (c) ________________ cm2 [2]
The diagram shows part of a regular polygon with \(n \) sides. Given that \(\angle BAC = 12^\circ \) and \(E \) is the point where the lines \(BD \) and \(AC \) intersect.

Calculate

(a) the value of \(n \),

Answer (a) \(n = \underline{\text{_______________}} \) \[2\]

(b) \(\angle AED \).

Answer (b) \(\underline{\text{_______________}}^\circ \) \[1\]

13 Solve the simultaneous equations below giving your answers in exact values.
14 (a) Given that,
\[P = \{x : x \text{ is a multiple of 4}\}, \]
\[Q = \{x : x \text{ is an even number}\} \text{ and} \]
\[R = \{x : x \text{ is a number less than 7}\}. \]

(i) List the elements in set \(P \).

Answer (a)(i)____________________ [1]

(ii) Find \(x \).

Answer (a)(ii)___________________ [1]

(iii) State the value of \(n(R) \).

Answer (a)(iii)___________________ [1]

(b) On the Venn diagram shown in the answer space, shade the set \(R \).
15 \(AB \) is the diameter of the circle \(AFBCD \) shown in the diagram. \(E \) is the point on \(AB \) produced, where \(BD = BE \) and angle.
The straight line \(ED \) cuts the circle at \(C \).

(a) Explain why angle.

___ [2]

(b) Find angle.

Answer (b) ___________________ \(^\circ\) [1]

(c) Show that \(BD \) bisects angle.

___ [1]

(d) Given also that angle, calculate angle.

Answer (d) ___________________ \(^\circ\) [1]

16 Given that \(A \) is the point (1, 1), and that \(D \) is the
midpoint of BC. Find

(a)_______________________

(b),

(c) the coordinates of the point P such that $ABPC$ is a parallelogram using vector method.

Answer (c) (_________, ________) [2]

17 A container is a prism with a triangular cross-section. The container has a height of 30 cm. Jamie pours water into the empty container at a constant rate. She takes 9 seconds to fill the container with water. After t seconds, the depth of the water is d cm.
(a) Find the value of \(d \) when \(t = 4 \).

Answer (a) _____________________ [2]

(b) Given that the volume of the container is 1350 cm\(^3\). Find the volume of the water when \(t = 4 \).

Answer (b) _________________ cm\(^3\) [2]

17 (c) On the axes in the answer space, sketch the graph showing how the
(i) depth varies during the 9 seconds,
(ii) Volume varies during the 9 seconds. [1]

18 The times (in seconds) taken by 12 boys to complete the shuttle run are given below.

9 14 12 17 16 10 10 18 12 15 13 12
Find,
(a) (i) the median,

Answer (a)(i)___________________ [1]

(ii) the interquartile range.

Answer (b)(ii)___________________ [1]

(b) The times (in seconds) taken by 12 girls to complete the shuttle run are given below.
10 18 19 12 12 14 21 21 22 15 13 15

Compare the results of the boys and girls.

[2]

19 (a) Express in the form and sketch in the space provided showing the turning point and y-intercept.
Answer (a) \(y = ________ \) [1]

(b) The diagram below shows a quadratic function in the form of .

Equation of line of symmetry is . Find the values of \(a, b \) and \(c \).

Answer (b) \(_____________ \) \(b = _____________ \) \(c = _____________ \) [3]

20 In the diagram below, \(O \) is the origin, \(A \) is and \(B \) is . \(C \) is a variable point with the coordinates and \(D \) is the point of intersection of the lines \(AB \) and \(OC \).
(a) Prove that triangles OBD and CAD are similar for all values of m.

(b) Find

(i) the equation of the line AB,

Answer (b)(i)____________________ [1]

(ii) the value of m when the length of OC is given as units,

Answer (b)(ii) $m = ____________$ [1]

(iii) using the value of m in (ii), find the coordinates of D.

Answer (b)(iii) (_______ , _______) [2]

Answer Key

1 (a) (b)

2 (a) litres (b) 4.18 m/s

3 (a) (b)
4
5 (a) \hspace{1cm} (b)
6 (a) km/h \hspace{1cm} (b) 3330 ns
7 (a) \hspace{1cm} (b) (i) \hspace{1cm} (ii) 16
8 (a) \hspace{1cm} (b) \hspace{1cm} (c)
9 (a) \hspace{1cm} (b) \hspace{1cm} (c) 2499
10 (a) (i) 3 cm \hspace{1cm} (ii) 3.61 cm \hspace{1cm} (b)
11 (a) 1 : 50000 \hspace{1cm} (b) 8000 m \hspace{1cm} (c) 32 cm
12 (a) \hspace{1cm} (b) 156°
13 \hspace{0.5cm} x = \hspace{1cm} y =
14 (a) (i) \{8, 12, 16\} \hspace{1cm} (ii) 6 \hspace{1cm} (iii) 0 \hspace{1cm} (b) ---
15 (a) (base angles isosceles triangle), \hspace{2cm} (b) 72°
(angles in the same segment),
shown
(c) \hspace{0.5cm} 18 + 18 (exterior angle of a triangle) \hspace{2cm} (d) 111°
= 36°
= 72 – 36 = 36°
\hspace{0.5cm} BD bisects
16 (a) \hspace{1cm} (b) \hspace{1cm} (c) (3, 9)
17 (a) \hspace{0.5cm} d = 20 \hspace{1.5cm} (b) 600 cm
(c) (i) \hspace{1.5cm} (c) (ii)
18 (a) (i) 12.5 (ii) 4.5
(b) median of girls = 15 and IQR of girls = 4.5
Boys are faster because median is smaller. Boys’ performance more consistent as IQR is smaller.

19 (a)
(b) \(a = \)

20 (a) \(AC \) is horizontal, hence parallel to \(OB \)
(b) (i)
(alternate angles, \(AC \parallel OB \))
(ii) \(m = 3 \)
(iii) (2,)
(alternate angles, \(AC \parallel OB \))
Since 2 corresponding angles are equal, are similar.
The following chart shows the overall number of viewers watching the channel.

The number of viewers is plotted in a computer.

Give two possible values for the angle in degrees correct to two significant figures.

The sine of an angle is 0.76. Give two possible values for the angle in degrees correct to two significant figures.

Answer

Answer

Answer

The sine of an angle is 0.76. Give two possible values for the angle in degrees correct to two significant figures.

Answer
1. (a) Answer:

(b) Neither are short-haired dogs.

2. (a) They are both cats.

(b) Find the fraction in its lowest terms, the probability that two animals are selected at random.

<table>
<thead>
<tr>
<th></th>
<th>Short-haired</th>
<th>Long-haired</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

3. The table below shows information about a group of animals in a pet shop.

The number of short-haired animals is 5.

Probability that a selected animal is a short-haired cat.

The number of long-haired dogs is 3.

The number of long-haired cats is 8.

4. Answer:

5. The fraction is in its lowest terms. Alternate the correct alternative at the later case.

6. Two coins made of the same material have the same weight.

7. If 3 + 16 = 19, then the value of x is:
12. (a) Find the smallest positive integer value of \(k \) such that the product of \(\frac{1}{168} \times 2 \times 3 \times 7 \) is a perfect square.

12. (b) Find the value of \(a \).

12. (c) Express your answer in standard form.

12. (d) Find the integer in the sequence is found by multiplying a constant in the sequence 100.
16. In the triangle ABC, $AD = 4$ cm, $AC = 6$ cm, $BC = 9$ cm and D is a point on AC such that $\angle ADB = \angle ACB$.

(a) Find the length of AD.

(b) Find the area of the triangle ABC.

Answer

\[\text{Area} \]
(a) Given that the radius of the smaller and larger circles are r and R respectively, find R.

(b) Explain, with reasons, why $AB = CD$.

The diagram below shows two concentric circles with centers O. A, B, C, and D are points on the circumference of the larger circle.
(e) Using your graphs, explain why \(x^2 - 4x + 5 = 0 \) has no solution.

(b) Sketch the graph of \(y = x^2 - 4x + 5 \) on the axes provided below.

(b) The base price of a computer is $2000.

The hire-purchase price is a deposit of 15% of the cash price plus 12 equal monthly payments of $300.
21. In the diagram, O is the centre of a circle of circumference 150 cm.

22. In the diagram, P is the point (0, 6), D is the point (0, 3) and S is the point (4, 0).

(a) Find the equation of OP.

(b) Write down the coordinates of S.

(c) Calculate the area of the square OSCI.

Answer (c)

[Turn over]
Answer (c)

Find the time when the object and object meet again.

Time (s)

Distance

Answer (q)

Sketch a distance-time graph for the object.

The diagram shows the speed-time graph of a car and an object moving on a straight path.

The diagram shows the speed-time graph of a car and an object moving on a straight path.

The graph indicates the acceleration, deceleration, and constant speed intervals.
<table>
<thead>
<tr>
<th>Question</th>
<th>Formula</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>$s = ut + \frac{1}{2}at^2$</td>
<td>12.5 m</td>
</tr>
<tr>
<td>Q2</td>
<td>$v = u + at$</td>
<td>10 m/s</td>
</tr>
<tr>
<td>Q3</td>
<td>$x = x_0 + vt$</td>
<td>20 m</td>
</tr>
<tr>
<td>Q4</td>
<td>$y = y_0 + vt + \frac{1}{2}gt^2$</td>
<td>15 m</td>
</tr>
<tr>
<td>Q5</td>
<td>$T = \frac{2\pi}{\omega}$</td>
<td>2 s</td>
</tr>
</tbody>
</table>

Additional Information:

- Distance between two points: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
- Midpoint of a line segment: $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
- Slope of a line: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Diagram:

- A graph showing the relationship between x and y with a point at (x, y).
- A circle with radius r centered at $(0, 0)$.
- A triangle with vertices at $(0, 0)$, $(x, 0)$, and $(0, y)$.

Additional Figures:

- A vector diagram showing the direction and magnitude of forces acting on an object.
- A graph with axes labeled x and y and a curve plotted.

Questions:

- Q6: What is the acceleration of an object if it moves from $x=0$ to $x=10$ m in 3 s?
- Q7: How long does it take for a ball to fall from a height of 100 m?

Answers:

- Q6: $a = \frac{\Delta x}{\Delta t^2} = \frac{10 - 0}{3^2} = \frac{10}{9} \text{ m/s}^2$
- Q7: $t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 100}{9.8}} \approx 5.06 \text{ s}$
Answer all questions on the white paper provided.
In calculating the cost of producing the draw, draw a vertical line for 0 > x ≥ 5.

Prepare the above information in a 2 × 3 matrix.

\[
\begin{array}{c|ccc}
\text{Small} & \text{Medium} & \text{Large} \\
\hline
\text{Height} & 6 & 9 & 12 \\
\text{Paper} & 4 & 6 & 8 \\
\text{Electrolyte} & ? & ? & ? \\
\end{array}
\]
Where can you consider about the answers collected by the two co-

collected by them.

(\text{c})

(\text{d})

(\text{e})

(\text{f})

(\text{g})

(\text{h})

(\text{i})

(\text{j})

(\text{k})

(\text{l})

(\text{m})

(\text{n})

(\text{o})

(\text{p})

(\text{q})

(\text{r})

(\text{s})

(\text{t})

(\text{u})

(\text{v})

(\text{w})

(\text{x})

(\text{y})

(\text{z})
Explain why the reaction rate is slower at 20°C compared to 70°C. (4 marks)

Initial reaction rate at 20°C: 0.50 moles/L·sec
Initial reaction rate at 70°C: 0.75 moles/L·sec

The reaction rate is inversely proportional to the activation energy. (2 marks)

In the presence of a catalyst, the activation energy is lower, allowing the reaction to proceed more quickly. (2 marks)
This paper consists of 15 printed pages, including the cover page.

The total duration of the examination is 2 hours.

1. Use your calculator if necessary, unless the question specifies otherwise.

2. Do not use paper or other aids other than the examination paper itself.

3. Write your name, class, and other required information on the cover page.

4. Follow the instructions carefully.

Read these instructions first.

Candidate's answer on the question paper.

Secondary Four

Preliminary Examination Two

Victoria School

Friday 28 June 2016

2 hours

Paper I

Mathematics

Candidate's Name

Register Number

Class
Answer (g)
[1]

(a) The resistance of the circuit is (R + C + F). The current through the circuit is I. The voltage across the circuit is E.

(b) The power of the circuit is (P) = (E * I).

(c) The frequency of the circuit is (f) = (1 / T).

(d) The energy stored in the circuit is (E) = (1/2) * (C) * (V)^2.

(e) The power dissipated in the circuit is (P) = (E) = (1/2) * (C) * (V)^2.

(f) The inductance of the circuit is (L) = (dI/dt).

(g) The capacitance of the circuit is (C) = (Q/V).

(h) The resistance of the circuit is (R) = (V/I).

(i) The frequency of the circuit is (f) = (1 / (2π√(LC))).
(d) State the type of reaction that occurs at each electrode.

(II) Calculate the current density at each electrode.

(1) Answer (c)

(II) Answer (d)

(3) Answer (d)

(4) Answer (d)

(5) Answer (d)

(6) Answer (d)

(7) Answer (d)

(8) Answer (d)

(9) Answer (d)

(10) Answer (d)

(11) Answer (d)

(12) Answer (d)

(13) Answer (d)

(14) Answer (d)

(15) Answer (d)

(16) Answer (d)

(17) Answer (d)

(18) Answer (d)

(19) Answer (d)

(20) Answer (d)

(21) Answer (d)

(22) Answer (d)

(23) Answer (d)

(24) Answer (d)

(25) Answer (d)

(26) Answer (d)

(27) Answer (d)

(28) Answer (d)

(29) Answer (d)

(30) Answer (d)

(31) Answer (d)

(32) Answer (d)

(33) Answer (d)

(34) Answer (d)

(35) Answer (d)

(36) Answer (d)

(37) Answer (d)

(38) Answer (d)

(39) Answer (d)

(40) Answer (d)

(41) Answer (d)

(42) Answer (d)

(43) Answer (d)

(44) Answer (d)

(45) Answer (d)

(46) Answer (d)

(47) Answer (d)

(48) Answer (d)

(49) Answer (d)

(50) Answer (d)

(51) Answer (d)

(52) Answer (d)

(53) Answer (d)

(54) Answer (d)

(55) Answer (d)

(56) Answer (d)

(57) Answer (d)

(58) Answer (d)

(59) Answer (d)

(60) Answer (d)

(61) Answer (d)

(62) Answer (d)

(63) Answer (d)

(64) Answer (d)

(65) Answer (d)

(66) Answer (d)

(67) Answer (d)

(68) Answer (d)

(69) Answer (d)

(70) Answer (d)

(71) Answer (d)

(72) Answer (d)

(73) Answer (d)

(74) Answer (d)

(75) Answer (d)

(76) Answer (d)

(77) Answer (d)

(78) Answer (d)

(79) Answer (d)

(80) Answer (d)

(81) Answer (d)

(82) Answer (d)

(83) Answer (d)

(84) Answer (d)

(85) Answer (d)

(86) Answer (d)

(87) Answer (d)

(88) Answer (d)

(89) Answer (d)

(90) Answer (d)

(91) Answer (d)

(92) Answer (d)

(93) Answer (d)

(94) Answer (d)

(95) Answer (d)

(96) Answer (d)

(97) Answer (d)

(98) Answer (d)

(99) Answer (d)

(100) Answer (d)
Find the distance between the points A and B if the coordinates of A are (-3, 4) and the coordinates of B are (1, -2).

Answer: \(\sqrt{41} \)

Find the equation of the line that passes through the point (2, 3) and has a slope of 4.

Answer: \(y - 3 = 4(x - 2) \)

The diagram shows a circle with center O and radius r. Calculate the area of the circle.

Answer: \(\pi r^2 \)

The diagram shows a rectangle with vertices A, B, C, and D. Find the area of the rectangle.

Answer: \(\text{Area} = \text{length} \times \text{width} \)

The diagram shows a triangle with vertices E, F, and G. Find the length of the segment EF.

Answer: \(\text{length} \)

The diagram shows a quadrilateral with vertices H, I, J, and K. Find the area of the quadrilateral.

Answer: \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)

The diagram shows a polygon with vertices L, M, N, and O. Find the perimeter of the polygon.

Answer: \(\text{Perimeter} = \sum \text{lengths of sides} \)

The diagram shows a graph with points P, Q, and R. Find the midpoint of the segment PQ.

Answer: \(\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)

Find the equation of the line passing through the points A(2, 3) and B(-1, 5).

Answer: \(y - 3 = \frac{5 - 3}{-1 - 2}(x - 2) \)

Find the equation of the line passing through the points C(4, -2) and D(-3, 5).

Answer: \(y + 2 = \frac{5 - (-2)}{-3 - 4}(x - 4) \)
3. (a) Express 904 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 804 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 904 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 804 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 904 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 804 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 904 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 804 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 904 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.

3. (a) Express 804 as the product of its prime factors.

(b) Find the value of a such that 9a4 is the largest possible perfect cubic.
(5) Find the value of c and d.

(6) From a matrix multiplication method, the product will be T.

