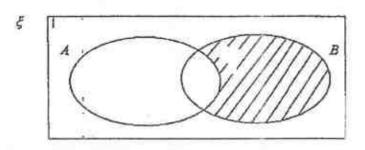
# SEC 4 EXP E-MATH

| 1.  | PEI HWA SEC SCH               | SA1 |
|-----|-------------------------------|-----|
| 2.  | ANGLO CHINESE SEC SCH (IN     | SA2 |
| 3.  | BENDEMEER SEC SCH             | SA2 |
| 4.  | CHIJ KATONG CONVENT SEC SCH   | SA2 |
| 5.  | GEYLANG METHODIST SEC SCH     | SA2 |
| 6.  | HOLY INNOCENTS' HIGH SCH      | SA2 |
| 7.  | JUNYUAN SEC SCH               | SA2 |
| 8.  | MANJUSRI SEC SCH              | SA2 |
| 9.  | SERANGOON GARDEN SEC SCH (P2) | SA2 |
| 10. | TANJONG KATONG SEC SCH        | SA2 |
| 11. | XINMIN SEC SCH                | SA2 |
| 12. | YUSOF ISHAK SEC SCH           | SA2 |




### **ALL WITH ANSWERS**

For Enquiries, contact us at partnerinlearning@hotmail.com

2017 4E EM Pei Hwa Mid Year

### Answer all the questions.

Express in set notation, the set shaded in the following Venn diagram.



| Answer | ĺ |  |  |  |  |  |
|--------|---|--|--|--|--|--|
|--------|---|--|--|--|--|--|

2 (a) Simplify (3+2x)(1+x).

(b) Factorise completely  $32a^2 - 18b^2$ 

3 Factorise completely 12bx - 6ay + 8by - 9ax.

Write as a single fraction in its simplest form 
$$\frac{5}{2+x} + \frac{6x}{x^2-4}$$

Answer ..... [2]

Show that for all p, where p is a positive integer  $(7p-3)^2 - 4p(p-3) + 6$  is divisible by 15.

Answer

[2]

6 (a) Express  $5-6x-x^2$  in the form  $p-(x+q)^2$ .

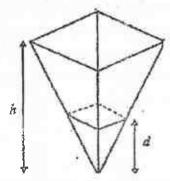
Answer ......[2]

(b) Hence, sketch the graph of  $y = 5 - 6x - x^2$  indicating the y-intercept and the coordinates of the turning point on the graph.

Answer

2

| 7 | A bicycle rental shop uses the formula $C = 5.5 + 3.5h$ to calculate charges for rental of | ıf |
|---|--------------------------------------------------------------------------------------------|----|
|   | bicycles, where C is the cost of rental and h is the number of hours of rental.            |    |


(a) State the basic charge to be paid regardless of the number of hours of reartal.

Answer \$ ..... [1]

(b) Mathew and Ethan both rented a bicycle each for different number of hours.
The difference in the cost of rental between the two of them is \$i4.
Find the difference in the number of hours of rental between the two boys.

Answer ..... hours [2]

8 The diagram shows an inverted pyramid with a capacity of 800 cm<sup>2</sup>.



The depth of the liquid in the inverted pyramid, d, is one-third the height, h, of the pyramid. Calculate the volume of the liquid.

Answer ...... cm<sup>3</sup> [2]

17.6 24.5 A 36° C

ABC is a triangle, where AB = 17.6 cm, BC = 24.5 cm and angle  $BAC = 36^{\circ}$  Find angle ABC.

Answer angle ABC = .....[3]

Jane plans to travel back to Singapore from the United States
In Singapore, the exchange rate is SGD \$1 = USD \$0.71;
In the United States, the exchange rate is USD \$100 = SGD \$153.

Jane wants to change USD \$1426 into Singapore dollars:

Which country should Jane change her money in order to get a better deal?

You must show your calculations.

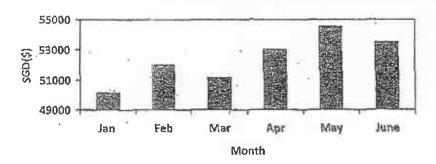
Answer [3]

7

Hector was arranging 315 one-centimetre cubes into a cuboid.

The perimeter of the base of the cuboid is 28 cm.

Each side of the cuboid has a length greater than 3 cm.


Find the height of the cuboid.

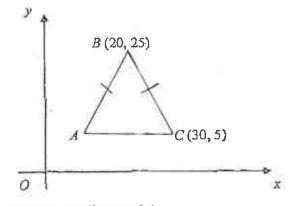
Answer

.. cm [2]

12 The bar graph shows the COE price of small cars in Singapore over a period of 6 months.

### COE PRICE OF SMALL CARS IN SINGAPORE




State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

| ver | ***** |
|-----|-------|
|     |       |
|     | [2]   |

13 The diagram shows an isosceles triangle.

AC is parallel to the x-axis.

Point B has coordinates (20, 25) and C has coordinates (30, 5)



Find the coordinates of A.

| Answer | ( | · | ) [1] |
|--------|---|---|-------|
|--------|---|---|-------|

9 B 110° C 110° 70° D

ABCD is a semicircle with centre O.

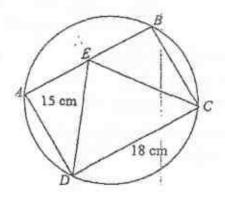
BED and AEC are straight lines.

Angle  $COD = 70^{\circ}$  and angle  $AED = 110^{\circ}$ .

- (a) Stating your reasons clearly, calculate
  - (i) angle ACD,

| (ii) angle ADC,  | Answer angle ACD =[1] |
|------------------|-----------------------|
| (iii) angle ABC, | Answer angle ADC =[1] |
| (ìv) angle BFC.  | Answer angle ABC =[1] |

(b) Explain why BC is parallel to AD.


Answer angle BFC = .....[3]

15 The diagram shows a circle ABCD.

E is the midpoint of the chord AB.

ABCD is a rectangle.

DE = 15 cm and DC = 18 cm.

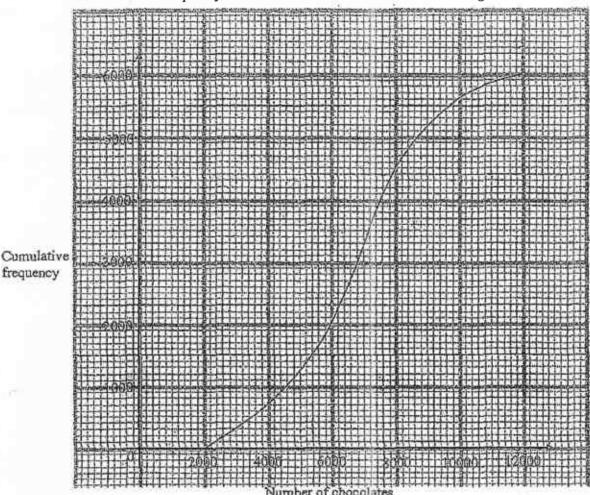


(a) Calculate the area of triangle ADE.

Answer cm² [2

(b) Calculate the circumference of the circle.

|    |       | 11                                                                                                     |
|----|-------|--------------------------------------------------------------------------------------------------------|
| 16 | The s | ketch shows the graph of $y = 3^k \times x^{-n}$ .                                                     |
|    | The g | graph passes through the point $A(1, 9)$ .                                                             |
|    |       | / A (1,9)                                                                                              |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    | (a)   | (i) State a possible value of n.                                                                       |
|    |       |                                                                                                        |
|    |       | Answer $n = \dots$ [1]                                                                                 |
|    |       | (ii) Find the value of k.                                                                              |
|    |       | (ii) Find the value of k.                                                                              |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       | $k = \dots \dots \dots \dots [1]$                                                                      |
|    | (b)   | Given that the coordinates of $B$ is $(-2, 2.25)$ , find the length of the line segment $AB$ .         |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       | Answer [2]                                                                                             |
|    |       |                                                                                                        |
| 17 | (a)   | Express 3780 as the product of its prime factors.                                                      |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       | Anguan [1]                                                                                             |
|    |       | Answer[1]                                                                                              |
|    | (b)   | Using your answer to part (a), explain why 3780 is not multiple of 49.                                 |
|    |       | Answer                                                                                                 |
|    |       | »                                                                                                      |
|    | (.)   |                                                                                                        |
|    | (c)   | c is a composite number and $p$ is a prime number.                                                     |
|    |       | Find the values of b and c such that $3780 \times \frac{c}{D}$ is a perfect square and c has the least |
|    |       | value.                                                                                                 |
|    |       |                                                                                                        |
|    |       | Answer $p = \dots$                                                                                     |
|    |       | <i>ç</i> =,                                                                                            |
|    |       |                                                                                                        |


12

| 18 |        | ip of Sing<br>e land. | gapore is such that 9 cm <sup>2</sup> | on the map represents the actual a                             | rea of 36 km²     |
|----|--------|-----------------------|---------------------------------------|----------------------------------------------------------------|-------------------|
|    | (a)    |                       | s the scale of the map in             | the form $1:n$ .                                               |                   |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       | Answer 1:                                                      | [2]               |
|    | (b)    |                       |                                       | essway on the map is 5 cm.<br>Milometres, of the Bukit Timah E | xpressway.        |
|    |        |                       |                                       | Answer                                                         | km [1]            |
| 19 | The to |                       | vs the prices of one litre o          | f petrol and the discounts offered                             | by leading petrol |
|    | Co     | mpany                 | Petrol price per litre                | Discount                                                       | 45                |
|    |        | A                     | \$1.723                               | 18%                                                            |                   |
|    |        | B .                   | \$1.689                               | 15%                                                            |                   |
|    |        | С                     | \$1.702                               | 12% discount plus \$3 off for ev<br>after discount             | ery \$30 sale     |
| (P | (a)    |                       | ate the total amount Ronn             | h 55 litres of petrol at Company ( paid for the petrol.        |                   |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       | Answer \$                                                      | [2]               |
|    | (b)    | Compa                 | ring Company $A$ and $B$ , s          | how clearly which company offer                                | rs a better deal. |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       |                                                                |                   |
|    |        |                       |                                       | Answer                                                         | [2]               |
|    |        |                       |                                       | 13                                                             |                   |

13

20 6000 customers participated in a contest where they have to guess the number of chocolates in a big glass container.

The cumulative frequency curve below shows the distribution of their guesses.



The actual number of chocolates is 6000.

| (a) | Find th | e median. |
|-----|---------|-----------|
|-----|---------|-----------|

Answer ...... chocolates [1]

(b) Find the interquartile range.

Answer ...... chocolates [1]

(c) Find the probability that a customer, chosen at random, gave an estimate within 10% of the actual number of chocolates.

14

| 21 | Gate B and Gate C are 400 m apart in a park. Gate A is such that angle $ACB = 105^{\circ}$ a | and |
|----|----------------------------------------------------------------------------------------------|-----|
|    | AB = 550  m.                                                                                 |     |

(a) Using a scale of 1 cm to 50 m and the line BC is drawn for you, complete the scale drawing of triangle ABC.



(b) A pavilion, inside the park, is located equidistant from the three gates.

By construction, find and label the position of the pavilion P. [2]

(c) Measure and calculate the actual distance between Gate A and the pavilion P.

Answer ..... m [1]

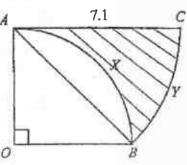
| ٠ | ۰ | ٠ |   |  |
|---|---|---|---|--|
|   | r | 4 | Ε |  |
|   |   |   |   |  |
|   |   |   |   |  |
|   |   |   |   |  |

- The position vectors of A and B are  $\binom{3}{4}$  and  $\binom{-3}{4}$  respectively.
  - (a) Find the length of  $\overrightarrow{OB}$ .

| 2000000 |                                         | F13 |
|---------|-----------------------------------------|-----|
| AMSWEL  | *************************************** |     |

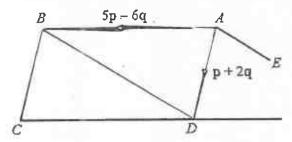
(b) C is the point (0, p) where p > 0.  $\overrightarrow{OC} = 4 \overrightarrow{OA} + 4 \overrightarrow{OB}$ . Find the value of p.




In the diagram, angle  $AOB = 90^{\circ}$ , AC is parallel to OB and AC = 7.1 cm.

AXB is an arc of a circle with centre O and CYB is an arc of a circle with centre A.

Find the area of the shaded region.


What type of quadrilateral is OACB?

(c)



Answer ..... cm<sup>2</sup> [5]

In the diagram, ABCD is a parallelogram,  $\overrightarrow{AD} = p + 2q$  and  $\overrightarrow{AB} = 5p - 6q$ .



| (a) Express, as simply as possible, in terms of p and | l q, |
|-------------------------------------------------------|------|
|-------------------------------------------------------|------|

|     | -   |
|-----|-----|
| (i) | CB, |

|      |                   | Answer[1] |
|------|-------------------|-----------|
| (ii) | $\overline{DB}$ . |           |

| <br>] |
|-------|
| ·     |

- (b) E is a point such that  $\overrightarrow{EA} = p 2q$ .
  - (i) Explain why  $\overrightarrow{DB}$  is parallel to  $\overrightarrow{EA}$ .

Answer .....

.....[1

(ii) Find the ratio of the area of triangle ADE to the area of triangle DBA.

| Answer [ | Answer | ************ | £ | [2 |
|----------|--------|--------------|---|----|
|----------|--------|--------------|---|----|

End of Paper

### MATHEMATICAL FORMULAE

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of cone =  $\pi rl$ 

Surface area of a sphere =  $4 \pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle ABC =  $\frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

**Statistics** 

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Answer all the questions,

1 (a) (i) Factorise 
$$-3x^2 - 2x + 5$$
. [1]

(ii) Simplify 
$$\frac{6x+12}{3x^2-15x-42}$$
. [2]

(b) It is given that 
$$d = \sqrt{\frac{5e - f}{ef}}$$
.

(i) Find when 
$$e = 4$$
 and  $f = 2$ .

(ii) Express 
$$e$$
 in terms of  $d$  and  $f$ . [2]

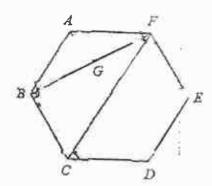
(c) Solve the equation 
$$\frac{3x+2}{5} - \frac{1}{2} = \frac{x}{2}$$
.

(d) Solve these simultaneous equations.

$$7x + 4y = -37$$
  
 $x - 5y = 17$  [3]

[3]

### Free Tuition Listing @ 99Tutors.SG


4

In one small packet of gummies, there are both gummy bears and gummy snakes in two colours; red and green. In a large packet, there are 10 small packets.

Green Red The information can be represented by the matrix  $A = \begin{pmatrix} 5 & 5 \\ 4 & 6 \end{pmatrix}$ Evaluate the matrix B: 10A. [1] (a) It costs \$0.10 and \$0.12 to produce 1 green and red gummy respectively. (b) Represent the cost of each colour of gummy in a 2 × 1 column matrix C in dollars. [1] Evaluate the matrix D = BC. [1] (e) State what the elements of present. [1] (d) Another gummy-making company, Company Y, packs 6 green gummy bears, 4 red (e) gummy bears, 7 green gummy snakes and 3 red gummy snakes in one small packet. The costs to produce one green gummy and one red gummy remain the same. One large packet is also made up of 10 small packets.

Calculate the total cost for Company Y to produce one large packet.

3 (a) The diagram shows a regular hexagon.



(i) Calculate the interior angle of a regular hexagon.

[2]

(ii) It is given that 2AG = BC. Find  $\frac{\text{area of triangle } ABF}{\text{area of triangle } BFC}$ 

[2]

(b) (i) Simplify  $\frac{(mn^2)^3}{p^5} \div \frac{n^5}{p^4}$ .

[2]

(ii) Given that  $\frac{2^{q+3}}{4^{2q}} = \frac{1}{16}$ , find the value of q.

[3]

6

4 The first five terms in a sequence of numbers are given below.

0, 3, 8, 15, 24...

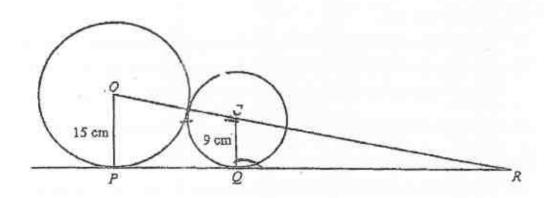
| (a)        | Find the next two terms.                                                                  | [2] |
|------------|-------------------------------------------------------------------------------------------|-----|
| <b>(b)</b> | Find an expression, in terms of $n$ , for the $n$ th term, $T_n$ , of the above sequence. | [1] |
| (c)        | $T_n$ and $T_{n+1}$ are consecutive terms in the sequence.                                |     |
|            | Find and simplify an expression, in terms of n, for $T_{n+1} - T_n$ .                     | [3] |
| (ď)        | Explain why two consecutive terms of the sequence cannot have a difference                |     |
|            | of 8.                                                                                     | [2] |

7

5 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$y = x^3 - 4x^2 + \frac{5}{2}$$


Some corresponding values of x and y are given in the table below.

| x | -1.5   | -1   | -0.5  | 0   | 0.5 | 1    | 1.5    | 2    |
|---|--------|------|-------|-----|-----|------|--------|------|
| y | -9.875 | -2.5 | 1.375 | 2.5 | P   | -0.5 | -3.125 | -5.5 |

- (a) Find the value of p. [1]
- Using a scale of 4 cm to represent 1 unit, draw a horizontal x-axis for -1.5 ≤ x ≤ 2.
   Using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for -12 ≤ y ≤ 4.
   On your axes, plot the points given in the table and join them with a smooth curve. [3]
- (c) Use your graph to find the coordinates of the maximum point of  $y = x^3 4x^2 + \frac{5}{2}$ , in the range of  $-1.5 \le x \le 2$ .
- (d) Use your graph to find the solutions to the equation  $x^3 4x^2 + 6 = 0$ , in the range  $-1.5 \le x \le 2$ . [3]
- (e) By drawing a tangent, find the gradient of the curve at (-1, -2.5). [2]
- (f) On the same axes, draw the line y = -3x 4 for  $-1.5 \le x \le 2$ .
  - (ii) Write down the coordinates of the point where this line intersects the curve. [1]

The diagram shows a circle, centre O, with radius 15 cm touching another circle, centre C, with radius 9 cm.

OCR and PQR are straight lines and PQR is a tangent to both the circles at points P and Q.



(a) State the value of angle CQR and explain your answer. [2]
(b) Show that triangles OPR and CQR are similar.
Give a reason for each statement you make. [2]
(c) Find the value of area of triangle CQR area of triangle CQR area of trapezum OCQP [2]
(d) Find the difference in the areas of the two circles.
Leave your answer in terms of π. [2]

9

- 7 A company manufactures and sells posters for decoration and display.
  - (a) The posters manufactured by the company are sold in local shops and department stores. In a particular week, the number of posters available for sale in local shops and department stores are in the ratio 3:7.
     Given that 160 more posters are available for sale in department stores, find the total number of posters available for sale in that week.
  - (b) A shop owner bought x posters for \$60 from the company.
    - (i) Write down an expression, in terms of x, for the cost of each poster in dollars. [1]

The shop owner decides to sell the posters at a profit of \$1 each.

(ii) Write down an expression, in terms of x, for the selling price of each poster in dollars.

[1]

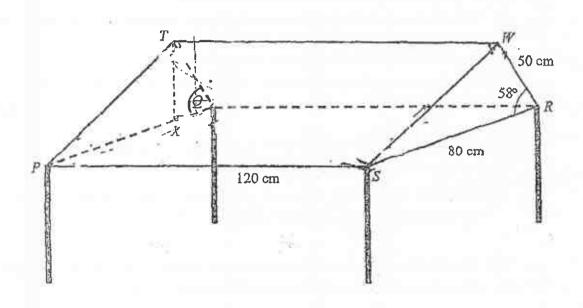
The shop owner managed to sell 10 posters at the selling price in (ii). He decided to sell the rest of the posters at \$5 each.

- (iii) Write down an expression, in terms of x, for the total amount of money in dollars, that he collected from the sale of all posters.
- (iv) Given that the shop owner collected a total of \$130 from the sale of all posters, write down an equation in x to represent this information and show that it reduces to

$$x^2 - 34x + 120 = 0 ag{3}$$

- (v) Solve the equation  $x^2 34x + 120 = 0$ . [3]
- (vi) Find the cost price of each poster. [1]

8 The diagram shows a table used by an interior designer.


It is made up of a prism and 4 table legs for support.

The rectangle PQRS lies on a horizontal plane.

T is vertically above X.

PS = 120 cm, RS = 80 cm and WR = 50 cm.

Angle  $WRS = 58^{\circ}$ .



Calculate

| (a) | WS,                                      | [3]   |
|-----|------------------------------------------|-------|
| (b) | the volume of the prism,                 | [3]   |
| (c) | TX,                                      | [2]   |
| (d) | XS,                                      | [4] - |
| (e) | the angle of elevation of $T$ from $S$ . | [2]   |

11

9 (a) The amount of money, in dollars, spent by a group of 20 students (Group A) in the month of May is shown in the stem-and-leaf diagram below.

|     |    | •   |   |   |   |
|-----|----|-----|---|---|---|
| 5   | 2, | 1   |   |   |   |
| 6   | 2  | ġ   | 7 |   |   |
| 7   | 1  | ľ   | 5 | 8 | 9 |
| . 8 | 0  | 4   | 5 | 6 |   |
| 9   | 2  | 3   | 8 | 9 |   |
| 10  | 5  | , 8 |   |   |   |
| 1.0 |    |     |   |   |   |

Key 5 6 means \$56

- (i) Find the mean amount of money spent by the 20 students. [1]
- (ii) Find the standard deviation of the amount of money spent by the 20 students. [1]
- (iii) The mean and standard deviation of the amount of money spent by another group of 20 students (Group B) in May were \$70 and \$12 respectively.

Use the information to comment on two differences between the two distributions.

[2]

(b) John plays a game at a carnival. In this game, he has to pick 2 coloured balls from two bags, A and B. He is only allowed to pick one ball from each bag. He has to pick one ball from Bag A, followed by another ball from Bag B.

Bag A contains 2 red balls, 3 blue balls and 6 yellow balls.

Bag B contains 4 red balls, I blue ball and 4 yellow balls.

- (i). Draw a tree diagram to show the probabilities of the possible outcomes. [2]
- (ii) John will win a large prize if he picks 2 balls that are blue, a small prize if he picks only one ball that is blue and goes home empty-handed otherwise.
  Find, as a fraction in the simplest form, the probability that
  - (a) John will win a large prize, [1]
  - (b) John will win a small prize, [1]
  - (c) John will not win anything. [1]

A group of students are tasked to design, print and distribute brochures containing tips to save water to students in school, as part of the school's effort to raise awareness of the importance of saving water in school.

The students have been allocated a budget of \$1200 to complete this task.

The students are required to print and distribute a copy of the brochure to each student and teacher in the school.

Each brochure is printed on both sides of 2 sheets of A4 size paper.

Students will be given brochures printed in black and white and teachers will be given brochures printed in colour. They will have to purchase the sheets of A4 size paper and toner cartridges from ABC bookstore, which will be delivered to school.

In addition, the students are also tasked to design and print 50 copies of A3 size coloured posters containing tips to save water, to be put up in all classrooms and various areas in the school. They have sourced for an external supplier, XYZ supplier, to print the posters. The posters will be delivered to school as well.

The information that the students require is found in Annex A, on the opposite page.

The students estimates that they have to distribute the brochures to 1360 students and 90 teachers.

- (a) How many sheets of A4 size paper will the students require to purchase to print the brochures for all students and teachers? [1]
- (b) How many toner cartridges will the students require to purchase to print the brochures for all students and teachers?
- (c) Given that one of the students in the group is a member of ABC bookstore and that the students aim to reduce the cost as far as possible, determine if the amount of budget allocated is sufficient to cover all costs.

Justify your answer with relevant mathematical working. [6]

13

Annex A

### Cost of purchasing stationaries from ABC Bookshop: 1)

| Item             | Description                                                 | Unit Cost (excluding GST) |
|------------------|-------------------------------------------------------------|---------------------------|
| A4 Paper         | White paper                                                 |                           |
|                  | I pack of 100 sheets                                        | \$2.00                    |
|                  | 1 pack of 500 sheets                                        | \$5.00                    |
|                  | 5 packs of 500 sheets each                                  | \$22.50                   |
|                  | 10 packs of 500 sheets each                                 | \$42.00                   |
| Toner Cartridges | Black printing (each cartridge is able to print 1200 pages) | \$136.00                  |
|                  | Colour printing                                             | \$140.00                  |
|                  | (each cartridge is able to print                            |                           |
|                  | 900 pages)                                                  |                           |

The above prices are subjected to 7% Goods and Services Tax (GST).

Member discount: 10% off total bill, after 7% GST

Delivery cost: \$30 per trip (not subjected to 7% GST)

(Free delivery for minimum purchase of \$200 in total bill, inclusive of 7% GST and after

member discount.)

### 2) Cost of printing A3 size coloured posters

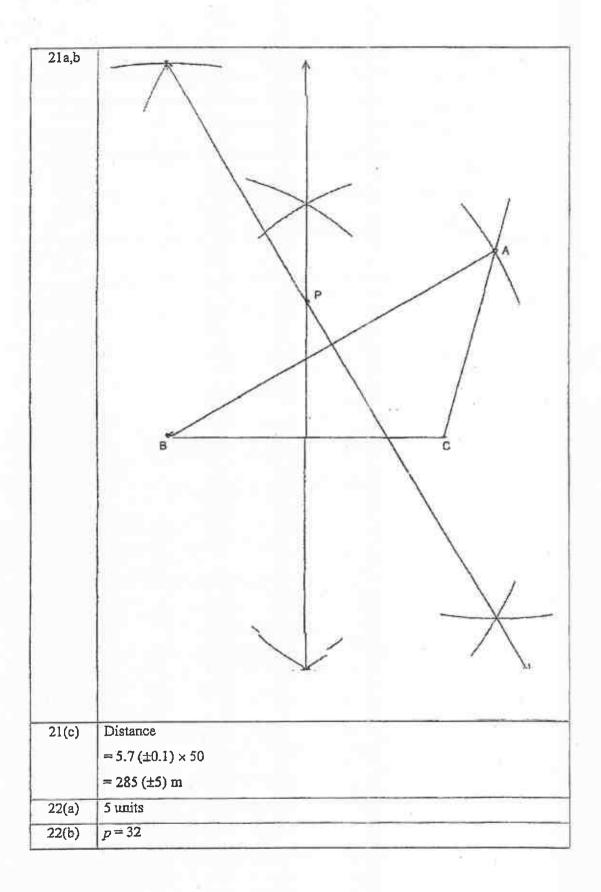
Supplier: XYZ Printing

| Item                    | Description | Unit Cost (excluding GST) |
|-------------------------|-------------|---------------------------|
| Black and White Posters | 10 sheets   | \$25.00                   |
|                         | 50 sheets   | \$120.00                  |
| Coloured Posters        | 10 sheets   | \$35.00                   |
|                         | 50 sheets   | \$170.00                  |

The above prices are subjected to 7% Goods and Services Tax (GST).

Delivery cost: \$20 per trip (not subjected to 7% GST)

(Free delivery for minimum purchase of \$200 in total bill, inclusive of 7% GST.)