(7) Represent the angle between PQ and MR as $\angle QPR$ and $\angle MRQ$.

(8) The interior angle formed at the points P, Q, and R is $\angle PQR$.

(9) The table below shows the number of petals in the product.

<table>
<thead>
<tr>
<th>Number of Petals</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

(10) The number of petals is a multiple of 4 and the product will be T.
6. (a) By drawing a tangent, divide the graph into equal parts. Then join the points given in the table and join them with a smooth curve.

(b) From your graph, find the value of $\frac{x}{y}$.

(c) Using a scale of 2 cm to represent each unit, draw a horizontal and a vertical line to represent a point, starting from the point given in the table.

(d) Hence, state the straight line equation in the form $y = \frac{1}{2}x + \frac{3}{4}$.

(e) Hence, state the inequality $5 \leq \frac{x}{y} \leq 2$.

(f) Simplify $\frac{2x + 3y}{2x} - \frac{3y}{x}$.

(g) A point in the graph is $P(2, 4)$. Find the value of $\frac{x}{y}$.

(h) Find the column vector \overrightarrow{PC}.

(i) Write down the vector \overrightarrow{PC}.

7. (a) Find the area of $\triangle ABC$.

(b) Find the area of $\triangle ACR$.

(c) Given that $\overrightarrow{BC} = \frac{1}{3} \overrightarrow{AC}$, find \overrightarrow{OC}.

(d) Express the following as simply as possible, in terms of p and q.

(e) Find the value of $\frac{x}{y}$.

(f) Find the value of $\frac{x}{y}$.
Calculate the area and the perimeter of the shaded region.

In the diagram, \(RQ\) is a diameter of a circle with centre \(O\). \(CD\) is a tangent to the circle at \(D\). \(OR\) and \(OC\) are parallel.

(a) Determine the radius of the circle, if the area of triangle \(OCR\) is 32 cm².

(b) Find the perimeter of triangle \(OCR\).
Table

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta u = \frac{\partial u}{\partial x}$</td>
<td>1</td>
</tr>
<tr>
<td>$\Delta v = \frac{\partial v}{\partial x}$</td>
<td>2</td>
</tr>
<tr>
<td>$\Delta w = \frac{\partial w}{\partial x}$</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes

- The solution of the problem involves finding the derivative of the given function with respect to x.
- The function is $f(x) = e^{2x}$.
- The derivative is calculated as $f'(x) = 2e^{2x}$.
1. Write the following in order of size, starting with the smallest:
 \(7 \frac{3}{8}, \frac{22}{3}, 7.35, \sqrt{49} \)

 Answer: \(\frac{22}{3}, 7.35, \sqrt{49}, 7 \frac{3}{8}\) [1]

2. (a) Calculate \(\sqrt{27.38 - 3.42^2} \) and write down the first six digits on your calculator display.

 \(\sqrt{27.38 - 3.42^2} = \sqrt{27.38 - 11.70} = \sqrt{15.68} \approx 3.9615 \)

 Answer: \(3.9615\) [2]

 (b) Write your answer to part (a) correct to 2 decimal places.

 Answer: \(3.96\) [1]

3. Gary just bought a new iPhone which has a hard disk space of 128 gigabytes. Given that each application download takes up about 212 megabytes of disk space, find the number of applications he is able to download, giving your answer in standard form.

 \(\text{Number of applications} = \frac{128 \times 10^9}{212 \times 10^6} \approx 599 \)

 Answer: \(5.99 \times 10^2\) [1]

4. The following are the first 4 terms in a sequence: 37, 31, 29, 25.

 (a) Write down the 6th term of the sequence.

 \(a_n = -6n + 41 \)

 \(a_6 = -6(6) + 41 = -36 + 41 = 5 \)

 Answer: \(5\) [1]

 (b) Write down an expression, in terms of \(n\), for the \(n\)th term in the sequence.

 \(a_n = -6n + 41 \) [1]
(a) Express 600 as a product of its prime factors.

(b) Given $126 = 2 \times 3^2 \times 7$, find the highest common factor of 126 and 600. Give your answer as the product of its prime factors.

(c) The smallest positive integer value of n such that $126n$ is a multiple of 600.

6. Given x and y are integers such that $2 \leq x \leq 5$ and $-4 < y < 3$, find
 (a) the greatest possible value of $x^2 - y^2$.
 Answer:
 (b) the least possible value of $\frac{x}{y}$.
 Answer:
 (c) the greatest possible value of $(x-y)^2$.
 Answer:

7. The diagram above shows triangle BCD. Given that $BC = 13$ cm, $CD = 12$ cm, $\angle BDC = 90^\circ$ and ABC is a straight line.
 (a) Find BD.
 Answer:
 (b) Write down $\cos \angle ABD$.
 Answer:
 Answer:
 Answer:
8. Given that \(y \) is inversely proportional to the square of \(x \), find the percentage decrease in \(y \) when \(x \) is increased by 400%.

9. (a) Factorise completely \(75a^4 - 147a^2 \).

 Answer: \(3a^2(5a^2 - 49) \) [3]

(b) Factorise completely \(2x^2 + 8xy - 6a - 24ay \).

 Answer: \((x + 4y)(2x - 3a) \) [2]

10. Given that \(3^x \times 3^{14} = 329 \), find the value of \(x \).

 Answer: \(x = \frac{\log 329}{\log 3} \) [2]

11. The diagram shows a triangle \(ABC \) such that \(BC = 18 \text{ cm} \) and \(AC = 6 \text{ cm} \).

 \(D \) is a point on \(BC \) such that \(\angle DCA = \angle ABC \).

 (a) Show that triangle \(ABC \) is similar to triangle \(DAC \), stating your reasons clearly.

 Answer: Since \(\frac{CA}{CD} = \frac{BC}{AC} \) and \(\angle CAD = \angle CAD \), triangle \(ABC \) is similar to triangle \(DAC \) by the AA similarity criterion. [2]
(b) Hence calculate

(i) \[CD \]

(ii) area of \(\triangle DAC \)
area of \(\triangle ABC \)

(iii) area of \(\triangle DAC \)
area of \(\triangle ADB \)

12. (a) On the Venn Diagram below, shade the set \(A \cap B^c \).

(b) \[a = \{x \mid x \text{ is an integer such that } 1 \leq x \leq 20\} \]
\[A = \{x \mid x \text{ is a prime number}\} \]
\[B = \{x \mid x \text{ is a perfect square}\} \]
\[C = \{x \mid x \text{ is multiple of 4}\} \]

(i) List the elements found in the set \(B \cap C \).

(ii) Find \(n(A \cap B)^c \).
(a) Simplify \(\frac{3a^2b^2}{4c^2d} + \left(\frac{5a^4b^4}{c^4d^6} \right) \).

(b) Simplify \((3k - 2)(4k + 5) + (k - 4)^2 \).

14. The diagram below shows a figure \(ABCDEFG \) and a pentagon \(AHJK \). Given that \(GAH \) and \(BEK \) are straight lines, calculate the sum of \(\angle E + \angle G + \angle A + \angle J + \angle H + \angle K \).

15. (a) Express \(-a^2 + 6a - 7\) in the form \(-(a - e)^2 + f\).
(b) Hence or otherwise, solve \(-x^2 + 6x - 7 = 0\), showing your workings clearly. Give your answers correct to three decimal places.

Answer \(x = \ldots\) or \(\ldots\) [2]

(c) Hence, sketch the graph of \(y = -x^2 + 6x - 7\), labelling all x-intercepts and turning points.

Answer

(d) Write down the equation of the line of symmetry of the graph \(y = -x^2 + 6x - 7\).

Answer \(\ldots\) [1]

16. The line \(5x + 2y = 22\) cuts the x-axis at \(A\) and the y-axis at \(B\).

(a) Find the coordinates of \(A\) and \(B\).

Answer \(A(\ldots, \ldots)\), \(B(\ldots, \ldots)\) [2]

(b) Find the length of \(AB\).

Answer \(\ldots\) units [2]

(c) Another line \(L\) is parallel to \(5x + 2y = 22\) and passes through the point \((2, 4)\). Find the equation of the line \(L\).

Answer \(y = \ldots\) [2]
A box-and-whisker diagram below shows the points scored in 10 basketball games. The results were 45, 77, 60, 47, 63, 69, 71, 48, 73, and 55.

(a) Find the values of \(a, b \) and \(c \).

Answer: \(a = \ldots \), \(b = \ldots \), \(c = \ldots \) [2]

(b) The score 60 was accidentally left out. Using the remaining results from the 9 basketball games, find the new interquartile range of the 9 basketball games.

Answer: [2]

18. The cash price of a new laptop is $1500. Ash bought the laptop on hire purchase and paid a deposit of 20% of the cash price followed by 34 months installments at 2.5% per annum compound interest. Calculate
(a) the total amount of interest,
(b) the monthly installment.

Answer: [1]

Answer: [3]
19. The table below shows the tax rates on chargeable income for the year of assessment 2016.

<table>
<thead>
<tr>
<th>Chargeable Income ($)</th>
<th>Tax Rate (%)</th>
<th>Tax payable ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the first 20,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>On the next 10,000</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>On the first 30,000</td>
<td>3.5</td>
<td>350</td>
</tr>
<tr>
<td>On the next 10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the first 40,000</td>
<td>7</td>
<td>2800</td>
</tr>
<tr>
<td>On the next 40,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the first 80,000</td>
<td>11.5</td>
<td>4600</td>
</tr>
<tr>
<td>On the next 10,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Michael paid a total of \$5,937.50 in 2016 for his income tax. He received a 3 months bonus and his tax relief amount to \$10,000. (Chargeable income = Annual income - total tax relief)

Calculate

(a) Michael's chargeable income,

Answer: \$ \underline{5,347.50} [3]

(b) Michael's monthly salary

Answer: \$ \underline{178.25} [2]

20. The diagram shows a closed hexagonal prism. The cross section of the prism is a regular hexagon made up of six equilateral triangles, with sides of length 10 cm. The length of the prism is 50 cm.

Calculate

(a) the volume of the prism,

Answer: \(\underline{45000} \text{ cm}^3 \) [3]

(b) the surface area of the prism.

Answer: \(\underline{1350} \text{ cm}^2 \) [2]
A manufacturer wants to produce a geometrically similar giant hexagonal prism. The cross-section of the giant prism has sides of length 2 m. Given that the cost of producing one small hexagonal prism is $20, calculate the cost of producing the giant hexagonal prism (assume that cost is directly proportional to volume).

21
(a) Construct a quadrilateral ABCD where BC = 7.3 cm, CD = 9.2 cm and AD = 8.1 cm and \(\angle BAD = 105^\circ \). AB has already been drawn.
(b) Construct,
(i) the perpendicular bisector of AD,
(ii) the angle bisector of \(\angle ABC \).
(c) Mark clearly a possible point which is inside the quadrilateral ABCD, equidistant from A and D, and is nearer to AB than BC. Label this point \(T \).

Answer

Answer 5... [2]
<table>
<thead>
<tr>
<th></th>
<th>12a</th>
<th>12b</th>
<th>12bi</th>
<th>12bii</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>14.3257</td>
<td>(4, 16)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>14.33</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.03 \times 10^5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>17</td>
<td>15a^2 - \alpha + 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>41 - 4a</td>
<td>15b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>2^2 \times 3 \times 5^2</td>
<td>- (x - 3)^2 + 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>2 \times 3</td>
<td>4.414 or 1.586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>100</td>
<td>x = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>25</td>
<td>\delta(4.4, 0), \beta(0, 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>-5</td>
<td>11.8 units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>64</td>
<td>y = \frac{5}{2} x + 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>5</td>
<td>\sigma = 48, \beta = 61.3, c = 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>3 \times 13</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>90.4</td>
<td>$$60.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>2x^2 (5x - 7)(5x + 7)</td>
<td>$$52.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>2(x - 3a)(1 + 4y)</td>
<td>$$102500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. | -2 | 14b | $\$7500 |

11a. | \angle ABC = \angle DMC (Given) |
	\angle BCA = \angle ACD (Common angle)
	\angle BAC = \angle ADC (Angles sum of triangle)
	\therefore \triangle ABC is similar to \triangle DMC (AAA Similarity)

11bii. | 2 | 20b | 3520 cm2 |
| 11bii | 1 | 20c | $\$160000 |

21. | |
Answer questions 1 to 5 in Booklet A.

1. (a) Given that \(\frac{2m}{3n} = \frac{x}{5a} \).
 (i) Find the value of \(x \) when \(m = 3, n = -2 \) and \(y = 1 \).
 (ii) Express \(m \) in terms of \(n, x \) and \(y \).
 (b) Express as a single fraction in its lowest term, \(\frac{10}{2a - 3} - \frac{9}{6a} \).
 (c) (i) Factorise completely \(8p^2 - 2p \).
 (ii) Hence, simplify \(\frac{8p^2 - 2p}{-2p^2 + 7p - 3} \).

2. In 2014, Mr Lim paid an average of $150 for his monthly petrol bill when the price of petrol was $x per litre. In 2015, the price of petrol had risen by 25 cents per litre. By cutting down on usage, Mr Lim still managed to pay an average of $250 for his petrol bill in 2015.
 (a) Write down an expression, in terms of \(a \), for the number of litres of petrol used by Mr Lim in 2014.
 (b) Write down an expression, in terms of \(a \), for the number of litres of petrol used by Mr Lim in 2015.
 (c) If the number of litres of petrol used in 2015 is 20 less than that used in 2014, form an equation in \(a \) and show that it reduces to \(8a^2 + 2a - 35 = 0 \).
 (d) Solve the equation \(8a^2 + 2a - 35 = 0 \), giving your answer correct to 3 decimal places.
 (e) Use the results found in part (d) to find the number of litres of petrol used by Mr Lim in 2015, giving your answer correct to the nearest 0.1 litre.

3. Two key ingredients in a cereal bar consists of rolled oats and cocoa solids. Jessica made two types of cereal bars, Type A and Type B. In total, she made 25 cups of Type A and 12.5 cups of Type B. The table below shows the number of cups of rolled oats and cocoa solids found in one cup of each type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Rolled Oats (cups)</th>
<th>Cocoa solids (cups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Type B</td>
<td>2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

(a) Write down a 2x2 matrix \(P \) to represent the above table.

Given a matrix \(Q = \begin{pmatrix} x \\ y \end{pmatrix} \),
(b) solve \(PQ \) in terms of \(x \) and \(y \).
(c) use \(PQ = \begin{pmatrix} 25 \\ 32.5 \end{pmatrix} \) to find the values of \(x \) and \(y \).
(d) explain what the elements in \(Q \) represent.

4. A survey was carried out to find out how many television programmes a group of 56 teenagers watched during a week in June. The results collected is shown in the table below.

<table>
<thead>
<tr>
<th>Number of programmes</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of teenagers</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

(i) Calculate
(a) the mean number of programmes watched,
(b) the standard deviation.

(ii) The results for another group of teenagers are summarised below.

<table>
<thead>
<tr>
<th>Mean</th>
<th>2.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>3</td>
</tr>
</tbody>
</table>

Make two comparisons between the number of programmes watched by the two groups of teenagers.
(b) Five cards are numbered 1, 4, 6, 7 and 9 respectively. Two cards are drawn, one by one without replacement, and the sum of the numbers are recorded.

(i) Show all the possible outcomes in a possibility diagram.

Hence, find the probability that the sum is

(ii) an even number,

(iii) a multiple of 3,

(iv) A third card is drawn.

(v) Find the probability that the sum of the three cards is 14.

5

(a) \(R \) is the point \((3, 5)\) and \(S \) is the point \((-2, 6)\).

(i) Write down the column vector \(\overrightarrow{RS} \).

(ii) Find \(|\overrightarrow{RS}| \).

(iii) If \(\overrightarrow{PR} = \left(\frac{3}{2}, -\frac{1}{2} \right) \), find the coordinates of the point \(P \).

(b) In the diagram, \(M \) is the midpoint of \(XZ \), \(\overrightarrow{OX} = 3p - q \), \(\overrightarrow{OZ} = 9p + 7q \) and \(3p - q = 2q \)

(i) Express as simply as possible in terms of \(p \) and \(q \),

(a) \(\overrightarrow{XZ} \),

(b) \(\overrightarrow{XM} \),

(c) \(\overrightarrow{OM} \),

(d) \(\overrightarrow{M} \).

(ii) Show that \(\overrightarrow{OM} \), when produced, will pass through \(Y \).
The diagram shows a circle \(ABPC \) with centre \(O \) and radius 10 cm. A sector \(ABC \) with centre \(A \) is inscribed in the circle as shown.

Given that \(\angle BAC = 0.873 \) radians, find
(a) \(AC \),
(b) the area of the shaded region.