End of Paper

### Pei Hwa Secondary School Mid Year Examination 2017 Sec 4E & 5N Mathematics Paper 1

Answer Key

|      | Answer Key                                                                                                                                                                                                       |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1(a) | $A \cap B$                                                                                                                                                                                                       |  |  |  |  |
| 2(a) | $-2x^2+x+3$                                                                                                                                                                                                      |  |  |  |  |
| 2(b) | 2(4a+3b)(4a-3b)                                                                                                                                                                                                  |  |  |  |  |
| 3    | (4b-3a)(3x+2y)                                                                                                                                                                                                   |  |  |  |  |
| 4    | $\frac{11x-10}{(x+2)(x-2)}$                                                                                                                                                                                      |  |  |  |  |
| 5    | $(7p-3)^{2} - 4p(p-3) + 6$ $= 49p^{2} - 42p + 9 + 4p^{2} + 12p + 6$ $= 45p^{2} - 30p + 15$ $= 15(3p^{2} - 2p + 1)$ $\therefore \text{ for all } p, (7p-3)^{2} - 4p(p-3) + 6 \text{ is divisible by 15. (Shown)}$ |  |  |  |  |
| 6(a) | $14-(x+3)^2$                                                                                                                                                                                                     |  |  |  |  |
| 6(b) | 3=2=4x-x                                                                                                                                                                                                         |  |  |  |  |
| 7(a) | \$5.50                                                                                                                                                                                                           |  |  |  |  |
| 7(b) | 4 hours                                                                                                                                                                                                          |  |  |  |  |
| 8    | 29.6cm³ (3s.f.)                                                                                                                                                                                                  |  |  |  |  |
| 9    | 119.0° (1d.p.)                                                                                                                                                                                                   |  |  |  |  |
| 10   | Amount of money Jane will get in Singapore $= \frac{1426}{0.71}$ $= SGD\$2008.45$ Amount of money Jane will get in the United States $= \frac{153}{100} \times 1426$ $= SGD\$2181.78$                            |  |  |  |  |

|            | Jane will change her money in the <u>United States</u> as she will get back more Singapore dollars.                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11         | 7 cm                                                                                                                                                  |
| 12         | In the graph, the data doesn't start at \$0, but somewhere around \$49000. This makes the differences appear much larger proportionally.              |
| 13         | (10, 5)                                                                                                                                               |
| 14(a)(i)   | 90°                                                                                                                                                   |
| 14(a)(ii)  | 55°                                                                                                                                                   |
| 14(a)(iii) | 125°                                                                                                                                                  |
| 14(a)(iv)  | 75°                                                                                                                                                   |
| 14(b)      | Angle $BCE = 35^{\circ}$ (Angles in the same segment)<br>Since angle $BCE =$ angle $CAO$ (by property of alternate angles),<br>BC is parallel to $AD$ |
| 15(a)      | 54cm²                                                                                                                                                 |
| 15(b)      | 68.0cm                                                                                                                                                |
| 16(a)(i)   | n = -2                                                                                                                                                |
| 16(a)(ii)  | $9 = 3^k \times (1)^{-2}$                                                                                                                             |
|            | k=2                                                                                                                                                   |
| 16(b)      | 7.39 units                                                                                                                                            |
| 17(a)      | $2^2 \times 3^3 \times 5 \times 7$                                                                                                                    |
| 17(b)      | Index of 7 is not at least 2                                                                                                                          |
| 17(c)      | c = 15                                                                                                                                                |
|            | p=7                                                                                                                                                   |
| 18(a)      | 1:200000                                                                                                                                              |
| 18(b)      | 10 km                                                                                                                                                 |
| 19(a)      | \$76.38                                                                                                                                               |
| 19(b)      | Company B offers a better deal.                                                                                                                       |
| 20(a)      | 6800                                                                                                                                                  |
| 20(b)      | 2600                                                                                                                                                  |
| 20(0)      | $\frac{1}{5}$                                                                                                                                         |



| 22(c)     | Kite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23        | 12.6 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24(a)(i)  | - p- 2q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24(a)(ii) | 4p - 8q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24(b)(i)  | $\overrightarrow{DB}$ $= 4(p-2q)$ $= 4\overrightarrow{EA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24(b)(ii) | $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | Language and the second |

### PHSS 4E EM MYE Paper 2 2017 Answer Key

| No.      | Answer                                                                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------|
| 1(a)(i)  | $-3x^2 - 2x + 5 = (3x + 5)(1 - x)$                                                                                   |
| l(a)(ii) | $\frac{2}{x-7}$                                                                                                      |
| 1(b)(i)  | $d = 1.5$ or $d = 1\frac{1}{2}$                                                                                      |
| 1(b)(ii) | $e = \frac{f}{5 - d^3 f}$                                                                                            |
| 1(c)     | x=1                                                                                                                  |
| 1(d)     | x = -3, y = -4                                                                                                       |
| 2(a)     | $B = \begin{pmatrix} 50 & 50 \\ 40 & 60 \end{pmatrix}$                                                               |
| 2(b)     | $C = \begin{pmatrix} 0.10 \\ 0.12 \end{pmatrix}$                                                                     |
| 2(¢)     | $\mathbf{D} = \begin{pmatrix} 11 \\ 11.2 \end{pmatrix}$                                                              |
| 2(d)     | The elements of D represent the cost to produce all the gummy bears and gummy snakes in a large packet respectively. |
| 2(e)     | Total cost = $$10.80 + $10.60$<br>= $$21.40$                                                                         |
| 3(a)(i)  | 120°                                                                                                                 |
| 3(a)(ii) | $\frac{1}{2}$                                                                                                        |
| 3(b)(i)  | $\frac{m^3n}{p}$                                                                                                     |
| 3(b)(ii) | q=3                                                                                                                  |
| 4(a)     | $T_6 = 35$ $T_7 = 48$                                                                                                |
| 4(b)     | $T_n = n^2 - 1 \text{ or } (n+1)(n-1)$                                                                               |
| 4(c)     | $T_{n+1} - T_n = n^2 + 2n - (n^2 - 1)$<br>= $2n + 1$                                                                 |

| No.       | Answer                                                                     |
|-----------|----------------------------------------------------------------------------|
| 4(d)      | 2n+1=8                                                                     |
|           | n = 3.5                                                                    |
|           | Assuming that the difference between two terms is 8, the first consecutive |
|           | term is 3.5, which does not exist. Therefore, two consecutive terms cannot |
|           | have a difference of 8.                                                    |
|           |                                                                            |
|           | OR                                                                         |
|           |                                                                            |
|           | The difference $(2n+1)$ is an odd number. Therefore, two consecutive       |
|           | terms cannot have a difference of 8, which is an even number.              |
|           |                                                                            |
| 5(a)      | p = 1.625                                                                  |
| 5(b)      | If all 8 points plotted correctly,                                         |
|           | otherwise, at least 6 points plotted correctly.                            |
|           |                                                                            |
|           | Smooth curve                                                               |
| 5(c)      | Maximum point = (0, 2.5)                                                   |
| 5(d)      | From the graph, $x = -1.10 \pm 0.10$ and $x = 1.55 \pm 0.10$               |
| 5(e)      | Gradient = 8.67 ± 3                                                        |
| 5(f)(i)   | Correctly drawn line                                                       |
| 5(f)(ii)  | (-0.85, -1.4)                                                              |
| 6(a)      | $\angle CQR = 90^{\circ}$                                                  |
|           | tangent perpendicular to radius                                            |
| 6(b)      | ∠OPR=90° (tangent perpendicular to radius)                                 |
|           | $\angle OPR = \angle CQR$                                                  |
|           | $\angle PRO = \angle QRC$ (common angle)                                   |
|           | $\angle POR = \angle QCR$ (corresponding angles, $OP//CQ$ )                |
|           |                                                                            |
|           | Hence, triangle OPR is similar to triangle CQR.                            |
|           | (AA Similarity)                                                            |
|           |                                                                            |
| 6(c)      | 9                                                                          |
|           | 16                                                                         |
|           |                                                                            |
| 6(d)      | $144\pi$ cm <sup>2</sup>                                                   |
| 7(a)      | 400                                                                        |
| 7(5)(i)   | (50)                                                                       |
| 7(b)(i)   | $s\left(\frac{60}{x}\right)$                                               |
|           | (x)                                                                        |
| 7/2/::)   | (60)                                                                       |
| 7(b)(ii)  | $\mathbb{S}\left(\frac{60}{1}+1\right)$                                    |
|           |                                                                            |
| 7(b)(iii) | $\frac{600}{5x-40}$                                                        |
|           | X                                                                          |

| $\frac{600}{x} + 10 + 5x - 50 = 130$                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{x}{600} + 5x - 170 = 0$                                                                                                                                                                                                                                    |
| x                                                                                                                                                                                                                                                                 |
| $600 + 5x^2 - 170x = 0$                                                                                                                                                                                                                                           |
| $5x^2 - 170x + 600 = 0$                                                                                                                                                                                                                                           |
| $x^2 - 34x + 120 = 0$ (shown)                                                                                                                                                                                                                                     |
| x=30  or  x=4                                                                                                                                                                                                                                                     |
| \$2                                                                                                                                                                                                                                                               |
| 68.3cm                                                                                                                                                                                                                                                            |
| 204000 cm <sup>3</sup>                                                                                                                                                                                                                                            |
| TX = 42.4  cm                                                                                                                                                                                                                                                     |
| XS = 131 cm                                                                                                                                                                                                                                                       |
| θ = 17.9°                                                                                                                                                                                                                                                         |
| \$80.15                                                                                                                                                                                                                                                           |
| \$15.60                                                                                                                                                                                                                                                           |
| 1. The mean amount of money spent by students in Group A is higher than that of Group B. On average, students in Group A spent more money than students in Group B.                                                                                               |
| 2. The standard deviation of the amount of money spent by students in Group B is lower than that of Group A. There is a smaller spread in the amount of money spent by students in Group B./ The amount of money spent by students in Group B is more consistent. |
|                                                                                                                                                                                                                                                                   |

| 9(b)(i)     | Bag $A$ Bag $B$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9(b)(ii)(a) | $\frac{1}{33}$                                                                                                                                                                                                    |
| 9(b)(ii)(b) | <u>32</u><br>99                                                                                                                                                                                                   |
| 9(b)(ii)(c) | 64 99                                                                                                                                                                                                             |
| 10(a)       | 2900                                                                                                                                                                                                              |
| 10(b)       | 6                                                                                                                                                                                                                 |
| 10(c)       | Cost of purchase from ABC Bookstore Total cost with delivery cost, after member discount = \$816.1425  Cost of purchase from XYZ Printing Total cost with delivery = \$20 + \$181.90 = \$201.90  Grand total cost |
|             | Grand total cost = \$816.1425 + \$201.90 = \$1018.04  The amount of budget of \$1200 is sufficient to cover all costs.                                                                                            |

## 2017 4E EM Anglo-Chinese School (Barker Road) Prelim @ 99Tutors.SG

Anglo-Chinese School (Barker Road)

|    |                                  | Answer all the questions                                                                                           |                              |
|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------|
| 15 |                                  |                                                                                                                    |                              |
| 1  |                                  | in order of size, smallest first.                                                                                  | ,                            |
|    | $\sqrt{0.81}$                    | 0.902 399                                                                                                          | $0.86^{\frac{2}{3}}$         |
|    |                                  | 441                                                                                                                |                              |
|    |                                  |                                                                                                                    |                              |
|    |                                  | Answer                                                                                                             | . [2]                        |
|    |                                  | smallest                                                                                                           | largest                      |
|    |                                  |                                                                                                                    | VE 84 3 4 5 >                |
|    | (1 gigabyte = 10 <sup>9</sup> by | D card is 256 gigabytes. How man<br>be stored in this SD card? Give y<br>rtes, 1 megabyte = 10 <sup>6</sup> bytes) | our answer in Standard form. |
|    |                                  |                                                                                                                    |                              |
|    |                                  |                                                                                                                    |                              |
|    |                                  |                                                                                                                    | A 192                        |
|    |                                  |                                                                                                                    | · 12                         |
|    |                                  |                                                                                                                    | 12                           |
|    |                                  | Answer                                                                                                             | [2]                          |
|    |                                  | Answer                                                                                                             | [2]                          |
| 3  | Factorise completely             | Answer                                                                                                             | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |
| 3  | Factorise completely             | *                                                                                                                  | [2]                          |

Anglo-Chinese School (Barker Road)

For Examiner's Use

A sum of money was divided <u>equally</u> between Jim. John and Jane. If Jim gives Jane \$20, the ratio would then become 2: 3:4

What was the total sum of money?

Examiner a

Answer

Simplify  $\frac{7x}{(x-5)^2} + \frac{1}{5-x}$ .

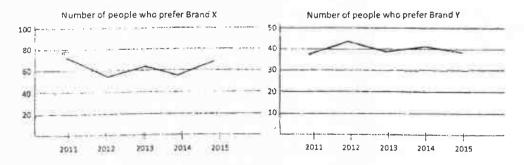
Answer

[2]

[2]

Solve the inequalities  $-8 \le 2 - 3x < 8$ 

Answer ......[2]


Arghe-Timese Nelmat (flarker Road)

[2]

12 cooks will take 6 hours to prepare a meal for 180 people. If 4 of the cooks left the team and the number of people dropped to 150, how many hours would the remaining cooks need to prepare the meal?

The diagrams show the result of sales of two competing brands over a few years.

Answer



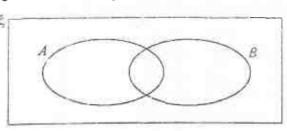
State one aspect of the graph which may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer

Profession 2017

5

Secondary & Express Mathematics 4048 Paper 1

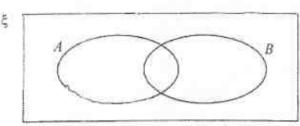

For Examiner's

## Free Tuition Listing @ 99Tutors.SG

Anglo-Chinese School (Barker Road)

For Examiner's Use

(a) On the Venn diagram, shade the region which represents  $A \cap B'$ .




(b)  $\xi = \{\text{integers } x : 1 \le x \le 12\}$ 

 $A = \{ prime numbers \}$ 

 $B = \{\text{multiples of 3}\}\$ 

On the Venn diagram, list down the elements in the appropriate subsets.



[2]

[1]

10 Simplify  $\left(\frac{x^{3}}{y^{3}}\right)^{-\frac{1}{2}} = \left(\frac{x^{-\frac{3}{2}}}{y^{-\frac{3}{2}}}\right)$ , giving your answer in positive index.

Angwer

[3

Examiner's Use

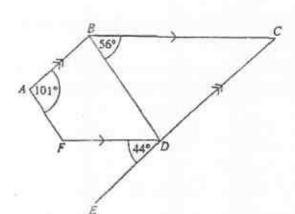
## Free Tuition Listing @ 99Tutors.SG

legissChinese School (Barker Rood)

|      |      | angwet moete,                                                                                                                                                                                               |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    |      |                                                                                                                                                                                                             |
| Anna | (a)  | One day, the rate of exchange between Singapore dollars (S\$) and US do (US\$) was US\$1 = S\$1.39.                                                                                                         |
|      |      | Anthony wanted to bring along US\$5000 for a trip to the US. Calculate much Singapore dollars he would need to exchange.                                                                                    |
|      |      |                                                                                                                                                                                                             |
|      |      | Answer S\$                                                                                                                                                                                                  |
|      | (b)  | There was change of plans at the <u>last minute</u> and Anthony exchange US\$5000 back into Singapore do <u>llars</u> , at a <u>different exchange rate</u> . received S\$6850, what was the exchange rate? |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      | Answer US\$ = S\$[2]                                                                                                                                                                                        |
| 12   |      | pplier sells watches at \$210 each. Jimmy buys the watches from the supplicount of 20%. Jimmy intends to then sell the watches at a profit of 20%.                                                          |
|      | with | marketing strategy, Jimmy plans to offer a 10% discount on the marked prout affecting his intended 20% profit. Calculate the marked price that Jimm ld sell each watch at.                                  |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |
|      |      |                                                                                                                                                                                                             |

Preliminary Examination 2017

7


Answer

Secondary & Express Mathematics #148 Poper 1

[3]

Angle-Chinese School (Barker Read)

har xammer s 13

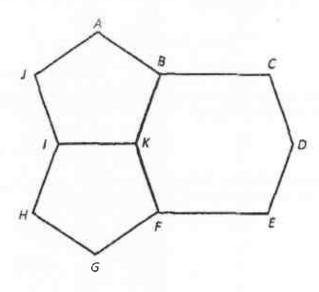


Por Papment I

In the diagram, AB is parallel to EDC and BC is parallel to FD. Angle  $CBD = 56^{\circ}$ , angle  $FDE = 44^{\circ}$  and angle  $BAF = 101^{\circ}$ .

State, showing your reasoning, whether AF is or is not parallel to BD.

Answer


[3]

Anglo-Chinese School (Barker Road)

For Examiner's Use

14 The diagram shows two pentagons and one hexagon joined together.





(a) Calculate the sum of the interior angles of the hexagon.

Answer []

(b) Show, by way of calculation, that at least one of the polygons is irregular.

Answer

[2]

Examiner's

## Free Tuition Listing @ 99Tutors.SG

Anglo-Chinese School (Barker Road)

| For      |  |
|----------|--|
| Examiner |  |
| Use      |  |

15 Written as a product of its prime factors

$$2450 = 2 \times 5^2 \times 7^2$$
$$84 = 2^2 \times 3 \times 7$$

(a) Write down the highest common factor of 2450 and 84, giving your answer as the product of its prime factors.

(b) The highest common factor of 2450 and 21a is 70. Find the smallest possible value of a, where a is an integer.

Answer 
$$\alpha = \dots$$
 [1]

(c) The lights on three lighthouses flash at regular intervals. The first light flashes every 84 seconds, the second every 90 seconds and the third every 2450 seconds. The three lights flash together at 0800.

At what time do they next flash together?

Answer

Anglo-Chinese School (Barker Road)

| For      |   |
|----------|---|
| Examiner | 3 |
| 1100     |   |

16 William draws at random 2 cards from a stack of 5 cards labelled 5 to 9 without replacement. The sum of the numbers on the two cards is obtained.

Examiner's Ús€

Complete the possibility diagram in the answer space below. (a)

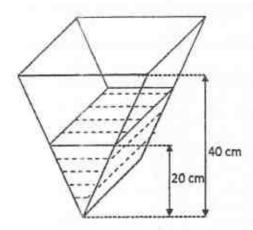
| - 14 | 5  | 6  | 7 | 8 | 9 |
|------|----|----|---|---|---|
| 5    |    | 11 |   |   |   |
| 6    | 11 |    | * |   |   |
| 7    |    |    |   |   |   |
| 8    |    |    |   |   |   |
| 9    |    |    |   |   |   |

[1]

Calculate the probability that the sum obtained is a multiple of 6.

[1]

A third card is chosen at random from the stack without replacement. Find the probability that the sum of the numbers on the three cards is 24.


[2]

Anglo-Chinese School (Barker Road)

For Examiner's Use

17

For Examiner's Use

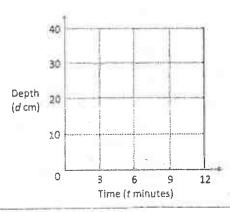


The diagram shows a container in the shape of a prism with a triangular cross-section.

The container has a height of 40 cm.

Water is poured into the empty container at a constant rate.

It takes 12 minutes to fill the container.


After t minutes the depth of the water is d cm.

(a) Find the value of t when d = 20.

Answer ..... minutes [2]

(b) On the axes in the answer space, sketch the graph showing how the depth varies during the 12 minutes.

Answer



[2]

Engly-Chinese School (Barker Road)

| 1-1.1      |  |
|------------|--|
| Examiner's |  |
| 1100       |  |

For Examiner's

18 The table below shows the number of cars and motorcycles passing through an Electronic Road Pricing (ERP) gantry on certain days of the week from 7.30 am to 7.55 am.

|                     | Cars | Motorcycles |
|---------------------|------|-------------|
| Wednesday           | 320  | 120         |
| Thursday            | 380  | 100         |
| Friday              | 410  | 130         |
| Charges per vehicle | \$2  | \$0.50      |

| (a) | Represent | the number o | f vehicles | passing through | the gantry i | n a 3×2 matrix V |
|-----|-----------|--------------|------------|-----------------|--------------|------------------|
|-----|-----------|--------------|------------|-----------------|--------------|------------------|

Answer [1]

(b) 
$$C = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}$$
. Evaluate  $P = VC$ .

Answer [1]

(c) State what the elements of P represent.

Answer

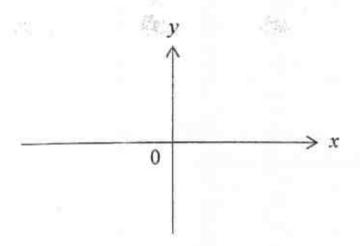
[1]

(d) Write down a matrix D such that T = DP gives you the total charges collected for all vehicles on these three days.

Answer

[1]

Anglo-Chinese School (Backer Road)


For Examiner's Use

**19** (a) Express  $x^2 - \frac{1}{4}x$  in the form  $(x - b)^2 + c$ .

Exeminer > Usz

- Answer [1]
- **(b)** Sketch the graph of  $y = \frac{1}{4}x x^2$ .

Answer



[2]

(c) Find the coordinates of the maximum point of  $y = \frac{1}{4}x - x^2$ 

Answer (.....) [1]

Anglo-Chinese School (Barker Road)

Joe Herinde L His

20

trat 1.xammer s Lise



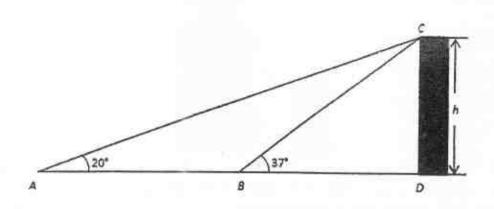
Two bottles of Nescafe Gold Blend Instant Coffee are geometrically similar. The smaller bottle contains 50 g of coffee granules.

(a) The larger bottle is approximately 60% taller than the smaller bottle. Find, in grams, the amount of coffee granules in the larger bottle.

Answer ..... g [2]

(b) The smaller bottle sells for \$5.10 while the larger bottle sells for \$13.25. Which bottle gives the better value for money? You must show your calculations.

Answer


[2]

Anglo-Chinese School (Barker Road)

For Examiner's Use

21

For Examiner's Use



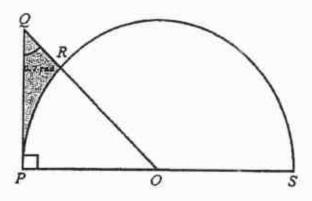
Joseph walks from point A to point B, which are 400 m apart. A vertical tower of h metres is at point D.

At point A, the angle of elevation to the top of the tower is 20°. At point B, the angle of elevation to the top of the tower is 37°.

(a) Find AC.

Answer 
$$AC =$$
 [3]

(b) Find h, the height of the tower.


Answer h = [2]

Anglo-Chinese School (Barker Road)

For Lor

The diagram shows a semi-circle with centre O and radius 8 cm. OP is perpendicular to PQ and angle PQR = 0.7 radians.

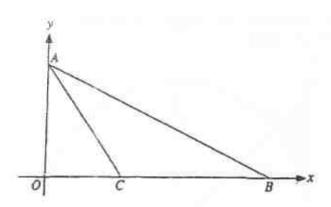




(a) Find the area of the shaded region.

Convert 0.7 radians into degrees.

Inswer cm<sup>2</sup> [4


Answer ...... [1]

Examiner's Use

Anglo-Chinese School (Barker Road)

For Examiner's Use

23



A is the point (0,6) and the gradient of line AB is  $-\frac{1}{4}$ . C is the point

(a) Find the equation of line AB.

Answer

[1]

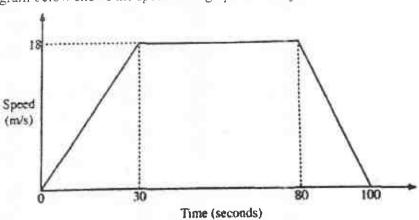
Find the coordinates of B.

Answer (.....)

(c) Find the length of AB.

Answer ..... units [1]

Point D lies on the x-axis and is such that DC = CB. Write down the equation of the line that passes through D and is parallel to the y-axis.

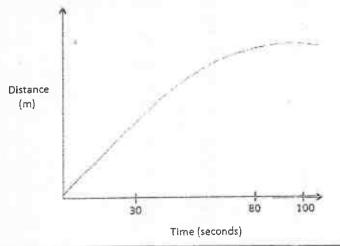

Examiner's Use

## Free Tuition Listing @ 99Tutors.SG

Anglo-Chinese School (Barker Road)

For Examiner's Use

24 The diagram below shows the speed-time graph of an object.




(a) Calculate the speed of the object at 18 seconds. Give your answer in km/h.

Answer ..... km/h [2]

(b) Calculate the total distance travelled on the journey.

(c) Draw the distance-time graph of the object on the grid given below. You must label the values on the distance-axis clearly.



End of Paper

[2]



# Anglo-Chinese School (Barker Road)

#### PRELIMINARY EXAMINATION 2017

## SECONDARY FOUR EXPRESS / FIVE NORMAL ACADEMIC

## MATHEMATICS 4048 PAPER TWO

#### 2 HOURS 30 MINS

Additional Materials: Answer Paper (7 sheets)

Graph Paper (1 sheet)

#### READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your class and candidate number on the cover sheet. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

ential working will result in loss of marks.

uld be used where appropriate.

accuracy is not specified in the question, and if the answer is not exact, give the answer to figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either the calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total of the marks for this paper is 100.

This paper consists of 11 printed pages inclusive of this page.

[Turn over

Anglo-Chinese School (Barker Road)

1 The first three terms in a sequence of numbers,  $T_1, T_2, T_3, ...$  are given below.

$$T_1 = 1 \times 2 + 10 = 12$$

$$T_2 = 2 \times 3 + 6 = 12$$

$$T_2 = 2 \times 3 + 6 = 12$$
  
 $T_3 = 3 \times 4 + 2 = 14$ 

(a) Find  $T_4$ .

[1]

Show that  $T_n = n^2 - 3n + 14$ .

[2]

Evaluate  $T_{50}$ . (c)

[1]

Explain why every term in the sequence is even.

[2]

- 2 (a) It is given that  $v^2 = u^2 2gh$ .
  - (i)

Evaluate v when u = 30, g = 9.8 and h = 24.

[2]

(ii) Express u in terms of g, h and v.

[2]

(b) Factorise  $(x+1)^2 - (y-1)^2$ .

[2]

Simplify  $\frac{x^2-1}{8-3x-5x^2}$ . (c)

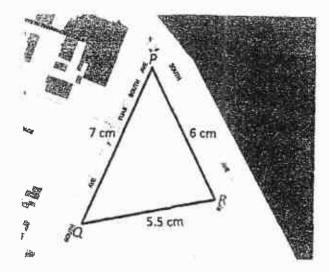
[3]

Solve the simultaneous equations.

[3]

$$1\frac{1}{2}x - 3y = 12$$

$$4y = 3x - 19$$

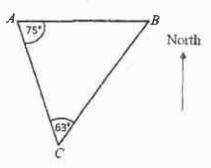

3

Aughi-Chinese School (Barker Road)

- 3 (a) The scale of a map is 1:7500.
  - (i) The length of a road on the map is 20.5 cm. Find the actual length, in kilometres, of the road.

[1]

(ii)




On the map, an area formed by a triangle PQR with sides 5.5 cm, 6 cm and 7 cm, is slated for commercial development.

Calculate, in square metres, the actual area.

[5]

(b)



In the diagram, AB is the shoreline. B is due east of A. A boat is at C.

 $C = 75^{\circ}$ , angle  $ACB = 63^{\circ}$  and AB = 35 m.

...d the bearing of B from C.

[2]

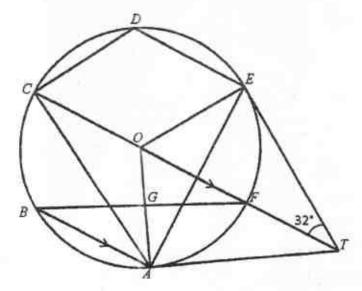
- (ii) The area of triangle ABC is 444 m<sup>2</sup>. Calculate the shortest distance from the boat to the shore.
- [1]
- (iii) A turtle is crawling along the shoreline. An eagle is at a vertical height of 40 m above C. It notices the turtle.
  - Calculate the greatest angle of depression of the turtle as seen from the eagle.

4

[2]

Preliminary Examination 2017

Secondary 4 Express Mathematics 4048 Paper 2


Anglo-Chinese School (Barker Road)

In the diagram, O is the centre of the circle.

TA and TE are tangents to the circle. OA and OE are radii of the circle. COT is a straight line.

OA intersects BF at G. CT is parallel to BA.

Angle OTE = 32°.



- (a) Find
  - (i) angle AOF,

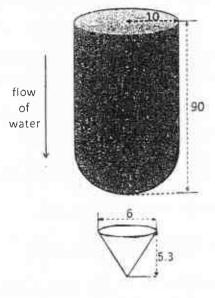
[2]

(ii) angle CDE,

[2]

(iii) angle OFG,

[2]


(iv) angle AGB.

- [1]
- (b) Explain why points OETA can also be points on the circumference of another circle.
- [1]

Ingle of Power School Photis Really

5 The diagram shows a water dispenser that is made up of a cylinder and a nemisphere hear of runtus 10 cm. The height of the dispenser is 90 cm.

Conical cups of digmeter 6 cm and height 5.3 cm are provided to drink the water from the container



(a) Water is filled to the brim of the dispenser. Find the amount of water in the dispenser.

121

(b) Find the capacity of one conical cup. Give your answer to the nearest cm<sup>3</sup>.

[2]

(c) Find the external curved surface area of the cup.

- [2]
- (d) Find the height of the water remaining in the dispenser after 250 cups of water has been dispensed.

Anglo-Chinese School (Barker Road)

- A container can hold 2400 litres of water.
  - (a) A large tap alone can fill the container in x hours. Write down an expression, in terms of x, for the amount of water that the large tap can dispense per minute. [1]
  - (b) A small tap alone will take 1 hour longer than the large tap to fill the container. Write down an expression, in terms of x, for the amount of water that the small tap can dispense per minute. [1]
  - When both taps are turned on at the same time, they can fill the container in 3 hours. Form an equation in x and shows that it reduces to  $x^2 - 5x - 3 = 0$ . [3]
  - Solve the equation  $x^2 5x 3 = 0$ , giving your solutions correct to 2 decimal places. [4]
  - Find the rate of water flow, in litres per minute, of the small tap. [2]

## Answer the whole of this question on a single sheet of graph paper.

A stone is thrown from the top of a cliff next to the sea. The height, h metres, of the stone above sea level t seconds after it is released can be modelled by the equation

$$h = 40 + 8t - \frac{5}{2}t^2$$

Some corresponding values of t and h, correct to 1 decimal place, are given in the table below.

| t | 0  | 1    | 2  | 3    | 4  | 5    | 6  |
|---|----|------|----|------|----|------|----|
| h | 40 | 45 5 | 46 | 41.5 | 32 | 17.5 | _p |

Calculate the value of p.

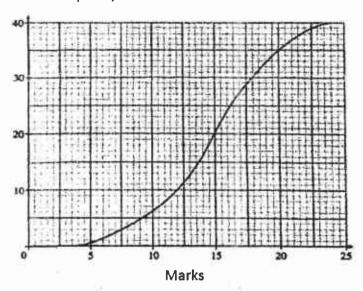
[1]

(b) Using a scale of 2 cm to represent 1 second, draw a horizontal t-axis for  $0 \le t \le 6$ . Using a scale of 1 cm to represent 5 metres, draw a vertical h-axis for  $-10 \le h \le 50$ . On your axes, plot the points given in the table and join them with a smooth curve.

raph to estimate

- (i) the maximum height of the stone above sea level.
- the length of time that the stone was greater than or equal to 5 m above the top of the (ii) cliff. [2]
- (iii) the time taken for the stone to hit the water. [1]
- (d) By drawing a tangent, find the gradient of the curve at t = 4. [2]

Preliminary Examination 2017


Secondary 4 Express Mathematics 4048 Paper 2 [3]

Anglo-Chinese School (Barker Road)

8 (a) The marks attained by 40 students in a Mathematics test were recorded.

The cumulative frequency curve shows the distribution of the marks.

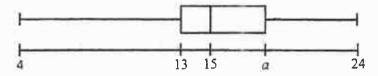
## **Cumulative Frequency**



(i) Use the curve to estimate the

(a) the median mark,

[1]


(b) the interquartile range.

[2]

(ii) 12.5% of students achieved more than x marks in this test. Estimate the value of x.

[1]

(iii) The same group of students sat for a Chemistry test. The maximum mark for the test was also 25. The box-and-whisker plot of the distribution of the marks is shown below.



The top 25% of the students for the Chemistry test scored lower than the top 25% in the Mathematics test. Write down the possible range of marks that a can take.