8 Answer the whole of this question on a sheet of graph paper.

The variables \(x \) and \(y \) are connected by the equation

\[
y = \frac{x^2}{4} - \frac{3x}{2} + 1
\]

Some corresponding values of \(x \) and \(y \) are given in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-1.75</td>
<td>1</td>
<td>0.75</td>
<td>-1</td>
<td>-2.75</td>
<td>-3</td>
<td>(p)</td>
<td>7</td>
</tr>
</tbody>
</table>

(a) Calculate the value of \(p \).
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal \(x \)-axis for \(-2 \leq x \leq 6\).
 Using a scale of 2 cm to represent 1 unit, draw a vertical \(y \)-axis for \(-4 \leq y \leq 7\).
 On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find the solutions of the equation \(\frac{x^2}{4} - \frac{3x}{2} + x + 1 = 0 \).
(d) Find the \(x \)-coordinates of the point(s) where the curve has a gradient of 1.
(e) By drawing a suitable straight line on your graph, solve \(\frac{x^2}{4} - \frac{3x}{2} + 2x - 1 = 0 \).

Turn over.
In the diagram, $ABCD$ is a horizontal plot of land.
$AB = 86$ m, $BC = 65$ m and $CD = 73$ m.
The bearing of B from A is 143°, the bearing of C from B is 051° and the bearing of D from C is 314°.

(a) Calculate AC.
(b) Find the bearing of C from A.
(c) Calculate the area of $ABCD$.
(d) The base of a vertical mast is at B.
The angle of elevation of the top of the mast from A is 15.6°.
Calculate the angle of elevation of the top of the mast from C.

Information about a container for a liquid is given below.

Container
- Mass of empty container: 500 g
- Bottle Diameter (d): 121 mm
- Bottle Height (h_1): 366 mm
- Neck Height (h_2): 36 mm

The above container, excluding the neck, can be modelled as a cylinder with a hemisphere on top as shown in the diagram below.

(a) Work out
- the height, in centimetres, of the cylinder.
- the volume, in cubic centimetres, of the container, excluding the neck.
(b) The container is filled up with a liquid of density 0.75 g/cm3 until the bottom of the neck. Calculate the total mass of the liquid.
(c) A transport basket is used to transport the containers filled with the liquid. The containers will be placed lying down in the basket. The maximum load that the transport basket can carry is 150 kg.

Assume that the basket can be modelled in the form of a cuboid below:

![Diagram of a cuboid]

<table>
<thead>
<tr>
<th>758 mm</th>
<th>692 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 mm</td>
<td></td>
</tr>
</tbody>
</table>

Find the maximum number of containers filled with liquid that can be transported by the basket at any one time. Justify your decision with calculations.

[4]
1. (a) (i) \(x = -6 \)
 (ii) \(m = \frac{xy}{0a-3b} \)

(b) \(\frac{37}{3(2a-3)} \)

(c) (i) \(2\pi r, 2\pi r+1, (2\pi -1) \)
 (ii) \(\frac{2\pi(2\pi+1)}{3-\pi} \) or \(\frac{-2\pi(2\pi+1)}{\pi-3} \)

2. (a) \(350 \)

(b) \(\frac{350}{x+0.25} \)

(d) \(1.970 \) or \(2.220 \)

(c) \(157.7 \) litres

3. (a) \(\frac{1.5}{2.5}, \frac{2}{1.5} \)

(b) \(\frac{1.5x+2y}{2.5x+1.5y} \)

(c) \(x = 10, y = 5 \)

(d) The total number of cups of oats used is \(x \times 10 \) and the total number of cups of cocoa solids used is \(y \times 5 \).

4. (a) (i) (a) Mean = 2.2
 (b) Std dev = 1.39

(ii) 1. The second group of teenagers watched more programmes than the first group as its mean (2.46) is larger than that of the first group (2.2).

2. However, the data for the first group is more consistent as it has a smaller standard deviation (2.6) than that of the second group (3).

5. (a) (i) \(\left(\begin{array}{cc} 15 \\ 5 \\ 2 \\ 10 \end{array} \right) \)
 (ii) \(\sqrt{(-5)^2+1^2} = \sqrt{26} \) or 5.10 units

(b) (i) \(6p+8q \) or \(2(3p+4q) \)
 (b) \(3p+4q \)
 (c) \(6p+3q \) or \(3(2p+q) \)
 (d) \(4p+2q \) or \(2(2p+q) \)

6. (a) (i) \(T_n = 10 \times 8 \times 4 = 320 \)
 (ii) \(4n^2(n+1) \)

(b) (i) \(176 \)
 (ii) \(4n(3n-1) \) or \(12n^2-4n \)
 (iii) \(n = 11 \)

7. (a) \(18.1 \) cm

(b) \(20.5 \) cm

8. (a) \(p = 0.75 \)

(b) \(\left(\begin{array}{cc} 1 \\ 0.04 \end{array} \right) \)

(c) \(-0.43, 1.48, 5.05 \)

(d) \(x = 0 \) or \(4 \)

(e) \(4.38 \)

9. (a) \(90^\circ \)

(b) \(40^\circ \)

(c) \(80^\circ \)

(d) \(55^\circ \)

(e) \(\pi \) must be outside the circle.
Answer all questions.

1. (a) Express as a single fraction in its simplest form: \(1 - \frac{2x}{2x - 7} + \frac{7}{2x - 7}\) \[3\]

(b) Simplify \(5a^{-3}b^4 + 10a^3b^{-4}\). \[2\]

(c) Factorise fully

(i) \(11p^2 - 44pq + 4q^2 - p\) \[2\]

(ii) \(30m^2 + 14m - 4n^2\) \[2\]

(d) Solve the equation \(\frac{1}{x} - \frac{x - 5}{2x - 3} = 1\). \[3\]

2. Twenty-five boys took a quiz.

The marks are shown in the stem-and-leaf diagram.

```
1 | 4 7
2 | 3 5 7 7 9
3 | 0 1 2 3 5 7 8 9 9 9
4 | 3 4 6 6 7
5 | 0
```

(a) Find

(i) the median mark.

(ii) the interquartile range. \[1\] \[3\]

Twenty-five girls took the same quiz.

The median mark and interquartile range of the girls’ marks are 35 and 6 respectively.

(b) Compare and comment on the performance of the boys and girls in this quiz. \[2\]

3. \(PQRS\) is a quadrilateral. \(M\) is the mid-point of \(PQ\).

\(\vec{PQ} = \vec{a}\), \(PS = \vec{b}\) and \(QR = \vec{6} \times \vec{a} - \frac{1}{3} \vec{a}\).

(a) Find \(\vec{MR}\) in terms of \(a\) and \(b\). \[1\]

(b) Use vectors to show that \(PQ\) and \(MR\) are not parallel. \[2\]

4. In the diagram, \(PQR\), \(QFP\), and \(XYZ\) are straight lines.

\(PQ\) is parallel to \(XZ\), \(QZ = 2x\), \(\frac{YZ}{XZ} = \frac{1}{3}\) and \(PQ = 90\).

(a) Show that triangles \(QYZ\) and \(XYZ\) are congruent. \[3\]

(b) Show that triangles \(PQR\) and \(XYZ\) are similar. \[3\]

(c) Find

(i) area of \(\triangle YQR\)

(ii) area of \(\triangle XYZ\)

Area of \(\triangle APQR\)
5. Jasmine bought some drinks for $400. She paid $5 for each type of drink. (a) Write down an expression for the number of drinks she bought. (b) She gave away 8 litres of the drink to her friends. She still had the remainder of the drinks for $20 per litre. More than that she paid for it. Write down an expression, in terms of x, for the sum of money the received. (c) She made a profit of $200. Solve the equation $x + 20 = 400$.

6. Two shops sell 3 types of sausages. The number of sausages of each type are given by the matrix S.

<table>
<thead>
<tr>
<th>Shop</th>
<th>Chicken</th>
<th>Meat</th>
<th>Beef</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>400</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>

(a) Evaluate the matrix $T = SP$.

(b) The price of each pack of chicken, meat and beef are $3.50, $4.50 and $4 respectively. Arrange these prices in a 3×1 column matrix P.

(c) Write down the elements of TP.

(d) In June 2016, Shop A operated 20 days and Shop B operated 25 days.

(e) In 10%, the number of packs of each type of sausages sold per day is increased by 10%. The information is given by the matrix Q.

<table>
<thead>
<tr>
<th>Shop</th>
<th>Chicken</th>
<th>Meat</th>
<th>Beef</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>440</td>
<td>330</td>
<td>220</td>
</tr>
<tr>
<td>B</td>
<td>220</td>
<td>550</td>
<td>330</td>
</tr>
</tbody>
</table>

(f) Write down the matrix R such that $R = QR$.

7. A box contains 3 Chocolate doughnuts, 1 Glazed doughnuts and 1 Strawberry doughnut.

(a) Two doughnuts were taken out of the box at random, without replacement.

(b) Find, as a fraction in its simplest form, the probability that the two doughnuts are the same flavor.

(c) At least one of the doughnuts is Chocolate.
8. In the diagram, the points P, Q, R, S and T lie on a circle, centre O. X77° is a tangent to the circle. Angle $\angle PRS = 109^\circ$ and angle $\angle PST = 41^\circ$.

(a) Find, giving reasons for each answer,

(i) $\angle PQS$, [1]
(ii) $\angle PTS$, [1]
(iii) $\angle PSS$, [2]
(iv) $\angle OTP$. [2]

(b) $OABC$ is a sector of a circle, centre O and radius 8 cm. The perimeter of the sector is 30 cm.

(i) Show that angle $AOB = 1.73$ radians. [1]
(ii) Calculate the area of the shaded region. [3]

The diagram shows a field, $ABCD$, which is crossed by two paths, AC and AD. AD is perpendicular to CD. $AB = 42$ m, $AD = 60$ m, $DE = 55$ m, angle $BAC = 48^\circ$ and angle $ACB = 32^\circ$.

(a) Show that $AC = 78.05$ m, correct to four significant figures. [2]
(b) Calculate CD. [2]
(c) A bird is at P, which is 8 m vertically above E. Calculate the angle of depression of D from P. [2]
(d) Given that the area of triangle ADE is 1300 m2, calculate angle ADE. [2]
(e) D is due east of A. Calculate the bearing of E from A. [3]
10 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = \frac{5x^2 + 60}{4} - 40$.

Some corresponding values of x and y are given in the following table.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2.81</td>
<td>-5</td>
<td>-8.75</td>
<td>-10.74</td>
<td>-13.5</td>
<td>-15.75</td>
<td>-17.5</td>
<td>-19.25</td>
<td>-21</td>
</tr>
</tbody>
</table>

(a) Find the value of p.

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal axis for $1 \leq x \leq 6$. Using a scale of 2 cm to represent 5 units, draw a vertical axis for $-15 \leq y \leq 25$. On your axes, plot the points given in the table and join them with a smooth curve.

(c) Using your graph, find the range of values of x for which $\frac{5x^2 + 60}{4} - 40 < 0$.

(d) By drawing a tangent, find the gradient of the curve at the point where $x = 4$.

(e) Draw the tangent to the curve at the point where the gradient is -10. Write down the equation of this tangent.

(f) The line l intersects the curve $y = \frac{5x^2 + 60}{4} - 40$ at $x = 2$ and $x = 6$.

(i) Find the equation of l.

It is given that $x = 2$ and $x = 6$ are solutions of the equation $5x^2 + Ax + B + 240 = 0$.

(ii) By using your answer from (f)(i), find the value of A and of B.

11 Diagram I shows a pencil before it is sharpened. It is made up of a piece of cylindrical carbon cemented in wood. The length of the pencil is 19 cm. Diagram II shows the cross-sectional area of the pencil. $ABCDEF$ is a regular hexagon with side 0.45 cm. The diameter of the carbon is 0.2 cm.

(a) Find

(i) the interior angle of the regular hexagon $ABCDEF$;

(ii) CF.

(b) Show that $AE = 0.7594$ cm.

(c) Calculate the area of the regular hexagon $ABCDEF$.

(d) Calculate the volume of the carbon as a percentage of the volume of the pencil.

Diagram III shows ten of these pencils which just fit into a rectangular box which is open on one side.

Diagram IV shows ten of these pencils which just fit into a box whose cross-sectional area is an equilateral triangle which is open on one side.

(e) The boxes are made of cardboard which costs $10 per m$.

Determine which box will be cheaper to produce for 1000 boxes. Justify your decision with calculations.
Answer all the questions.

1. Write the following numbers in order of size, starting with the smallest.

 \[-\frac{4}{7}, -\frac{4}{5}, -0.8^2, -0.8\]

 Answer

 - smallest
 - largest

2. During a children’s day celebration, a charity organization distributed 825 files, 485 pens and 660 pencils equally among the children in a children’s home. Each child received the same number of files, pens and pencils.

 (a) Find the largest possible number of children.

 Answer (a)

 (b) Hence, find the number of files, pens and pencils each child received.

 Answer (b)

3. It is given that \(\frac{1}{x} = \frac{1}{u} + \frac{1}{v} \).

 (a) Find \(f \) when \(u = 1.2 \) and \(v = 0.4 \).

 Answer (a)

 (b) Express \(u \) in terms of \(f \) and \(v \).

 Answer (b)
4 A restaurant charges $27.80 per person for buffet lunch. On a particular day, 114 people dined in the restaurant.

By approximating both the charge and the number of diners to 2 significant figures, estimate the total amount received by the restaurant on that particular day.

Show your working and give your answer to a reasonable degree of accuracy.

Answer: $[\text{]} [2]

5 A piece of metal is heated to 375 °C and then left to cool for 15 minutes. The temperature of the metal decreases at a rate of 18 °C/min for the first 5 minutes and then decreases at a rate of 7 °C/min for the next 10 minutes.

Find the time taken for the metal to cool to a temperature of 250 °C.

Answer: [\text{]} [2]

6 (a) Solve the inequality \(-x \leq 4 + x < 13 - 2x\).

Answer: [\text{]} [2]

(b) Write down all the integers which satisfy \(-x \leq 4 + x < 13 - 2x\).

Answer: [\text{]} [1]

7 The current, \(I\) amperes, passing through a circuit is inversely proportional to its resistance, \(R\) ohms. When the resistance of the circuit is 3 ohms, the current passing through it is 2 amperes.

(a) Find an equation connecting \(I\) and \(R\).

Answer (a): \(I = \frac{k}{R}\) [2]

(b) Calculate the resistance of the circuit when 1.5 amperes of current pass through it.

Answer (b): \([\text{ohms}] [1]\)

(c) Sketch the graph of \(I\) against \(R\).

Answer (c): [Graph with \(I\) on the y-axis and \(R\) on the x-axis, showing a hyperbola]

8 Two containers are geometrically similar. The surface area of the larger container is 63 cm² and the surface area of the smaller container is 28 cm². The height of the smaller container is 5 cm.

Calculate the height of the larger container.

Answer: \([\text{cm}] [2]\)
9 Between 2014 and 2015, the number of pupils who applied for a particular school as their first choice increased by 25%.
In 2015, the number of applicants for that school was 425.
Calculate the number of applicants in 2014.

Answer ... [2]

10 The probability that it will rain on any particular day is 0.3.
Calculate the probability that on two consecutive days, it will rain on only one of
the days.

Answer ... [2]

11 The table below shows the number of internet-connected devices in some households.

<table>
<thead>
<tr>
<th>Number of devices</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>
| Number of
Households | 2 | 4 | 1 | 7 | 2 | 3 |

(a) If the modal number of devices is 4, state the maximum possible value of x.

Answer (a) [1]

(b) If the mean number of devices is 3 7, calculate the value of x.

Answer (b) [2]

(c) If the median number of devices is 4, write down all the possible values of x.

Answer (c) [1]

12 Peter drove from Town X to Town Z, passing by Town Y along the way.
He took 40 minutes to drive from Town X to Town Y at an average speed of 72 km/h.
He rested in Town Y for 15 minutes before continuing his journey to Town Z.
The distance between Town Y and Town Z is 52 km.
His average speed for the whole journey was 60 km/h.
Calculate

(a) the distance between Town X and Town Y.

Answer (a) km [1]

(b) the average speed for the journey between Town Y and Town Z.

Answer (b) km/h [3]

13 The point (1, 1) is marked on the diagram.
Sketch the graph of \(y = 8 - x^2 \) in the answer space below.

Answer
14. David wants to invest $500 for 3 years. Company A offers 8% simple interest per year, and Company B offers 6½% interest per year compounded quarterly. In which company should David invest his money? Justify your answer.

Answer: .. [1]

15. \(x = \{ x : x \text{ is an integer, } 1 \leq x \leq 100 \} \)
 \(A = \{ x : x \text{ is divisible by 11} \} \)
 \(B = \{ x : x \text{ is divisible by 22} \} \)
 \(C = \{ x : x \text{ is divisible by 33} \} \)

(a) List the elements of \(A \cap (B \cup C) \).

(b) Draw, in the answer space, a clearly labelled Venn diagram to illustrate the three sets \(A, B \) and \(C \).

Answer (a) ... [1]

Answer (b) .. [2]

16. On the axes shown, \(P \) is \((-4, 3)\), \(Q \) is \((-3, -2)\) and \(R \) is \((2, -2)\). Find:

 (a) the gradient of \(PQ \).

Answer (a) .. [1]

(b) \(\tan \angle PQR \).

Answer (b) .. [1]

(c) the equation of the line \(PR \).

Answer (c) .. [1]

(d) the area of triangle \(PQR \).

Answer (d) .. [1]

(e) the coordinates of two possible points \(S \), such that the four points \(P, Q, R \) and \(S \) are the four vertices of a parallelogram.

Answer (e) (................................) or (................................) [2]
The figures T_1, T_2, T_3, ... are made up of squares.

N is the number of rows of squares in each shape.

S is the number of squares in each shape.

D is the number of dots in each shape.

The values of N, S and D in T_1, T_2, T_3 and T_4 are recorded in the table below.

<table>
<thead>
<tr>
<th>Figure</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>4</td>
<td>p</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>10</td>
<td>q</td>
<td>28</td>
</tr>
<tr>
<td>$D-N$</td>
<td>3</td>
<td>6</td>
<td>r</td>
<td>s</td>
</tr>
</tbody>
</table>

(a) Find the values of p, q, r and s.

Answer (a) $p = \ldots$, $q = \ldots$, $r = \ldots$, $s = \ldots$ [2]

(b) Express S in terms of N.

Answer (b) \ldots [1]

(c) Express D in terms of N.

Answer (c) \ldots [1]

(d) Explain why the number of dots cannot be 42.

Answer \ldots [1]

18 Three points A, B and C are shown below.

Answer (a), (b), (c) and (d)

(a) Construct the perpendicular bisector of BC.

(b) Construct the bisector of angle ABC.

(c) Mark clearly the point, P, which is equidistant from the lines AB and BC, and equidistant from B and C.

(d) The point D is such that $ABCD$ is a parallelogram. Find and label the position of D.

Answer \ldots [1]
19. A gold solid is formed by joining the plane faces of a cone, a cylinder and a hemisphere.
The cone and cylinder have a base radius of 3 cm and height 6 cm.
The hemisphere has a radius of 7 cm.

Calculate

(a) the length of the slant height of the cone,

(b) the surface area of the gold solid.

(c) the volume of the gold solid.

20. O is the origin. A is the point (1, p). B is the point (-1, 3). \(\vec{BC} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \)

(a) If \(\vec{BC} \) is parallel to \(\vec{OA} \), find the value of \(p \).

(b) Find the ratio \(OA : BC \).

The density of gold is 19.32 g/cm³.
A gold bar has length 25 cm, width 7 cm and height 3.5 cm.
Five gold bars were melted down and all the gold was used to make a large number of these gold solids.

(d) Calculate the mass of gold that remains after the gold solids are made, giving your answer correct to two significant figures.
21. The diagram, not drawn to scale, shows the speed-time graph of a car and a bus during a period of 48 seconds. The car and the bus start from the same point at the same time and travel in the same direction.

(a) Calculate the value of \(t \) when the car and bus have the same speed.

Answer (a) 3 [marks]

(b) Find the value of \(t \) when the car overtakes the bus.

Answer (b) seconds [3 marks]

(c) Use the grid below to sketch the distance-time graph of the car for the same journey.

<table>
<thead>
<tr>
<th>Distance travelled (metres)</th>
<th>Time ((t) seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>96</td>
<td>36</td>
</tr>
<tr>
<td>144</td>
<td>48</td>
</tr>
</tbody>
</table>

[1]
Answer all the questions.

1. Calculate the value of \(\frac{\sqrt{0.99 \times 59.98}}{24.9 - 1.01^2} \), giving your answer correct to 3 significant figures.

Answer .. [1]

2. If a man sells an art piece at $150, he would make a loss of 20%. Evaluate the selling price of the art piece if he wants to make a profit of 15%.

Answer .. [2]

3. Given that \(\left(\frac{1}{3} \right)^{2x} = 27^1 \cdot 9^x \), find the value of \(x \).

Answer .. [2]

4. Given that \(\frac{3a - b}{2b} = \frac{1}{4} \), find the value of \(\frac{a}{b} \).

Answer .. [2]

5. A set of four even numbers has a mean of 13, median of 14 and mode of 13. Find the four numbers.

Answer .. [2]

6. Factorise \(15ax - 21bx - 10ay + 14by \).

Answer .. [2]

7. The graph shows the number of prize winners from Chung Cheng High School (Maiz) at the Mathematics Olympiad over a number of years.

Mathematics Olympiad Prize Winners

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Winners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>15</td>
</tr>
<tr>
<td>2014</td>
<td>20</td>
</tr>
<tr>
<td>2015</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>25</td>
</tr>
</tbody>
</table>

Explain one way in which the graph is misleading.

Answer .. [1]
8. Solve the equation \(4(x - 2) = 3\).

Answer: \(x = \ldots \ldots \) and \(\ldots \ldots \) [2]

9. The scale of a map is 1 : 60,000. A park is represented by an area of 4 \(\text{cm}^2\) on the map. Calculate the actual area of the park in square kilometres.

Answer: \(\ldots \ldots \) \(\text{km}^2\) [2]

10. The table shows the battery lifespan of 40 laptops.

<table>
<thead>
<tr>
<th>Time (x in hours)</th>
<th>No. of laptops</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (\leq x < 1)</td>
<td>2</td>
</tr>
<tr>
<td>1 (\leq x < 2)</td>
<td>3</td>
</tr>
<tr>
<td>2 (\leq x < 3)</td>
<td>12</td>
</tr>
<tr>
<td>3 (\leq x < 4)</td>
<td>16</td>
</tr>
<tr>
<td>4 (\leq x < 5)</td>
<td>6</td>
</tr>
<tr>
<td>5 (\leq x < 6)</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Find the percentage of laptops that have battery lifespan of at least 4 hours.

Answer (a) \(\ldots \ldots \) [1]

(b) Find the mean and standard deviation of the battery lifespan of the laptops.

Answer (b)
- Mean = \(\ldots \ldots \) hours [1]
- Standard Deviation = \(\ldots \ldots \) hours [2]

11. Benso has 480 strawberry-flavoured lollipops and 560 cola-flavoured lollipops. He puts them into packets, each containing the same number of each type of lollipops and with no remainder. If he would like to pack the lollipops in as many packets as possible, find the total number of lollipops in each packet.

Answer: \(\ldots \ldots \) [2]

12. Consider the sequence \(1^2 - 4, 2^2 - 6, 3^2 - 8, 4^2 - 10, \ldots\)

(a) Write down the 5\(^{th}\) term of the sequence.

Answer (a) \(\ldots \ldots \) [1]

(b) Write down and simplify, in terms of \(n\), an expression for the \(n\)^{th} term of the sequence.

Answer (b) \(\ldots \ldots \) [1]

(c) Evaluate the 26\(^{th}\) term of the sequence.

Answer (c) \(\ldots \ldots \) [1]
13. It is given that \(\overrightarrow{AB} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \), \(\overrightarrow{OC} = \begin{pmatrix} 2 \\ p \end{pmatrix} \) and the position vector of \(A \) is \(\begin{pmatrix} -2 \\ 1 \end{pmatrix} \).

(a) Find \(|\overrightarrow{AB}| \).

(b) Find the coordinates of \(B \).

Answer (a) ... [2]

Answer (b) ... [2]

(c) Given that \(\overrightarrow{AB} \) and \(\overrightarrow{OC} \) are the opposite parallel sides of a trapezium \(OCBA \), find the value of \(p \).

Answer (c) \(p = \) [1]

14. (a) Solve the inequalities \(x - 2 \leq \frac{2x}{5} < \frac{x+1}{2} \).

Answer (a) ... [3]

(b) Write down all the integers that satisfy \(x - 2 \leq \frac{2x}{5} \).

Answer (b) ... [1]

15. (a) The universal set, \(U \), contains three sets, \(A \), \(B \) and \(C \). The three sets satisfy the following conditions:

\[A \subseteq B \quad \text{and} \quad B \cap C = \emptyset \]

Draw a Venn diagram to illustrate these sets.

Answer (a)

(b) It is given that:

\(U = \{ x : x \text{ is a whole number and } 1 \leq x \leq 10 \} \)

\(P = \{ x : x \text{ is a prime number} \} \)

\(Q = \{ x : x \text{ is a factor of } 20 \} \)

(i) List the elements of \(P \cap Q \).

Answer (b)(i) ... [1]

(ii) Find \(n(P \cup Q) \).

Answer (b)(ii) ... [1]
16. Two interior angles of a n-sided polygon are 160° and 40° while the remaining interior angles are each 140°. Find the value of n.

Answer

17. A quadratic curve \(y = (h-x)(x+k) \) meets the x-axis at \((-0.5,0)\) and \((6,0)\).
 (a) Find the equation of the curve.

Answer (a)

(b) Write down the equation of the line of symmetry of the graph.

Answer (b)

(c) Hence, sketch the graph of \(y = (h-x)(x+k) \).

Answer

18. Alex has \$x and Ben has \$y. If Ben gives Alex \$5, Alex will have twice as much money as Ben.
 (a) Form an equation in \(x \) and \(y \).

Answer (a)

(b) If they have a total of \$48, form another equation in \(x \) and \(y \). Hence, find the values of \(x \) and \(y \).

Answer (b)

19. The diagram shows three circles with diameters \(d \) cm, \(2d \) cm and \(3d \) cm, respectively. Find, in terms of \(\pi \) and \(d \), the difference in area between the unshaded region and the shaded region.

Answer
20. \(\triangle OCB \) is a sector of a circle with centre \(O \) and radius 9 cm, angle \(\angle OCS = 1 \text{ radian} \).

(a) Find the length of arc \(ACB \).

(b) The edges \(OA \) and \(OB \) are joined together to form the cone below. Find \(r \), the radius, and \(H \), the height of the cone.

21. The diagram shows the top part \(V \) of a prism with a triangular cross-section being cut horizontally across and removed to leave the lower part \(W \). The vertical heights of \(V \) and \(W \) are in the ratio of 2 : 3 respectively. If the volume of \(W \) is 54 m\(^3\), find the volume of the solid \(V \).

Answer: m\(^3\) [2]

22. In the figure, \(O \) is the origin and \(A \) is the point \((4, 6)\). \(B \) is a point on the \(x \)-axis such that the gradient of \(AB \) is 2.

(a) Find the coordinates of \(B \).

Answer (a) [2]

(b) \(C \) is another point on the \(x \)-axis such that \(AB = AC \). Find the coordinates of \(C \).

Answer (b) [1]
23. The speed-time graph shows the journey of a train over a period of 90 s from Paya Lebar Station to Tiong Station. The train reaches a maximum speed of 20 m/s.

(a) Express 20 m/s in km/h.

Answer (a) km/h [1]

(b) Given that the acceleration in the first part of the journey was 0.8 m/s², calculate the time taken, in seconds, for the train to reach its maximum speed.

Answer (b) seconds [2]

(c) The total distance travelled during the 90 s was 1300 m. Calculate the duration that the train was travelling at its maximum speed.

Answer

24. In the diagram, \(AD \parallel BC \), and triangles \(ACD \) and \(AED \) are right angled triangles. Show that triangles \(ACD \) and \(AED \) are congruent.

Answer

[Diagram with points A, B, C, D, and E, with line segment \(AD \parallel BC \)]
25. The step-function graph shows the parking charges for the first 5 hours at Carpark A.

- (a) Write down the parking charges for a car that is parked at Carpark A for:
 (i) 4 hour 15 minutes
 (ii) $2.50

 Answer (a) (i) $5.00, (ii) $2.50

- (b) Another nearby carpark, Carpark B, offers the parking charges:
 - $5.00 upon entry,
 - 3 cents per minute thereafter
 (Maximum charge of $55.20)

 Kate wishes to park her car for 2 hour 30 minutes at one of these carparcs.

 (i) On the same axes, draw the graph of parking charges offered at Carpark B.
 Answer (b)(i)

 (ii) State the carpark Kate should choose to park her car.

 Answer (b)(ii)

26. The diagram shows a swimming pool, with its cross section consisting of a trapezium, ADEF, and a rectangle, BCDE. The pool is initially empty. Water is pumped into the pool at a constant rate, and it takes 6 hours to fill the empty pool completely with water.

- (a) Calculate the volume of the pool.

 Answer (a) 300 m^3

- (b) Find the time taken to fill the pool to a depth of 4 m at the deep end.

 Answer (b) 4.5 hours

- (c) On the axes in the answer space, sketch a graph to represent how the depth of water at the deep end of the pool changes with time.

 - **Graph showing depth of water against time**

 Answer
Answer Key

1. 2.56
2. 3.35938
3. $x = \frac{2}{3}$
4. $\frac{1}{2}$
5. 6, 10, 18, 18
6. $3x - 2y + 5a - 7b$
7. The y-axis (does not start at 0) starts at 15. OR The scale of the y-axis is not uniform so the length of each bar is not representative of the number of prize winners.
8. $x = 3$ OR $x = -1$
9. 1.44 km^2
10. (a) 17.5%; (b) 3.1 hrs; 1.07 hrs
11. 13
12. (a) $5^2 - 12$; (b) $n^2 - 2n - 2$; (c) 7958
13. (a) 6.40 units; (b) (2, 6); (c) 2.5
14. (a) $-2 < x \leq \frac{1}{3}$; (b) -1, 0, 1, 2, 3
15. (a) (i) $P - Q = (3, 7)$; (b) (i) 6

16. 7
17. (a) $y = -x^2 + 5.5x + 3$; (b) $x = 2.75$; (c) graph sketch
18. (a) $2y - x = 15$; (b) $x = 27$, $y = 31$
19. $\frac{3}{4} \pi r^2$
20. (a) 47.5 cm; (b) $r = 7.57$; $H = 4.87$
21. 66
22. (a) $B(1, 0)$; (b) $C(7, 0)$
23. (a) 72 km/h; (b) 25; (c) 40
24. (a)(i) 59; (ii) 55; (b)(i) Carpark A
25. (a)(ii) 3.5 hrs

1 (a) Simplify $\frac{4y^2 - 12y}{3x^4} - \frac{x}{x}$
(b) Simplify $\frac{4x - 8}{7x^2 - 12x - 4}$
(c) Factorise completely $20a^2 - 45a^2$
(d) Solve the equation $\frac{4x + 5}{3x - 2} = 4$
(e) The volume, V m3, of a certain object is given by the formula $V = \frac{4}{3} \pi (a + 3h)$, where h is the height of the object in metres and a and b are constants.
(i) Make b the subject of the formula.
(ii) Hence find b, when the volume and height of the object are 15 m3 and 2.5 m respectively, and $a = 0.25$.

2 (a) The annual tuition fees for a three-year Business degree at a local university in Singapore is $12,000.
(b) Wayne receives a bursary of $3,000 per year for 3 years.
Find the remaining amount that Wayne has to pay.
Wayne decides to take a study loan from the bank to pay the remaining tuition fees. There are two loan packages available for him to choose.

<table>
<thead>
<tr>
<th>Package</th>
<th>Compound interest of 4.7% per annum, repayment period of 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Simple interest of 4.9% per annum, repayment period of 6 years</td>
</tr>
</tbody>
</table>

(i) Find the total repayment amount for Package A
(ii) Find the total repayment amount for Package B
(iv) Wayne is able to afford a maximum repayment of $400 per month. Explain, with working, which package Wayne should choose.

3 (b) In this part, use the fact that 1 light year $= 9.46 \times 10^{15}$ metres.
The distance of the star Sirius from the Sun is 8.6 light years.
A space probe travels at 70,000 km/h.
Calculate the time taken for the probe to travel from the Sun to Sirius.
Give your answer in years, correct to three significant figures.
In the diagram, \(\overline{OA} = \frac{1}{3} \overline{OP} \), and \(\overline{OB} = \frac{1}{4} \overline{OQ} \). \(M \) is the midpoint of \(\overline{QQ} \), and \(\overline{MC} = \frac{1}{5} \overline{MP} \).

(a) Given that \(\overline{OM} = a \) and \(\overline{OB} = b \), express in terms of \(a \) and/or \(b \),
(i) \(\overline{OA} \),
(ii) \(\overline{MB} \),
(iii) \(\overline{MC} \),
(iv) \(\overline{QB} \).

(b) Prove that \(AM \), when produced, will pass through \(Q \).

(c) Given that the area of triangle \(OQP \) is 40 cm\(^2\), calculate the area of
(i) triangle \(PMQ \),
(ii) triangle \(PQX \),
(iii) triangle \(OAB \).

4. A Mercedes car uses \(x \) litres of petrol to travel 240 km from Singapore to Malacca. A Yotano car uses 5 litres less than a Mercedes car to travel the same route.

(a) Write down an expression, in terms of \(x \), for
(i) the distance travelled per litre by the Mercedes car,
(ii) the distance travelled per litre by the Yotano car.

(b) The mean value of the distance travelled per litre by both cars is 10 km/litre. Form an equation in \(x \) to represent this information, and show that it reduces to \(x^2 - 29x + 60 = 0 \).

(c) Solve the equation \(x^2 - 29x + 60 = 0 \), giving your answers correct to 2 decimal places.

(d) Hence, find the distance travelled per litre by the Mercedes car.
6 A group of students took a multiple choice test containing 40 questions. The mean number of questions correctly answered, wrongly answered and unattempted are 28, 4 and 4 respectively.