(iv) Describe how the cumulative frequency curve for the marks attained in the Chemistry test may differ from the curve for the Mathematics test.

[1]

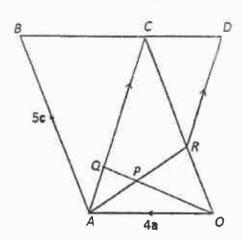
[1]

[1]

## Free Tuition Listing @ 99Tutors.SG

Anglo-Chinese School (Barker Road)

(b) The weight of 8 students, in kilograms, are listed below:


25, 27, 32, 28, 28, 31, 26, 45

- (i) Find the mean weight.
- (ii) Explain why the mean may not be an appropriate average to use to summarise the weights of the students.
- (iii) Find the standard deviation of the weights. [1]
- (iv) Subsequently, it was discovered that the weight of every student was 2 kg less than the actual, due to a faulty weighing scale.
   Write down the correct mean and standard deviation of the weights.

Preliminary Examination 2017

Secondary 4 Express Mathematics 4048 Paper 2

Anglo-Chinese School (Barker Road)



In the diagram, OA is parallel to DB, AC is parallel to RD and OABC is a parallelogram.

 $\overrightarrow{OA} = 4a$  and  $\overrightarrow{AB} = 5c$  respectively. It is given that OR : RC = 2 : 3 and  $\overrightarrow{AQ} = \frac{1}{3}\overrightarrow{QC}$ .

(a) Find, in terms of a and c, the vectors

(i) 
$$\overrightarrow{OR}$$
,

[1]

(ii) 
$$\overline{AR}$$

[1]

(iii) 
$$\overline{OQ}$$

[2]

(b) P is a point on OQ such that OP: PQ = 8:3.

(i) Express 
$$\overrightarrow{AP}$$
 in terms of a and c.

[2]

(ii) Hence write down two facts about 
$$A$$
,  $P$  and  $R$ .

[2]

[1]

(d) Prove that 
$$\triangle RCD$$
 is similar to  $\triangle COA$ .

[2]

(e) Find

(i) Area of 
$$\triangle RCD$$
Area of  $\triangle COA$ 

[1]

(ii) Area of 
$$\triangle OQA$$
  
Area of  $\triangle OCA$ 

[1]

Anglo-Chinese School (Barker Road)

- 10 James has gotten a job that pays him a salary of \$60 000 annually. He plans to purchase a car but calculates that he can only afford to set aside 30% of his monthly salary for the expenses incurred in owning the car.
  - (a) Calculate the sum of money that James can afford to set aside monthly for the expenses incurred in owning the car. [1]

He has set his eyes on two cars. He decides to take a loan from a bank for the purchase. He will repay the loan on a monthly basis. The details are given below:

|                      | Brand A (used car)                                    | Brand B (new car)              |
|----------------------|-------------------------------------------------------|--------------------------------|
| Engine capacity      | 1600 cc                                               | 1400 cc                        |
| Cost                 | \$80 000                                              | \$90 000                       |
| Intended loan amount | 50% of cost price                                     | 60% of cost price              |
| Intended loan period | 5 years                                               | 5 years                        |
| Type of interest     | compound interest at 2.5% per year, compounded yearly | simple interest at 3% per year |

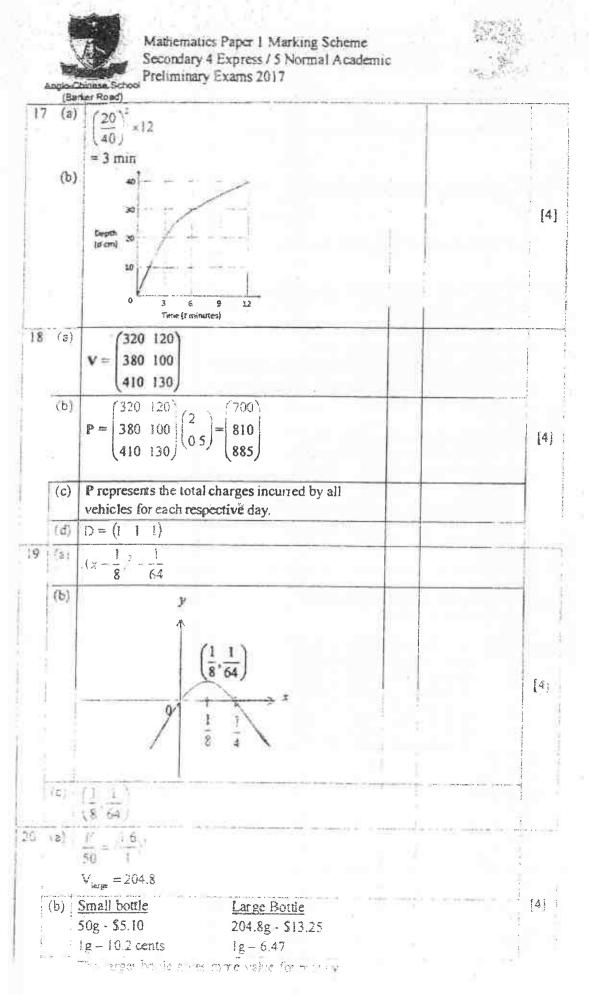
The other major expenses in maintaining a car are as follows:

|                              | Brand A (used car) | Brand B (new car) |
|------------------------------|--------------------|-------------------|
| Monthly parking fees         | \$90               | \$90              |
| Monthly petrol expenditure   | \$300              | \$250             |
| Annual road tax              | \$744              | \$626             |
| Annual insurance             | \$800              | \$700             |
| Car servicing (twice a year) | \$600 each round   | \$500 each round  |

(b) Recommend the brand of car that James can purchase, based on the sum of money he can afford to set aside monthly. Justify the decision you make and show your calculations clearly.

**End of Paper** 




Mathematics Paper 1 Marking Scheme Secondary 4 Express / 5 Normal Academic Preliminary Exams 2017

| (Ba   | orker Road)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |     | - |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|-----|---|
| Qn    | Steps/Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |   |     |   |
| 1     | $\sqrt{0.81}$ 0.902 $0.86^{\frac{2}{3}}$ $\frac{399}{441}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ĺ   |   |     |   |
| 2     | $(256 \times 10^{9}) \div (2.5 \times 10^{6})$<br>= 1.024 × 10 <sup>5</sup> (exact answer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |   |     |   |
| (4)   | 4c(3a+7b)-2d(3a+7b) = $(4c-2d)(3a+7b)$ or equivalent<br>= $2(2c-d)(3a+7b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I I |   |     |   |
| 4     | $\frac{1}{9} = $20$ Total sum = \$180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |     |   |
| 5     | $= \frac{7x}{(x-5)^2} - \frac{1}{x-5}$ $= \frac{7x - (x-5)}{(x-5)^2}$ $= \frac{6x+5}{(x-5)^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |   |     |   |
| 5     | $-8 \le 2-3x$ and $2-3x < 8$<br>$-2 < x \le 3\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |   |     |   |
| 7     | 12 cooks – 6 hours – 180 people<br>8 cooks – 9 hours – 180 people<br>8 cooks – 7.5 hours – 150 people<br>Ans: 7.5 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |     |   |
| 8     | Different scale used for the vender axis may mislead one to think that more people prefer Brand Y to Brand X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |     |   |
| (a)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |     |   |
| (b)   | 25711 (7) 6 5 12) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |     |   |
| Ġ.    | $= \left(\frac{x_0}{x_0}\right)^2 \times \left(\frac{x_0}{x_0}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   | 134 |   |
|       | $= \frac{y}{y^{2}} * \frac{x}{y^{2}}$ $= \frac{x^{2}}{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y   |   |     |   |
| 1 (a) | \$6950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   |     |   |
|       | The state of the s |     | 1 |     |   |
| (b)   | \$6850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   |     |   |



Mathematics Paper 1 Marking Scheme Secondary 4 Express / 5 Normal Academic Preliminary Exams 2017

| (Berl      | ter Road)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                   | 30. 2         | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|-------|--|--|--|--|
| Qn         | Steps/Ans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
| 12 (a)     | Cost price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of w                                     | atch f            | or Ju         | nmy     | $=\frac{80}{100} \times 210$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |       |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                   |               |         | = \$168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |  |       |  |  |  |  |
|            | Drive that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | limm                                     | ev sho            | aid s         | ell at  | $=\frac{120}{100} \times $168$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y I          |  |       |  |  |  |  |
|            | FINCE MAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 11 11 11 11 11 11 11 11 11 11 11 11 11 | iy ano            | 6161 3        |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            |  | 1     |  |  |  |  |
|            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                   |               |         | = \$201.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            |  |       |  |  |  |  |
|            | Marked p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rice =                                   | $=\frac{100}{90}$ | ×\$2(         | 01.60   | = \$224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |  |       |  |  |  |  |
| 13         | angle $FDB$ = angle $CBD$ = 56° (alternate angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|            | BC paralle angle ABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                   | CR.R.L        | E 6 1 . | _ Q∩¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |  |       |  |  |  |  |
|            | angle FAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /= <u>i</u><br>}+ ai                     | nole /            | 1 <i>BD</i> = | = 18:   | - 00<br>[*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |       |  |  |  |  |
|            | By the pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mert                                     | y tha             | t inte        | rior    | angles of parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |       |  |  |  |  |
|            | lines are s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uppl                                     | emet              | tary.         | AFi     | s not parallel to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |  | ĺ     |  |  |  |  |
| was access | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                   | _             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  | 2/.52 |  |  |  |  |
| [4 (a)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                        |                   | 700V          | or th   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + +          |  |       |  |  |  |  |
| (p)        | If the 3 polangle IKB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                   | 1             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|            | = 108° ÷ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08°+                                     | · 120°            | -             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1          |  |       |  |  |  |  |
|            | = 336°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|            | By the property that angles at a point add up to 360°, at least one of the polygons must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|            | irregular.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ast o                                    | ne or             | the p         | OOIAE   | ons must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |       |  |  |  |  |
| 15 (a)     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
| (b)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                        |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
| (c)        | LCM of 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, 90                                    | and 2             |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
| (4)        | Next flash at 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
| 16 (a)     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                        | 6                 | 7             | 8       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Systematics. |  |       |  |  |  |  |
|            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                        | 11                | 12            | 13      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  | 1     |  |  |  |  |
|            | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                       | -                 | 13            |         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |       |  |  |  |  |
|            | The second secon | 12                                       | 13                | 15            | 15      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |       |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                       | 15                | 16            | 17      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |  |       |  |  |  |  |
| (b)        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-1                                      |                   |               | -       | COMPANY TO STATE OF THE STATE O |              |  |       |  |  |  |  |
| 57.6       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
| (e)        | 3 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|            | 5 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |       |  |  |  |  |
|            | _ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7, 1         |  |       |  |  |  |  |
|            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                   |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | لحدا         |  |       |  |  |  |  |





Mathematics Paper 1 Marking Scheme Secondary 4 Express / 5 Normal Academic Preliminary Exams 2017

Angio-Chinese School (Barker Road)

|   | 21 | (a) angle $ACB = 37 - 20 = 17^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i |    | AC 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ı |    | sin143 sin17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 |    | AC = 823 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 |    | The state of the s |

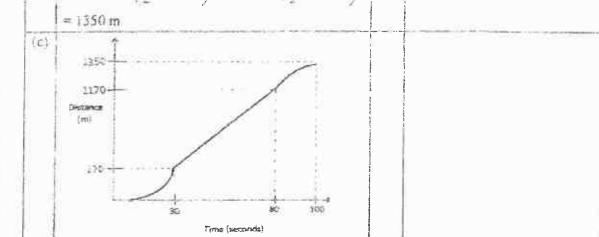
(b) 
$$h = \sin 20 \times 823 \ 356$$
  
= 282 m

$$QP = \frac{8}{\tan 0.7 rad} = 9.4979$$
Area of triangle  $OPQ = \frac{1}{2}(8)(9.4979) = 37.992$ 
Area of sector  $= \frac{1}{2}(8^2)(0.87079 rad) = 27.865$ 

Area of shaded region = 10.1 cm<sup>2</sup>

(b) 40.1°

$$4y = -x + 24$$


(b) 
$$x = 24$$
 (24,0)

(c) i 24.7 units

| - December 1 |          | men or the |       |             |    |    | 55 |
|--------------|----------|------------|-------|-------------|----|----|----|
| (d)          | Identify | that L     | ) has | coordinates | Ć- | 12 | 0) |

Speed = 
$$\frac{18}{30} \times 18$$
  
= 10.8 m/s  
= 38.88 km/h

Distance = 
$$- \times 30 \times 18$$
  $+ (50 \times 18) - - \times 20 \times 18$ 





## Mathematics Paper 2 Marking Scheme Secondary 4 Express / 5 Normal Academic Preliminary Exam 2017



| Qn |       | Steps/Answer                                                                                                                                                                                       |   |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| F  | (a)   | T <sub>4</sub> = 18                                                                                                                                                                                |   |
|    | (b)   | $T_n = n(n+1) + 10 - 4(n-1)$                                                                                                                                                                       |   |
|    | ĺ     | $= n^2 + n + 10 - 4n + 4$                                                                                                                                                                          |   |
|    |       | $=n^2-3n+14$                                                                                                                                                                                       |   |
|    | (c)   | $T_{50} = 2364$                                                                                                                                                                                    |   |
|    | (d)   | $n^2 - 3n + 14 = m(n-3) + 14$                                                                                                                                                                      |   |
|    |       | When n is even $n(n-3)$ is (even x odd) = even.<br>When n is odd, $n(n-3)$ is (odd x even) = even.<br>Adding to 14 which is also even.<br>$T_n = n^2 - 3n + 14$ will always be even for all terms. |   |
|    | (31)  | $v^2 = 30^2 - 2(9.8)(24)$ $v = \pm 20.7$                                                                                                                                                           |   |
|    | (aii) | $v^{2} = u^{2} - 2gh$ $u^{2} = v^{2} + 2gh$ $u = \pm \sqrt{v^{2} + 2gh}$                                                                                                                           |   |
|    | (b)   | [(x+1)+(y-1)][(x+1)-(y-1)]<br>= (x+y)(x-y+2)                                                                                                                                                       |   |
|    | (¢)   | $\frac{(x+1)(x-1)}{(1-x)(8+5x)}$                                                                                                                                                                   |   |
|    |       | $= \frac{(x+1)(x-1)}{-(x-1)(5x+8)}  \text{or}  \frac{-(1-x)(x+1)}{(1-x)(5x+8)}$                                                                                                                    | - |
|    |       | $= -\frac{(x+1)}{(5x+8)}$ or equivalent                                                                                                                                                            |   |
|    | (d)   | By substitution or elimination method $x = 3$ , $y = -2.5$                                                                                                                                         |   |



| F             | Mathematics Paper 2 Marking Scheme      |  |
|---------------|-----------------------------------------|--|
|               | Secondary 4 Express / 5 Normal Academic |  |
| Hard Street   | Preliminary Fram 2017                   |  |
| Ainese Scroot |                                         |  |

|   | (Barke | r Roed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (21)   | 1.5375 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (atti) | Conversion from cm to m or cm2 to m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | Using cosine rule,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Į.     | $412.5^2 = 525^2 + 450^2 - 2(525)(450)\cos(angleBAC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1      | $\cos(angle EAC) = \sqrt{\frac{-307968.75}{-472500}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | angleBAC = 49 324"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | Area of triangle = $\frac{1}{2}$ (525)(450)sin 49.324°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | $= 89 600 \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (bi)   | Bearing of C from $B = 63-(90-75)=048^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (bii)  | 446 x 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1000   | Shortest distance = $\frac{444 \times 2}{24}$ = 25.4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (biii) | 7 7 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second s |
|   | Com    | Angle of depression = $\tan^{-1} \left( \frac{40}{25.371} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1      | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _ | L      | =57.6°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | (21)   | angle $OTA$ = angle $OTE$ = 32°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | (the line joining an external point to the centre of the circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |        | bisects the angle between the tangents)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1      | angle $TAO = 90^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | (tangent perpendicular to radius)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | angle $AOF = (180 - 90 - 32)^\circ = 58^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | (angles sum of triangle AOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (aii)  | angle $AOE = 58 \times 2 = 116^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | angle AOC = 180 - 58 = 122 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | angle $CDE = \frac{1}{2}(58 \times 2 + 122^{\circ}) = 119^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (ami)  | angle $G8A = \frac{1}{2}(58^{\circ}) = 29^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | aligie $SDA = \frac{1}{2}(36) = 23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | (angle at centre is twice angle at circumference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | i .    | angle $OFG = angle GBA = 29^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |        | (alternate angles, OF parallel to BA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (aiv)  | angle $OGF = (180 - 29 - 58)^{\circ} = 93^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | angle AG8 = 93° (vertically opposite angles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (b)    | By the property of 'right-angle in a semi-circle', OT is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | diameter and points $E$ and $A$ will lie on the circumference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | OETA are thus four points on the circumference of this circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | Or calculate using 'angles in opposite segments are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | supplementary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (3)    | A STANDARD OF THE STANDARD OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | volume of water = $\pi(10^{2})(80) + (\frac{2}{3})(\pi)(10^{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        | 2 10 W 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# Mathematics Paper 2 Marking Scheme Secondary 4 Express / 5 Normal Academic Angle Onness School Preliminary Exam 2017

(Barker Road)

(b) Capacity of one conical cup =  $(\frac{1}{3})(\pi)(3^2)(5.3)$  $= 50 \text{ cm}^3$ 

(c) Slant height of cup = 
$$\sqrt{3^2 + 5.3^2}$$
  
= 6.0902  
Curved surface area of cup =  $\pi(3)(6.0902)$   
= 57.4 cm<sup>2</sup>

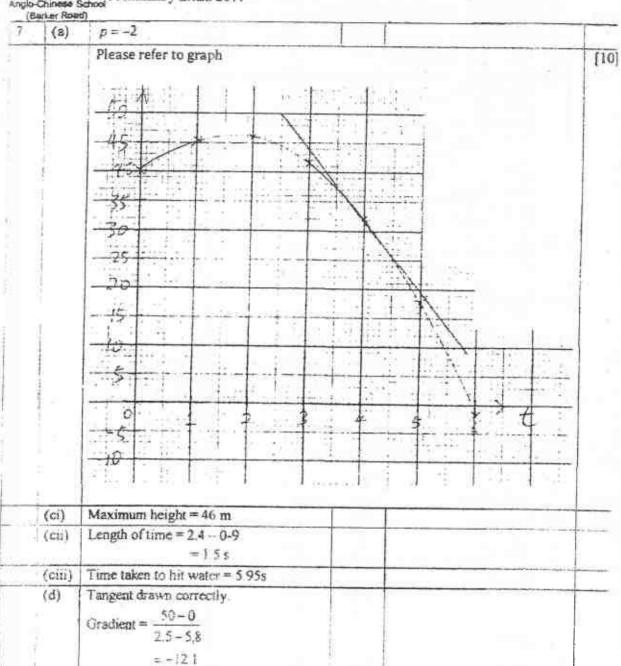
(d) Volume of water remaining after dispensing 250 cups
$$= 8666 \frac{2}{3} \pi - (250 \times \frac{1}{3} \pi (3^2)(5\ 3)$$

$$= 4619 \frac{2}{3} \pi$$

Volume of water in cylinder =  $4619 \frac{2}{3} \pi - \frac{2}{3} \pi (10^3) = 4025 \pi$ 

Height of water in cylindrical section =  $\frac{4025\pi}{\pi(10^2)}$  = 40.25

Height of water remaining in dispenser


=40.25+10

= 50.25 cm



| (Barke | er Road)                                                         | <br>      |
|--------|------------------------------------------------------------------|-----------|
| 6 (a   | $\frac{40}{x}$ litres/minute                                     | 9         |
| (b     | $\frac{40}{x+1}$ litres/mmute                                    |           |
|        | $180\left(\frac{40}{x+1} + \frac{40}{x}\right) = 2400$           |           |
| (c     | 3[40x + 40(x + 1)] = 40x(x + 1)                                  |           |
|        | $40x^{2} - 200x - 120 = 0$ $x^{2} - 5x - 3 = 0 \text{ (shown)}$  | Free Park |
| (d)    | $x = \frac{5 \pm \sqrt{(-5)^3 - 4(1)(-3)}}{2(1)}$                | 1         |
| (4)    | $x = \frac{5 \pm \sqrt{37}}{2}$ $x = 5.54 \text{ or } x = -0.54$ |           |
|        | Rate of water flow for small tap 40                              |           |
| (e)    | 5.541+1                                                          | ķ.        |
|        | = 6.11 litres per minute                                         |           |









| (aia)  | 15 marks                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|--------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (aib)  | 18 - 12<br>= 6 marks                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (aii)  | 20 marks                                                                                | And it will write the second of mining and second processing and second processing and the secon |   |
| (aiii) | 15 ≤ a < 18                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
| (aiv)  | The curve will be steeper before the median mark of 15 and less steep after the median. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (bi)   | 30.25 kg                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (bii)  | There is an outlier 45 kg which would cause the mean to be skewed                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (biii) | Standard deviation = 5.99                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
| (biv)  | Correct mean = 32.25 kg Standard deviation remains the same                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |



| Ganter<br>(Santer | ese School Production by Exam 2017 Road                                                                                                                                                |                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| (ai)              |                                                                                                                                                                                        |                                             |
| (ati              | = 2c - 4a                                                                                                                                                                              |                                             |
| (aii              | $= 4a + \frac{1}{4}(5c - 4a)$ $= 3a + \frac{5}{4}c$                                                                                                                                    |                                             |
| (bi)              | $\overline{AP} = \overline{AO} + \overline{OP}$ $= AO + \frac{8}{11} \overline{OQ}$ $= -4a + \frac{8}{11} (3a + \frac{5}{4}c)$ $= -\frac{20}{11} a + \frac{10}{11}c$                   | £ 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. |
| (bii)             | $AP = \frac{5}{11}AR$ As point A is common, A, P and R are collinear (i.e. lie on the same straight line).                                                                             |                                             |
| (c)               | unangle ABC is congruent to triangle COA                                                                                                                                               | =                                           |
| (đ)               | $\angle DCR = \angle AOC$ (sit. $\angle s$ , $DC IIOA$ )<br>$\angle DRC = \angle ACO$ (sit. $\angle s$ , $DR II CA$ )<br>$\triangle RCD$ is similar to $\triangle COA$ . (AA property) |                                             |
| ( <u>e</u>        | Area of $\triangle COA = \frac{RC}{CC}$ $= \frac{9}{2}$                                                                                                                                |                                             |
| (eii)             | Area of $\triangle OQA$ Area of $\triangle OCA$                                                                                                                                        |                                             |
| 10                | C) * (80                                                                                                                                                                               | +                                           |



# Mathematics Paper 2 Marking Scheme Secondary 4 Express / 5 Normal Academic Preliminary Exam 2017



(b)

| (Del |                                          |                                |                                            |     |
|------|------------------------------------------|--------------------------------|--------------------------------------------|-----|
| Ī    |                                          |                                |                                            |     |
|      |                                          | Brand A                        |                                            |     |
|      | loan                                     | 40000                          | SO% of cost                                | [8] |
|      |                                          | $40000(1+\frac{2.5}{100})^{5}$ |                                            |     |
| 3    | Compound amount                          |                                |                                            |     |
| 1    | total loan amount                        | = \$45256.33                   | Divide by 60 months                        |     |
|      | monthly instalment                       | \$754.2721419                  | Divide by boilloung                        |     |
|      | Monthly cost of road                     |                                |                                            |     |
|      | tax + insurance +                        | (744+859+1700)                 |                                            |     |
| 1    | Servicing                                | =228.67                        |                                            |     |
|      | Total monthly cost of                    | 300+90+228 67                  | Adding on monthly perrol                   |     |
|      | maintenance                              | -618.67                        | and parking costs                          |     |
|      | monthly installment +                    | 1372.94                        |                                            |     |
|      | cost of maintenance                      | 2012.37                        |                                            |     |
|      |                                          |                                |                                            |     |
|      |                                          |                                |                                            | 9 1 |
|      |                                          | Brand B                        | com for a                                  |     |
|      | loan                                     | 54000                          | 60% of cost                                |     |
|      | Simple interest                          | 8100                           |                                            |     |
| 1    | total loan amount                        | 62100                          |                                            |     |
|      | monthly instalment                       | 1035                           | Divide by 60 months                        |     |
|      |                                          |                                |                                            |     |
| ŀ    | road tax (r)                             | 626                            |                                            |     |
|      | Insurance (i)                            | 700                            |                                            |     |
|      | Servicing (s)                            | 1000                           |                                            |     |
| 1    |                                          | 626 + 700 + 1000               |                                            |     |
|      | Monthly cost of road ta                  | 12                             |                                            |     |
|      | + Insurance + Servicing                  | =193.83                        |                                            |     |
|      |                                          | 250 + 90 + 193.83              | Adding on monthly petrol and parking costs |     |
|      |                                          | 12                             |                                            |     |
|      | Total monthly cost of                    | \$533.83                       |                                            |     |
|      | maintenance<br>monthly installment + cos | W = ···                        |                                            |     |
|      | of maintenance                           | 1568.83                        |                                            |     |
|      |                                          |                                |                                            |     |

James can afford Brand A as it is within the sum of money that he can set aside monthly

Name : Register No. Class

Bendemer Securities Seleval Rendemer Securities School Bendemer Securities School Bendemer Securities School Bendemer Securities School Bendemer Securities Secondary School Bendemest Secondary School Bendemeer Se ER SECONDARY SCHOOL Bendemeer S School Bendemeer Secondary School Bendemeer MINARYOOF TO WO SEXAMINACT ON School Bendemer Secondary School Bendemeer School Bendemeer Secondary School Bendemeer Bendemeer Bendemeer pol Bender va Secoldary School Bendemeer Productive School Bendemeer Secondary School Bendemeer Bendemeer Bendemeer ! hool Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School hool Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Seco Bendemeer Secondary School Bendemeer Secondary S Bendemeer Secondary School Bendemeer Secondary S

DATE

22 August 2017

DURATION

2 hours

TOTAL

80 Marks

#### READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a 2B pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

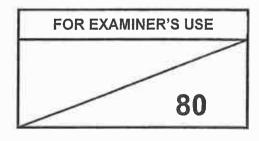
Answer all questions.

Write your answers in the spaces provided on the question paper.

All the diagrams in this paper are **not** drawn to scale.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.


The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.



This document consists of 19 printed pages including this cover page.

[Turn over

2

#### MATHEMATICAL FORMULAE

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of cone =  $\pi rl$ 

Surface area of a sphere =  $4 \pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle ABC = 
$$\frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation = 
$$\sqrt{\frac{\sum f \hat{x}^2}{\sum f} - \left(\frac{\sum f \hat{x}}{\sum f}\right)^2}$$

3

| For        |   |
|------------|---|
| Examiner ' | s |
|            |   |

| I | <ul> <li>(a) By rounding each number to its nearest ten, calculate           <sup>216.1+1083.7</sup>         14.99     </li> <li>(b) Write your answer to part (a) correct to 1 significant figure.</li> </ul> | For<br>Examin<br>use |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|   | Answer (a)[1] (b)[1]                                                                                                                                                                                           |                      |
| 6 | If the length of a rectangle is 340mm and width is 200mm, both are corrected to the nearest 10mm, calculate the  (a) maximum possible area of this rectangle in cm <sup>2</sup> ,                              |                      |
|   | (b) lowest possible value of the ratio $\frac{width}{length}$ .                                                                                                                                                |                      |
|   |                                                                                                                                                                                                                |                      |
|   |                                                                                                                                                                                                                |                      |
|   |                                                                                                                                                                                                                |                      |
|   |                                                                                                                                                                                                                |                      |
|   | Answer (a)[2]                                                                                                                                                                                                  |                      |
|   | (Б)[1]                                                                                                                                                                                                         |                      |

4

| 3 James w<br>weight.<br>weight? | as 82kg and 15% above his ideal we <b>ight. He</b> of How many percent of his current weight must | exercised and lost<br>James lose in orde | 6% of his initial<br>er to reach his ideal |
|---------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|
|                                 | 40                                                                                                |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 | Answe                                                                                             | r                                        | [3]                                        |
| 4 (a) Solv<br>(b) Fact          | e $4a(a-3) = 2 - (20 - 6a)$ .<br>orise $x^2y^2 + 36 - 4x^2 - 9y^2$ completely.                    | , II                                     |                                            |
|                                 |                                                                                                   | . (1)                                    | 4.0                                        |
|                                 |                                                                                                   |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 | A.                                                                                                |                                          |                                            |
|                                 | \                                                                                                 |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 |                                                                                                   |                                          |                                            |
|                                 | 2                                                                                                 |                                          |                                            |
|                                 | Answer (                                                                                          | a)                                       | [2]                                        |
|                                 |                                                                                                   | ъ)                                       | [3]                                        |
|                                 |                                                                                                   |                                          |                                            |

5

| what day and time, in 24 hour format, does the flight reach London?  Answerhours on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 | A flight leaving Singapore to London takes about 13 hours and 15 minutes. If the departure time on a Tuesday from Singapore is 1310 hours and Singapore is 7 hours ahead of London, |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | what day and time, in 24 hour format, does the flight reach London?                                                                                                                 |
| 6 In △DEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In $\triangle DEF$ , $DF = 10cm$ , $EF = 12cm$ and $\angle EDF = 39^\circ$ .  (a) Find $\angle DEF$ .  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) $\angle DEF$ .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                     |
| 6 In $\triangle DEF$ , $DF = 10cm$ , $EF = 12cm$ and $\angle EDF = 39^\circ$ .  (a) Find $\angle DEF$ .  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) $\angle DEF$ .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                     |
| 6 In $\triangle DEF$ , $DF = 10cm$ , $EF = 12cm$ and $\angle EDF = 39^\circ$ .  (a) Find $\angle DEF$ .  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) $\angle DEF$ .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                     |
| 6 In $\triangle DEF$ , $DF = 10cm$ , $EF = 12cm$ and $\angle EDF = 39^\circ$ .  (a) Find $\angle DEF$ .  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) $\angle DEF$ .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                     |
| 6 In $\triangle DEF$ , $DF = 10cm$ , $EF = 12cm$ and $\angle EDF = 39^\circ$ .  (a) Find $\angle DEF$ .  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) $\angle DEF$ .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                     |
| 6 In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.  (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF.=°,° [2.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | [2]                                                                                                                                                                                 |
| <ul> <li>In ΔDEF, DF = 10cm, EF = 12cm and ∠EDF = 39°.</li> <li>(a) Find ∠DEF.</li> <li>(b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.</li> </ul> Answer (a) ∠DEF. =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Answernours on[2]                                                                                                                                                                   |
| (a) Find ∠DEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF. =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                     |
| (b) Which is the acceptable answer to part (a)? Explain why the other answer is not applicable.  Answer (a) ∠DEF. =°,° [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 | In $\triangle DEF$ , $DF = 10cm$ , $EF = 12cm$ and $\angle EDF = 39^{\circ}$ .                                                                                                      |
| Answer (a) ∠DEF.=°,° [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | (a) Find ZDEF.  (b) Which is the acceptable answer to part (a)? Explain why the other answer is not                                                                                 |
| (Б)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | applicable.                                                                                                                                                                         |
| (Б)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                     |
| 100 to 10 |   | Answer (a) ZDEF. =, ,                                                                                                                                                               |
| 100 to 10 |   | (b)                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | AND STATE CONTRACTOR                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | [2]                                                                                                                                                                                 |

6

|   |            | $a^2$            | $b^2$            | es. |    | 1012 |       | V.00 VC |
|---|------------|------------------|------------------|-----|----|------|-------|---------|
| 7 | Given that | $\overline{c^2}$ | $\overline{d^2}$ | =   | 1, | make | b the | subject |

Answer ...... [2

- 8 (a) Evaluate  $(2^{-1} 5^{-2})$  without using a calculator. Show your working clearly.
  - (b) Simplify  $\frac{\sqrt[3]{b^2 \times b^6}}{b^{\frac{2}{3}} \times b}$ , giving your answer in the form of  $b^n$ .