Ashley attempted all questions with 30 questions answered correctly and 5 questions answered wrongly. Compared to Ashley, Benny answered 2 more questions correctly, answered 5 fewer questions wrongly and left 3 more questions unattempted.

The information can be represented by the matrix \(Q = \begin{pmatrix} 28 & 40 - x & 2 \\ 4 & x & -5 \\ 4 & 0 & 3 \end{pmatrix} \).

(a) For every correct answer, 2 marks were awarded and for every wrong answer 1 mark was deducted.
No mark was awarded or deducted for unattempted questions.
Write down a \(1 \times 3 \) matrix \(R \) to represent this information.

(b) Find \(3 - QR \), leaving your answer in terms of \(x \).

(c) Benny claims that his score is better than Ashley's. Is his claim correct? Justify your answer.

(d) Ashley's score is 4 marks higher than the mean mark. Find the value of \(x \).

7 Answer the whole of this question on a sheet of graph paper.

The variables \(x \) and \(y \) are connected by the equation \(y = 0.25x^2(x - 6) + 3 \).
The table below shows the corresponding values of \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1.25</td>
<td>3</td>
<td>1.75</td>
<td>-1</td>
<td>-2.47</td>
<td>-3.75</td>
<td>-5</td>
<td>A</td>
<td>-0.78</td>
<td>j</td>
</tr>
</tbody>
</table>

(a) Calculate the value of \(h \).

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal axis for \(-1 \leq x \leq 6\).
Using a scale of 2 cm to represent 1 unit, draw a vertical axis for \(-5 \leq y \leq 3\).

On your axes, plot the points given in the table and join them with a smooth curve.

(c) Use your graph to find the solutions of the equation \(0.25x^2(x - 6) = -1 \).

(d) By drawing a tangent, find the gradient of the curve at the point \(x = 1 \).

(e) By drawing a suitable straight line on your graph, find the solutions of the equation \(0.25x^2(x - 6) + x + 1 = 0 \).
In the diagram, AB is a tangent to the circle with centre O, angle $CAB = 62^\circ$ and CDE is a straight line.

(a) Stating your reasons clearly, find
(i) angle CDB, [1]
(ii) angle BDE, [1]
(iii) angle EFR, [1]
(iv) angle BOE, [2]
(v) angle EBO. [2]

(b) Find angle ABE. Hence, write a statement about the lines CA and BE. Give a reason for your answer. [3]

9 (a) The stem-and-leaf diagram shows the mass of 30 Secondary Four Judo students.

<table>
<thead>
<tr>
<th>Key</th>
<th>4</th>
<th>1 means 41 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(i) The interquartile range of the above distribution is 11.5 kg. Show that the value of m is 7. [3]

(ii) It was discovered that the masses of the students were recorded wrongly. The correct masses were all 2 kg more than those recorded. Explain how the interquartile range and the standard deviation of the mass have been affected by this error. [2]

(b) The 20 Secondary Four Judo students are divided into 2 groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Students whose mass is not more than 51 kg</th>
<th>Students whose mass is more than 51 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td>the first student is from Group B and the second student from Group A.</td>
<td>at most one of the students is from Group B.</td>
</tr>
</tbody>
</table>

Mr. Ns, the Judo instructor, selects two students at random, one after the other.

(i) Draw a tree diagram to show the probabilities of the possible outcomes. [2]

(ii) Find, as a fraction in its simplest form, the probability that
(a) the first student is from Group B and the second student from Group A. [2]
(b) at most one of the students is from Group B. [2]
The diagram shows a prism with a cross-section in the shape of a regular hexagon with sides 8 cm. The prism has thickness 5 cm.

(a) Show that the volume of the prism is 831.4 cm^3, correct to 4 significant figures.

(b) A dumbbell can be modelled using a cylinder and two prisms from (a). The dumbbell shown in the diagram below is made entirely of cast iron. The density of cast iron is 7600 kg/m3.

1 kg is 2.204 pounds.

(i) Given that the cylinder has radius 1.5 cm and the total length of the dumbbell is 25 cm, calculate the total volume of the dumbbell.

(ii) Shawn wants to do weightlifting and his physical trainer advises him not to carry more than 25 pounds.

Determine if Shawn is able to use this dumbbell. Justify your decision with calculations.

End of Paper
(a) Calculate $\frac{-5 + 7\sqrt{-8} + 10 + 3}{3}$, giving your answer correct to 1 decimal place.

Answer \ldots [1]

(b) Express 0.00166 in standard form.

Answer \ldots [1]

(c) Round off 8999 to 3 significant figures.

Answer \ldots [1]

2 $\xi = \{x : x = 0.3, 1, 2, \sqrt{3}, \sqrt{6}, \pi, 33, 2^3\}$
$A = \{x : x \text{ is a prime number}\}$
$B = \{x : x \text{ is a factor of } 16\}$

List the elements in
(a) A.

Answer \ldots [1]

(b) B.

Answer \ldots [1]

(c) $(A \cap B)^c$.

Answer \ldots [1]

3 These are the first five terms in a sequence.

1.2, 2.3, 3.4, 4.5, 5.6

(a) Write down the ninth term in the sequence.

Answer \ldots [1]

(b) Write down an expression, in terms of n, for the n^{th} term in the sequence.

Answer \ldots [1]

4 In the diagram, P, Q, R and S are points on the circumference of a circle, centre O.
SR is the diameter of the circle. Angle $QPR = 23^\circ$.

Find angle QOS. State your reasons clearly.

Answer \ldots [2]
6. (a) Express \(x^2 - 3x - 4 \) in the form \((x - p)^2 + q\).

Answer: ____________________ [2]

(b) State the coordinates of the turning point of the graph \(y = x^2 - 3x - 4 \).

Answer: ____________________ [1]

(c) Sketch the graph of \(y = x^2 - 3x - 4 \).

Answer (c) [2]

7. (a) The diagram shows a sketch of the graph of \(y = x^2 - px - q \).

Answer (c)

![Graph of \(y = x^2 - px - q \).]

(c) Calculate the values of \(p \) and \(q \).

Answer: \(p = \ldots, q = \ldots \) [3]

(b) Write down the equation of the line of symmetry of the graph \(y = x^2 - px - q \).

Answer: ____________________ [1]

(c) Sketch on the same diagram, the graph of \(y = -x^2 + px + q \).

[Sketch of the graph of \(y = -x^2 + px + q \).]
7 Factorise completely
(a) $9x^3 - 23xy^3$,

(b) $x^2 + 2xy + y^2 - 4$.

Answer $[2]$

8 Solve the equation $\frac{3x}{2} - \frac{15 - 4x}{3} - 7 = 0$.

Answer $x = [3]$
The diagram shows the sketches of two straight lines \(y = -\frac{1}{2}x + 1 \) and \(y = -\frac{1}{2}x - 3 \).

(a) What are the coordinates of point \(F \)?

Answer: \(F(\quad , \quad) \) \[1\]

(b) Calculate the length of the line segment \(FB \).

Answer \(\text{units} \) \[2\]

(c) Show that triangle \(OCB \) is similar to triangle \(OFD \). State your reasons clearly.

Answer \((c) \)

II

11. Given that \(1 < y < 2 \), simplify and arrange the following expressions in ascending order of magnitude.

\[
\frac{1}{y^2} \cdot \frac{1}{y^2} \cdot \frac{1}{(y-3)^2} \cdot \frac{1}{(y-3)^2} \cdot \frac{y^2}{4y^2} \]

Answer \[4\]

12. The diagram shows a graph of \(y \) against \(x \):

Sally concludes from the graph that \(y \) is inversely proportional to \(x \). Do you agree with Sally? Give a reason for your answer.

Answer \(\quad \) because \(\quad \) \[2\]
13 Two bottles have capacities of 1.5 litres and 2 litres respectively. The height of the smaller bottle is 75% that of the height of the larger bottle. Show that the two bottles are not geometrically similar.

Answer

14 Four candidates took part in an election. The tables below represent the polling results from two polling stations. The candidate with the highest number of total votes from both polling stations wins the election.

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Votes received</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28%</td>
</tr>
<tr>
<td>2</td>
<td>22%</td>
</tr>
<tr>
<td>3</td>
<td>20%</td>
</tr>
<tr>
<td>4</td>
<td>30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Votes received</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>2</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>10%</td>
</tr>
</tbody>
</table>

Polling Station 1

Polling Station 2

Do you agree that Candidate 1 has the most number of votes? Explain your answer.

Answer

15 In the diagram, AB is parallel to CD and EF is parallel to GH. If is a straight line.

(a) Write down a pair of simultaneous equations in terms of x and y.

(b) Hence solve for the values of x and y.

Answer $x = $, $y = $
15. Write down a possible equation for each of the following graphs:

(a)
\[y = mx + c \]

(b)
\[y = ax^2 + bx + c \]

Answer: [2]

16. A container is made up of a cylinder and a conical frustum. The height of the container is 15 cm, and the radii of the cylinder and conical frustum are 2.5 cm and 5 cm respectively.

(a) Calculate the volume of the container.

Answer: [3]

(b) Water is poured at a constant rate into the container from the top. On the axes provided, sketch the graph of the change in height of water level over time.

Answer (b) [3]
18 The Venn diagram shows a universal set ξ and two sets A and B.
A circular card is divided into 5 equal sectors. The card has a pointer pivoted at its centre. Each
time the pointer is spun, it is equally likely to stop at any of the sectors.

Andrea spins the wheel twice and shades the corresponding region(s) where the pointer stops.

(a) Given that the pointer lands on $A \cap B'$ and $B \cap A'$ on the first and second spin
respectively, shade the region(s) in the Venn diagram below.

\[\begin{array}{c}
A \\
\cup
B
\end{array} \]

\[\begin{array}{c}
A \cap B' \\
B \cap A' \\
(A \cup B)'
\end{array} \]

\[\begin{array}{c}
A \\
\cap B
\end{array} \]

Given your answer as a fraction in its simplest form, find the probability that Andrea shades the following regions.

(b) $A \cap B'$.

Answer: [1]

(c) $A \cup B'$.

Answer: [1]

19 The box plot represents the distributions of the time taken by a group of students to complete
their fitness run in January and May.

Answer (c)

\[\begin{array}{c}
\text{January} \\
\text{May} \\
\text{October}
\end{array} \]

\[\begin{array}{c}
\text{Time taken (minutes)}
\end{array} \]

(a) Find the interquartile range for May.

Answer: [2]

(b) Do you agree that the students' performance has improved from January to May?
Justify your answer.

Answer: [2]

In order to pass the fitness run, students have to attain timing of 12 minutes and below.

(c) It is given that more than 50% of the students passed the test in October.
Sketch a possible box plot in the grid above for the distribution of the time taken by the
group of students to complete their run in October.

Answer: [1]
20. The cash price of a television is $2890. During the Great Singapore Sale, there was a 20% discount provided. The hire-purchase price of the television is a deposit of 15% of the selling price and a monthly installment of $90.50 for 2 years. Calculate the hire-purchase price.

21. A plot of land in the shape of a kite has been selected for housing development. An architect is constructing a scale drawing of the land by drawing two circles of radii 2 cm and 5 cm, centre at points A and C respectively.

(a) Construct the kite $ABCD$, labelling the vertices in an anti-clockwise direction.

$Answer$ (a)

$Answer$ 5 [3]

(b) It is given that A is north of C.

$Answer$ Measure the bearing of B from C. [1]
22. The diagram shows two circles with diameters AC and BC. Angle ACB is a right angle. The two circles intersect at points C and P.

(a) By considering the angle properties of circle, show that BPA forms a straight line.
Answer (a)

(b) State two triangles similar to triangle ABC.
Answer

(c) Using (b), show that $a^2 = xc$ and $b^2 = yc$ and hence show that $a^2 + b^2 = c^2$.
Answer (c)

1. (a) -2.52
(b) 1.06×10^{-3}
(c) 9000

2. (a) $2, \sqrt{3}$
(b) $1, 2, 2^2$
(c) $0.3, 1, \sqrt{5}, \sqrt{6}, n, 33, 2^2$

3. (b) 10
(b) $1.1\pi + 0.1$ o.e.

4. 130°

5. (a) $(y = 1) 1.5$ o.e.
(b) 1.625 o.e.

6. (a) $\frac{1}{4}, \frac{1}{2}$
(b) $\frac{1}{2}

10. (a) $(-16, 0)$
(b) 16.0 units

11. $\frac{1}{(y-3)^2} + \frac{1}{4y^2} + \frac{1}{y^2} + \frac{1}{y^2}$

If xy is inversely proportional to x, then $y = \frac{k}{x}$, where k is a constant. The graph will be a curve not touching the axes.

Percentage is used to represent data – Does not allow for accurate judgement of which candidate has more votes absolutely.

15. (a) $x + 5 = 3y - 30^\circ$ - Eqn 1
(b) $195^\circ, x = 325^\circ$

16. (a) $y = -2x + 3$ or any equation of the form $y = mx + c$, where $m < 0, c > 0$
(b) $y = 2x$ or any equation of the form $y = 2x + c$, where $a > 0, c = 1, a > 0, c > 0$

18. (a) 49cm^2
(b) Hexagon
19 (a) 9 mins
(b) Do not agree.
Median remains the same.
(c) Q is drawn before 12 mins.
20 $2519.88
21 (a)
(b) Measure from construction
Bearing = 360° - ∠ACB
22 (b) CBP and ACP

J

Answer all questions.

1. (a) The price charges of Rushford Taxi Company can be represented in the graph
down below.

<table>
<thead>
<tr>
<th>Price ($)</th>
<th>Distance Traveled (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>3.20</td>
<td></td>
</tr>
</tbody>
</table>

(i) Using \(P \) to represent the price in dollars and \(S \) to represent the distance
travelled in kilometres, write down an equation to represent the pricing of
Rushford Taxi Company.

(ii) Speedtron Taxi Company charges their customers an initial fee of $2.30. In
addition, they charge $3.10 per kilometre travelled.

Find the minimum distance that a customer must travel such that Rushford
Taxi Company charges will be at least equivalent or cheaper than Speedtron
Taxi Company charges.

(b) The selling price of each taxi, excluding goods and services tax (GST), is $95000.
A 7% GST is chargeable on the selling price of the taxi.

Speedtron Taxi Company intends to buy 15 taxis on hire purchase.
The company pays a down payment of 20% and the remaining will be paid by
monthly instalments for the next 5 years at a simple interest rate of 2.5% per
annum.

Calculate the monthly installment.
4. (a) Eric bought a new car.

His car comes with two different drive modes:

An Eco-Mode which saves fuel and a Sport-Mode which consumes more fuel.

The fuel consumption of the car is also dependent on whether the car is cruising along an expressway or in city traffic.

This information can be represented by the following table.

<table>
<thead>
<tr>
<th>Distance Travel per Litre of Fuel (km/L)</th>
<th>Expressway</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Mode</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>Sport-Mode</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

(i) Represent the information on the table by a 2×2 matrix E.

(ii) Eric's daily commute to work and back home consists of 20% expressway driving and 80% city driving. Represent these percentages in a 2×1 matrix C.

Hence evaluate the matrix $E \times C$.

(iii) State what the elements of Z represent.

(iv) Eric will enable the eco-mode whenever he drives.

Eric's car is able to hold 40 litres of fuel.

Calculate the maximum distance the car can travel before requiring a fuel, assuming that he only uses his car to commute to work and back home.

5.

(a) Simplify $\sqrt{64m^2 n^3}$.

(b) Simplify $\frac{2x + 5}{4x^2 - 2x - 30} + \frac{x - 1}{3x^2 + 27}$.

(c) Solve the inequality $\frac{2x - 1}{4} \leq \frac{3x + 1}{5}$.

(d) Solve the equation $\frac{4}{x - 3} - \frac{8x - 1}{2x^2 - 5x - 3} = \frac{1}{3}$.

3.

$ABCD$ is the search area for a hiker missing in the forest.

$AB = 110$ km, $BD = 135.7$ km, $\angle ABD = 22^\circ$ and $\angle BCD = 40^\circ$.

C is due east of B and the bearing of B from A is 045°.

(a) Calculate AD.

(b) Calculate the bearing of D from B.

(c) Calculate BC.

(d) Calculate the search area $ABCD$.

(e) The hiker used a red flare to signal his position.

The red flare shoots vertically upwards to a maximum height of 400 m.

A rescuer at D measured that the maximum angle of elevation of the red flare from D is 6°.

Calculate the shortest distance that the rescuer needs to travel in order to reach the survivors.
6. Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$\quad y = x^2(5 - x) - 5$$

Some corresponding values of x and y are given in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>23</td>
<td>9</td>
<td>-5</td>
<td>-1</td>
<td>7</td>
<td>13</td>
<td>13.4</td>
<td>11</td>
<td>5.1</td>
<td>-5</td>
</tr>
</tbody>
</table>

(a) Find the value of y.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal axis for $-2 \leq x \leq 5$.
Using a scale of 1 cm to represent 2 units, draw a vertical axis for $-8 \leq y \leq 26$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) For $-2 \leq x \leq 5$, find the range of values of x for which $x^2(5 - x) - 5 = 0$ has exactly three solutions.
(d) By drawing a tangent, find the gradient of the curve at $(4.5, 5.1)$.
(e) By drawing a suitable straight line, solve $-x^2 + 5x - 32 = 0$.

5. Ash decided to hike up a hill on his quest for Pokemon.

(a) Write an expression, in terms of x, for the number of hours he took to reach the summit of the hill.

(b) He decided to explore a different path down the hill.

(i) The length of the path down the hill is 22 km.

(ii) His average speed walking down the hill was 3 km/h faster than his average speed going up the hill.

(iii) It took Ash 1.5 hours less to come down than to go up the hill.

Write down an equation in x, and show that it simplifies to $x^2 + 7x - 32 = 0$.

Solve the equation $x^2 + 7x - 32 = 0$.

Calculate the total time Ash took to hike up and down the hill.
OPQ is a triangle.

(a) Express, as simply as possible, in terms of p and/or r.

(i) \overrightarrow{OQ}.

(ii) \overrightarrow{RS}.

(b) Find the position vector of M in terms of p and/or r.

(c) (i) Show that $\overrightarrow{OM} = k\overrightarrow{OS}$, where k is a constant.

(ii) What can be deduced about the points O, S, M?

(d) Find the value of

(i) $\frac{\text{Area of $\triangle ORS$}}{\text{Area of $\triangle ORP$}}$.

(ii) $\frac{\text{Area of $\triangle ORS$}}{\text{Area of $\triangle OPQ$}}$.

Line AC is a tangent to the circle at point B.

(a) Prove that AB and AC are diameters of the circle.

Points M, A, C, D and E are on the circumference of the circle.

Angle $EDC = 25^\circ$ and angle $OBD = 76^\circ$.

(i) Find

(a) angle OHD.

(b) angle CBD.

(ii) Given that the radius of the circle is 6 cm, calculate the length of minor arc DE.

The diagram shows a right angle triangle OBC and a sector of a circle OAC.

$OC = 9$ cm and the arc length $AC = 4$ cm.

Calculate

(i) angle AOC in radians.

(ii) the area of the shaded region.
The marks distribution of a mathematics test of a class of 20 students is shown in the stem-and-leaf diagram.

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 7 6</td>
<td>0 9</td>
</tr>
<tr>
<td>9 4 1</td>
<td>1 2 8 8</td>
</tr>
<tr>
<td>8 3 2</td>
<td>3 6 6</td>
</tr>
<tr>
<td>5 1 3</td>
<td>1 1 6</td>
</tr>
</tbody>
</table>

Key (Boys) Key (Girls)
2 | 1 means 12 1 | 2 means 12

(a) State the median marks for the girls in the class.

(b) Calculate the
(i) mean marks of the test for the boys,
(ii) standard deviation of the test for the boys.

(c) The statistical results for the girls in the class are summarized below.

<table>
<thead>
<tr>
<th>Mean</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>8.26</td>
</tr>
</tbody>
</table>

A student commented that "Girls did better than boys at the standard deviation for girls is lower than that of boys".

Do you agree or disagree with the student's statement. Please explain your answer.

(d) The passing mark for this particular test is 18.

(i) A student was selected at random from the class. Find the probability that the student selected passed the mathematical test.

(ii) Two students were selected at random. Find the probability that at least one student passed the test.

10. Jonathan intends to buy a television for his new house. The television will be placed in his living room. Jonathan went to a local electronics store and the salesperson gave Jonathan a brief introduction about the things he should take note of when buying a television.

Firstly, Jonathan should take note of the aspect ratio of a television. A typical high definition television comes with an aspect ratio of 16:9 for better viewing experience. Aspect ratio is the ratio of the length of the screen to the width of the screen.

Jonathan's living room can accommodate a television with a maximum length of 2 metres. If he buys a television with an aspect ratio of 16:9, find the maximum width of the television.

(b) Next, Jonathan should note that television screen size refers to the diagonal length of the screen, measured in inches. Calculate the maximum screen size that his living room can accommodate. Correct your answer to the nearest inches. (1 inch = 0.0254 m)

(c) Jonathan has a movie which he wishes to play. The movie has an aspect ratio of 4:3. If the movie uses the full width of a television screen with aspect ratio 16:9 (as illustrated in the diagram below), calculate the percentage of the television screen that is not used.

Diagram: A diagram showing a 4:3 aspect ratio within a 16:9 aspect ratio.
(d) Lastly, Jonathan has to consider the viewing angle. The optimal viewing angle at eye level is between 30° and 45°.

An illustration of the viewing angle is shown below.

![Diagram of viewing angle]

Top view

<table>
<thead>
<tr>
<th>Screen size (inch)</th>
<th>Screen length (m)</th>
<th>Screen width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.89</td>
<td>0.50</td>
</tr>
<tr>
<td>55</td>
<td>1.32</td>
<td>0.74</td>
</tr>
<tr>
<td>65</td>
<td>1.32</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table 1

Jonathan’s sofa will be located 2.4 metres away from his television.

Jonathan has shortlisted three 16:9 aspect ratio televisions of varying screen sizes.

Copy and complete the table above in the writing paper provided.

Using the information in the table, suggest which television Jonathan should buy.

Support your answer with mathematical reasoning.

End of Paper
(a) \[16.2 \times 40 = 648 \text{ km} \]

(b) Fuel consumption for sport - mode = 11.3 km/l
\[\text{Fuel consumption for city} = 13.2 \text{ km/l} \]

There is no need for a refuel as his car has a capacity for 40 litres. He is able to complete his journey on a single full tank.

5(a) \[x \]
5(b) \[x \]
5(c) \[x = 3.15 \text{ or } -10.2 \]
5(d) \[8.6566 \approx 8.66 \text{ hrs} \]

6. Refer to graph paper.

7(ai) \[OQ = 5r \]

7(aii) \[OS = \frac{1}{6} r + \frac{1}{6} P \]

7(b) \[OM = \frac{1}{2} (P + 5r) \]

7(ci) \[OM = 3(P + 5r) \text{ (shown) } \]

7(cii) The points are collinear.

7(d) \[\frac{1}{6} \]

7(dii) \[\frac{1}{30} \]

8(aia) \[\angle \text{OHB} = 61^\circ \]

8(aib) \[\angle \text{CBD} = 19^\circ \]

8(aii) Arc Length = 9.01 cm

9(bii) Shaded Area = 1.287 \approx 1.29 \text{ cm}^2

9(c) Median = 24.5

9(bii) Mean = 18.2

9(bii) \[\sigma = 10.0578 \approx 10.1 \]

9(c) I disagree with the statement.

This is because standard deviation measures the consistency of the results rather than the performance of the girls and boys respectively. The student can use the median instead.

10(aii) \[x = 1.25 \text{ m} \]

10(bii) \[y = 90.34 \approx 90 \text{ inches} \]

10(c) 5% Wastage = 25%

10(d) To complete the table:
- Length = 1.22 m
- Width = 0.68 m

Jonathan should choose the 65 inches television as the viewing angle falls inside the optimal range.
Answer all the questions.

1. (a) Calculate \[\frac{12.603 + \frac{1}{2} - 5 \times (-6.1)}{2^2} \]
 Write down the first five digits on your calculator display.

 Answer (a) .. [1]

 (b) Write your answer to part (a) correct to 3 significant figures.

 Answer (b) .. [1]

2. Arrange the following in order of size, largest first.
 \[\frac{23}{41}, \quad 0.803, \quad \sqrt{0.56}, \quad 0.52 \]

 Answer .. largest
 .. smallest [2]

3. Factorise fully \(\frac{4}{5} x^3 - \frac{1}{5} xy^2 \).

 Answer .. [2]

The line graph shows the late coming occurrences of students in ABC School over 5 months.

Late-Coming Occurrences in ABC School

Write down two statistical misrepresentations of this line graph.

Answer

1..............................

2.............................. [2]
6 April, Bella and Chad shared a sum of money between them in the ratio 3 : 5 : 9. If Chad gives Bella $30, both of them will have an equal share. What was the total sum of money that was shared amongst the three?

\[\text{Answer: } S \text{ …………………. [2]} \]

7 Simplify \(4 \left(x^2 + 3xy \right) - (2x - y)^2 \).

\[\text{Answer: } \text{Simplify expression} \text{ …………………. [2]} \]

8 \(PQR \) is a right-angled triangle. \(QRT \) is a straight line. \(PR = 12 \text{ cm} \) and \(QR = 19 \text{ cm} \). Find the values of the following, giving your answer to 3 decimal places where necessary.

(a) \(\tan \angle PQR \)

\[\text{Answer (a) } \tan \angle PQR = \text{ …………………. [3]} \]

(b) \(\cos \angle TRP \)

\[\text{Answer (b) } \cos \angle TRP = \text{ …………………. [1]} \]

9 (a) Express 660 as the product of its prime factors.

\[\text{Answer (a) } 660 = \text{ …………………. [1]} \]

(b) The lowest common multiple of 8, 12 and \(k \) is 660. Given that \(k < 150 \), find two possible values of \(k \).

\[\text{Answer (b) } k = \text{ …………………. or } \text{ …………………. [2]} \]
10 (a) \(\xi = \{ \text{integers } x : 1 \leq x < 18 \} \)
\(A = \{ \text{prime numbers} \} \)
\(B = \{ \text{divisible by 3} \} \)

(i) List the elements in \(A \).

Answer (a) \(A = \{ \ldots \} \) [1]

(ii) Find \(n(A \cup B) \).

Answer (b) \(n(A \cup B) = \ldots \) [1]

(b) Given that \(P = \{ \text{girls who play the guitar} \} \) and \(Q = \{ \text{girls who play the drums} \} \), describe what \(P \cap Q = \{ \} \) means.

Answer (b) \ldots \ldOTS

11 Melissa jogs at a speed of 9 km/h.
One evening she jogged around her neighbourhood for 1 hour 20 minutes.

(a) Given that the scale of the map of the neighbourhood is 1 : 25000, find, in cm, the map distance that she covered.

Answer (a) \ldots \ldOTS

(b) A reservoir located in her neighbourhood occupies a total area of 1.68 \text{ cm}^2 \text{ on the map.}
What is the actual area, in \text{ m}^2, of the reservoir?

Answer (b) \ldots \ldots \ldots \ldots \ldots \ldots \ldOTS

Nanyang Girls' High School
Sec 4 E Maths Prelim/01/2016
[Turn over
The table below shows the ages of 16 students who work part-time at a book shop.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>20</td>
<td>21</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>22</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>19</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

(a) Complete the dot diagram to show the distribution of the ages of the employees.

Answer (a) [1]

(b) Find the median of the distribution of the ages.

Answer (b) Median = years [1]

(c) The box-and-whisker diagram below shows the ages of another 16 students who work at a café next to the bookshop.

Answer (c) [2]

14 (a) The line \(l \) has equation \(4x + 2y + 7 = 0 \).

(i) Find the gradient of line \(l \).

Answer (c)(i) Gradient = [1]

(ii) Find the coordinates of the point where \(l \) cuts the \(y \)-axis.

Answer (c)(ii) (...........) [1]

(b) Another line \(k \) is parallel to \(y = \frac{1}{2}x + 5 \) and it passes through the point (8, 3). Find the equation of line \(k \).

Answer (b) [2]
15 (a) Mrs Ong pours water into a conical flask at a constant rate. She stops once the flask is filled to the brim as shown in the diagram below. Sketch a graph to show how the height of the water level changes with time.

Answer (a)

Sketch of conical flask and graph showing height of liquid level vs. time.

(b) Electric power, P, in watt (W) is proportional to the square of the current, i, in amp (A).

If $P = 0.8$ W when $i = 0.02$ A, find an equation for P in terms of i.

Answer (b) $P = \frac{0.8}{0.02^2}$

16. Given that $A = \begin{pmatrix} 7 & 5 \\ -2 & 3 \end{pmatrix}$, find

(a) A^2.

Answer (a) $A^2 = \ldots.................[2]\]

(b) the value of x and of y if $3A = \begin{pmatrix} 15 \\ x \\ 6 \\ 15 \end{pmatrix}$

Answer (b) $x = \ldots.................[2]\]

$y = \ldots.................[2]$
17. (a) Calculate the sum of the interior angles of a hexagon. Show your working clearly.

Answer (a) [2]

(b) The diagram below shows a hexagon. Calculate the value of \(a + b + c + d + e + f \).

Answer (b) [2]

18. In the diagram, A\(BCD\) is a parallelogram. \(E\) is the point on \(AC\) such that \(\angle ACB = \angle ABE\). The vertical height of the parallelogram is \(x\) cm.

(a) Show that triangles \(ACB\) and \(ABE\) are similar.

Answer (c) .. [1]

(b) Given that \(AD = 4\) cm and \(EC = 5\) cm, find the length of \(AB\).

Answer (c) cm [2]

(c) Parallelogram \(ABCD\) is the cross-sectional face of a right prism with height 12 cm. Find the volume of the prism if \(x = 6\).

Answer (c) cm\(^3\) [2]
20 (a) In the diagram, A, B, C and D are points on the circumference of the circle with centre O. Find angle ACB = \(108 \)°.

(b) Find angle AOB.

(c) Explain why P, Q, R and S lie on the circumference of the circle with diameter \(PQ \).

19 (a) Solve \((x - 1)(x + 3) = 0 \).

(b) Mark clearly the intercepts with the axes and the turning point.

(c) Sketch the graph of \(y = -\frac{1}{x} \).

(d) Sketch the graph of \(y = \frac{1}{x} \).

(e) State the equation of the line of symmetry of \(y = -(x-1)(x+3) \).

(f) State the equation of the line of symmetry of \(y = \frac{1}{x} \).

Turn over

Sri Ramakrishna Mission School
21. The first four terms in a sequence of numbers, $T_1, T_2, T_3, T_4, \ldots$, are given below.

\[
T_1 = 3 \left(\frac{2}{3} \right) = 2 \left(\frac{2}{3} \right) = \frac{2}{1} = 2
\]

\[
T_2 = 3 \left(\frac{2}{3} \right^2 - 3 - \frac{7}{3}
\]

\[
T_3 = 3 \left(\frac{2}{3} \right^3 - 5 - \frac{19}{9}
\]

\[
T_4 = 3 \left(\frac{2}{3} \right^4 - 7 - \frac{67}{27}
\]

(a) Write down an expression for T_3 and show that $T_3 = \frac{295}{81}$.

Answer (a) $T_3 = \frac{295}{81}$.

(b) Write down an expression for T_4 and evaluate it.

Answer (b) T_4.

(c) Find an expression, in terms of n, for the nth term, T_n, of the sequence.

Answer (c) $T_n = \frac{295}{81} n$.

(d) Alvin claims that the value of the 4th term, T_4, has a denominator of 1458. Explain why Alvin is incorrect.

Answer (d) Alvin's claim is incorrect because the denominator of T_4 is 27, not 1458.

22. You are out at sea in your sailboat Q searching for a precious treasure. You have to determine the location of the treasure quickly so that you can get hold of it before the other treasure hunters.

(a) Boat A and boat B are closest to the buried treasure. The treasure lies on a point that is equidistant from boat A and boat B. Construct the line that the treasure is lying on.

Answer (a) Construct the perpendicular bisector of AB.

(b) The treasure is located on a bearing of 10° from boat D. Mark the location of the treasure with a cross 'X'.

Answer (b) Mark the location of the treasure with a cross 'X'.

(c) You discover the treasure box and a note tells you that more treasure can be found within 10 m from 'X'. Draw and shade the area where additional treasure may be found.

Answer (c) Draw and shade a circle with a radius of 10 m around the treasure location.
(continued from previous page)

(d) In the treasure box that you discovered at point \(X \), you found US$ 12 000.
 The current exchange rate is \$1 = \$0.75.
 How much Singapore Dollars will you receive?

 \[12000 \times \frac{1}{0.75} = 16000 \]

 Answer: \(\$16000 \) [1]

(e) You decide to save the Singapore Dollars that you received, from (d), in a bank for 5 years.
 The following shows the savings plan from two different banks.
 Determine which bank you should choose to deposit your money in if you aim to receive as much money as possible at the end of 5 years.

 | Bank | Plan: Simple Interest | Plan: Compound Interest |
 |------------------|------------------------|-------------------------|
 | Bank Flourish | 0.8% per annum | Bank Prosper |
 | No bank fee | Bank fee to be deducted from account after 5 years = \$4 88 |

 \(\text{Bank Prosper} \)

 \begin{align*}
 \text{Bank Prosper} & : \text{Plan: Compound Interest} \\
 \text{Interest} & = \text{Principal} \times \text{Rate} \times \text{Time} \\
 \text{Interest} & = 12000 \times 0.05 \times 5 \\
 \text{Interest} & = 300 \times 5 = 1500 \\
 \text{Total Amount} & = \text{Principal} + \text{Interest} \\
 \text{Total Amount} & = 12000 + 1500 \\
 \text{Total Amount} & = 13500 \\
 \end{align*}

 \[\text{Total Amount} = \$13500 \]

 Answer (a) I will choose Bank \text{ Prosper} \] [3]

End of Paper
Question Solution

14(a)(i)
Gradient $=-2$

14(a)(ii)
$(0, -\frac{7}{2})$ or $(0, -3\frac{1}{2})$ or $(0, -3.5)$

14(b)
equation of line k is $y = \frac{1}{2}x - 1$.