Answer (a) ......[2]

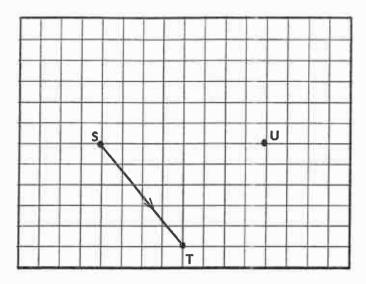
(b) ......[2]

7

| _ |                                                                                                                                                                                                |  |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 9 | than Victor.  (a) Write down the ratio of Siew Teng's age: Victor's age: Mother's age in terms of x.  (b) Ten years from now, their total ages will be 76. How old was Siew Teng's mother five |  |  |  |  |  |  |
|   | years ago?                                                                                                                                                                                     |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                                                                                                                                                                |  |  |  |  |  |  |
|   | Answer (a)[1]                                                                                                                                                                                  |  |  |  |  |  |  |
|   | Alwer (u)[1]                                                                                                                                                                                   |  |  |  |  |  |  |

8

| <b>10</b> In the | ha diaaram           | given that IPAC —                        | ADDA . J.C.I.                           |                                         |
|------------------|----------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|
| AB               | = 6 cm and E         | given that $\angle BAC = A$ . BC = 4 cm. | ∠BDA and C lies on a straig             | ht line BD. It is given tha             |
|                  |                      |                                          | Â                                       |                                         |
|                  |                      |                                          | 1                                       |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      | 8                                        |                                         |                                         |
| (a) Sl           | how that $\Delta AL$ | $BC$ and $\Delta DBA$ are sin            | nilar.                                  |                                         |
| 200              |                      | *************************                |                                         |                                         |
| 7999             |                      | *******************                      | *************************************** |                                         |
| 222              |                      |                                          |                                         |                                         |
|                  |                      | **********************                   |                                         | *************************************** |
| 100              |                      | ********************                     |                                         |                                         |
| 144              |                      |                                          | *************************               | [2]                                     |
| (b) Fin          | nd BD.               |                                          |                                         |                                         |
|                  | 12                   |                                          |                                         |                                         |
|                  | 1                    | 217067                                   |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
| (c) Giv          | en the area o        | of ΔABD is 42 cm <sup>2</sup> , f        | find the shortest distance from         | m D to AB.                              |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          |                                         |                                         |
|                  |                      |                                          | Answer (b)                              | cm [1]                                  |
|                  |                      |                                          | (c)                                     | $cm^2$ [2]                              |
|                  |                      |                                          |                                         |                                         |


9

| 11 The belo                  | ow diagram is part | of a regular decagon. | STATE OF THE PERSON OF THE PER |       |
|------------------------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Find (a) ∠RS (b) ∠RS (c) ∠PS | $\Gamma Q$         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                              |                    | 45                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                              |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                              |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                              |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                              |                    |                       | Answer (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °[1]  |
|                              |                    |                       | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ° [1] |
|                              |                    |                       | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ° [2  |

10

| 12 | fair six-sided dice are thrown. the probability that both dice show different numbers, the sum of the two numbers shown is the sum of the two numbers shown is |                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                |                  |
|    |                                                                                                                                                                | Answer (a)[1]    |
|    |                                                                                                                                                                | (b)[1]<br>(c)[2] |

13 The figure below shows the positions of the points S, T and U.

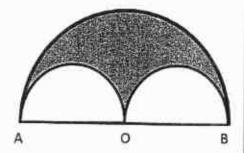


- (a) Express  $\overrightarrow{ST}$  as a column vector.
- (b) V is a point such that STUV is a parallelogram. Draw the parallelogram on the diagram above.
- (c) Find the magnitude of  $|\overrightarrow{ST}|$  and  $|\overrightarrow{TU}|$ .
- (d) Hence, from your answer in part (c), is  $|\overrightarrow{ST}| = |\overrightarrow{TU}|$ ? What is the specific name of the parallelogram?

| Anguar | (a) |         |         |       |         |               |           |         |           | F1 | 1 |
|--------|-----|---------|---------|-------|---------|---------------|-----------|---------|-----------|----|---|
| Answer | (u) | • • • • | • • • • | • • • | • • • • | <br>• • • • • | • • • • • | • • • • | • • • • • | L  | J |

| (d) |  | • • • • • • • • • • • • • • • • • • • • |  | • • • • • • • • • • • • • • • • • • • • |  |
|-----|--|-----------------------------------------|--|-----------------------------------------|--|
|-----|--|-----------------------------------------|--|-----------------------------------------|--|

.....[2]

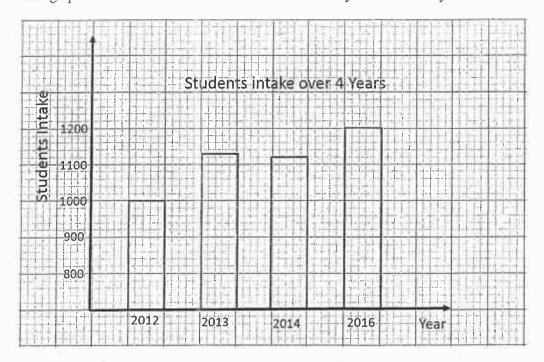

12

| 14 | (a) | Hasan invested part of \$8000 at 2.4% per annum simple interest and the remaining at 1.8% per annum simple interest. He received a total interest of \$348 after two years. How much did he invest at 2.4% per annum simple interest? |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | Amin bought a car at \$70000 and the car depreciated by 25 % at end of first year, 20% at end of second year and 15% at end of third year. What was Amin's car value after 3 years?                                                   |
|    |     |                                                                                                                                                                                                                                       |
|    |     |                                                                                                                                                                                                                                       |
|    |     |                                                                                                                                                                                                                                       |
|    | 256 |                                                                                                                                                                                                                                       |
|    |     |                                                                                                                                                                                                                                       |
|    |     |                                                                                                                                                                                                                                       |
|    |     |                                                                                                                                                                                                                                       |
|    |     |                                                                                                                                                                                                                                       |
|    |     | Answer (a) \$[2] (b) \$[2]                                                                                                                                                                                                            |

13

| The diagram shows 2 small semicircles inside a big semicircle. Given that AB is the diameter                |
|-------------------------------------------------------------------------------------------------------------|
| of the big semicircle with center O and area of each small semicircle is $\frac{9}{2}\pi$ cm <sup>2</sup> . |

- Find
- (a) the radius of the small semicircle,
- (b) the perimeter of the shaded area in terms of  $\pi$ ,
- (c) the area of the shaded region in terms of  $\pi$ .




 Answer (a)
 .cm [1]

 (b)
 .cm [1]

 (c)
 .cm² [1]

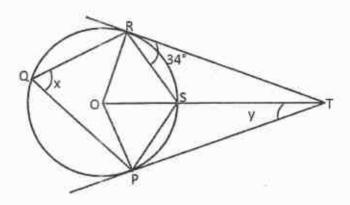
16 The graph shows the students intake of ABC Secondary school over 4 years.



- (a) Express the ratio of the height of the bar representing the students intake in 2012 to that in 2016.
- (b) Express the ratio of the student intake in 2012 to the student intake in 2016.
- (c) Should both answers you obtain in (a) and (b) be the same?
- (d) Explain the similarity or difference in your answers of (a) and (b).

|     | Answer (a)[1] |
|-----|---------------|
|     | (b)[1]        |
| (c) | [1]           |
| (d) |               |
|     | [1]           |

15

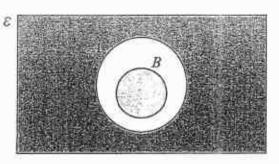

| 17 | Given the equation of line L <sub>1</sub> is $\frac{1}{2}x - 3y = 9$ , find                       |
|----|---------------------------------------------------------------------------------------------------|
|    | (a) the coordinates when it cuts the x-axis,                                                      |
|    | (b) the gradient of the line,                                                                     |
|    | (c) the value of k if the point (-6, k) lies on the line,                                         |
|    | (d) the equation of line L <sub>2</sub> that cuts y-axis at 5 and is parallel to L <sub>1</sub> . |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |

| Answer (a) | [1] |
|------------|-----|
| (b)        | [1] |
| (c)        | [1] |
| (4)        | [1] |

16

- 18 In the diagram, O is the center of the circle and RT and PT are tangents to the circle at R and P respectively. Find the angles,
  - (a) x and
  - (b) y...

State your reasons clearly.




Answer (a) x = ..... [3]

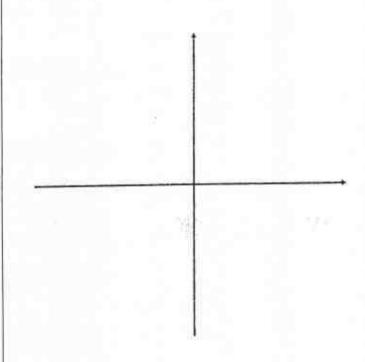
(b) y = [1

17

19 (a) Use set notation to describe the shaded area in the following Venn diagram.



- (b)  $\mathcal{E}=\{\text{numbers from 1 to 10}\}\$ 
  - $A = \{even numbers\}$
  - $B = \{prime numbers\}$
  - $C = \{\text{multiples of 2 greater than 6}\}\$
  - (i) List the elements in  $A \cap B'$ .
  - (ii) State the relationship between set A and C.


| Answer | (a)      |       | <br>• • • • • • • • • • • • • • • • • • • • |  | [1] |
|--------|----------|-------|---------------------------------------------|--|-----|
|        | (b)(i) . | ••••• | <br>• • • • • • • • • • • • • • • • • • • • |  | [1] |
|        | (b)(ii)  |       | <br>• • • • • • • • • • • • • • • • • • • • |  | [1] |

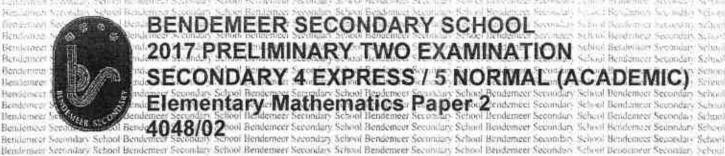
| 20 | The scale drawing in the a is 36 km due South of A.                                              | answer space be<br>The map scale  | elow shows the is given as 1:6 | position of towns A and 00 000.                     | d B. Town B |
|----|--------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------------------------------|-------------|
|    | Construct the map of ABC (a) Town C which is 54 (b) Town D is located 18 (c) Measure the bearing | km from B with<br>3 km from C and | a bearing of 0 d on the perpen | n below:<br>85° from B.<br>Idicular bisector of A a | nd B.       |
|    | Α                                                                                                |                                   |                                |                                                     |             |
|    |                                                                                                  |                                   |                                |                                                     |             |
|    |                                                                                                  |                                   |                                |                                                     | a           |
|    | В                                                                                                |                                   | P.                             |                                                     | ij.         |
|    |                                                                                                  |                                   |                                |                                                     |             |
|    |                                                                                                  |                                   |                                |                                                     |             |
|    |                                                                                                  |                                   |                                |                                                     |             |
|    |                                                                                                  |                                   |                                | See above                                           |             |
|    |                                                                                                  |                                   |                                | See above                                           |             |

19

21 (a) Express the function  $y = -x^2 + 8x - 5$  in the form  $y = -(x - h)^2 + k$ .

- (b) Sketch the graph of the function  $y = -x^2 + 8x 5$ . Label the y-intercept and turning point.
- (c) Hence, or otherwise, solve the equation  $-x^2 + 8x 5 = -10$




Answer (a) ..... [2]

(b) .....[2]

(c) x = .....[2]

--- End of Paper ---

|        | Register No. | Class |
|--------|--------------|-------|
| Name : |              |       |



Bendeimen

# BENDEMEER SECONDARY SCHOOL 2017 PRELIMINARY TWO EXAMINATION SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC lement Secondary School Benderneer Secondary School Benderneer Secondary Sec

**DURATION** 

23 August 2017 2 hours 30 minutes

TOTAL

100 marks

Additional Materials: Cover page

Answer Paper

Graph Paper (1 sheet)

#### READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a 2B pencil for any diagrams or graphs.

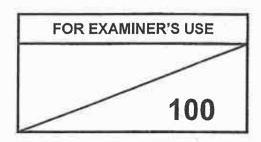
Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

#### Answer all questions.

All the diagrams in this paper are **not** drawn to scale.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.


The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$  , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.



This document consists of 11 printed pages including this cover page.

[Turn over

#### MATHEMATICAL FORMULAE

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of cone = m-l

Surface area of a sphere =  $4 \pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of sphere =  $\frac{4}{3} m^3$ 

Area of triangle ABC =  $\frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

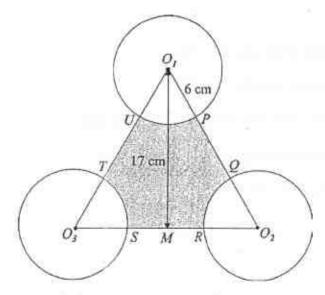
Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

- 1 (a) Solve the inequality  $\frac{p-2}{4} \le \frac{1}{2} \frac{15-2p}{5}$ . [3]
  - (b) (i) Factorise  $2q 18q^3$  completely. [2]
    - (ii) Hence simplify  $\frac{2q-18q^3}{(4q^2-2q)(3q+1)}$ . [2]
  - (c) (i) In January, Joseph's best time to swim 200 metres was 2 minutes 30 seconds.

    Calculate his speed in kilometres per hour. [2]
    - (ii) In December, Joseph's best time is 10% less than his best time in January.Calculate, in minutes and seconds, his best time in December. [2]
- The first four terms in a sequence of numbers are given below.


$$T_1 = 3 + 2^0 = 4$$
 $T_2 = 5 + 2^1 = 7$ 
 $T_3 = 7 + 2^2 = 11$ 
 $T_4 = 9 + 2^3 = 17$ 

- (a) Find  $T_5$ .
- (b) Find the nth term of the sequence,  $T_n$ . [1]
- (c) Hence or otherwise, find  $T_{20}$ . [1]
- (d) Explain why the value of  $T_n$  is always odd for all values of n. [1]
- (e)  $T_{\rm m}$  and  $T_{\rm m+1}$  are consecutive terms in the sequence.

Show that 
$$T_{m+1} - T_m = 2 + 2^{m-1}$$
. [3]

- 3 A factory produces bottles in both the small and the large size.
  - (a) It is found that x large bottles can be produced in a minute.

    Write down an expression in terms of x, the time taken to produce 1 large bottle, in seconds.
  - (b) 4 more small bottles can be produced in a minute, compared to the large bottles. Write down an expression in terms of x, the time taken to produce 1 small bottle, in seconds.
  - (c) Given that it takes 2.5 seconds longer to produce a large bottle than a small bottle, form an equation in x and show that it reduces to  $x^2 + 4x 96 = 0$ . [3]
  - (d) Solve the equation  $x^2 + 4x 96 = 0$ . [2]
  - (e) Hence find the time taken to produce 4000 small bottles, in hours and minutes. [2]
  - (f) It is known that the factory sells each small bottle at \$0.30 and each large bottle at \$0.50. Is it more profitable for the factory to produce small or large bottles? Explain your answer. [3]
- The figure below shows the outline of a spinner toy, which is made up of an equilateral triangle and 3 identical circles with centre  $O_1$ ,  $O_2$  and  $O_3$  respectively. It is given that the radii of the circles are 6 cm and  $O_1M = 17$  cm, where M is the midpoint of SR.



Find (a) PQ, [2]

- (b) the perimeter of the shaded region *PQRSTU* and [3]
- (c) the area of the shaded region *PQRSTU*. [3]

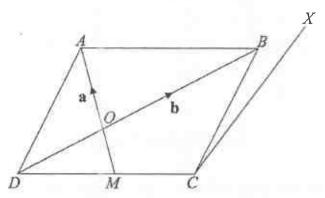
5 (a) The stem and leaf diagram below shows the marks attained by 15 students in a Mathematics test.

Key: 1 | 0 means 10 marks

- (i) Using the data given, find the (a) median mark, [1]
  - (b) interquartile range and [2]
  - (c) standard deviation of the marks. [2]
- (ii) It was later found that there was a mistake in the marking for the test. As such, every student should get an additional 2 marks.

Describe how the change in marks will affect the median mark and interquartile range. [2]

(b) It is given that a box contains 15 apples and 9 oranges.


Two fruits are then selected from the box at random. If an apple is selected, it is replaced. If an orange is selected, it is not replaced.

- (i) Draw a tree diagram to show the probabilities of the possible outcomes. [2]
- (ii) Find, as a fraction in its simplest form, the probability that
  - (a) both fruits selected are the same, [2]
  - (b) at least one of the fruit is an apple. [2]

[1]

### Free Tuition Listing @ 99Tutors.SG

In the following diagram, ABCD is a parallelogram where M is the midpoint of CD and  $OD = \frac{1}{3}BD$ .



Given that  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ ,

(a) express as simply as possible, in terms of a and/or b,

(i) 
$$\overrightarrow{BD}$$
,

(ii) 
$$\overrightarrow{AB}$$
,

(iii) 
$$\overrightarrow{BC}$$
,

(iv) 
$$\overrightarrow{OM}$$
.

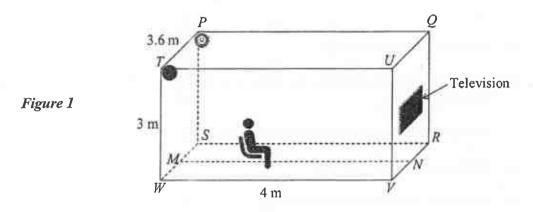
(b) Given that 
$$\overrightarrow{CX} = \mathbf{a} + \frac{3}{4}\mathbf{b}$$
, prove that B, D and X are collinear points. [2]

(c) Find the exact value of (i) 
$$\frac{\text{area of } \triangle ODM}{\text{area of } \triangle OAB}$$
 [2]

(ii) 
$$\frac{\text{area of } \Delta ODM}{\text{area of } ABCD}$$
 [1]

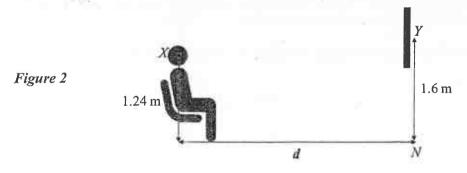
7 Petrol stations A and B sell two grades of petrol, R92 and P98.

The matrix L shows the average amount of petrol sold at the two stations on a day in Week 1.


R92 P98
$$L = \begin{pmatrix} 250 & 180 \\ 280 & 180 \end{pmatrix} \begin{array}{c} \text{Station A} \\ \text{Station B} \end{array}$$

- (a) Evaluate the matrix Q = 7L. [1]
- (b) It is given that the petrol price (per litre) of grade R92 and P98 are \$2.00 and \$2.40 respectively.

Represent the petrol prices as a column matrix **P**. [1]


- (c) Evaluate the matrix S = QP. [1]
- (d) State what the elements of S represent. [1]
- (e) In Week 2, the average amount of all petrol sold at both petrol stations dropped by 5%. At the same time, the prices of all grades of petrol increased by 5%.
  - Calculate the earnings made by Station A and Station B respectively in Week 2. [3]
- (f) Write down a matrix X such that the total earnings of both petrol stations in Week 2 can be calculated using matrix multiplication.
  - Hence find the total earnings of both petrol stations in Week 2. [2]

- 8 Figure 1 shows the three-dimensional layout of Roy's living room. The room is shaped like a cuboid with dimensions 4 m by 3.6 m by 3 m, where path MN lies across the centre of the room.
  - A television is fixed on the wall *QRVU* such that *Y*, the centre of the television, is 1.6 m above *N*.
  - Two speakers are fixed at corners *P* and *T* respectively.



Roy is deciding on the best position to place his armchair along MN. The best position will allow him to have an optimal view of the television when seated in the armchair.

Figure 2 shows Roy's eye level at X, which is 1.24 m when seated at distance d from the television. It is given that  $1.8 \,\mathrm{m} \le d \le 3.8 \,\mathrm{m}$  for Roy to have an optimal view of the television.



For this question, the dimensions of the television and speakers are negligible.

(a) If Roy chose to place the armchair at the furthest possible optimal distance, find

(i) 
$$TX$$
,

(ii) 
$$\angle PXT$$
,

(iii) the angle of elevation of 
$$Y$$
 from  $X$ . [2]

(b) When the angle of elevation of Y from X is 12°, will Roy still have an optimal view of the television? Justify your answer. [2]

### 9 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$y = 5 + \frac{2}{x} - \frac{1}{4}x^2$$

Some corresponding values of x and y are given in the table below.

| x | -6    | -5    | -4 | -3   | -2 | -1.5 | -1   | -0.5 | -0.3  |
|---|-------|-------|----|------|----|------|------|------|-------|
| у | -4.33 | -1.65 | p  | 2.08 | 3  | 3.10 | 2.75 | 0.94 | -1.69 |

(a) Find the value of p.

[1]

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for  $-6 \le x \le 0$ . Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for  $-5 \le y \le 4$ .

On your axes, plot the points given above and join them with a smooth curve.

[3]

(c) By drawing a tangent, find the gradient of the curve at (-1, 2.75).

[2]

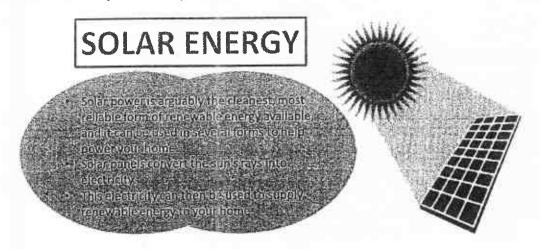
(d) (i) On the same axes, draw the line L with gradient 0.5 and passes through the point (-4, -3).

[1]

(ii) Write down the equation of the line L.

[1]

(iii) The x-coordinate of the point(s) where the line L intersects the curve are the solution(s) to the equation  $x^3 + Ax^2 - Bx - 8 = 0$ .


Find the values of A and B.

[2]

(e) Using the graph, show that  $\frac{2}{x} - \frac{1}{4}x^2 + 1 = 0$  has no solution for x < 0.

[2]

Mrs Lim is currently staying at a bungalow with her family. After learning about solar energy from the brochure below, she is thinking of installing solar panels at the bungalow to help reduce the family's electricity bills.



Brochure on Solar Energy

Information that Mrs Lim needs to consider in order to make a decision on the installation can be found under Annex A on the next page.

- (a) For the first half of 2017,
  - (i) calculate the average amount of electricity (in kWh) used by Mrs Lim's family in a month, and [2]
  - (ii) calculate the average amount (in dollars) paid for electricity usage in a month. [2]
- (b) Considering all the information given, should Mrs Lim go ahead with the installation of solar panels for the bungalow?

Justify your answer. [4]

#### ANNEX A

Table 1: Records of electricity usage by Mrs Lim's family

| lectricity Usa | ge for 2017 (in k | Wb)    |       |        | 構造生    |
|----------------|-------------------|--------|-------|--------|--------|
| January        | February          | March  | April | May    | June   |
| 1107.8         | 1066.3            | 1123.6 | 1259  | 1249.5 | 1281.6 |

Table 2: Charges for electricity usage

Electricity tariff:

21.39 cents per kWh

(Charges subjected to 7% Goods & Services Tax)

**Table 3:** Details on installing solar panels for Mrs Lim's bungalow

| Dimensions of root area for solar panel installation | 9 m by 4 m    |
|------------------------------------------------------|---------------|
| Dimensions of 1 solar panel                          | 1.65 m by 1 m |
| Cost of installing every 10 solar panels             | \$6,250       |



**Table 4:** More about the solar panels

Average amount of electricity produced by 1 solar panel: 19 kWh per month

Lifespan of solar panels:

20 years

~END OF PAPER~

#### Answers:

1a) 
$$p \ge 13\frac{1}{3}$$

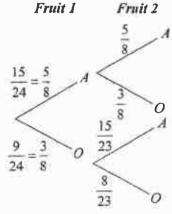
1b)(i) 
$$2q(1-3q)(1+3q)$$
 1b)(ii)  $\frac{1-3q}{2q-1}$ 

2b) 
$$2n+1+2^{n-1}$$

3a) 
$$\frac{60}{x}$$
 s

3b) 
$$\frac{60}{x+4}$$
 s

3d) 
$$x = -12$$
, 8


3e) 
$$5 \text{ h } 33\frac{1}{3} \text{ min}$$
 or  $5 \text{ h } 34 \text{ min}$ 

3f) It is more profitable for the factory to produce large bottles.

4a) 
$$PQ = 7.63 \text{ cm}$$

4c) Area = 
$$110 \text{ cm}^2$$

5a)(i)(a) Median = 34 marks 5a)(i)(b) IQR = 15 marks 5a)(i)(c) SD = 9.99 marks 5a)(ii) The median will increase by 2 and the interquartile range will remain the same. 5b)(i)



5b)(ii)(a) P(both are the same) = 
$$\frac{767}{1472}$$
 5b)(ii)(b) P(at least 1 apple) =  $\frac{20}{23}$ 

6a)(i) 
$$\overrightarrow{BD} = -\frac{3}{2}\mathbf{b}$$
 6a)(ii)  $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ 

6a)(iii) 
$$\overrightarrow{BC} = -\mathbf{a} - \frac{1}{2}\mathbf{b}$$
 6a)(iv)  $\overrightarrow{OM} = -\frac{1}{2}\mathbf{a}$ 

Bendemeer Secondary School

2017 Preliminary Two Examination / Sec 4E/5N(A) / Elementary Mathematics (Paper 2)

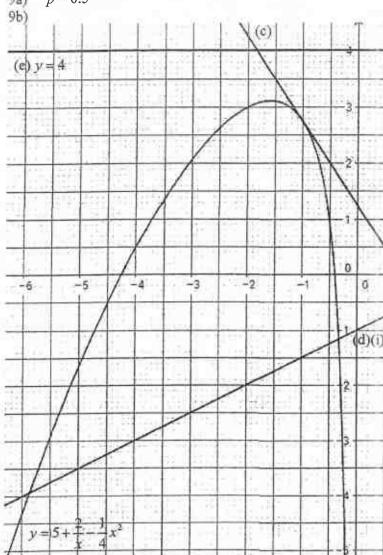
6c)(i) 
$$\frac{\text{area of } \triangle ODM}{\text{area of } \triangle OAB} = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \qquad 6c)(ii) \qquad \frac{\text{area of } \triangle ODM}{\text{area of } ABCD} = \frac{1}{4} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{12}$$

7a) 
$$Q = \begin{pmatrix} 1750 & 1260 \\ 1960 & 1260 \end{pmatrix}$$
 7b)  $P = \begin{pmatrix} 2.00 \\ 2.40 \end{pmatrix}$  7c)  $S = \begin{pmatrix} 6524 \\ 6944 \end{pmatrix}$ 

- 7d) The earnings of Station A (\$6,524) and Station B (\$6,944) respectively for Week 1.
- 7e) The earnings of Station A (\$6,507.69) and Station B (\$6,926.64) respectively for Week 2.
- 7f)  $X = (1 \ 1)$

Total earnings = 
$$(1 \ 1)$$
 $\begin{pmatrix} 6507.69 \\ 6926.64 \end{pmatrix}$   
=  $(13434.33)$ 

Total earnings of both stations (Week 2) = \$13,434.33


8a)(i) 
$$TX = 2.53 \text{ m}$$

8a)(ii) 
$$\angle PXT \approx 90.9^{\circ}$$

8b) 
$$\tan 12^{\circ} = \frac{0.36}{d}$$
  $\rightarrow d \approx 1.69 \text{ m}$ 

Since 1.69 m is less than the minimum optimal distance 1.8 m, Roy will not have an optimal view of the TV in this case.





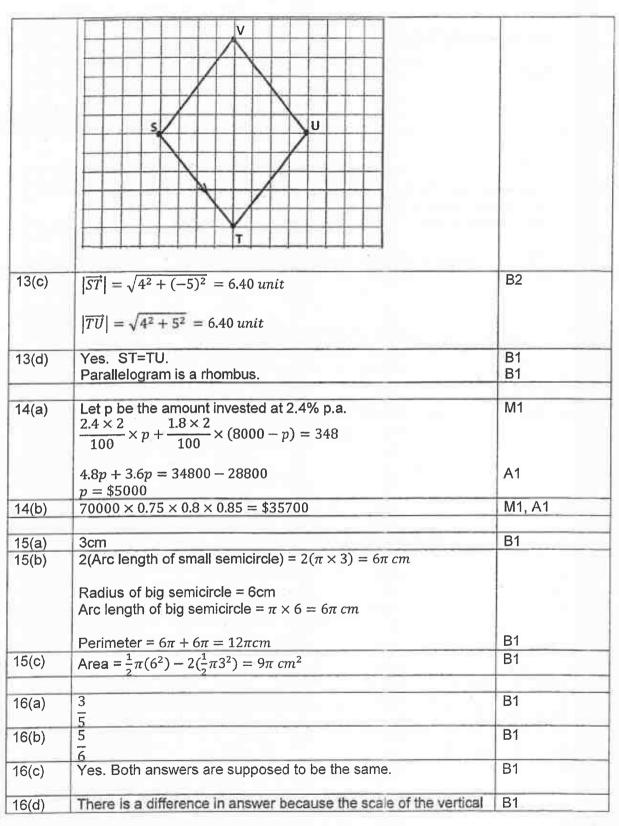
9c) Gradient = 
$$-1.5 (\pm 0.2)$$

5 7 5 8 1 8 6 E C

9d)(ii) 
$$y = \frac{1}{2}x - 1$$

9d)(iii) 
$$A = 2$$
 and  $B = 24$ 

<sup>10</sup>b) Since the average amount paid by Mrs Lim per month will be lesser than what she is currently paying for electricity usage, she should go ahead with the installation.

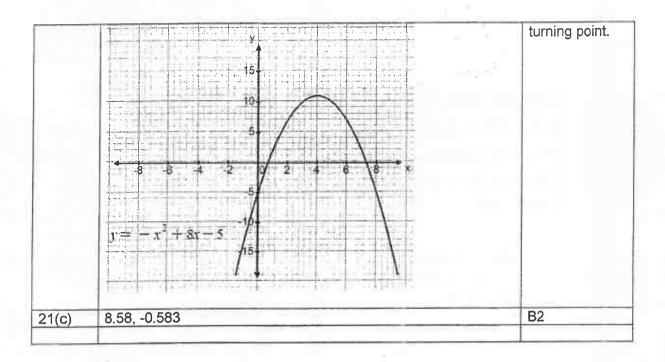

## 2017 Sec 4E/5NA Preliminary One Mathematics Marking Scheme

| Qn   | Answer                                                                                                         | Marks                   |
|------|----------------------------------------------------------------------------------------------------------------|-------------------------|
| 1(a) | 130                                                                                                            | B1                      |
| 1(b) | 100                                                                                                            | B1                      |
| 2(a) | 344 x 204 = 70176 mm <sup>2</sup><br>1 mm <sup>2</sup> = 0.1 <sup>2</sup> cm <sup>2</sup>                      | M1                      |
|      | 71196 mm <sup>2</sup> = $0.1 \times 0.1 \times 70176$ cm <sup>2</sup><br>= $701.76$ cm <sup>2</sup> = $702$ cm | A1 (accept exact value) |
| 2(b) | 195<br>344                                                                                                     | B1                      |
| 3    | Ideal weight = $\frac{82}{115} \times 100 = 71.30 kg$                                                          | M1                      |
|      | Current weight $=\frac{94}{100} \times 82 = 77.08kg$                                                           |                         |
|      | Per cent = $\frac{77.08 - 71.30}{77.08} \times 100 = 7.4987 = 7.50\%$                                          | M1, A1                  |
|      |                                                                                                                |                         |
| 4(a) | $4a^{2} - 12a = 2 - 20 + 6a$ $4a^{2} - 18a + 18 = 0$ $2a^{2} - 9a + 9 = 0$ $(2a - 3)(a - 3) = 0$               | M1                      |
|      | $a = \frac{3}{2}, 3$                                                                                           | A1                      |
| 4(b) | $x^{2}y^{2} + 36 - 4x^{2} - 9y^{2}$ $= x^{2}y^{2} - 4x^{2} - (9y^{2} - 36)$                                    | M1                      |
|      | $= x^{2}(y^{2} - 4) - 9(y^{2} - 4)$ $= (x^{2} - 9)(y^{2} - 4)$ $= (x + 3)(x - 3)(y + 2)(y - 2)$                | M1<br>A1                |
| 5    | Singapore Tuesday 1310 => London Tuesday 0610 Flight 13 hours and 15 minutes => Arrival Tuesday 1925           | M1<br>B1                |
|      |                                                                                                                |                         |
|      | Or                                                                                                             | Or                      |
|      | Flight 13 hours and 15 minutes => Arrival 0225 Wednesday Singapore time                                        | M1                      |
|      | Singapore 0225 Wednesday => London Tuesday 1925                                                                | B1 (If no working,      |

| 6(a)  | sin 39 sin ∠DEF                                                   | M1                     |
|-------|-------------------------------------------------------------------|------------------------|
| ` ,   | 12 = 10                                                           |                        |
|       | $\angle DEF = \sin^{-1} \frac{10\sin 39}{12}$                     |                        |
|       | 12 12                                                             |                        |
|       | $\angle DEF = 31.63, 180 - 31.63$                                 |                        |
|       | = 31.6, 148.4                                                     | A1                     |
| 6(b)  | Acceptable answer => 31.6°.                                       | B1                     |
|       | Reject 148.4° because (148.4 + 39) >180 which is more than        | B1                     |
| _     | angle sum of a triangle.                                          |                        |
| 7     | $a^2d^2 - b^2c^2 = c^2d^2$                                        | M1                     |
|       | 2 2 22 22 2                                                       |                        |
|       | $b^2c^2 = d^2(a^2 - c^2)$                                         |                        |
|       | $b = \pm \frac{d}{c} \sqrt{(a^2 - c^2)}$                          |                        |
|       | $b = \pm \frac{1}{c} \sqrt{(a^2 - c^2)}$                          | A1                     |
|       | Too. So.                                                          | No mark if no ±.       |
| 8(a)  | 1 1 25-2 23                                                       | M1, A1                 |
|       | $\frac{1}{2} - \frac{1}{5^2} = \frac{25 - 2}{50} = \frac{23}{50}$ |                        |
|       |                                                                   |                        |
| 8(b)  | $h^{\frac{2}{3}+6-\frac{2}{3}-1=b^5}$                             | M1, A1                 |
|       | $\nu^{s}$                                                         |                        |
|       |                                                                   |                        |
| 9(a)  | x: x+2: 6(x+2)                                                    | B1 M1                  |
| 9(b)  | (x+10) + (x+12) + (6x+22) = 76<br>x = 4                           | IVII                   |
|       |                                                                   |                        |
|       | Mother's age = $6(4+2) - 5 = 31$ years old                        | A1                     |
| 10(a) | In $\triangle$ ABC and $\triangle$ DBA                            |                        |
| 10(=) | $\angle BAC = \angle BDA (given)$                                 | }B1(order of           |
|       | $\angle ABC = \angle DBA (Common \angle)$                         | vertices must          |
|       |                                                                   | be in                  |
|       |                                                                   | corresponding          |
|       | AADC is similar to ADDA (AA Similar liter)                        | order<br>B1 (statement |
|       | $\triangle ABC$ is similar to $\triangle DBA$ (AA Simiarlity)     | and reason)            |
|       |                                                                   | No reason no           |
|       |                                                                   | mark                   |
| 10(b) | $\frac{BC}{A} = \frac{BA}{A}$                                     |                        |
|       | BA BD<br>4 6                                                      |                        |
|       | $\frac{4}{6} = \frac{6}{BD}$                                      |                        |
|       | U DD                                                              |                        |

Bendemeer Secondary School 2017 Preliminary Two/Sec 4E5N/Mathematics (Answer scheme)

|        | BD = 9                          |                                           |                                |            |                 |      |      | B1 |    |
|--------|---------------------------------|-------------------------------------------|--------------------------------|------------|-----------------|------|------|----|----|
| 10(c)  | Let shor                        | test distar                               | ice be s.                      |            |                 |      |      |    |    |
|        | $\frac{1}{2} \times 6 \times 8$ | s = 42                                    |                                |            |                 |      |      | M1 |    |
|        |                                 |                                           |                                |            |                 |      |      | A1 |    |
| _      | s = 14cr                        | <u>n</u>                                  |                                |            |                 |      |      | AI | -  |
| 11(a)  |                                 | (10-2)1                                   | 80                             |            |                 |      |      | B1 |    |
| (-,    | $\angle RST =$                  | $\angle RST = \frac{(10-2)180}{10} = 144$ |                                |            |                 |      |      |    |    |
| 11(b)  | /SRT =                          | $\frac{180 - 144}{2}$                     | $\frac{1}{1} = 18^{\circ} (h)$ | ase of iss | sos. $\Delta$ ) |      |      | B1 |    |
|        | ADTO -                          | 10° (alt /                                | )                              |            |                 |      |      |    |    |
| 11(c)  | $\angle RIQ =$                  | 18° (alt 2                                | 2SRT = 14                      | 14 – 18 =  | 126°            | ·    |      | M1 |    |
| . 1(0) | $\angle RQT =$                  | 180 - 120                                 | 6 - 18 = 3                     | 36° (∠ su  | $m of \Delta$ ) |      |      |    |    |
|        |                                 | 144 - 36                                  |                                |            |                 |      |      | A1 |    |
|        |                                 |                                           |                                |            |                 |      |      | D1 |    |
| 12(a)  | $\frac{5}{6}$                   |                                           |                                |            |                 |      |      | B1 |    |
| 12(b)  | 6                               | _                                         |                                |            |                 |      |      | B1 |    |
| 12(0)  | 1<br>36                         |                                           |                                |            |                 |      |      |    |    |
| 12(c)  |                                 |                                           |                                |            |                 |      |      | M1 |    |
|        |                                 | 1                                         | 2                              | 3          | 4               | 5    | 6    |    |    |
|        | 1                               | (2)                                       | (3)                            | 4          | (5)             | 6    | 7    |    |    |
|        | 2                               | 3                                         | 4                              | (5)        | 6               | (7)  | 8    |    |    |
|        | 3                               | 4                                         | (5)                            | 6          | 7               | 8    | 9    |    |    |
|        | 4                               | (5)                                       | 6                              | (7)        | 8               | 9    | 10   |    |    |
|        | 5                               | 6                                         | (7)                            | 8          | 9               | 10   | (11) |    |    |
|        | -                               |                                           |                                |            |                 | (11) | 12   |    |    |
|        | 6                               | $\bigcirc$                                | 8                              | 9          | 10              | TT   | 12   |    |    |
|        | Tree:                           |                                           |                                |            |                 |      |      |    |    |
|        | 5<br>12                         |                                           |                                |            |                 |      |      | A1 |    |
|        | 12                              |                                           |                                |            |                 |      |      |    |    |
| 13(a)  | (4)                             |                                           |                                |            |                 |      |      | B1 | 12 |
|        | (-5)                            |                                           |                                |            |                 |      |      |    |    |
| 13(b)  |                                 |                                           |                                |            |                 |      |      | B1 |    |




Bendemeer Secondary School 2017 Preliminary Two/Sec 4E5N/Mathematics (Answer scheme) Page 4

|                  | axis does not start from zero                                                                                                                                |                                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 17(a)            | (18,0)                                                                                                                                                       | B1                                                                           |
| 17(b)            | $\frac{1}{6}$                                                                                                                                                | B1                                                                           |
| 17(c)            | k = -4                                                                                                                                                       | B1                                                                           |
| 17(d)            | $y = \frac{1}{6}x + 5$                                                                                                                                       | B1                                                                           |
| 18(a)            | $\angle ORS = 90 - 34 = 56$ (radius perpendicular to tangent)<br>$\angle ROS = 180 - 2(56) = 68$ (angle sum of issos triangle)<br>$\angle ROP = 2(68) = 136$ | M1<br>M1                                                                     |
|                  | $\angle ROP = 2x$ (angle at center = 2 angles at circumference)<br>$x = 68^{\circ}$                                                                          | A1<br>(If more than 2<br>reasons not<br>given, deduct<br>1m overall)         |
| 18(b)            | $y = 180 - 90 - 68 = 22^{\circ}$ (angle sum of triangle)                                                                                                     | B1                                                                           |
| 40(=)            | Mu P                                                                                                                                                         | B1                                                                           |
| 19(a)            | A' ∪ B                                                                                                                                                       | B1                                                                           |
| 19(b)(i)         | {4, 6, 8, 10}                                                                                                                                                | B1                                                                           |
| 19(b)(ii)        | $C \subset A$                                                                                                                                                | DI                                                                           |
| 20(a) /<br>20(b) | A D D                                                                                                                                                        | C1 – Correct<br>angle<br>measurement<br>C1- Correct<br>scale<br>conversion   |
|                  | 34                                                                                                                                                           | C1 –<br>Perpendicular<br>bisector                                            |
|                  | (.54 600)                                                                                                                                                    | C1 – Label of<br>Town D (accept<br>either D <sub>1</sub> or D <sub>2</sub> ) |
| 20(b)            | 104° ± 1°, 114° ± 1°                                                                                                                                         | B1                                                                           |
| 21(a)            | $y = -(x^2 - 8x + 5)$<br>$y = -[(x - 4)^2 + 5 - 4^2)]$                                                                                                       | M1                                                                           |
|                  | $y = -(x - 4)^2 + 11$                                                                                                                                        | A1                                                                           |
| 21(b)            |                                                                                                                                                              | P1- correct<br>shape<br>P1 – correct<br>intercepts and                       |

Bendemeer Secondary School 2017 Preliminary Two/Sec 4E5N/Mathematics (Answer scheme)

Page 5



|       | Register No. | Class |
|-------|--------------|-------|
| Name: | E 2.4        |       |



# BENDEMEER SECONDARY SCHOOL 2017 PRELIMINARY TWO EXAMINATION SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC) Elementary Mathematics

4048 / 02

DATE : 23 August 2017
DURATION : 2 hours 30 minutes

TOTAL : 100 marks

# **MARK SCHEME**

[Turn over

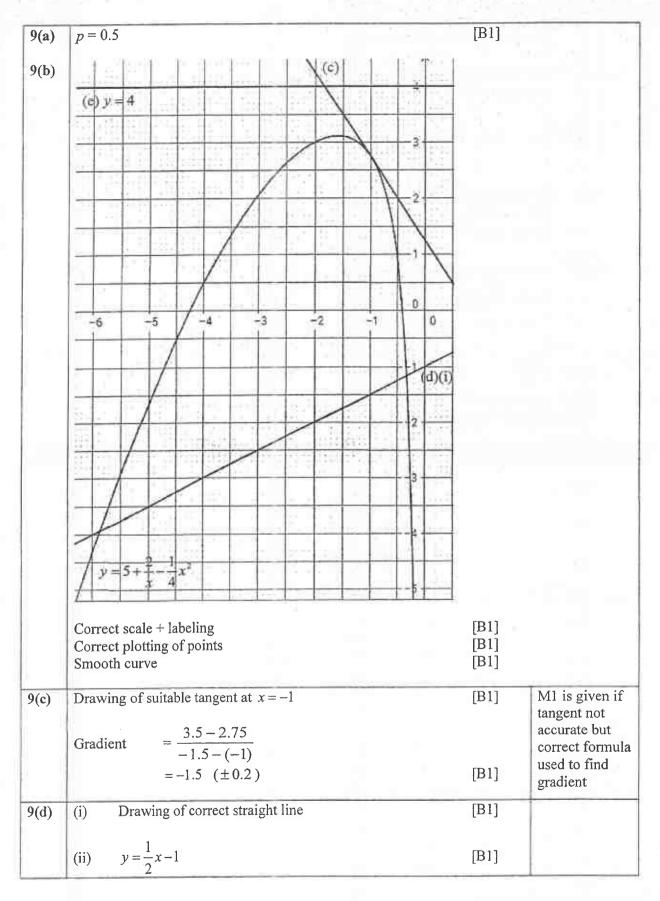
| Qn.  | Solu           | tions                                                                                                                 |                                                                                                |     | 835          | Remarks        |
|------|----------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----|--------------|----------------|
| 1(a) | $\frac{p-}{4}$ | $\frac{2}{2} \le \frac{1}{2} - \frac{15 - 2p}{5}$ $\frac{2}{2} \le \frac{-25 + 4p}{10}$ $\frac{2}{2} \le 4(-25 + 4p)$ |                                                                                                |     | [B1]         |                |
|      |                | $p \le -80$                                                                                                           |                                                                                                |     | [B1]         |                |
|      | 1              | $\geq 13\frac{1}{3}$                                                                                                  |                                                                                                |     | [B1]         |                |
| 1(b) | (i)            | $ 2q - 18q^3 = 2q \\ = 2q $                                                                                           | $\frac{(1-9q^2)}{(1-3q)(1+3q)}$                                                                |     | [B1]<br>[B1] |                |
|      | (ii)           | $\frac{2q - 18q^3}{(4q^2 - 2q)(3q + 1)}$                                                                              | $= \frac{2q(1-3q)(1+3q)}{(4q^2-2q)(3q+1)}$ $= \frac{2q(1-3q)}{2q(2q-1)}$ $= \frac{1-3q}{2q-1}$ |     | [B1]         |                |
| 1(c) | (i)            |                                                                                                                       | $2 \min 30 \text{ s} \Rightarrow \frac{1}{24} \text{ h}$                                       | 2,7 |              |                |
|      |                | Speed = $0.2 / \frac{1}{24}$                                                                                          |                                                                                                |     | [M1]         |                |
|      |                | =4.8  km/h                                                                                                            |                                                                                                |     | [A1]         |                |
|      | (ii)           | Best time (Dec)                                                                                                       | $= 0.9 \times \frac{1}{24}$                                                                    |     | [B1]         |                |
|      |                |                                                                                                                       | $= \frac{3}{80} h$ $= 2 \min 15 seconds$                                                       |     | [B1]         |                |
| 21-  | 0.54           | - 1887 Kin (47)                                                                                                       |                                                                                                | X   | A-7-1        | Total Marks: 1 |

| 2(a) | <i>T</i> <sub>5</sub>                                  | $= 11 + 2^4 = 27$                                                                              |                                                 | [B1]         |                        |
|------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|------------------------|
| 2(b) | n <sup>th</sup> term                                   | $= 2n + 1 + 2^{n-1}$                                                                           |                                                 | [B1]         |                        |
| 2(c) | T <sub>20</sub>                                        | $= 2(20) + 1 + 2^{20-1} = 524$                                                                 | 329                                             | [B1]         |                        |
| 2(d) |                                                        | and $2^{n-1}$ are even,<br>= $2n+1+2^{n-1}$ = even + 1 + = odd                                 | even                                            | [B1]         |                        |
| 2(e) | $T_{\mathrm{m+l}} - T_{\mathrm{m}}$                    | $= 2(m+1) + 1 + 2^{m+1-1} - (2m)$ $= 2m + 2 + 1 + 2^{m} - 2m - 1 - 2m$ $= 2 + 2^{m} - 2^{m-1}$ |                                                 | [B1]         |                        |
|      |                                                        | $= 2 + 2^{m} - \frac{1}{2}(2^{m})$ $= 2 + \frac{1}{2}(2^{m})$                                  |                                                 | [B1]         |                        |
|      |                                                        | $= 2 + 2^{m-1} $ (shown)                                                                       |                                                 | [B1]         |                        |
|      | 54267                                                  |                                                                                                | 5. TEST 83                                      | 11           | Total Marks: 7         |
| 3(a) | Time taken                                             | to produce 1 large bottle = $\frac{60}{x}$                                                     | S                                               | [B1]         |                        |
| 3(b) | Time taken                                             | to produce 1 small bottle = $\frac{60}{x+}$                                                    | S                                               | [B1]         |                        |
| 3(c) | 240 = 2.5x                                             | $60x = 2.5x(x+4)$ $^2 + 10x$                                                                   |                                                 | [B1]<br>[B1] |                        |
|      | $x^2 + 4x - 9$                                         | 6 = 0 (shown)                                                                                  |                                                 | [B1]         |                        |
| 3(d) | $x^{2} + 4x - 9$ $(x - 8)(x + 1)$ $\therefore x = -12$ | 12) = 0                                                                                        |                                                 | [M1]<br>[A1] |                        |
| 3(e) | Time taken                                             | to produce 4000 small bottles                                                                  | $=4000\times\frac{60}{8+4}$                     | [B1]         |                        |
|      |                                                        |                                                                                                | $= 5 \text{ h } 33\frac{1}{3} \text{ min}$      | [B1]         | Accept:<br>≈5 h 33 min |
| 3(f) | Amount ear                                             | duration of time y seconds, med for selling large bottles                                      | = $\$0.50 \times (y/7.5)$<br>$\approx \$0.067y$ | [B1]         |                        |
|      | Amount ear                                             | med for selling small bottles                                                                  | $= \$0.30 \times (y/5) = \$0.06y$               | [B1]         |                        |
|      | ∴ It is more                                           | profitable for the factory to pro                                                              | oduce large bottles.                            | [B1]         |                        |

| 6    | or Amount earned in 1 min (Large) = 8(\$0.50)<br>= \$4.00<br>Amount earned in 1 min (Small) = 12(\$0.30)              | [B1]         |                 |
|------|-----------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
|      | ∴ It is more profitable for the factory to produce large bottles.                                                     | [B1]<br>[B1] |                 |
|      |                                                                                                                       |              | Total Marks: 12 |
| 4(a) | Since M is the midpoint, then $O_1M$ is perpendicular to $O_2$ $O_3$ .<br>So, $\sin 60^\circ = \frac{17}{6 + PQ + 6}$ | [M1]         |                 |
|      | $\therefore PQ = \frac{34}{\sqrt{3}} - 12 \approx 7.629909152$                                                        | F 4 17       |                 |
|      | $\approx 7.63 \mathrm{cm}$ or Let $O_1  O_2$ be $2x$ .                                                                | [A1]         |                 |
|      | $(2x)^2 = x^2 + 17^2 \qquad \Rightarrow \qquad 3x^2 = 17^2$                                                           |              |                 |
|      | $\Rightarrow \qquad x = \sqrt{96\frac{1}{3}}$                                                                         | [B1]         |                 |
|      | $\therefore PQ = 2 \times \sqrt{96\frac{1}{3}} - 2(6) \qquad \approx 7.63 \mathrm{cm}$                                | [B1]         |                 |
| 4(b) | Arc length $PU = 6\left(\frac{\pi}{3}\right)$ or $\pi \times 2(6) \times \left(\frac{60^*}{360^*}\right)$             |              |                 |
|      | ≈ 6.283185307 cm<br>Perimeter of shaded                                                                               | [B1]         |                 |
|      | region $PQRSTU$ = $(6.283185307 \times 3) + (7.629909152 \times 3)$<br>$\approx 41.7$ cm                              | [B1]<br>[B1] |                 |
|      | or Perimeter of shaded region PQRSTU                                                                                  |              |                 |
|      | $= 7.629909152 + (3 \times \frac{\pi}{3} \times 6)$                                                                   | [B2]         |                 |
|      | ≈ 41.7 cm                                                                                                             | [B1]         |                 |

| 4(c) | Area o | $f \Delta O_1 O_2 O_3$     | $=\frac{1}{2}\times17\times(6+6+\frac{34}{\sqrt{3}}-12)$                                                                       |              |                |
|------|--------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
|      |        |                            | $\approx 166.8542278 \text{ cm}^2$                                                                                             | [B1]         |                |
|      | Area o | f sector $O_1PU$           | $U = \frac{1}{2} \times 6^2 \times \frac{\pi}{3} \text{ or or } \pi \times 6^2 \times \left(\frac{60^\circ}{360^\circ}\right)$ |              |                |
|      |        |                            | $\approx 18.84955592 \text{ cm}^2$                                                                                             | [B1]         |                |
|      |        | f shaded region            |                                                                                                                                |              |                |
|      | PQRST  | TU                         | = 166.8542278 – 3(18.84955592)                                                                                                 |              |                |
|      |        |                            | $\approx 110 \text{ cm}^2$                                                                                                     | [B1]         |                |
|      | or     | Area of shad               | ed region <i>PQRSTU</i>                                                                                                        |              |                |
|      |        |                            | $\sqrt{96\frac{1}{3}}$ ) $-\frac{1}{2}\pi(6^2)$                                                                                | [B2]         |                |
|      | -      | $\approx 110 \text{ cm}^2$ |                                                                                                                                | [B1]         |                |
|      |        |                            |                                                                                                                                | district.    | Total Marks: 8 |
| 5(a) | (i)(a) | Median                     | = 34 marks                                                                                                                     | [B1]         |                |
|      | (i)(b) | IQR                        | = 41-26<br>= 15 marks                                                                                                          | [M1]<br>[A1] |                |
|      | (i)(c) | Mean                       | $=\frac{492}{15}$ = 32.8 marks                                                                                                 |              |                |
|      |        | S.D.                       | $=\sqrt{\frac{17636}{15}-32.8^2}$                                                                                              | [M1]         |                |
|      |        |                            |                                                                                                                                |              |                |
|      |        |                            | ≈ 9.99 marks                                                                                                                   | [A1]         |                |

#### MARK SCHEME


| 5(b) | (i)           | Fruit 1                                                          | Fruit 2                                                                                             |                                                   |              |                |
|------|---------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|----------------|
|      |               |                                                                  | $\frac{5}{8}$ $A$                                                                                   |                                                   |              |                |
|      |               | 24 8                                                             | 3 0<br>15 A                                                                                         | [B1] Correct bran<br>[B1] Correct prob            |              |                |
|      | (")(.)        |                                                                  | $\frac{8}{23}$ 0 (5.5).                                                                             | (3_8)                                             | [D1]         |                |
|      | (11)(a)       | P(both are the sa                                                | ame) = $\left(\frac{5}{8} \times \frac{5}{8}\right)$ + $= \frac{767}{1472}$                         | (8 <sup>×</sup> 23)                               | [B1]<br>[B1] |                |
|      | (ii)(b)       | P(at least 1 appl                                                | $=1-\left(\frac{3}{8}\times\frac{3}{2}\right)$                                                      | 8 (3)                                             | [B1]         |                |
|      |               |                                                                  | $=\frac{20}{23}$                                                                                    |                                                   | [B1]         |                |
| 6(a) | \$8           | → 3.                                                             | T. S. J. J. S. H. S. M. S.                                      |                                                   |              | Total Marks: I |
| - () | (i)           | $\overrightarrow{BD} = -\frac{3}{2}\mathbf{b}$                   |                                                                                                     |                                                   | [B1]         |                |
|      | (ii)          | $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{O}$ | $\overrightarrow{OB} = -\mathbf{a} + \mathbf{b}$ $\overrightarrow{DC} = -\frac{3}{2}\mathbf{b} + ($ |                                                   | [B1]         |                |
|      | (ii)          | $\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{D}$ | $\overrightarrow{DC} = -\frac{3}{2}\mathbf{b} + ($                                                  | -a+b)                                             | [B1]         |                |
|      |               |                                                                  | $= -\mathbf{a} - \frac{1}{2}\mathbf{b}$                                                             |                                                   | [B1]         |                |
|      | (iv)          | $\overrightarrow{OM} = \overrightarrow{OD} + \overrightarrow{D}$ | $\overrightarrow{DM} = -\frac{1}{2}\mathbf{b} + \frac{1}{2}$                                        | $\frac{1}{2}(-\mathbf{a}+\mathbf{b})$             | [B1]         |                |
|      |               |                                                                  | $=-\frac{1}{2}a$                                                                                    |                                                   | [B1]         |                |
| 6(b) | XB            | $=\overline{XC}+\overline{CB}$                                   | $-\mathbf{a} - \frac{3}{4}\mathbf{b} + \mathbf{a} +$                                                | $-\frac{1}{2}\mathbf{b} = -\frac{1}{4}\mathbf{b}$ | [B1]         |                |
|      | Since<br>then |                                                                  | ⇒ BD // XB and be collinear point                                                                   | B is a common point, ts.                          | [B1]         |                |
| 6(c) | (i)           | area of $\triangle ODM$ area of $\triangle OAB$                  | $=\left(\frac{1}{2}\right)^2 = \frac{1}{4}$                                                         |                                                   | [B1, B1]     |                |
|      | (ii)          | area of $\triangle ODM$ area of $\triangle ABCD$                 | $=\frac{1}{4} \times \frac{2}{3} \times \frac{1}{2}$                                                | $=\frac{1}{12}$                                   | [B1]         |                |
|      | See to the    | A STATE OF                                                       | William Delivery                                                                                    |                                                   |              | Total Marks:   |