15a

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>Height of Liquid Level (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

16(a)
$(30, 50)$

16(b)
$x = -1, y = -8$

17(a)
$\theta = 45^\circ$

18(a)
$\angle ACB = \angle ABE$ (given)

18(b)
$\angle BAC = \angle EAB$ (common angle)

18(c)
Triangles ACB and ABE are similar.

18(b)
$AB = 6\text{ cm}$

18(c)
648 cm^2

19(a)(i)
$x = 1$ or -1

19(a)(ii)
$y = \frac{1}{3}x + 1$

20(a)(i)
Reflex angle $\angle CGB = 2 \times 180^\circ$
because angle at centre is twice angle at the circumference.

20(a)(ii)
$\angle AEB = 36^\circ$

21(a)
$T_1 = \left(\frac{4}{3}\right)^1 - 9 = 29.58$

21(b)
$T_1 = \left(\frac{4}{3}\right)^1 - 13 = 69.87$

21(c)
$T_1 = \left(\frac{4}{3}\right)^{1+2(2-n)} - 2n + 1$

21(d)
Alvin is incorrect because the denominators are all powers of 3, but 488 is not a power of 3.
1. A path along Pasir Ris Park is 12 km long.

(a) Darryl walks at an average speed of \(x \) km/h. Write down an expression, in terms of \(x \), for the number of hours he takes to walk the entire path.

(b) Oliver walks at an average speed of \((x + 0.5)\) km/h. Write down an expression, in terms of \(x \), for the number of hours he takes to walk the entire path.

(c) Darryl takes 10 minutes longer than Oliver to walk the entire path. Write down an equation in \(x \), and show that it simplifies to \(2x^2 + x - 72 = 0 \).

(d) Solve the equation \(2x^2 + x - 72 = 0 \), giving the solutions correct to 3 decimal places.

(e) Oliver and Darryl took part in a 10 km relay walkathon, where each of them walked half the distance at the average speed stated in (a) and (b). Find the total time taken by them to complete the walkathon.

2. In the diagram, \(AC \) is a diameter of the circle \(ABCD \). \(AC \) and \(BD \) cut at \(F \). \(DAG \) is a straight line. Angle \(ADB = 54^\circ \) and angle \(DBC = 41^\circ \).

(a) Calculate, stating your reasons clearly,

(i) \(\angle BCF \),

(ii) \(\angle BFC \),

(iii) \(\angle BAC \),

(iv) \(\angle BAG \).

(b) It is given that \(BD \) is parallel to \(CE \). Lily says that \(CE \) is a tangent to the circle at point \(C \). Explain, with calculations, why Lily is not correct.

3. (a) The number of hours of sleep per night of a group of girls is recorded in the table shown below.

<table>
<thead>
<tr>
<th>Number of hours</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

(i) Given that the median is 6, find the largest possible value of \(x \).

(ii) With the value of \(x \) found in (i), calculate:

(a) the mean number of hours of sleep,

(b) the standard deviation.

(iii) The number of hours of sleep per night of a group of boys is summarised below.

<table>
<thead>
<tr>
<th>Mean</th>
<th>5.73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Make two comparisons between the number of hours of sleep per night by the two groups, using your answers found in (a).

(b) A basket contains identical Easter eggs which are painted either blue or red in colour. There are 8 blue eggs and 3 red eggs.

An egg is picked out at random and not replaced.

A second egg is picked out at random and not replaced.

(i) Find, as a fraction in its simplest form, the probability that

(a) the first egg taken is red,

(b) the second egg is blue, given that the first egg is blue,

(c) one egg is red and the other is blue.

(ii) Some green eggs are added to the basket and two eggs are picked out at random. Given that the probability that no green eggs are picked is \(\frac{11}{21} \), calculate the number of green eggs added.
7 In the diagram, $OABC$ is a semi-circle, with centre O and radius 7 cm. The length of the arc BC is 5.24 cm.

B is a point on the arc AC. The perpendicular from B to AC meets AC at D.

(i) Find angle BOC in radians, giving your answer correct to 3 significant figures.
(ii) Find the length of BD.
(iii) Show that the length OD is approximately 3.13 cm.
(iv) Find the area of the shaded region.

8 The diagram shows P, Q, R and S, the four corners of a horizontal field $PQRS$. $PQRS$ is a parallelogram. The corner Q is 50 metres from P on a bearing of 034°, angle PQR is 100° and R is 120 metres from Q.

(a) Calculate
 (i) the bearing of R from Q.
 (ii) the length PR.
 (iii) the area of the field $PQRS$.
 (iv) angle QPR.

(b) An eagle was hovering at a height of 35 metres above the field. It spots its prey on the ground at an angle of depression of 58°. Calculate the distance that the eagle must fly to catch its prey.

9 In the triangle LRS, the point P on LR is such that $RL = 3RP$. Q is the midpoint of LS and M is the midpoint of PQ. LM produced meets RS at N and $SM = 7MN$.

$PR = a$ and $QS = 2b$.

(a) Express each of the following, as simply as possible, in terms of a and b.
 (i) PQ.
 (ii) PS.
 (iii) LM.

(b) Show that $LM = \frac{1}{7}(-9a + 12b)$.

(c) Calculate the value of
 (a) $\frac{RN}{NS}$.
 (b) $\frac{\text{area of } \triangle LNS}{\text{area of } \triangle QNS}$.
 (c) $\frac{\text{area of } \triangle QLM}{\text{area of } \triangle NLS}$.
10 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = \frac{x^2}{4} + \frac{1}{x} - 3$.

The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

<table>
<thead>
<tr>
<th>x</th>
<th>0.2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6.5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2.0</td>
<td>-1.8</td>
<td>k</td>
<td>-0.4</td>
<td>1.3</td>
<td>3.5</td>
<td>7.7</td>
<td>13.1</td>
</tr>
</tbody>
</table>

(a) Find the value of k. [1]

(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $0.2 \leq x \leq 8$.
Using a scale of 1 cm to 1 unit, draw a vertical y-axis for $-2 \leq y \leq 14$.
On your axes, plot the points given in the table and join them with a smooth curve. [3]

(c) Use your graph to solve the equation $\frac{x^2}{4} + \frac{1}{x} = 3$. [2]

(d) By drawing a tangent, find the gradient of the curve at the point $(3, 3.5)$. [2]

(e) By drawing a suitable straight line on your graph, solve $x^2 - 4x - 16x + 4 = 0$. [3]

Diagram I

In the question, the hut can be modelled as a cylinder with a cone on top, as shown in Diagram I. The roof is the curved surface of the cone and is supported by a central vertical pole.

Diagram II

Diagram II shows a vertical cross-section of the hut. QU and KS are horizontal.

Both P and T are 1.1 m vertically above the ground level. $LN = 2.7$ m, $QM = MU = 4$ m and QR = OS = 1.5 m.

(a) Calculate

(i) the volume of the interior of the hut. [3]

(ii) the surface area of the roof. [4]

(b) At noon, the sun is directly above the hut. The shadow of the overhanging section of the roof on the ground is a similar ring around the hut. At this time of the day, a minimum shadow of 30 cm is needed to keep the family cool. The vertical pole LN can be adjusted in height to change the area of the shadow formed by the roof. Explain why it is not possible to provide the family with the required 30 m² of shadow. [3]

END OF PAPER
2016 Secondary 4 Prelims Mathematics Paper 2 (Answer Key)

<table>
<thead>
<tr>
<th>Qn</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>$x = \frac{24}{2x + 1}$</td>
</tr>
<tr>
<td>1b</td>
<td>$x = 5.755$ or -6.255</td>
</tr>
<tr>
<td>1c</td>
<td>5.00 hours (3sf)</td>
</tr>
<tr>
<td>2ai</td>
<td>$\angle BCF = 54^\circ$ ((\angle s) in the same segment)</td>
</tr>
<tr>
<td>2aii</td>
<td>$\angle BFC = 85^\circ$ ((\angle s) sum of (\angle s))</td>
</tr>
<tr>
<td>2a(ii)</td>
<td>$\angle BAC = 36^\circ$ ((\angle s) in semi-circle)</td>
</tr>
<tr>
<td>2a(iv)</td>
<td>$\angle BAG = 103^\circ$ (ext (\angle s) of cyclic quad)</td>
</tr>
</tbody>
</table>
| 2b | $\angle BCE = 41^\circ$ (all \(\angle s\))
$\angle ACE = 54^\circ + 41^\circ = 95^\circ$
AC is not perpendicular to CE, hence CE is not tangent to the circle at C. ($\tan \perp$ rad) |

<table>
<thead>
<tr>
<th>Qn</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3ai</td>
<td>9</td>
</tr>
<tr>
<td>3aiii</td>
<td>6.63 h</td>
</tr>
<tr>
<td>3a(ii)b</td>
<td>1.73 h</td>
</tr>
<tr>
<td>3a(iii)</td>
<td>The girls sleep longer hours with a higher mean number of hours. The girls are also more consistent with a smaller standard deviation</td>
</tr>
<tr>
<td>3bii</td>
<td>3</td>
</tr>
<tr>
<td>3bii</td>
<td>11</td>
</tr>
<tr>
<td>3bii</td>
<td>7</td>
</tr>
<tr>
<td>3bii</td>
<td>10</td>
</tr>
<tr>
<td>3b(iii)</td>
<td>24</td>
</tr>
<tr>
<td>3b(iii)</td>
<td>58</td>
</tr>
<tr>
<td>3b(iii)</td>
<td>4 green eggs added</td>
</tr>
<tr>
<td>4a</td>
<td>25 cm</td>
</tr>
<tr>
<td>4a(iii)</td>
<td>10 cm (accept 30.5 – 19.5 = 11)</td>
</tr>
<tr>
<td>4a(iii)</td>
<td>3</td>
</tr>
<tr>
<td>4b</td>
<td>35.5 cm (accept 36 cm)</td>
</tr>
<tr>
<td>4c</td>
<td>Brand B fertilizer is better has it has a higher median. Plants grow taller with Brand B.</td>
</tr>
<tr>
<td>5ai</td>
<td>0</td>
</tr>
<tr>
<td>5aii</td>
<td>10 units</td>
</tr>
<tr>
<td>5aiii</td>
<td>0</td>
</tr>
</tbody>
</table>

Question 5b

<table>
<thead>
<tr>
<th>Qn</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5b(i)</td>
<td>$x = 2\frac{3}{7}$</td>
</tr>
<tr>
<td>5b(iii)</td>
<td>$\cos C = 0.749$ rad (3sf)</td>
</tr>
<tr>
<td>5b(ii)</td>
<td>$BD = 4.76$ cm (3sf)</td>
</tr>
<tr>
<td>5b(ii)</td>
<td>$\overline{OD} = 5.13$ cm (3sf)</td>
</tr>
<tr>
<td>5b(iv)</td>
<td>Area of shaded region = 6.12 sq cm (3sf)</td>
</tr>
<tr>
<td>5ai</td>
<td>Bearing of R from Q = 114°</td>
</tr>
<tr>
<td>5aii</td>
<td>$PR = 141$ m (3sf)</td>
</tr>
<tr>
<td>5aiii</td>
<td>Area of field $PQRS = 6620$ sq m (3sf)</td>
</tr>
<tr>
<td>5biv</td>
<td>$\angle QPR = 57.0^\circ$ (1dp)</td>
</tr>
<tr>
<td>8b</td>
<td>41.3 m (3sf)</td>
</tr>
</tbody>
</table>
1

Answer all the questions.

(a) Calculate \(\frac{12 + \sqrt{27 - 3 \times 3 \times (-2)}}{1.3^2} \).

Write down the first five digits on your calculator display.

Answer (a) [1]

(b) Write your answer to part (a) correct to 2 decimal places.

Answer (b) [1]

2

The first four terms of a sequence are

12 19 26 33.

(a) Write down the next two terms of the sequence.

Answer (a) [1]

(b) Write down an expression, in terms of \(n \), for the \(n \)th term of the sequence.

Answer (b) [1]

3

Two numbers have HCF = 100 and LCM = 3000. Find the smaller of the two numbers if both numbers are more than 100.

Answer [1]

4

<table>
<thead>
<tr>
<th></th>
<th>Singapore</th>
<th>Kuala Lumpur</th>
<th>London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>(5.4 \times 10^6)</td>
<td>(1.70 \times 10^7)</td>
<td>(8.67 \times 10^6)</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>(7.19 \times 10^2)</td>
<td>(2.43 \times 10^3)</td>
<td>(1.27 \times 10^2)</td>
</tr>
</tbody>
</table>

(a) How many more people live in London than in Singapore? Give your answer in standard form.

Answer (a) [1]

(b) Calculate the average number of people per square kilometer in Kuala Lumpur, correct your answer to the nearest thousand.

Answer (b) [3]
5. Given that \(y \) is proportional to the square of \(x \) and it is increased by 50%. Find the percentage increase in \(y \).

\[y \propto x^2 \]

\[y' = y + 0.5y = 1.5y \]

\[\frac{y'}{y} = \frac{1.5y}{y} = 1.5 \]

\[\text{Percentage increase} = (1.5 - 1) \times 100\% = 50\% \]

6. A survey was conducted for a week to find out the number of hours that students spend on using their mobile phones apps on weekends. The data obtained was as follows:

<table>
<thead>
<tr>
<th>Number of Hours</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) Find the mode of the number of hours.
(b) Find the median number of hours.

7. \(\triangle ABC \) is a quadrilateral. \(\angle BAC = 72^\circ \) and \(\angle BDC = 146^\circ \). Calculate the value of \(x \).

\[\angle BAC = 72^\circ \]

\[\angle BDC = 146^\circ \]

\[\angle BAC + \angle BDC = 218^\circ \]

\[\angle BAC + \angle BDC = 180^\circ + \angle x \]

\[218^\circ = 180^\circ + \angle x \]

\[\angle x = 38^\circ \]

8. The smallest prime number which satisfies \(2x - 8 < \frac{1}{2} \).

\[2x - 8 < \frac{1}{2} \]

\[2x < 8 + \frac{1}{2} \]

\[2x < \frac{17}{2} \]

\[x < \frac{17}{4} \]

The smallest prime number less than \(\frac{17}{4} \) is 4.

\[x = 4 \]
The diagram shows three containers \(A, B \) and \(C \). Water is poured into the three containers at a constant rate until they are completely filled.

In the given axes, \(OA \) represents how the height of the water level changes against time for container \(A \).

Draw the graphs to show how the height of the water level changes over time for containers \(B \) and \(C \).

10. On a map, the area of a lake is 0.25 cm\(^2\). The actual area of the lake is 4 km\(^2\).

(a) Express the scale of the map in the form \(1:x \).

(b) The distance between two towns \(A \) and \(B \) is 10 cm on the map. Find the distance between \(A \) and \(B \) on another map with a scale of \(1:250 \) 000.
\(\xi = \{ \text{integers } x \mid 1 \leq x \leq 16 \} \)
\(A = \{ \text{integers that are perfect squares} \} \)
\(B = \{ \text{integers divisible by 2} \} \)

(i) On the Venn Diagram shown below, shade the set \(A' \cup B' \).

(ii) Write down \(n(A' \cap B') \).

(iii) A number \(k \) is chosen from \(\xi \).
Find the probability that \(k \in A \cup B \).

12 (a) Factorise completely \(xy - 4y - 12 + 3x \).

Answer \((a) \) \(\text{[1]} \)

(b) Factorise completely \((x^2 - 3)^2 + (x^2 - 3) - 2 \).

Answer \((b) \) \(\text{[2]} \)
The box plots show the distributions of the heights of a number of boys in two different schools, A and B.

(a) Find the interquartile range for school A.

Answer (a): ... cm [1]

(b) Here are two statements comparing the heights of boys in the two schools.
For each one, write whether you agree or disagree.
Give a reason for each answer, stating clearly which statistics you use to make your decision.

(i) On average, boys in school A are taller than boys in school B.
Answer .. [1]

(ii) More boys are above the height of 160 centimetres in school B than in school A.
Answer .. [1]

10

14 (a) On the axes, sketch the following graphs, indicating the x and y-intercepts if any.

(i) \(y = 2^x \)

(ii) \(y = \frac{1}{x^2} \)

Answer

(b) Hence explain why the equation \(2^x + \frac{1}{x} = 0 \) has no solutions.

Answer

[1]
15 (a) By expressing \(-x^2 + 3x + 7\) in the form \(-(x-a)^2 + b\), state the equation of the line of symmetry of the graph \(y = -x^2 + 3x + 7\).

(b) Hence solve the equation \(-x^2 + 3x + 7 = \frac{1}{4}\).

Answer: \(x = \ldots\) \([2]\)

16 (a) The value of Mr Lim's car is $140 000. By the end of each year, the value of the car decreases by 15% of its value at the start of the year. Find the value of the car at the end of 2 years.