Bendemeer Secondary School

2017 Preliminary Two Examination / Sec 4E/5N(A) / Elementary Mathematics Paper 2 Page 6

| 7(a) | $Q = \begin{pmatrix} 1750 & 1260 \\ 1960 & 1260 \end{pmatrix}$                                                                                                                                                                                      | [B1]              |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 7(b) | $P = \begin{pmatrix} 2.00 \\ 2.40 \end{pmatrix}$                                                                                                                                                                                                    | [B1]              |
| 7(c) | $\mathbf{S} = \begin{pmatrix} 1750 & 1260 \\ 1960 & 1260 \end{pmatrix} \begin{pmatrix} 2.00 \\ 2.40 \end{pmatrix} = \begin{pmatrix} 6524 \\ 6944 \end{pmatrix}$                                                                                     | [B1]              |
| 7(d) | The earnings of Station A (\$6,524) and Station B (\$6,944) respect Week 1.                                                                                                                                                                         | ively for<br>[B1] |
| 7(e) | Amount of petrol sold (Week 2) = $0.95 \begin{pmatrix} 1750 \ 1260 \\ 1960 \ 1260 \end{pmatrix}$<br>= $\begin{pmatrix} 1662.5 \ 1197 \\ 1862 \ 1197 \end{pmatrix}$<br>Prices of petrol (Week 2) = $1.05 \begin{pmatrix} 2.00 \\ 2.40 \end{pmatrix}$ | [B1]              |
|      | $= \begin{pmatrix} 2.10 \\ 2.52 \end{pmatrix}$ Earnings (Week 2) = $\begin{pmatrix} 6507.69 \\ 6926.64 \end{pmatrix}$                                                                                                                               | [B1]              |
|      | The earnings of Station A (\$6,507.69) and Station B (\$6,926.64) respectively for Week 2.                                                                                                                                                          | [B1]              |
| 7(f) | $X = \begin{pmatrix} 1 & 1 \end{pmatrix}$ Total earnings = $\begin{pmatrix} 1 & 1 \\ 6507.69 \\ 6926.64 \end{pmatrix}$ = $\begin{pmatrix} 13434.33 \end{pmatrix}$                                                                                   | [B1]              |
|      | Total earnings of both stations (Week 2) = \$13,434.33                                                                                                                                                                                              | [B1]              |

| 8(a) | <ul> <li>(i) At furthest possible optimal distance, d = 3.8 m,</li> <li>→ M to foot of X = 4 - 3.8 = 0.2 m</li> </ul> | [B1]               |
|------|-----------------------------------------------------------------------------------------------------------------------|--------------------|
|      | By Pythagoras' Theorem,                                                                                               | (7)13              |
|      | W to foot of $X = \sqrt{0.2^2 + (3.6 + 2)^2} = \sqrt{3.28}$                                                           | [B1]               |
|      | So, $TX = \sqrt{3.28 + (3-1.24)^2} = \sqrt{6.3776}$                                                                   |                    |
|      | ≈ 2.53 m                                                                                                              | [B1]               |
|      | (ii) By Cosine Rule,                                                                                                  |                    |
|      | $3.6^2 = 6.3776 + 6.3776 - 2(6.3776)\cos \angle PXT$                                                                  | [M1]               |
|      | ∠PXT ≈ 90.9°                                                                                                          | [A1]               |
|      | (iii) Let the angle of elevation here be $\theta$ .                                                                   | 87                 |
|      | $\tan \theta = \frac{1.6 - 1.24}{3.8}$                                                                                | [M1]               |
|      | θ ≈ 5.4°                                                                                                              | [A1]               |
| 8(b) | $\tan 12^{\circ} = \frac{0.36}{d}$ $\rightarrow d \approx 1.69 \text{ m}$                                             | [B1]               |
|      | Since 1.69 m is less than the minimum optimal distance 1                                                              | .8 m. Rov will not |
|      | have an optimal view of the TV in this case.                                                                          | [B1]               |



|       | (iii) For $5 + \frac{2}{x} - \frac{1}{4}x^2 = \frac{1}{2}x - 1$                                                                                          | [B1]                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|       | $x^3 + 2x^2 - 24x - 8 = 0$<br>So, $A = 2$ and $B = 24$                                                                                                   | [B1]                        |
| 9(e)  | For $\frac{2}{x} - \frac{1}{4}x^2 + 1 = 0$ $\Rightarrow \frac{2}{x} - \frac{1}{4}x^2 + 5 = 4$                                                            | [B1]                        |
|       | For $x < 0$ , No point of intersection with $y = 4$ .  No solution (shown)                                                                               | [B1]                        |
|       |                                                                                                                                                          | Total Marks:                |
| 10(a) | (i) Ave. amount of electricity used per month<br>= (1107.8 + 1066.3 + 1123.6 + 1259 + 1249.5 + 1281.6)/6<br>= 1181.3 kWh                                 | [M1]<br>[A1]                |
|       | (ii) Ave. amount paid per month<br>= 1181.3 ×\$0.2139×1.07<br>≈ \$270.37                                                                                 | [B1]<br>[B1]                |
| 10(b) | Max. no. of solar panels that can be installed = 20 (Based on calculations $(9 \div 1.65) \approx 5$ [length] and $(4 \div) = 4$ [width]                 | [B1]                        |
|       | After installation,<br>Ave. amount of electricity saved per month $= 19 \times 20$<br>= 380  kWh                                                         |                             |
|       | Ave. amount paid per month = $(1181.3 - 380) \times \$0.2139 \times 1.07$<br>$\approx \$183.40$                                                          | [B1]                        |
|       | Ave. cost of solar panels per month = $(2 \times \$6250) \div (20 \times 12)$<br>$\approx \$52.08$                                                       | [B1]                        |
|       | Total ave. amount paid per month = \$183.40 + \$52.08 = \$235.48 (<\$270.37)                                                                             |                             |
|       | Since the average amount paid by Mrs Lim per month will be lessed what she is currently paying for electricity usage, she should go ah the installation. | er than<br>ead with<br>[B1] |

| Name( ) | Class: |
|---------|--------|
|---------|--------|



# CHIJ KATONG CONVENT PRELIMINARY EXAMINATION 2017 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

# MATHEMATICS PAPER 1

4048/01

Duration: 2 hours

Classes: 401, 402, 403, 404, 405, 406, 501, 502

#### **READ THESE INSTRUCTIONS FIRST**

Write your name, class and registration number on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid/tape.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

if the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, hand in separately:

- 1. Section A
- 2. Section B
- 3. Section C

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 80.

| FOR EXAMI   | NER'S USE |
|-------------|-----------|
| Total marks | /80       |

This question paper consists of 17 printed pages.

[Turn over

#### Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab \sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area = 
$$\frac{1}{2}r^2\theta$$
, where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

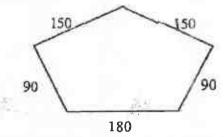
Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard deviation = 
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

|      | ong Corvent                                          |                          |                          |            | 4048/                  |                | Sec 4E/5N                                 |
|------|------------------------------------------------------|--------------------------|--------------------------|------------|------------------------|----------------|-------------------------------------------|
| ame: |                                                      |                          | (                        | )          |                        |                | Class:                                    |
|      |                                                      |                          | Answer:                  | all the qu | estions.               |                |                                           |
|      |                                                      |                          | Section                  | A [22 m    | arks]                  |                |                                           |
| (a)  | Simplify -                                           | x+1 2                    |                          |            |                        |                |                                           |
| ()   | Saupiny                                              | $c^2 - 9  3 -$           | x                        |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            | Answer                 | *********      | [4                                        |
| 47.  | Citife.                                              | $(abc^{-2})^3$           | $a^{-6}b^{-7}$           | looris vou | e anamar in m          | anitiva indica |                                           |
| (b)  | Simplify                                             | $a^{-4}b^{-1})^{-1}$     | $\overline{(bc^2)^{-4}}$ | leave you  | r answer in po         | ositive muice  | S.                                        |
| 6.   |                                                      |                          |                          | Mr.        |                        |                | 195                                       |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            | Answer                 |                |                                           |
|      |                                                      |                          |                          |            | 7,120,110,1            | **********     | , see i e e e e e e e e e e e e e e e e e |
|      |                                                      |                          |                          |            |                        |                |                                           |
| Give | en that $\frac{\frac{1}{2}}{3} = \sqrt{\frac{1}{3}}$ | $\frac{A-3b^2}{a^4}$ , e | xpress A                 | in terms o | of $b$ , $c$ and $k$ . |                |                                           |
|      | 7 1                                                  | CA                       |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |
|      |                                                      |                          |                          |            |                        |                |                                           |

| CHIJ Katong Convent Preliminry Exam 2017                   | 4048/0 | )1 Sec 4E/                              | 5NA |
|------------------------------------------------------------|--------|-----------------------------------------|-----|
| 3 Factorise the following completely.                      |        |                                         |     |
| (a) $18x^2y + 27xy - 9xy^3$                                |        |                                         |     |
|                                                            |        |                                         |     |
|                                                            | Answer |                                         | [1] |
| (b) $27a^2 - 12b^2$                                        |        |                                         |     |
|                                                            |        |                                         |     |
| (c) $3rs - 3s - r + 1$                                     | Answer |                                         | [1] |
|                                                            |        |                                         |     |
|                                                            | Answer | *************************************** | [1] |
| 4 Given that $-5 \le x \le 2$ and $-6 \le y \le -1$ , find |        |                                         |     |
| (a) the largest possible value of $x - y$ ,                |        |                                         |     |
|                                                            | Answer |                                         | [1] |
| (b) the smallest possible value of $y^2 - x^2$ ,           |        |                                         |     |
|                                                            |        |                                         |     |
|                                                            | Answer | *****************************           | [1] |
| (c) the smallest possible value of $(x-y)^2$               |        | * >                                     |     |
|                                                            |        |                                         |     |
|                                                            | Answer |                                         | [1] |
|                                                            |        |                                         |     |


| Name: | ( | -) |
|-------|---|----|
|       |   | 4  |

Class:

A small bus interchange has 2 feeder buses. Bus number 801 leaves the interchange at 15-minute intervals while number 802 at 25-minutes intervals. If both buses leave together on a particular day, how many times will they leave together in the next 5 hours?

Answer ..... times [3]

6 A pond with the shape of a pentagon is shown below (measurements are given in metres and not drawn to scale).



Lamp posts are to be constructed around the pond with the following requirements:

- (I) The lamp posts are to be equally spaced from each other.
- (II) One lamp post must be constructed at each vertex of the pentagon.
- (III) Minimum number of lamp posts are to be constructed to save cost.

Find

(a) the distance between any two lamp posts.

(b) the number of lamp posts to be constructed.

4048/01

Sec 4E/5NA

#### Section B [18 marks]

When written as the product of their prime factors, 7

$$A=2^{m+2}\times 3^n$$

 $B = 2^m \times 3^{n+1} \times 5$ , where m and n are positive constants.

Find the lowest common multiple of A and B, giving your answer as a product of its prime factors.

| Answer | *** *** *** *** *** **** | [2] |
|--------|--------------------------|-----|
|        |                          |     |

Solve the simultaneous equations.

$$\frac{1}{2}x+y=1,$$

$$\frac{1}{4}x-3y=11$$

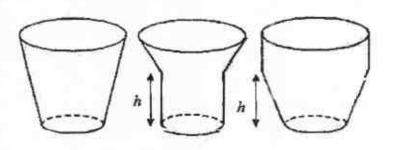
$$\frac{1}{4}x - 3y = 11$$

Answer

| CHI. | J Katong Convent Preliminary Exam 2017                                                                                                                                                                                                  | 7                                                 | 4048/01                             | Sec 4E/5NA            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|-----------------------|
| Nam  | ne:(                                                                                                                                                                                                                                    | )                                                 |                                     | Class:                |
| 9    | In the diagram, BDCE is a straight line, Given that the area of triangle ABD is 16                                                                                                                                                      |                                                   |                                     | B = AD.               |
|      | B = A = D                                                                                                                                                                                                                               | 10                                                | Ē                                   |                       |
|      | (a) the vertical height of triangle ABD                                                                                                                                                                                                 |                                                   |                                     | [2]                   |
|      | (b) the value of $\sin \angle ACD$ .                                                                                                                                                                                                    |                                                   |                                     | [1]                   |
|      |                                                                                                                                                                                                                                         | Answer                                            | vertical height sin $\angle$ ACD =  |                       |
|      | (c) the value of cos ∠ACE.                                                                                                                                                                                                              | - 1                                               | Ň                                   | 95                    |
|      |                                                                                                                                                                                                                                         | Answer                                            | cos ∠ACE = ,                        | • [2]                 |
| 10   | During their quest to reach the South Pothe Singapore Antarctica 2000 Expedition from -35°C to -5°C while their family temperatures ranging from a°C to b°C. Find, in terms of a and/or b,  (a) the greatest difference in temperature. | on team expersion team expersion, where $a < b$ . | ienced temperatu<br>Singapore exper | res ranging<br>ienced |
|      |                                                                                                                                                                                                                                         | An                                                | swer                                |                       |
|      | (b) the smallest difference in temperary Singapore.                                                                                                                                                                                     | tures between                                     | the South Pole a                    | nd                    |
|      |                                                                                                                                                                                                                                         | An                                                | swer                                |                       |

[2]

### Free Tuition Listing @ 99Tutors.SG

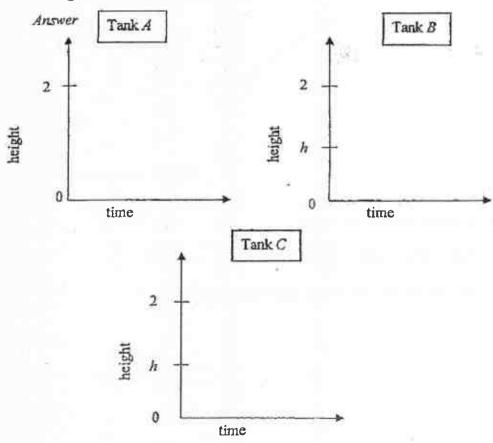

| IIJ Katong Con             | vent Preliminry Exam 2017                                                           | 4048/01                                                | Sec 4E/5N/     |
|----------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|
|                            | f a new town are drawn. On                                                          | the first map, a school is repr                        | resented by an |
| area of 3 cm               |                                                                                     | 1                                                      |                |
|                            | s represented by an area of 1                                                       |                                                        |                |
| Given that the             | he scale of the first map is 1:                                                     | 80000, find the scale of the                           | second map     |
| in the form                | of 1: n.                                                                            |                                                        |                |
|                            |                                                                                     |                                                        |                |
|                            | 19                                                                                  |                                                        |                |
|                            |                                                                                     |                                                        |                |
|                            |                                                                                     |                                                        |                |
|                            |                                                                                     |                                                        |                |
|                            |                                                                                     |                                                        |                |
| -                          |                                                                                     |                                                        |                |
|                            |                                                                                     |                                                        |                |
| 3                          |                                                                                     |                                                        |                |
| , 8                        |                                                                                     | ·                                                      |                |
| ,                          |                                                                                     | Anguar 1:                                              | [4]            |
|                            |                                                                                     | Answer 1:                                              | [4]            |
| Mag. Ang. in               | proceed \$36,000 in a bank that                                                     |                                                        |                |
|                            | vested \$36 000 in a bank that                                                      |                                                        |                |
| annum, pay                 | vested \$36 000 in a bank that able every 3 months.                                 | t pays compound interest of                            |                |
| annum, pay                 | vested \$36 000 in a bank that                                                      | t pays compound interest of                            |                |
| annum, pay                 | vested \$36 000 in a bank that able every 3 months.                                 | t pays compound interest of                            |                |
| annum, pay<br>Calculate th | vested \$36 000 in a bank that able every 3 months.                                 | t pays compound interest of                            | 3,2 % per      |
| annum, pay<br>Calculate th | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of                            |                |
| annum, pay<br>Calculate th | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of in the bank after 6 years. |                |
| annum, pay<br>Calculate th | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of                            |                |
| annum, pay<br>Calculate th | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of in the bank after 6 years. |                |
| annum, pay Calculate th    | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of in the bank after 6 years. |                |
| annum, pay Calculate th    | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of in the bank after 6 years. | 3,2 % per      |
| annum, pay<br>Calculate th | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of in the bank after 6 years. | 3,2 % per      |
| annum, pay Calculate th    | vested \$36 000 in a bank that able every 3 months.  The amount that Mrs Ang has it | t pays compound interest of in the bank after 6 years. | 3,2 % per      |

Name: \_\_\_\_\_

Class: \_\_\_\_

#### Section C [40 marks]

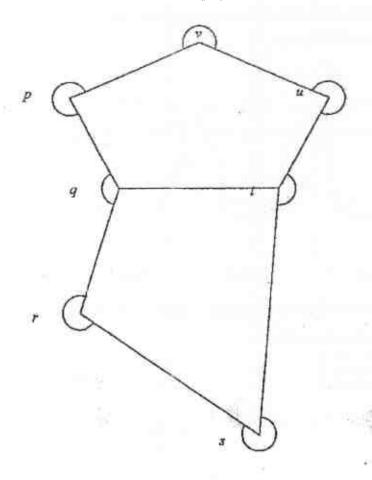
13 Liquid X is poured into three different tanks at a constant rate.
The height of each tank is 2 metres.




Tank A

Tank B

Tank C


On each of the grids below, sketch the graphs to show how the height of the water changes with time for each tank.



4048/01

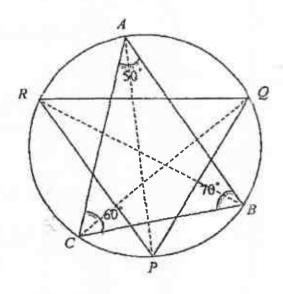
Sec 4E/5NA

14 (a) Calculate the sum of the angles p, q, r, s, t, u and v shown in the diagram.



Answer [2]

(b) A regular polygon has n sides.


Each exterior angle is  $\frac{n}{40}$  degrees.

Find the size of each interior angle in this polygon.

| CHIJ Katong Convent Preliminary Exam 2017 | 4048/01 | Sec 4E/5NA |
|-------------------------------------------|---------|------------|
| Name:(                                    | )       | Class:     |

In the figure, the vertices of triangle ABC and triangle PQR touch the circumference of the circle.

Given that angle  $CAB = 50^{\circ}$ , angle  $ABC = 70^{\circ}$  and angle  $BCA = 60^{\circ}$  and AP, BR and CQ are angle bisectors of angle CAB, angle ABC and angle BCA respectively, find the values of angles RPQ, PQR and PRQ.

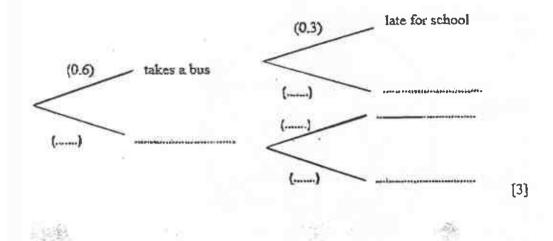


Answer angle 
$$RPQ = ...$$
 [2]  
angle  $PQR = ...$  [1]  
angle  $PRQ = ...$  [1]

| CHIJ Kato | na Conve | nt Preliminry | Exam | 2017 |
|-----------|----------|---------------|------|------|
|-----------|----------|---------------|------|------|

4048/01

Sec 4E/5NA


16 The probability that Katie takes a bus is 0.6.

If she takes a bus, the probability that she is late for school is 0.3.

If she does not take a bus, the probability that she is late for school is 0.2.

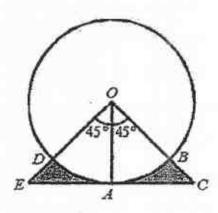
(a) Complete the probability tree given below

Answer



(b) Calculate the probability that Katie is not late to school.

Answer [2]


Name: \_\_\_\_\_(

Class: \_\_\_\_

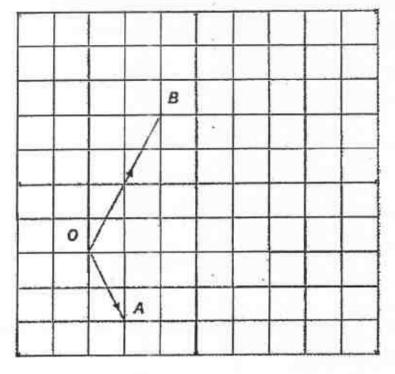
In the diagram, the circle, centre O, passes through D, A and B.

The tangent at A meets OB produced at C and OD produced at E.

The radius of the circle is 4 cm and angle AOB = angle AOE = 45°.



(a) The area of the shaded region can be expressed as (a-bπ) cm², where
 a and b are constants.
 Find the values of a and b.


Answer 
$$a =$$
 [2]

(b) The perimeter of the shaded region can be expressed as  $(p\pi + 2\sqrt{q})$  cm. Find the values of p and q.

Answer 
$$p = \dots$$
 [2]

$$q =$$
 [2]

18 Vectors  $\overline{OB}$  and  $\overline{OA}$  are drawn below.



Given that 
$$\overrightarrow{OP} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
.

(a) (i) locate point P on the grid, mark it with a cross X and label it,

[11

(ii) express  $\overrightarrow{OP}$  in terms of  $\overrightarrow{OB}$  and/or  $\overrightarrow{OA}$ .

Answer 
$$\overline{OP} =$$
 [1]

- (b) OBQA is a parallelogram.
  - (i) locate point Q on the grid, mark it with a cross X and label it,

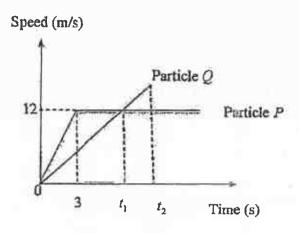
[1]

(ii) find the column vector representing  $\overline{OQ}$ .

Answer 
$$\overline{QQ} =$$
 [1]

19 The diagram shows the speed-time graphs of two particles P and Q. Both particles

CHIJ Katong Convent Preliminary Exam 2017


4048/01

Sec 4E/5NA

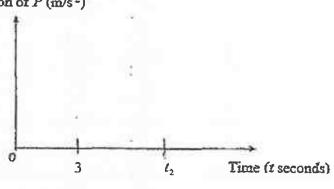
Name: \_\_\_\_\_( )

Class:

P and Q start from rest. P accelerates uniformly for 3 seconds until it reaches a speed of 12 m/s. It then continues to travel at this constant speed. Q starts from the same point as P but accelerates from rest at a constant rate of 3 m/s<sup>2</sup>.



(a) Write down the value of  $t_1$ , where the speeds P and Q are the same.


Answer  $t_1 = \dots$  [1]

(b) Given that Q overtakes  $P t_2$  seconds after the start of the motion, find the value of  $t_2$ 

Answer  $t_2 = \dots$  [3]

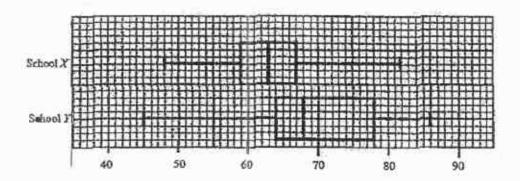
(c) In the answer space below, sketch the acceleration-time graph of P for  $0 \le t \le t_2$ .

Acceleration of P (m/s<sup>2</sup>)



20 All the students from 2 schools X and Y took the same examination paper.

Turn over


[1]

| CHIJ Katong | Convent | Preliminry | Exam | 2017 |
|-------------|---------|------------|------|------|

4048/01

Sec 4E/5NA

The box-and -whisker diagram below shows the results for the two schools.



(a) State, with a reason, which school achieved a better result.

| Answer | <br>*** *** *** *** *** *** *** *** *** *** *** |
|--------|-------------------------------------------------|
|        | <br>******                                      |
|        | <br>                                            |

(b) State, with a reason, which school has a more uniformly-distributed mark.

| Answer |     |
|--------|-----|
|        |     |
|        | [1] |

21 The numbers in the Number Triangle are consecutive even numbers.

# Free Tuition Listing @ 99Tutors.SG CHIJ Katong Convent Preliminary Exam 2017 4048/0

Sec 4E/5NA

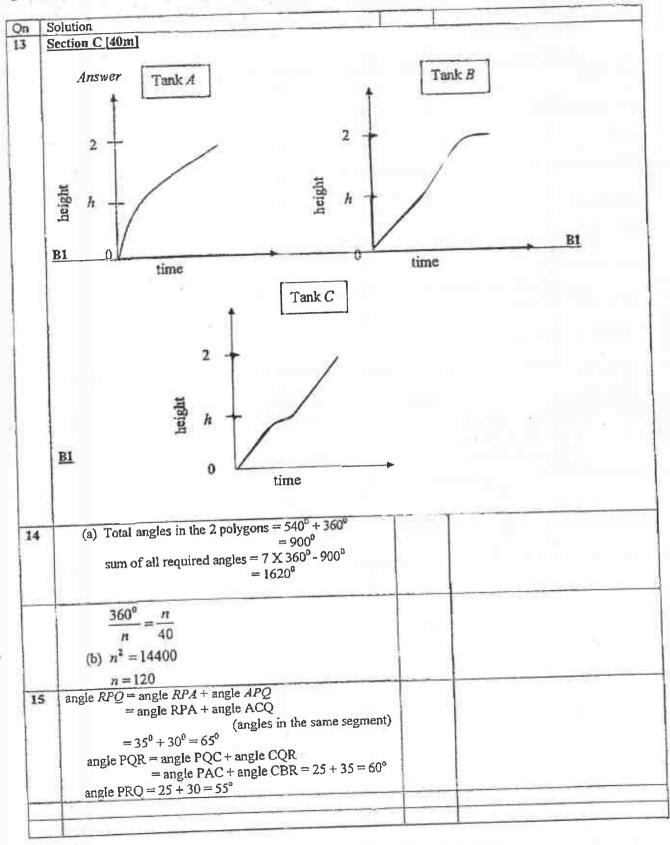
| Name | 9: | ( | ) |  | ( | Class: |   |
|------|----|---|---|--|---|--------|---|
|      |    |   |   |  |   | -      | _ |

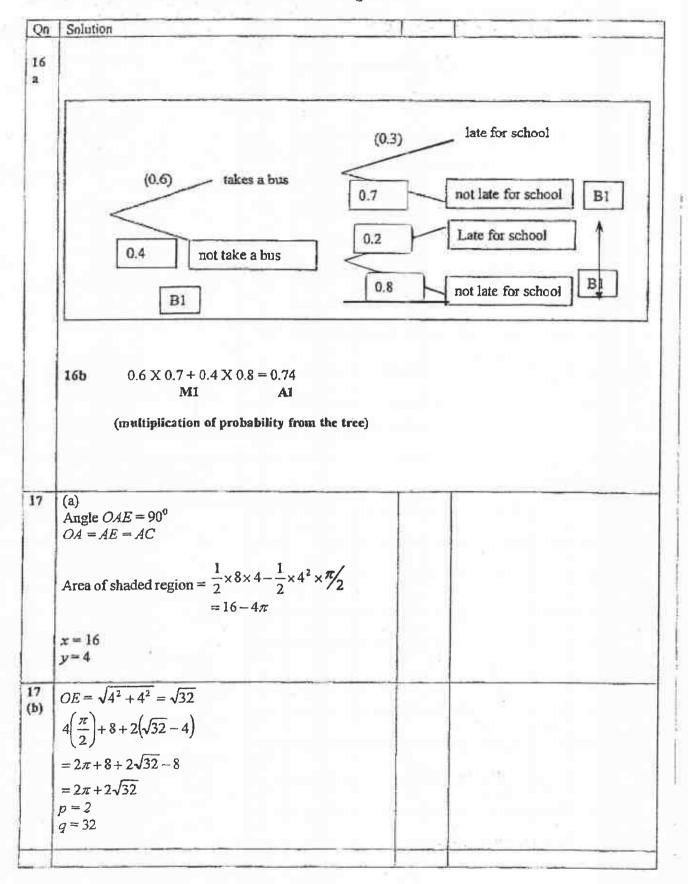
| Row | Number Triangle   | Sum of row (R) | No. of even<br>numbers<br>(E) | Average of Row (A) |
|-----|-------------------|----------------|-------------------------------|--------------------|
| 1   | 2                 | 2              | 1                             | 2                  |
| 2   | 4 6               | 10             | 2                             | 5                  |
| 3   | 8 10 12           | 30             | 3                             | 10                 |
| 4   | 14 16 18 20       | 68             | 4                             | p                  |
| 5   | 22 24 26 28 30    | 130            | 5                             | 26                 |
| 6   | 32 34 36 38 40 42 | q              | 6                             | 37                 |

| (a) | Find | the  | values | of D | and      | a  |
|-----|------|------|--------|------|----------|----|
| (4) | Lind | (170 | 101003 | OI P | CLL A CO | 4. |

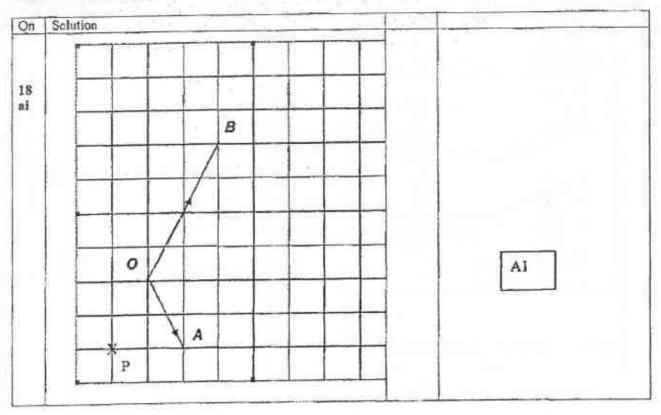
- (b) Write down a formula connecting A and E.
- Answer [1] (c) Write down a formula connecting R and E.

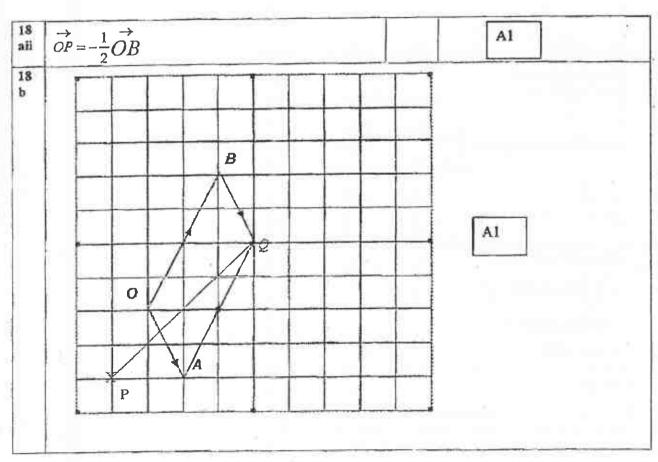
Justify, with reason why the number 6400 could not appear in the column A.


End of Paper


| Qn | Solution                                                                                                                                                                                                                                          |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1a | Section A $ \frac{x+1}{x^2-9} \frac{2}{3-x} = \frac{x+1}{(x-3)(x+3)} + \frac{2}{x-3} $ $ = \frac{x+1+2(x+3)}{(x-3)(x+3)} $ $ = \frac{3x+7}{(x+3)(x-3)} $                                                                                          |  |
| 16 | $\frac{(abc^{-2})^3}{(a^{-4}b^{-1})^{-1}} \times \frac{a^{-6}b^{-7}}{(bc^2)^{-4}} = \frac{a^3b^3c^{-6}}{a^4b^1} \times \frac{a^{-6}b^{-7}}{b^{-4}c^{-8}}$ $= \frac{a^{-3}b^{-4}c^{-6}}{a^4b^{-3}c^{-8}}$ $= a^{-7}b^{-1}c^2$ $= \frac{c^2}{a^7b}$ |  |
|    | $\frac{k}{3} \sqrt{\frac{A-3b^2}{cA}}$ $\frac{k^2}{9} = \frac{A-3b^2}{cA}$ $k^2cA = 9A - 27b^2$ $A(k^2c-9) = -27b^2$ $A = \frac{27b^2}{9-k^2c}$ OR $A = \frac{-27b^2}{(ck^2-9)}$                                                                  |  |
|    | (a) $9xy(2x+3-y^2)$<br>(b) $3(3a-2b)(3a+2b)$<br>(c) $(r-1)(3s-1)$                                                                                                                                                                                 |  |

2017 4E/5N PI E Mathematics Prelim Marking Scheme


| Qn | Solution                                                                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 4  | (a) 8<br>(b) -24<br>(c) 0                                                                                             |
| 5  | Bus 801 Bus 802  3 15 25 5 5 25 5 1 1  LCM is 75 5 hours = 300 mins  300 75 = 4 times  (a) HCF of 150, 90, 180 is 30m |
|    | (b) 6 lamp posts  6 lamp posts  4 lamp posts  7 lamp posts  6 - 6 + 4 + 4 + 7 = 27 lamp posts                         |
|    | Double counting answer 27 – 5 = 22 lamp posts                                                                         |
|    |                                                                                                                       |


| Qn  | Solution                                                                                                                                   |                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 7   | $A = 2^m \times 2^2 \times 3^n$                                                                                                            | <del>                                     </del> |
|     | $B = 2^m \times 3^m \times 3 \times 5$                                                                                                     |                                                  |
|     | V v                                                                                                                                        |                                                  |
| 8   | $LCM = 2^{m+2} \times 3^{m+1} \times 5$                                                                                                    |                                                  |
| 8   | x=2-2y                                                                                                                                     |                                                  |
|     | $\frac{1}{4}(2-2y) = 11 + 3y$                                                                                                              |                                                  |
|     |                                                                                                                                            |                                                  |
|     | y=-3                                                                                                                                       |                                                  |
| 9   | x = 8 (a)                                                                                                                                  |                                                  |
|     | H109                                                                                                                                       |                                                  |
|     | $\frac{1}{2} \times 4 \times h = 16$                                                                                                       |                                                  |
|     | h=8                                                                                                                                        |                                                  |
| - 1 | a) : ((a) 8 4                                                                                                                              | 1                                                |
| - 1 | $(b)\sin \angle ACD = \frac{10}{10} = \frac{1}{5}$                                                                                         | 1                                                |
|     | (b) $\sin \angle ACD = \frac{8}{10} = \frac{4}{5}$<br>(c) $XC = \sqrt{10^2 - 8^2} = 6$<br>$\cos \angle ACE = -\frac{6}{10} = -\frac{3}{5}$ |                                                  |
|     | 4466 6 3                                                                                                                                   |                                                  |
|     | $\cos ZACE = \frac{10}{10} = \frac{5}{5}$                                                                                                  |                                                  |
|     |                                                                                                                                            |                                                  |
| 10  | (a) 35 + b (b) 5 + a                                                                                                                       |                                                  |
| 11  | $\frac{\text{(b) } 5 + a}{1 \text{ cm}^2: 64 \times 10^8 \text{ cm}^2}$                                                                    |                                                  |
|     | Map 1 3 cm 2: 192 X 10 8 cm <sup>2</sup><br>Map 2 12 cm <sup>2</sup> : 192 X 108 cm <sup>2</sup>                                           |                                                  |
|     | 1 cm <sup>2</sup> : 16 X 10 <sup>8</sup> cm <sup>2</sup>                                                                                   |                                                  |
| _   | 1: 40000                                                                                                                                   | The provides                                     |
| 12  | ( 3.2)24                                                                                                                                   |                                                  |
|     | Amount = \$36000 $\left(1 + \frac{3.2}{4}\right)^{24}$ = \$43586.83                                                                        |                                                  |
| - 1 | 100                                                                                                                                        |                                                  |
| -   |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
| Ì   |                                                                                                                                            | 34                                               |
| - 1 |                                                                                                                                            |                                                  |
| - 1 |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
| 1   |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |
|     |                                                                                                                                            |                                                  |





2017 4E/5N P1 E Mathematics Prelim Marking Scheme





2017 4E/5N P1 E Mathematics Prelim Marking Scheme

|    | 18bii $\overrightarrow{PQ} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ A1                                                                                                    |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 19 | (a) 4s<br>(b) $\frac{1}{2} \times T_2 \times 3T_2 = \frac{1}{2} \times 3 \times 12 + 12(T_2 - 3)$                                                                        |  |
|    | $T_2^2 - 8T_2 + 12 = 0$<br>$(T_2 - 6)(T_2 - 2) = 0$<br>$T_2 = 6$<br>(c) Acceleration of $P$ (m/s <sup>2</sup> )                                                          |  |
|    | 4 (m/s )                                                                                                                                                                 |  |
|    | O 3 T2 Time (t seconds)                                                                                                                                                  |  |
| 20 | (a) Sch X achieved better results because it has a higher median of 68 as compared to 63 for X.                                                                          |  |
|    | (b) Sch X is more uniform because of a smaller interquartile range of 8 as compared to 14 for Y.                                                                         |  |
| 1  | a. $p = 17$<br>q = 222<br>b. $A = E^2 + 1$<br>c. $R = E^3 + E$<br>d. $6400 = 80^2$ , a perfect square number, but the number in column A are not perfect square numbers. |  |

Answer all the questions.

#### Section A [30 marks]

1 (a) Expand and simplify 
$$(4x-1)^2 - (8x+1)(2x-1)$$
. [2]

(b) Express 
$$\frac{4x^2-9}{x^2+x-20} = \frac{4x^2-6x}{16-x^2}$$
 as a fraction in its lowest term. [3]

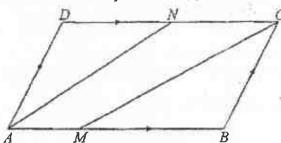
(c) Solve the equation 
$$\frac{x}{3} - \frac{2x-1}{x-3} = -2$$
, leaving your answer correct to 3 decimal places. [3]

(d) 
$$y$$
 is directly proportional to  $x^2$ .  
It is known that  $y = 144$  for a particular value of  $x$ . [3]  
Find the percentage change in  $y$  when the value of  $x$  decreases by 25%.

2 During a school's sports day, the number of first, second and third positions won by the different houses are given in the table below.
The number of points won for individual and group events are also given in the table.

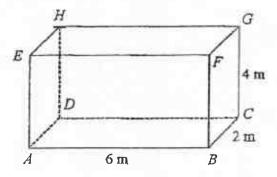
| Houses | I     | ndividual even | ts    |       | Group events |       |
|--------|-------|----------------|-------|-------|--------------|-------|
|        | First | Second         | Third | First | Second       | Third |
| Blue   | 7     | 5              | 4     | 3     | 2            | 0     |
| Green  | 5     | 4              | 6     | 1     | 2            | 1     |
| Red    | 4     | 5              | 5     | 1     | 2            | 2     |
| Yellow | 4     | 6              | 5     | 1     | 0            | 3     |
| Points | 5     | 3              | 1     | 10    | 6            | 2     |

(a) It is given that 
$$A = \begin{pmatrix} 7 & 5 & 4 \\ 5 & 4 & 6 \\ 4 & 5 & 5 \\ 4 & 6 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$ , evaluate the matrix  $P = AB$ . [2]


(b) Given matrix 
$$C = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$
.

- Represent the group event scoring system in a 3×1 matrix D.
- (ii) Evaluate the matrix Q = CD and explain what do the elements of Q represent. [2]
- (c) The scores of individual events and group events are added for each house.

  Using matrix manipulation, determine which house won the overall championship.


  [2]

3 ABCD is a parallelogram. N is the midpoint of DC and M is the point on AB such that 2AM = MB.



Given that  $\overline{AB} = 6a$  and  $\overline{AD} = 4b$ ,

- (a) Express as simply as possible, in terms of a and/or b.
  - (i)  $\overline{AM}$
  - (ii)  $\overline{MC}$
  - (iii)  $\overline{AN}$
- (b) Find the numerical value of
  - (i)  $\frac{\text{area of triangle } ADN}{\text{area of parallelogram } ABCD},$  [1]
  - (ii)  $\frac{\text{area of triangle }ADN}{\text{area of triangle }AMN}$  [2]
- The diagram shows a rectangular cuboid ABCDEFGH. AB = 6 m, BC = 2 m and CG = 4 m.



- (a) Show that angle  $HBD = 32.3^{\circ}$ , correct to 1 decimal place. [2]
- (b) Calculate angle AFC. [3]
- (c) Calculate the greatest angle of elevation of the point H when viewed from the line AB. [1]

CHIJ Katong Convent Preliminary Exam 2017

4048/02

Sec 4E/5N

#### Section B [70 marks] Please begin Ouestion 5 on a NEW sheet of paper

Chloe has a total of 126 marks in x tests. 5 (a) In the next two tests, she scored 9 marks and 8 marks respectively.

Find, in terms of x, her mean mark for the

(i) first x tests,

[1]

(x+2) tests.

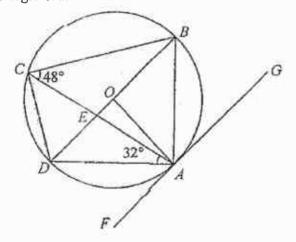
[1]

Her mean mark for the first x tests was one greater than her mean mark for the (x+2) tests.

(iii) write an equation in x to represent this information and show that it reduces to  $x^2 + 19x - 252 = 0$ .

[3]

(iv) Solve the equation to find the number of tests Chloe took initially.


[3]

Amanda has a mean of 13.5 marks for the first (x + 1) tests, but her mark on the last test gave her a mean of 14 marks for the (x + 2) tests.

Calculate the number of marks Amanda scored in the last test.

[2]

In the diagram, O is the centre of the circle through A, B, C and D. FG is the tangent to the circle at A. AC intersects BD at E. Angle  $ACB = 48^{\circ}$  and angle  $CAD = 32^{\circ}$ .



- Calculate the following angles, stating your reasons clearly.
  - Angle ABO (i)

[2]

Angle CDA (ii)

[2]

Angle GAB (iii)

[2]

Explain why BD is not parallel to GF.

[2]

#### CHIJ Katong Convent Preliminary Exam 2017

4048/02

Sec 4E/5N

7 (a) The frequency table shows the weekly expenditure on food of *n* students from School *X*.

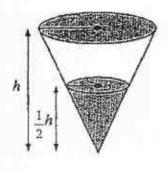
| Weekly expenditure (\$x) | Frequency |
|--------------------------|-----------|
| $30 < x \le 40$          | 8         |
| 40 < x ≤ 50              | 17        |
| $50 < x \le 60$          | 34        |
| $60 < x \le 70$          | p         |
| $70 < x \le 80$          | 3         |

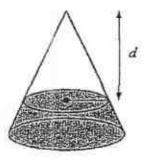
- (i) If  $\frac{5}{16}$  of the *n* students have a weekly expenditure of at most \$50, show that the value of *p* is 18.
- (ii) Calculate an estimate of
  - (a) the mean weekly expenditure on food,

[1]

[2]

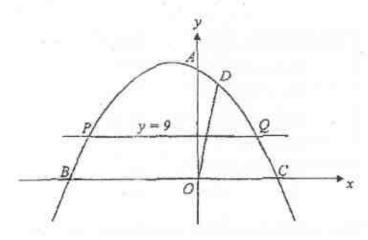
(b) the standard deviation.


[1]


(iii) The standard deviation of the weekly expenditure on food of students from School Y was \$5.62.

Using this information, comment on one difference between the two distributions.

[1]


(b) The diagram shows an inverted cone of height h and radius r. It contains water to a depth of  $\frac{1}{2}h$ .





- (i) Find the ratio of area of surface B to area of surface A. [1]
- (ii) Find the volume of the water if the cone can hold 480 cm<sup>3</sup> of water when full. [2]
- (iii) The cone is now inverted such that the liquid rests on the flat circular base of the cone, as shown in the diagram on the right.
  Find, in terms of h, an expression for d, the vertical distance of the liquid surface from the tip of the cone.

8 The diagram shows the curve y = (4 - x)(x + k), where k is a constant. The curve cuts the y-axis at the point A(0, 24), and the x-axis at B and C.



(a) Show that the value of k is 6.

[1]

(b) Write down the coordinates of B and C.

[2]

(c) Find the coordinates of the maximum point on the curve.

[2]

(d) D(1, m) is a point on the given curve. Find the value of m and the equation of the line OD.

- [3]
- (e) The line y = 9 intersects the curve at P and Q. Find the coordinates of P and Q.
- [3]

9 A student needed to make a circular face mask for a school performing arts event. She took a circular sheet of radius 10 cm and removed two circles, each of radius 2.5 cm for two eyes and an isosceles triangle of base 2 cm and equal sides of 3 cm each for a nose, as shown in Diagram I.

The mouth is shown in the Diagram II.

It is formed by an arc, AXB, of a circle, centre O and radius 3 cm.

AYB is the arc of another circle with diameter, AB, 3 cm.

She painted the remaining area.



Diagram I

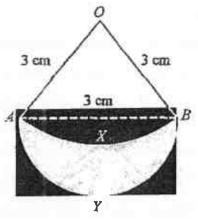



Diagram II

- (a) Calculate the area removed.
- (b) Calculate the area of mask that was painted.

[7]

[2]

CHIJ Katong Convent Preliminary Exam 2017

4048/02

Sec 4E/5N

#### 10 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation  $y=5-\frac{x^2}{10}-\frac{4}{x}$ . Some corresponding values are given in the following table.

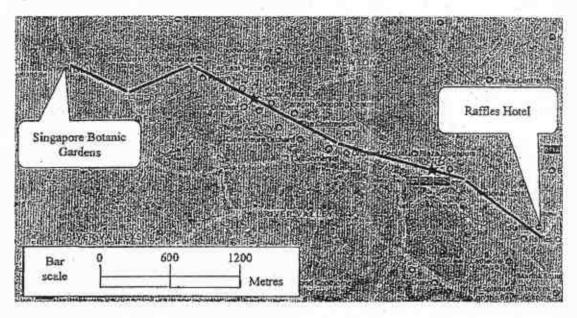
| x | 0.5  | 0.7  | f   | 2   | 3   | 4 | 5   | 6   | 7    | 8    |
|---|------|------|-----|-----|-----|---|-----|-----|------|------|
| y | -3.0 | -0.8 | 0.9 | 2.6 | 2.8 | k | 1.7 | 0.7 | -0.5 | -1.9 |

(a) Calculate the value of k.

[1]

- (b) Taking 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for  $0 \le x \le 8$  and a vertical y-axis for  $-3 \le y \le 3$ , draw the graph of  $y = 5 \frac{x^2}{10} \frac{4}{x}$  for the values of x in the range  $0.5 \le x \le 8$ . [3]
- (c) Use your graph to find the greatest value of  $5 \frac{x^2}{10} \frac{4}{x}$  in the interval  $0.5 \le x \le 8$ . [1]
- (d) By drawing a tangent, find the gradient of the graph at the point where x = 2. [2]
- (e) Use your graph to solve  $5 \frac{x^2}{10} \frac{4}{x} = 2$  in the range  $0.5 \le x \le 8$ . [3]
- (f) By drawing a suitable straight line, find the range of values of x in the interval  $0.5 \le x \le 8$  for which  $5 \frac{x^2}{10} \frac{4}{x} \ge x$ . [2]

4048/02


Sec 4E/5N

11 Cheryl works at the Singapore Botanic Gardens.

She needs to rush down to meet a client at Raffles Hotel.

The quickest route from Cheryl's location to Raffles Hotel is indicated on the map with black solid lines.

The bar scale on the lower left corner of the map provides the corresponding actual ground distance.



- (a) Calculate the actual travelling distance, in kilometres, between Cheryl's location and Raffles Hotel, giving your answer correct to 2 significant figures. [2]
- (b) At 6.14 pm, Cheryl decided to call for a ride from Singapore Botanic Gardens to Raffles Hotel.

Information about FastDel Cab and Aber services and other travelling details are on the opposite page.

Along the way, there are two ERP gantries, indicated by A and B with a star each on the map.

Determine which service Cheryl should choose. Justify your answer with relevant working.

[7]

| From                      | To                 | Duration  |
|---------------------------|--------------------|-----------|
| Singapore Botanic Gardens | Orchard ERP (A)    | 6 minutes |
| Orchard ERP               | Handy Road ERP (B) | 5 minutes |
| Handy Road ERP            | Raffles Hotel      | 4 minutes |

| Orchard (A)         |        | Handy Road Gantry (B) |        |
|---------------------|--------|-----------------------|--------|
| 12.00 pm - 5.29 pm  | \$0.50 | 12.00 pm — 12.04 pm   | \$0.50 |
| 5.30 pm – 5.34 pm   | \$1.00 | 12.05 pm – 1.59 pm    | \$1.00 |
| 5.35 pm - 5.59 pm   | \$1.50 | 2.00 pm - 2.04 pm     | \$1.50 |
| 6.00 pm - 6.54 pm   | \$2.00 | 2.05  pm - 2.54  pm   | \$2.00 |
| 6.55 pm – 6.59 pm   | \$1.50 | 2.55 pm - 2.59 pm     | \$1.50 |
| 7.00 pm - 7.59 pm   | \$1.00 | 3.00  pm - 5.29  pm   | \$1.00 |
| 7.00 p.m. 7.00 p.m. |        | 5.30 pm - 5.59 pm     | \$0.50 |
|                     |        | 6.00 pm - 7.54 pm     | \$1.00 |
|                     |        | 7.55  pm - 7.59  pm   | \$0.50 |

| <b>FastDel</b> | Cah        | Service   |  |
|----------------|------------|-----------|--|
| R 381 1 1 P E  | W . 34 H H | API VILLE |  |

| Sunday 6.00 pm 11.59 pm<br>lidays:    |
|---------------------------------------|
|                                       |
| Sunday 6.00 pm — I 1.59 pm<br>lidays: |
|                                       |

top of metered fare

| Aber Service                   |                     |  |
|--------------------------------|---------------------|--|
| Base Fare                      | \$3.00              |  |
| Travelling time per minute     | \$0.20              |  |
| Travelling distance per km     | \$0,45              |  |
| 6 nm to 8 pm neak period surge | 2.5× of normal fare |  |

End of Paper

### 4E5N Mathematics Preliminary Exam 2017 (Paper 2)

#### Section A

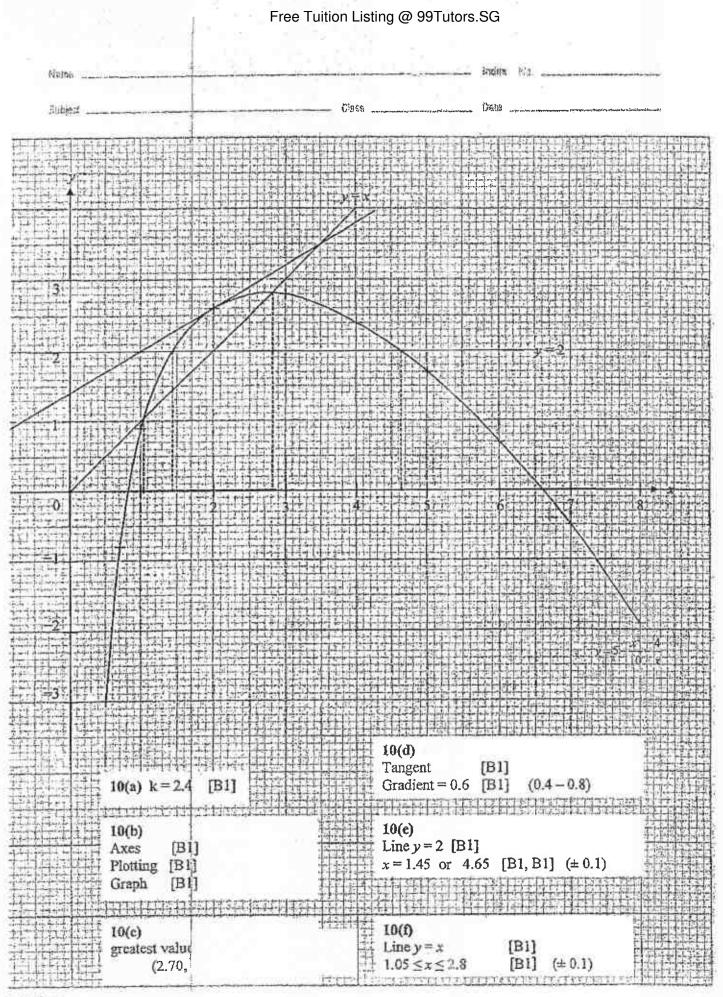
| 1(a) | $(4x-1)^2 - (8x+1)(2x-1)$                                            | 1   |
|------|----------------------------------------------------------------------|-----|
|      | $=16x^2-8x+1-(16x^2-6x-1)$                                           |     |
|      | $=16x^2-8x+1-16x^2+6x+1$                                             |     |
|      | =-2x+2                                                               |     |
|      |                                                                      |     |
| 1(b) | $\frac{(4x^2-9)}{(x^2+x-20)} = \frac{(4x^2-6x)}{(16-x^2)}$           |     |
|      |                                                                      |     |
|      | $=\frac{(2x-3)(2x+3)}{(x+5)(x-4)} \div \frac{2x(2x-3)}{-(x-4)(x+4)}$ |     |
|      |                                                                      |     |
|      | $=\frac{(2x-3)(2x+3)}{(x+5)(x-4)}\times\frac{-(x-4)(x+4)}{2x(2x-3)}$ |     |
|      | 24                                                                   |     |
|      | $=\frac{-(2x+3)(x+4)}{2x(x+5)}$                                      |     |
|      | 2x(x+5)                                                              |     |
| 1(c) | $\frac{x}{3} - \frac{2x-1}{x-3} = -2$                                |     |
|      | 2 2 2                                                                |     |
|      | $\frac{x(x-3)-3(2x-1)}{3(x-3)} = -2$                                 |     |
|      |                                                                      |     |
|      | $x^2 - 3x - 6x + 3 = -6(x - 3)$                                      |     |
|      | $x^2 - 9x + 3 = -6x + 18$                                            | 1   |
|      | $x^2 - 3x - 15 = 0$                                                  |     |
|      | $x = \frac{-(3) \pm \sqrt{(-3)^2 - 4(1)(-15)}}{2(1)}$                |     |
|      | 2(1)                                                                 |     |
|      | =5.653 or -2.653                                                     |     |
| 1(d) | $y = kx^2$                                                           |     |
|      | $144 = k\alpha^2$                                                    |     |
|      | O is in I well we                                                    |     |
|      | Original value: x New value: 0.75x                                   |     |
|      |                                                                      |     |
|      | $Y = kX^2$                                                           |     |
|      | $Y = k(0.75x)^2$                                                     |     |
|      | $=0.5625k\alpha^2$                                                   |     |
|      | =0.5625(144)                                                         |     |
|      | =81                                                                  | 1 . |
|      | Percentage change = $\frac{81-144}{144} \times 100$                  |     |
|      | Percentage change — 144                                              |     |
|      | =-43.75%                                                             | Į.  |

| 2(a)   | $P = \begin{pmatrix} 7 & 5 & 4 \\ 5 & 4 & 6 \\ 4 & 5 & 5 \\ 4 & 6 & 5 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 54 \\ 43 \\ 40 \\ 43 \end{pmatrix}$ $= \begin{pmatrix} 43 \\ 43 \\ 40 \\ 43 \end{pmatrix}$                                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2(bi)  | $D = \begin{pmatrix} 10 \\ 6 \\ 2 \end{pmatrix}$                                                                                                                                                                                                                                  |
| 2(bii) | $Q = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 10 \\ 6 \\ 2 \end{pmatrix}$ $= \begin{pmatrix} 42 \\ 24 \\ 26 \\ 16 \end{pmatrix}$ The elements of Q represent the total score from group events for each house respectively. |
| 2(c)   | Total score = $\begin{pmatrix} 54 \\ 43 \\ 40 \\ 43 \end{pmatrix} + \begin{pmatrix} 42 \\ 24 \\ 26 \\ 16 \end{pmatrix}$ $= \begin{pmatrix} 96 \\ 67 \\ 66 \\ 59 \end{pmatrix}$ Blue house won overall championship.                                                               |

| 3(ai)   | 2AM = MB                                                                                               |  |
|---------|--------------------------------------------------------------------------------------------------------|--|
|         | $\frac{AM}{AM} = \frac{1}{1}$                                                                          |  |
|         | $\overline{MB} = \overline{2}$                                                                         |  |
|         | $\overline{AM} = \stackrel{\downarrow}{1} \overline{AB}$                                               |  |
|         | $AM = \frac{1}{3}$                                                                                     |  |
|         | $=\frac{1}{2}(6a)$                                                                                     |  |
|         | = Ža                                                                                                   |  |
| 3(aii)  | $\overline{MC} = \overline{MB} + \overline{BC}$                                                        |  |
|         | $=\frac{2}{3}(6a)+4b$                                                                                  |  |
|         | = 4a + 4b                                                                                              |  |
| 3(aiii) | $\overline{DN} = \frac{1}{2}\overline{DC}$                                                             |  |
|         | 2<br>= 3a                                                                                              |  |
|         |                                                                                                        |  |
|         | $\overline{AN} = \overline{AD} + \overline{DN}$                                                        |  |
|         | = 3a + 4b                                                                                              |  |
| 3(bi)   | area of triangle $ADN$ $\frac{1}{2}(h)(DN)$                                                            |  |
|         | $\frac{\text{area of triangle } ADN}{\text{area o parallelogram } ABCD} = \frac{2^{(h)(DN)}}{(h)(DC)}$ |  |
|         | $\frac{1}{2}(DN)$                                                                                      |  |
|         | $=\frac{2}{(DC)}$                                                                                      |  |
|         | $=\frac{1}{2}\times\frac{1}{2}$                                                                        |  |
|         | $=\frac{1}{2}\times\frac{1}{2}$                                                                        |  |
|         | $-\frac{1}{4}$                                                                                         |  |
| 3(bii)  | area of triangle ADN = DN                                                                              |  |
|         | area of triangle AMN AM                                                                                |  |
|         | $\frac{1}{2}(DC)$                                                                                      |  |
|         | $=\frac{2}{\frac{1}{3}(DC)}$                                                                           |  |
|         | 3                                                                                                      |  |
|         | ± <del>2</del> 2                                                                                       |  |
|         |                                                                                                        |  |
|         | J                                                                                                      |  |

| l(a) | $DB^2 = 6^2 + 2^2$                                                      |  |
|------|-------------------------------------------------------------------------|--|
|      | =40                                                                     |  |
|      | $DB = \sqrt{40}$                                                        |  |
|      | = 6.3245                                                                |  |
|      | $\tan \angle HBD = \frac{4}{\sqrt{40}}$                                 |  |
|      | $\angle HBD = \tan^{-1}\left(\frac{4}{\sqrt{40}}\right)$                |  |
|      | =32.311°                                                                |  |
|      | =32.3° (1 d.p.)                                                         |  |
| l(b) | $AF^2 = 6^2 + 4^2 \qquad FC^2 = 2^2 + 4^2$                              |  |
|      | = 52 = 20                                                               |  |
|      | $AF = \sqrt{52} \qquad FC = \sqrt{20}$                                  |  |
|      | =7.2111 = 4.4721                                                        |  |
|      | AC = DB                                                                 |  |
|      | $=\sqrt{40}$                                                            |  |
|      | =6.3245                                                                 |  |
|      | $AC^2 = AF^2 + FC^2 - 2(AF)(FC)\cos\angle AFC$                          |  |
|      | $\cos \angle AFC = \frac{AF^2 + FC^2 - AC^2}{2(AF)(FC)}$                |  |
|      | $=\frac{52+20-40}{2(\sqrt{52})(\sqrt{20})}$                             |  |
|      | $\angle AFC = \cos^{-1}\left(\frac{32}{2(\sqrt{52})(\sqrt{20})}\right)$ |  |
|      | = 60.255°                                                               |  |
|      | $=60.3^{\circ}$ (I d.p.)                                                |  |
| 4(c) | $\tan \angle HAD = \frac{4}{2}$                                         |  |
|      | $\angle HAD = \tan^{-1}(2)$                                             |  |
| Ç4   | = 63.434°                                                               |  |
|      | $=63.4^{\circ}$ (1 d.p.)                                                |  |
|      | greatest angle of elevation is 63.4°                                    |  |

| 5(a)  | Mean mark for first x tests = $\frac{126}{x}$                                                                                                                                                                                                                                                                       |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5(b)  | Mean mark for first (x+2) tests = $\frac{126+9+8}{x+2}$ $= \frac{143}{x+2}$                                                                                                                                                                                                                                         |  |
| 5(c)  | $\frac{126}{x} - \frac{143}{x+2} = 1$ $\frac{126(x+2) - 143x}{x(x+2)} = 1$ $126x + 252 - 143x = x^2 + 2x$ $252 - 17x = x^2 + 2x$ $x^2 + 19x - 252 = 0  \text{(shown)}$                                                                                                                                              |  |
| 5(d)  | $x^{2}+19x-252=0$ $(x-9)(x+28)=0$ $x=9 \text{ or } -28 \text{ (reject)}$ $\therefore \text{ Chloe took 9 tests initially.}$                                                                                                                                                                                         |  |
| 5(e)  | Number of marks Amanda scored in the last test $= 14(x+2)-13.5(x+1)$ $= 14(11)-13.5(10)$ $= 19$                                                                                                                                                                                                                     |  |
| S(ai) | ∠BDA = 48° (angles in the same segment) ∠ABO = 90° - 48° (right angle triangle in semicircle) = 42°  OR ∠DCE = 90° - 48° (right angle triangle in semicircle) = 42° ∠ABO = 42° (angles in the same segment)  OR ∠AOB = 48° × 2 = 96° (angle at centre is twice angle at circumference) 12° (isosceles triangle AOB) |  |