Answer: \(\ldots\) \([2]\)

(b) A car is priced at $200 000. It can be bought on hire purchase with a down payment of $40 000, interest rate of 4.5% per annum over 7 years and equal monthly instalment. Find the monthly instalment, correct your answer to the nearest cent.

Answer: \(\ldots\) \([2]\)
13. Calculate the sum of the interior angles of a hexagon.

(b) Calculate the sum of the angles $a, b, c, d, e, f, g, h, m, n$.

Answer: $[\text{degrees}]$
10. The diagram below shows the position of a lighthouse H, a compass point A and a
penciling point B. The scale is 1 cm to 5 km.

(a) Find the value of \(\cos \angle APQ \).
(b) Hence, calculate \(QS \).
In the diagram, A and B lie on the y-axis. The equation of BC is $4y + 3x = 24$ and A and C have coordinates (0, 3) and (4, 3) respectively.

(a) Find the equation of the line parallel to BC passing through A.

Answer: (a) [1]

(b) State the coordinates of D such that $ABCD$ is a parallelogram.

Answer: (b) [1]

(c) Calculate the shortest distance between BC and AO.

Answer: (c) units [2]
23. (a) Solve the simultaneous equations
\[
\begin{align*}
\frac{3}{x} + \frac{2}{y} &= 5, \\
\frac{1}{x} - \frac{1}{y} &= 1.
\end{align*}
\]

(b) Given that \(x = 2\) is a solution of the equation \(2x^2 - 5x + k = 0\), where \(k\) is a constant, find
(i) the value of \(k\).

24. In the diagram, \(AD\) is the diameter of the circle with centre \(O\), \(AR\) is a tangent to the circle at \(A\) and \(BCD\) is a straight line.

(a) State a reason why \(\angle ACD\) is \(90^\circ\).

Answer: (a) ... [1]

(b) Given that \(BC = 8\) cm, \(CD = 4\) cm and \(AC = h\) cm. Find the length of \(AD\).

Answer: (b) ... [4]
25. $ABCD$ is a semi-circle with diameter AC, centre O and radius of 4 cm. ABD is a sector with centre A. Given that $\angle BOD = 1.1$ rad, find

(a) the length of arc BD,
(b) perimeter of shaded region.

1. (a) 9.2052
 (b) 9.21

2. (a) $40, 47$
 (b) $7n + 5$

3. The smaller number is 300 or 200.

4. (a) 3.27×10^7
 (b) 7000

5. (a) $x^2 = 52^\circ$
 (b) $y^2 = 38^\circ$

6. Smallest prime number is 3.

7. 125%

8. (a) $10 - 1 = 9$ hours
 (b) median = 4 hours

Answer: (a) $BD = \ldots \ldots \ldots \text{cm}$ [3]
(b) $\ldots \ldots \ldots \text{cm}$ [2]
10. (a) 1 : 400,000
 (b) 40 km : 16 cm

11. (i)

 \[n(A \cap B) = 6 \]

 \[\text{probability} = \frac{10}{16} = \frac{5}{8} \]

12. (a) \((x + 2)(x - 4)\)
 (b) \((x + 1)(x - 1)(x + 2)(x - 2)\)

13. (a) \(|163 - 141| = 22\)
 (b) (i) I disagree because the mean height of boys in school \(A\) is less than the mean height of boys in school \(B\).
 (ii) I disagree because boys in school \(A\) has a higher upper quartile. More than 25% of boys in school \(A\) has a height above 1.60 m but less than 25% of the boys in school \(B\) has a height above 1.60 m.

14. (a) On the axes given, sketch the following graphs, indicating the \(x\) and \(y\) intercepts if any.
 (i) \(y = 2^x\)
 (ii) \(y = -\frac{1}{x^2}\)

 \[\text{Answer} \]

 (b) Hence explain why the equation \(2^x + \frac{1}{x^2} = 0\) has no solutions.

 \(2^x = -\frac{1}{x^2}\)

 \[\text{Answer: (b) Since both graphs do not intersect each other, the equation has no solutions.} \]
15. (a) $x = 1.5$
(b) $x = 4.5$ or $x = -1.5$

16. (a) $\$101\,150$
(b) $\$2504.76$

17. (a) 720°
(b) 1980°

18. (a) average speed $= \frac{40}{10} = 4$ m/s
(b) 14.4 km/h
(c) The man accelerates at 2 m/s2 for the last 6 seconds. On the grid below, sketch the speed-time graph for the run.

![Speed-time graph]

20. (a) $\frac{3}{5}$
(b) 9.85 cm

21. (a) Equation of line is $y = -\frac{1}{4}x + 3$.
(b) Coordinates of D is $(4, 0)$.
(c) 2.4 units

22. (a) (i) P (spinner at X after 1 throw) $= \frac{2}{6} - \frac{1}{3}$
(ii) P (spinner at Y after 2 throws) $= \frac{5}{9}$
(b) (i) P (all the dice show different number) $= \frac{5}{9}$
(ii) P (at least two dice show the same number) $= \frac{4}{9}$

23. (a) $x = -\frac{1}{3}, y = -\frac{1}{2}$
(b) (i) $x = 2$
(ii) $x = -\frac{1}{2}$

24. (a) $\angle ACD = 90^\circ$ because it is the angle in a semi-circle.
(b) $AD = 0.95$ cm

25. (a) 3.75 cm
(b) 0.33 cm
1. A shop sells two flavours of ice cream, Cherry and Durian. Each flavour is sold in cups of three different sizes, small, medium, and large at $2.50, $3.20, and $4.50 respectively. The sales in two successive days are given in the table below.

<table>
<thead>
<tr>
<th>Size</th>
<th>Saturday</th>
<th></th>
<th></th>
<th>Sunday</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td>Number of cups of Cherry sold</td>
<td>12</td>
<td>17</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Number of cups of Durian sold</td>
<td>12</td>
<td>17</td>
<td>8</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

The information for Saturday’s sale can be represented by the matrix,

\[M = \begin{pmatrix} 12 & 17 & 8 \\ 18 & 15 & 11 \end{pmatrix} \]

and the cost of each flavour for each size can be represented by the matrix

\[C = \begin{pmatrix} 2.5 \\ 3.2 \end{pmatrix} \].

The information for the Sunday’s sale can be represented by the matrix

\[N = \begin{pmatrix} 14 & 12 & 10 \\ 13 & 21 & 16 \end{pmatrix} \].

(a) Write down the matrix \(P = M + N \).
(b) Describe what the elements of \(P \) represent.
(c) Calculate \(Q = PC \).
(d) Describe what the elements of \(\frac{1}{2} Q \) represent.
(e) Write down the matrix \(S \) such that the elements of \(SPC \) represent the total amount received from the sales of the ice cream.

2. (i) Isaac typed 20 pages of a research journal at an average speed of \(x \) pages per hour. Write down an expression, in terms of \(x \), for the number of hours he took to type 20 pages.

(ii) Lucas typed at an average speed that was 2 pages per hour faster than Isaac’s typing speed. Write down an expression, in terms of \(x \), for the number of hours Lucas took to type 20 pages.

(iii) Given that the difference between the two timings were 24 minutes, write down an expression, in terms of \(x \) and show that it simplifies to \(x^2 + 2x - 108 = 0 \).

(iv) Solve the equation \(x^2 + 2x - 108 = 0 \), giving your solutions correct to one decimal place.

(v) Hence, find the time taken by Lucas to type 20 pages. Give your answer in hours and minutes, correct to the nearest minutes.

3. (a) Simplify \(\frac{32x^3}{4x^2} \).
(b) Simplify \(\frac{2x - x^2}{x^2 - 5x + 6} \).
(c) Make the subject of the formula \(\frac{x}{2y} = \left(\frac{r}{3y} \right)^2 \).
(d) Solve the equation \(\frac{7}{x - 2} - \frac{1}{2 - x} = \frac{2}{3} \).
4 (a) Adam exchanged 5000 Singapore Dollars (SGD) into British Pounds (GBP) at the bank. The bank’s exchange rates are given below.

<table>
<thead>
<tr>
<th>Singapore Dollars (SGD) to 1 unit of British Pounds (GBP)</th>
<th>Buying</th>
<th>Selling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.44</td>
<td>2.50</td>
</tr>
</tbody>
</table>

(i) Find the amount of British Pounds that Adam received. [1]

(ii) He then invested the British Pounds in a bank for three years which paid an interest of 4% compounded half-yearly. Find out the amount of money Adam received, in British Pounds, correct to two decimal places, at the end of three years. [2]

(iii) Adam exchanged the British pounds back to Singapore Dollars at a new exchange rate of 2.10 (SGD) to 1 (GBP). Find the amount in Singapore Dollars that Adam received, correct to the nearest cent. Hence calculate his percentage loss at the end of his investment. [3]

(b) In a club, each member present shakes hands just once with every other member.
(i) Suppose there are only 2 members present. How many handshakes are involved? [1]

(ii) Copy and complete the following table.

<table>
<thead>
<tr>
<th>Number of members in the club</th>
<th>Number of handshakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

(iii) How many handshakes will be involved if there are n number of members? [1]

(iv) Explain, with a reason, if it is possible to have 104 handshakes. [1]

5 In the diagram, O is the centre of the circle $PQRS$ and $\angle POS = 76^\circ$. AP is a tangent to the circle at P. RS is produced to A such that $\angle PAS = 44^\circ$.

(a) Calculate, stating your reasons clearly,
(i) $\angle PQR$;
(ii) $\angle SQP$;
(iii) $\angle SRA$;
(iv) $\angle PQA$;
(v) $\angle RPA$. [1]

(b) Given that the radius of the circle is 6 cm, calculate the length of chord PR. [3]
6. The cumulative frequency curve below shows the weekly wages of 124 workers in a company.

Cumulative Frequency

Weekly Wages ($)

<table>
<thead>
<tr>
<th>Weekly wage ($)</th>
<th>130 < x ≤ 140</th>
<th>140 < x ≤ 150</th>
<th>150 < x ≤ 160</th>
<th>160 < x ≤ 170</th>
<th>170 < x ≤ 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of workers</td>
<td>0</td>
<td>38</td>
<td>68</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

(a) Copy and complete the grouped frequency table of the weekly wages of the workers. [2]

(b) Using your grouped frequency table, calculate an estimate of the
(i) mean weekly wages of the workers, [1]
(ii) standard deviation. [2]

(c) Two workers are chosen at random in the company, one after another. Find as a fraction in its simplest form, the probability that
(i) both workers earn a weekly wage of at most $150, [2]
(ii) one worker earns more than $170 but another earns at most $160. [2]

(d) Another company of 124 workers have the same median weekly wages but a smaller interquartile range. Describe how the cumulative frequency curve will differ from the given curve. [1]

7. In the diagram, F is the midpoint of AB. E is the point on BC such that $4AE = BC$. AB = p and AC = q.

(a) Express as simply as possible, in terms of p and/or q.
(i) \overrightarrow{BC}, [1]
(ii) \overrightarrow{EC}, [1]
(iii) \overrightarrow{AB}, [1]
(iv) \overrightarrow{FC}, [1]

(b) It is given that $\overrightarrow{CD} = h \overrightarrow{CF}$. Express the vector \overrightarrow{AD} as simply as possible, in terms of h, p and q. [1]

(c) It is given that $\overrightarrow{AD} = k \overrightarrow{AE}$, find the value of h and of k. [3]

(d) Find the numerical value of
(i) Area of $\triangle ADF$, [1]
(ii) Area of $\triangle BCD$, [1]
(iii) Area of $\triangle CDE$, [1]
(iv) Area of $\triangle ABC$. [2]
Answer the whole of this question on a sheet of graph paper. The variables x and y are connected by the equation
\[y = x - \frac{x^3}{2} - \frac{x^5}{5}. \]

Some corresponding values of x and y are given in the following table.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.8</td>
<td>-2.1</td>
<td>-2.4</td>
<td>-1.3</td>
<td>0</td>
<td>0.35</td>
<td>0.2</td>
<td>0</td>
<td>-0.9</td>
</tr>
</tbody>
</table>

(a) Calculate the value of p. [1]

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-4 \leq x \leq 3$.
Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for $-7 \leq y \leq 1$.
On your axes, plot the points given in the table and join them with a smooth curve. [3]

(c) Use your graph to find the three solutions of the equation $x - \frac{x^3}{2} - \frac{x^5}{5} = 0$. [2]

(d) By drawing a tangent, find the gradient of the curve at $x = 1.5$. [2]

(e) By drawing a suitable straight line on your graph, solve $3x - \frac{x^3}{2} - \frac{x^5}{5} + 4 = 0$. [3]

9. PQ is the width of a rugby goal post at one end of a rugby pitch. S is position of the corner flag. P, Q and S lie on a straight line with $PQ = 5.6$ m and $QS = 32$ m. A player is spotted at R, such that $\angle QRS = 84^\circ$ and $\angle RSQ = 28^\circ$.

\[\begin{array}{c}
P & 5.6 \text{ m} & Q \\
32 \text{ m} & S \\
\end{array} \]

(a) Calculate
(i) the distance RS,
(ii) the distance RP,
(iii) $\angle PQR$. [3]

(b) A flying drone capturing the gameplay is hovering at a height of 15 m directly above S. Find the angle of elevation of the drone from the player R. [3]

(c) The player at R wishes to run to line QS in the fastest time. Calculate the distance that the player should run. [2]
(a) Figure A shows a hollow container which is made up of a hemispherical bowl of radius \(r \) cm and a right circular cone of radius \(r \) cm and height 90 cm. The capacity of the right circular cone is 4 times that of the hemispherical bowl.
(i) Find the value of \(r \). [2]
(ii) Find the total exterior surface area of the container. [3]
(iii) The container is completely filled with water. Calculate the volume of the water in the container. [2]

(b) Figure B shows a cylindrical container which is resting on a horizontal surface. The cylinder has radius \(p \) cm and length 28 cm.
(i) If all the water from container in Figure A is poured into the container in Figure B, it will fill up to exactly half of the capacity of cylinder in Figure B. Calculate the value of \(p \). [2]
(ii) Find the total surface area of the container in Figure B which is in contact with water. [2]

1. (a) \[
\begin{pmatrix}
26 & 20 & 18 \\
31 & 36 & 27
\end{pmatrix}
\] (b) Total number of small, medium and large cups of cherry and durian ice-cream sold on Saturday and Sunday.
(c) \[
\begin{pmatrix}
218.8 \\
314.2
\end{pmatrix}
\]
(d) The average amount received from selling both cherry and durian ice-cream on Saturday and Sunday.
(e) \[S = 11 \]

2. (i) \[\frac{20}{x} \] hours
(ii) \[\frac{20}{x + 2} \] hours
(iii) \[\frac{20}{x} - \frac{20}{x + 2} = \frac{20}{60} \]
(iv) \[x = 9.0 \text{ or } x = -1.0 \]
(v) Time taken \(= \frac{20}{9.04 + 2} = 1 \) hour 49 minutes

3. (a) \[\frac{16}{x^2} \]
(b) \[\frac{x}{3 - x} \]
(c) \[r = x \left(x - 1 \right) \left(\frac{p}{2g} \right) \]
(d) \[x = -0.0707 \text{ or } x = 7.07 \]

4. (a)(i) Adam received = 500 + 2.50 = 2000 GBP
(a)(ii) Adam received = 2252.32 GBP
(a)(iii) 5.40%
(b)(i) 1 handshake
(b)(ii)

<table>
<thead>
<tr>
<th>Number of members</th>
<th>Number of handshakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
(b)(iii) \[\frac{n(n-1)}{2} \]

(b)(iv)
Since \(n = -19.7 \) or \(n = 20.7 \) is not a whole number, it is not possible to have 204 handshakes.

5
(a)(i) \(\angle PRS = 38^\circ \)
(a)(ii) \(\angle SQP = \angle PRS = 38^\circ \)
(a)(iii) \(\angle SPA = \angle SQP = 38^\circ \)
(a)(iv) \(\angle POR = 98^\circ \)
(a)(v) \(8^\circ \)
(b) \(PR = 11.9 \text{ cm} \)

6
(a) \(p = 34 \text{ or } 35 \), \(q = 16 \)
(b)(i) Mean = $1,54.51
(b)(ii) \(SD = 57.71 \)
(c)(i) \(P(\text{Both workers earned at most } \$150) = \frac{595}{7626} \)
(c)(ii) \(P(\text{One worker earned more } \$170 \text{ but the other at most } \$160) = \frac{102}{1271} \)
(d) The cumulative curve will be steeper.

7
(a)(i) \(q-p \)
(a)(ii) \(\frac{3}{4}(q-p) \)
(a)(iii) \(\frac{3}{4}p + \frac{1}{4}q \)
(a)(iv) \(q - \frac{1}{2}p \)
(b) \(\frac{1}{2}kq - (h-1)q \)
(c) \(k = \frac{4}{7}, \ h = \frac{6}{7} \)
(d)(i) \(\frac{1}{6} \)
(d)(ii) \(\frac{9}{2} \)