|         | Tree rulion Listing @ 99 rulois.50                                                                                                                                                                                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(aii)  | $\angle DCE = 42^{\circ}$ (angles in the same segment)<br>$\angle CDA = 180^{\circ} - 42^{\circ} - 32^{\circ}$ (sum of angles in triangle)<br>$= 106^{\circ}$<br>OR<br>$\angle CBD = 32^{\circ}$ (angles in the same segment)<br>(angles in opposite segement are supplementary)<br>$\angle CDA = 180^{\circ} - 32^{\circ} - 42^{\circ}$ |
| 6(aiii) | $= 106^{\circ}$ $\angle OAB = 42^{\circ} \text{ (base angles of isosceles triangle)}$ $\angle OAG = 90^{\circ} \text{ (tangent perpendicular to radius)}$ $\angle GAB = 90^{\circ} - 42^{\circ}$ $= 48^{\circ}$ OR $\angle GAB = 48^{\circ} \text{ (alternate segment theorem)}$                                                         |
| 6(b)    | Since $\angle OBA \neq \angle GAB$ , it does not satisfy the property of alternate angles with a set of parallel line. Hence, BD is not parallel to GF  OR  If BD is parallel to GF, $\angle OBA = \angle GAB$ , based on alternate angles.  Since $\angle OBA \neq \angle GAB$ , BD is not parallel to GF.                              |
| 7(ai)   | $\frac{5}{16} - 8 + 17 = 25 \text{ students}$ $\therefore 8 + 17 + 34 + p + 3 = \frac{25}{5} \times 16$ $62 + p = 80$ $p = 18 \text{ (shown)}$                                                                                                                                                                                           |
| 7(aiia) | Mean = $\frac{\sum fx}{\sum f}$<br>= \$53.875<br>= \$53.88 (2 d.p.)                                                                                                                                                                                                                                                                      |
| 7(aiib) | Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$<br>= 9.8734<br>= 9.87 (3 s.f.)                                                                                                                                                                                                            |

| 7(aiii) | The weekly expenditure on food for School X has a wider spread (less consistent) than that for School Y as the standard deviation for School X is greater than that of School Y.                                         |                                          |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| 7(bi)   | $\frac{\text{area of surface B}}{\text{area of surface A}} = \left(\frac{\frac{1}{2}h}{h}\right)^{1}$ $= \frac{1}{4}$                                                                                                    |                                          |  |
| 7(bii)  | Volume of water Volume of full cone = $\left(\frac{1}{2}\right)^3$ Volume of water = $\frac{1}{8}$ Volume of water = $\frac{1}{8} \times 480$ = $60 \text{ cm}^3$                                                        |                                          |  |
| 7(biii) | Remainder volume = $480 - 60 = 420 \text{ cm}^3$ Volume of empty part Volume of full cone $ \frac{420}{480} = \left(\frac{d}{h}\right)^3 $ $ \frac{d}{h} = \sqrt[3]{\frac{7}{8}} $ $ d = 0.95647h $ $ = 0.956h (3 s.f.)$ |                                          |  |
| 8(a)    | At $A(0, 24)$ ,<br>24 = (4-0)(0+k)<br>24 = 4k<br>k = 6                                                                                                                                                                   |                                          |  |
| 8(b)    | B(-6, 0)<br>C(4, 0)                                                                                                                                                                                                      | 3-11-11-11-11-11-11-11-11-11-11-11-11-11 |  |
| 8(c)    | Line of symmetry: $x = \frac{-6+4}{2} = -1$ At $x = -1$ , $-1+6$ )                                                                                                                                                       |                                          |  |
|         | ∴ Coordinate of maximum point = (-1, 25)                                                                                                                                                                                 |                                          |  |

| 8(d) | At $x = 1$ ,<br>m = (4-1)(1+6)                                                  |   |
|------|---------------------------------------------------------------------------------|---|
|      | m = (4-1)(1+3) $= 21$                                                           |   |
|      |                                                                                 |   |
|      | gradient = $\frac{21}{1}$                                                       |   |
|      | =21                                                                             |   |
|      | Equation of line: $y = 21x$                                                     |   |
|      |                                                                                 |   |
| 8(e) | Sub. $y = 9$ into equation of graph,                                            |   |
|      | $9 = (4-x)(x+6)$ $9 = -x^2 - 2x + 24$                                           |   |
|      | $x^2 + 2x - 15 = 0$                                                             |   |
|      | (x-3)(x+5)=0                                                                    |   |
|      | x=3 or $-5$                                                                     |   |
|      | P(-5, 9)                                                                        |   |
|      | Q(3, 9)                                                                         |   |
| 9(a) | Area of eyes = $2 \times \pi r^2$                                               | 1 |
|      | $=2\times(2.5)^2\pi$                                                            |   |
|      | $=12.5\pi$ cm <sup>2</sup>                                                      |   |
|      | For isosceles triangle,                                                         |   |
|      | $\cos \alpha = \frac{3^2 + 3^2 - 2^2}{3^2 + 3^2 - 3^2}$                         |   |
|      | 2(3)(3)                                                                         |   |
|      | $=\frac{14}{18}$                                                                |   |
|      |                                                                                 |   |
|      | $\alpha = \cos^{-1}\left(\frac{14}{18}\right)$                                  |   |
|      | = 38.942°                                                                       |   |
|      | Area of nose = $\frac{1}{2}$ (3)(3)sin 38.942°                                  |   |
|      | =2.8284 cm <sup>2</sup>                                                         |   |
|      | OR .                                                                            |   |
|      | $h = \sqrt{3^2 - 1^2} = \sqrt{8}$ $igle = \frac{1}{2} \times 2 \times \sqrt{8}$ |   |
|      | $gle = \frac{1}{2} \times 2 \times \sqrt{8}$                                    |   |
|      | $= 2.8284 \text{ cm}^2$                                                         |   |
|      |                                                                                 |   |

|      | Free Tuition Listing @ 99Tutors.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | For mouth, $\beta = 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | Area of semicircle = $\frac{1}{2}\pi(1.5)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | $= \frac{9}{8}\pi \cdot \text{cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | Area of sector = $\frac{60}{360} \pi (3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | $= \frac{3}{3}\pi  \text{cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | The state of the s |   |
|      | Area of triangle = $\frac{1}{2}$ (3)(3)sin 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|      | =3.89711 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | [ [n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |
|      | $h = \sqrt{3^2 - 1.5^2} = \sqrt{\frac{27}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | Area of triangle = $\frac{1}{2} \times 3 \times \sqrt{\frac{27}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      | $= 3.89711 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
|      | 9 (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      | Area of mouth = $\frac{9}{8}\pi - \left(\frac{3}{2}\pi - 3.89711\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | $= 2.71901 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | Total area removed = $12.5\pi + 2.8284 + 2.71901$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | = 44.8173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | $=44.8 \text{ cm}^2 (3 \text{ s.f.})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 0/b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 9(b) | Area of whole mask = $\pi r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|      | $= 100 \pi \text{ cm}^2$ Area of mask painted = $100\pi - 44.8173$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | = 269.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
|      | $= 269 \text{ cm}^2 (3 \text{ s.f.})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

| = 1.8 + 1.9 + 4.7 + 3.8 + 2.8<br>= 15 cm                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= \frac{15}{2} \times 600$ = 4500 m = 4.5 km                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FastDel service Base fare = \$3.20  400m thereafter or less: $\frac{3500 \text{ m}}{400 \text{ m}} = 8.75 \approx 9$ Normal fare = \$3.20+9×\$0.22 = \$5.18  Normal fare + peak surcharge = \$5.18 × 1.25 = \$6.475  Total metered fare = \$6.475 + booking + ERP = \$6.475 + \$3.30 + \$3.00 = \$12.775 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| =\$12.78 (2 d.p.)  Aber service  Base fare = \$3.00  Travelling time fare = \$0.20 × 15 = \$3.00  Distance fare = \$0.45 × 4.5 = \$2.025  Normal fare = \$3 + \$3 + \$2.025  =\$8.025  Total fare = \$8.025 × 2.5  =\$20.0625  =\$20.06 (2 d.p.)                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                          | Actual distance $= \frac{15}{2} \times 600$ $= 4500 \text{ m}$ $= 4.5 \text{ km}$ FastDel service Base fare = \$3.20 $400\text{m thereafter or less: } \frac{3500 \text{ m}}{400 \text{ m}} = 8.75 \approx 9$ Normal fare = \$3.20 + 9 \times \$0.22 $= $5.18$ Normal fare + peak surcharge = \$5.18 \times 1.25 $= $6.475$ Total metered fare = \$6.475 + booking + ERP $= $6.475 + $3.30 + $3.00$ $= $12.775$ $= $12.78 (2 d.p.)$ Aber service Base fare = \$0.20 \times 15 = \$3.00  Travelling time fare = \$0.20 \times 15 = \$3.00  Distance fare = \$0.45 \times 4.5 = \$2.025  Normal fare = \$3 + \$3 + \$2.025 $= $8.025$ Total fare = \$8.025 \times 2.5 $= $20.0625$ |



2017 4E EM Geylang Methodist Prelim Paper 1

GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

|   |       |                   | Answer                                           | all the questions.                                        |                                |
|---|-------|-------------------|--------------------------------------------------|-----------------------------------------------------------|--------------------------------|
| 1 | (a)   | Evaluate figures. | $\frac{\sqrt{239} - 17^2}{34.79^3 \times 13}, g$ | iving your answer correct to                              | 5 significant                  |
|   |       |                   |                                                  | Answer                                                    | [1]                            |
|   | (b)   | Simplify          | 5x-2(x+2).                                       |                                                           |                                |
|   |       |                   |                                                  | Answer                                                    | [1]                            |
| 2 | An e  | stimated nu       | nber of 36 000 pe                                | cople were present at a conc                              | ert.                           |
|   | (a)   | If the esti       | mated number we<br>ate the maximum               | as actually rounded off to 3 possible number of people    | significant at the concert.    |
|   |       | ět.               | 11 12                                            | Answer                                                    | [1]                            |
|   | (b)   | If the esti       | mated number wa<br>ate the minimum               | es actually rounded off to 2<br>possible number of people | significant<br>at the concert. |
|   |       |                   |                                                  | Answer                                                    | [1]                            |
| 3 | Facto | orise comple      | tely 6ax - 2bx +                                 | 9 <i>ay</i> — 3 <i>by</i> .                               |                                |
|   |       |                   |                                                  |                                                           |                                |
|   |       |                   |                                                  | Answer                                                    | [2]                            |
|   |       |                   |                                                  |                                                           | [Turn over 3                   |

GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

- The equation of a curve is  $y = x^2 + bx + c$  where b and c are constants.
  - (a) Given that (2, 0) is a point on the curve, show that  $b = -\frac{4+c}{2}$ .

    Answer

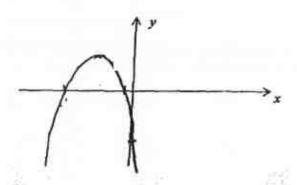
[2]

(b) If the y-intercept of the curve is 14, find the values of b and c.

Answer b = c = [2]

5 Triangle ABC is a right angled triangle. Given that AB = 13 cm and BC = 12 cm, find two possible lengths for the side AC.

Answer or cm [3]


GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

6 (a) Express  $-x^2 - 5x - 6$  in the form -(x+a)(x+b), where a and b are constants.

Answer [1]

(b) Hence sketch the curve of  $y = -x^2 - 5x - 6$ , indicating clearly the intercepts and turning point.

Answer



[3]

Write as a single fraction in its simplest form  $\frac{3x}{(x-2)^2} - \frac{2}{2-x}$ 

Answer [2]

Turn over 5

#### GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

| 8 | The number of apples, oranges and pears at a fruit stall is given by the ratio 2:3:7. |                                  |                                        |                                                 |                  |  |
|---|---------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------------|------------------|--|
|   | (a)                                                                                   | If there are 12 the fruit staff. | 26 pears at the fru                    | it stall, find the number                       | of apples at     |  |
|   |                                                                                       |                                  |                                        |                                                 |                  |  |
|   |                                                                                       |                                  |                                        | Answer                                          | [1]              |  |
|   | (b)                                                                                   |                                  | imber of oranges,<br>tion of papayas a | at the fruit stall is repla<br>the fruit stall. | ced by nar       |  |
|   |                                                                                       |                                  |                                        |                                                 |                  |  |
|   | - 9                                                                                   |                                  | JA.                                    | À                                               | 4                |  |
|   |                                                                                       |                                  |                                        | Answer                                          | [1]              |  |
| 9 | Some                                                                                  | e values of x a                  | and y are given in                     | n the table below.                              |                  |  |
|   | y                                                                                     | 8                                | 6 4                                    | 2                                               |                  |  |
|   | State                                                                                 | e whether x ar<br>this is so.    | nd y could be inv                      | direct pr inverse propo                         | won, and explain |  |
|   | Ans                                                                                   | wer                              |                                        | <del></del>                                     |                  |  |
|   |                                                                                       |                                  |                                        |                                                 | [2]              |  |
|   | 32                                                                                    |                                  | 1 0 1/0                                |                                                 |                  |  |

GMS(S)/EMnth/P1/Prelim2017/4E/5N/H41

10 Solve the following equations.

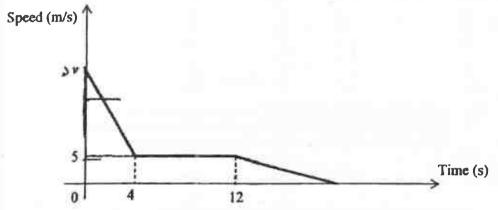
(a) 
$$5(x-4) = 4-2(3x+1)$$

Answer 
$$x = [2]$$

(b) 
$$\frac{3x+1}{5} = \frac{1}{x-2} + \frac{1}{x-2}$$

Answer x = [3]

| GMS(S)/EMath/P | 1/Prelim201 | 7/4E/5N/H4 |
|----------------|-------------|------------|
|----------------|-------------|------------|


| 11 | Facto         | orise the following.                   |                                                                         |     |
|----|---------------|----------------------------------------|-------------------------------------------------------------------------|-----|
|    | (a)           | $25x - 30x^2$                          |                                                                         |     |
|    | (b)           | $5x^2 + 13x - 6$                       | Answer                                                                  | [1] |
|    | (c)           | $ 2x^2-3 $                             | Answer                                                                  | [2] |
|    |               |                                        | Answer                                                                  |     |
| 12 | On a<br>US\$3 | 3000.<br>dollar = 1.36 Singapore dolla | to find an identical bag that cost<br>rs.<br>gapore? You must show your | s   |
|    | Is the        | e bag cheaper in the US of Sui         | gapore. Tous interesting,                                               |     |
|    |               |                                        | Answer                                                                  | [2] |
|    |               | οοΤι                                   | itore SG   Page 183                                                     |     |

(S)/EMath/P1/Prelim2017/4E/5N/H41

| the same road measures 5.5 cm. We the form $1:n$ .                                | rite down the scale of                                                                                                           |                                                                                                                                                                        |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   |                                                                                                                                  |                                                                                                                                                                        |
|                                                                                   |                                                                                                                                  |                                                                                                                                                                        |
| Answer 1                                                                          | :[2]                                                                                                                             |                                                                                                                                                                        |
| n of commercial buildings. What is                                                | s the area on the map                                                                                                            |                                                                                                                                                                        |
|                                                                                   |                                                                                                                                  |                                                                                                                                                                        |
|                                                                                   |                                                                                                                                  |                                                                                                                                                                        |
|                                                                                   |                                                                                                                                  |                                                                                                                                                                        |
| ¥ :                                                                               | 38                                                                                                                               |                                                                                                                                                                        |
| Answer                                                                            | cm <sup>2</sup> [3]                                                                                                              |                                                                                                                                                                        |
|                                                                                   |                                                                                                                                  |                                                                                                                                                                        |
| 2300.<br>d buys the computer for \$1782.50.<br>atage discount of the computer dur | ing the sale.                                                                                                                    |                                                                                                                                                                        |
| d buys the computer for \$1782.50.                                                | ing the sale.                                                                                                                    |                                                                                                                                                                        |
| d buys the computer for \$1782.50.                                                | ing the sale.                                                                                                                    |                                                                                                                                                                        |
| d buys the computer for \$1782.50.                                                | ing the sale.                                                                                                                    |                                                                                                                                                                        |
| d buys the computer for \$1782.50.                                                | ing the sale.                                                                                                                    |                                                                                                                                                                        |
| d buys the computer for \$1782.50.                                                | ing the sale.  % [2]                                                                                                             |                                                                                                                                                                        |
| d buys the computer for \$1782.50.  atage discount of the computer dur            | ing the sale.                                                                                                                    |                                                                                                                                                                        |
| d buys the computer for \$1782.50.  atage discount of the computer dur            | ing the sale.                                                                                                                    |                                                                                                                                                                        |
|                                                                                   | Answer 1  and of area 88.412 km² has been men of commercial buildings. What is ked out for construction of commercial buildings. | Answer 1: [2] and of area 88.412 km² has been marked out for on of commercial buildings. What is the area on the map ked out for construction of commercial buildings? |

#### GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

A car travelling at an initial speed of v m/s decelerates uniformly for 4 seconds, then travels at a uniform speed of 5 m/s for 8 seconds before decelerating uniformly until it comes to a complete rest. The speed-time graph for the car is shown below.



- (a) A van, starting at the same time as the car from the same initial point travels along the same route at a uniform speed of 11 m/s throughout the journey. On the graph above, draw the line representing the speed-time graph of the van, given that  $\nu > 11$ . [1]
- (b) It is given that deceleration is represented by the gradient of the speed-time graph. The deceleration of the car during the first 4 seconds is  $3.75 \text{ m/s}^2$ . Show that v = 20.

Answer

#### GMS(S)/EMath/P1/Prelim2017/4E/5N/1141

(c) It is given that the area under the speed-time graph represents the distance travelled. At how many seconds, after the van and car started from the initial point, will the van overtake the car?

|             |                                                                                                                             | Answer    | s [4]         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 16          | D 5x-38                                                                                                                     | A A B     |               |
| O is<br>Ang | the centre of the circle passing thr<br>le $ABE = x^{\circ}$ , and angle $EDC = (5x)$<br>Find, in terms of x, angle $AOE$ . | - 38)°.   | <b>5.</b>     |
| (4)         |                                                                                                                             | Answer    | • [1]         |
| (b)         | Find, in terms of x, angle EBC.                                                                                             |           |               |
|             |                                                                                                                             | Answer    |               |
| (c)         | Find x.                                                                                                                     |           |               |
| į           |                                                                                                                             | Answer x= | [2]           |
|             |                                                                                                                             |           | [Turn over 11 |

99Tutors.SG | Page 186

# GMS(S)/EMath/P1/Prclim2017/4E/5N/f141

| 17 | David's wages, W, varies directly as the square of the number of sales he  |
|----|----------------------------------------------------------------------------|
|    | makes in a month. In January, he makes & number of sales. In February, the |
|    | number of sales he makes increases by 150% as compared to January.         |
|    | Calculate the percentage change in David's wages in February as compared   |
|    | to January.                                                                |

|                          | Answer%                                                                                                                                               | [3 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                          | 40 students had their individual weights taken and the mean and eviation of the weights were calculated. It was later found out that                  |    |
| the weight<br>by 2 kg. D | ng machine used was faulty and every student should be heavier escribe the effect, if any, it would have on the mean and standard hat was calculated. |    |
| the weight<br>by 2 kg. D | ng machine used was faulty and every student should be heavier escribe the effect, if any, it would have on the mean and standard                     |    |

Ture over

#### GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

19 (a) Express 600 as a product of its prime factors, giving your answer in index notation.

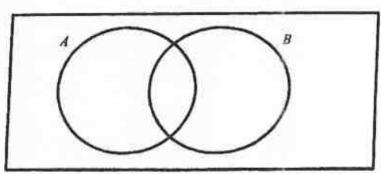
| Answer | [2 |
|--------|----|
|        |    |

(b) p and q are not prime numbers.

Given that  $600 \times pq$  rise perfect square, and that p and q are positive integers smaller than 10, find the smallest possible value of p-q.

| answer | [2]  |
|--------|------|
|        | <br> |

20 It is given that

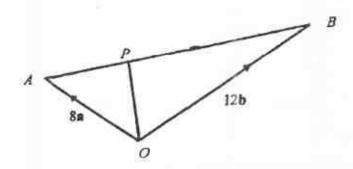

 $\xi = \{x : x \text{ is a positive integer smaller than } 10\},$ 

 $A = \{x : x \text{ is a prime number}\},\$ 

 $B = \{x : x \text{ is an even/number}\}.$ 

Write down all the numbers in the universal set in the Venn Diagram below.

Answer




[3]

Turn over 13

#### GMS(S)/EMath/P1/Prelim2017/4E/5N/H

21



OAB is a triangle.

 $\overrightarrow{OA} = 8a$  and  $\overrightarrow{OB} = 12b$ .

P is a point on AB such that AP : PB = 1 : 3.

- (a) Write each of the following in terms of a and b. Give your answers in their simplest form.
  - (i)  $\overrightarrow{AB}$ .

| Answer | [1]  |
|--------|------|
|        | <br> |

(ii)  $\overline{AP}$ .

swer [1]

[Turn over 14

| GMS(S) | /EMath/P1 | /Prelim201 | 17/4E/5N/H41 |
|--------|-----------|------------|--------------|
|--------|-----------|------------|--------------|

| (b) | A line is drawn from $O$ to $Q$ where $Q$ lies on the line $AB$ extended.               |
|-----|-----------------------------------------------------------------------------------------|
|     | Given that B is the mid-point of $PQ$ , express $\overrightarrow{OQ}$ in terms of a and |
|     | b, giving your answer in its simplest form.                                             |

|        | nd the value of | Area of triangle ObQ |              |
|--------|-----------------|----------------------|--------------|
| (c) Fi | my die vand vi  | Area of triangle OAQ |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      | [2]          |
|        |                 | Answer               | <br>[4]      |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
| 900    |                 |                      |              |
|        |                 |                      |              |
|        |                 |                      |              |
|        |                 | -                    | Turn over 15 |

| GMS(S)/EMath/PI   | Prelim20 | 17/4F/5N/HA |
|-------------------|----------|-------------|
| CHIO(C) LIMBURE 1 | TICHILLU | 1//4P/3N/HA |

|     |                                                                                               | GMS(S)/EMath/P1/                       | Prelim2017/4E/5N/H |
|-----|-----------------------------------------------------------------------------------------------|----------------------------------------|--------------------|
| 22  | The coordinates of A is $(-3)$ $\overrightarrow{AC} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}.$ | , 5) and the coordinates of $B$ is (7, | 10).               |
| (1  | Find AB expressing                                                                            | your answer as a column matrix.        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               | Answer                                 | [1]                |
| (b) | Find $ \overline{AC} $ .                                                                      |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     | of day.                                                                                       | Answer                                 | [1]                |
| (c) | Find the coordinates of C.                                                                    | 2749                                   |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               | +(                                     |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               |                                        |                    |
|     |                                                                                               | Answei                                 | [2]                |
|     |                                                                                               |                                        | (3)                |

# Free Tuition Listing @ 99Tutors.SG GMS(S)/EMath/P1/Prelim2017/4E/5N/H41

|            | oint B is directly east of Point                       | <i>A</i> .      |                        |        |     |
|------------|--------------------------------------------------------|-----------------|------------------------|--------|-----|
| A          | nswer                                                  |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            | A                                                      | B               |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            |                                                        |                 |                        |        |     |
|            | The conhiterat plane to ente                           | ad the wellow   | our by 0.9 km at a bag | ing of |     |
| (a)        | The architect plans to exte 145° from point B. Use the |                 |                        | mig or |     |
|            | extension of the walkway                               | and label the   | end of the walkway as  |        | 101 |
|            | С.                                                     |                 |                        | l      | [2] |
| <b>(b)</b> | The walkway is then further                            |                 |                        |        |     |
|            | By measurement, find the lalometres.                   | length of the v | walkway from A to C    | ın     |     |
|            | MIOHOLOG                                               |                 |                        |        |     |
|            |                                                        | Answe           | r                      | km_ [  | [1] |
| (c)        | The architect intends to put                           | a notice boar   | d along BC, equidista  | ant    |     |
| (0)        | from points $A$ and $C$ . By co                        | nstructing a p  | erpendicular bisector  | on the |     |
|            | scale drawing, indicate and the letter N.              | label the posi  | tion of the notice bo  |        | 2]  |
|            |                                                        |                 |                        |        | 7.1 |

Turn over 17

2017 4E AM Geylang Methodist Prelim Paper 2

#### GMS(S)/Math/P2/Prelim2017/4E/H41/5N(A)

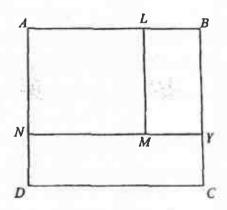
#### Answer all the questions.

1 (a) Express as a single fraction in its simplest form

$$\frac{1}{p-2} - \frac{2}{4p+3}$$
.

(b) The formula used in an experiment is

$$T = \frac{k(x-a)}{a}.$$


(i) Express x in terms of T, k and a.

[2]

(ii) Find, in terms of k, the value of T when x = 3a.

[1]

In the given diagram, ABCD and ALMN are squares. AB = (3x - 1) cm and AN = (x + 2) cm.



(a) Write down the length of LB in terms of x.

[1]

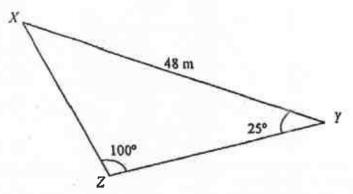
[2]

- (b) The area of the rectangle LBYM is  $10 \text{ cm}^2$ . Write down an equation in x and show that it reduces to  $2x^2 + x - 16 = 0$ .
- (c) Solve the equation  $2x^2 + x 16 = 0$ , giving your solutions correct to two decimal places. [4]
  - ---

(d) Which value of x do you have to reject and why?

- [2]
- (e) Hence, calculate the perimeter of LBYM, giving your answer to the nearest millimetre.

[2]


Turn over

# GMS(SyMath/P2/Prelim2017/4E/H41/5N(A)

| 3 | Singa | pore and Kuala Lumpur are 350.7 km apart.                                                                                                                                                                                                                 |     |
|---|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (a)   | Ms Wong travelled by car from Singapore to Kuala Lumpur (KL) at an average speed of 90 km/h. How long did the journey take?                                                                                                                               | 11  |
|   | (b)   | Ms Wong left Singapore at 0600. If she had a meeting to attend in KL at 1000, was she early or late for this meeting?                                                                                                                                     | [1] |
|   | (c)   | After the 3-hour meeting, Ms Wong took a one-hour lunch-break before making her return journey. She wanted to reach Singapore before the evening peak-hour commenced at 4pm. If the speed limit is 100 km/h, would she be able to reach Singapore by 4pm? | [3] |
|   | (d)   | The upcoming Singapore-KL high-speed-rail (HSR) train line boasts a travelling time of 99 minutes in a single direction between the two cities. What is the average speed of the train?                                                                   | [1] |
|   | (e)   | The maximum speed of the train is expected to be 300 km/h. What is the percentage decrease in speed as mentioned in (d), compared to the expected speed?                                                                                                  | [2] |
| 4 | A     | bag contains 6 tennis-balls comprising of 4 green balls and 2 red balls.                                                                                                                                                                                  | Π'. |
|   |       | my selects a ball at random from the bag and then replaced. She randomly select other ball from the same bag.                                                                                                                                             | S   |
|   | (1    | n) Draw a probability-tree diagram to represent the outcomes.                                                                                                                                                                                             | [1] |
|   | (1    | b) Find, in its simplest form, the probability that the selected balls                                                                                                                                                                                    |     |
|   |       | (i) are green,                                                                                                                                                                                                                                            | [1] |
|   |       | (ii) are of different colours,                                                                                                                                                                                                                            | [2] |
|   |       | (iii) include at least one red ball.                                                                                                                                                                                                                      | [2] |

#### GMS(S)/Math/P2/Prelim2017/4E/1141/5N(A)

5



X, Y and Z are on level horizontal ground. The bearing of Y from X is  $100^{\circ}$ . XY = 48 m, angle  $XZY = 100^{\circ}$  and angle  $XYZ = 25^{\circ}$ .

(a) Calculate

| (i)   | the bearing of X from Y,                 | [1] |
|-------|------------------------------------------|-----|
| (ii)  | the bearing of $Z$ from $X$ ,            | [2] |
| (iii) | the shortest distance from $Z$ to $XY$ . | [3] |

(b) If there is a tower of height 10 m at X, calculate the angle of depression of Y from the top of the tower. [2]

6

# GMS(S)/Math/P2/Prelim2017/4E/H41/5N(A)

10 cm B

The diagram shows a cross-section of a rhombus cookic-box, ABCD, and E is the intersection-point of AC and BD.

AB // DC and AD // BC, AB = CD = 10 cm and angle  $BCD = 130^{\circ}$ .

| (a) | (i)   | Explain why angle AEB is a right-angle.    | [1] |
|-----|-------|--------------------------------------------|-----|
|     | (ii)  | Calculate BD.                              | [2] |
|     | (iii) | Calculate the length of EC.                | [1] |
|     | (iv)  | Hence, calculate the area of triangle BCD. | [1] |

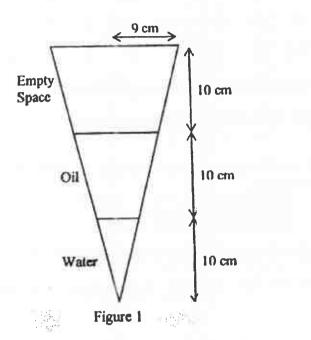
- (b) A geometrically similar smaller version of the cookie-box is necessary for smaller quantities of cookies. In the smaller cookie-box, AB = 8 cm.
  - Find the cross-sectional area of the smaller cookie-box. [2]

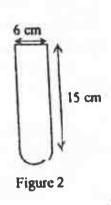
[2]

[2]

| 80   | 88      | 96        | 60      | 59        | 70       | 88       | 97       | 69      | 60  |  |
|------|---------|-----------|---------|-----------|----------|----------|----------|---------|-----|--|
| 39   | 37      | 69        | 74      | 47        | 92       | 72       | 49       | 58      | 66  |  |
| 88   | 82      | 100       | 95      | 56        | 77       | 99       | 62       | 79      | 63  |  |
| (i)  | Calcula | te the n  | nean sc | ore for t | he stud  | ents in  | Seconda  | ary 4 A | ce. |  |
| (ii) | Calcula | te the st | andard  | deviati   | on for t | he score | es above | 2.      |     |  |

Which class performed better? Support your claim with evidence.


(ii)


evidence.

Which class had more consistent results? Support your claim with

#### GMS(S)/Math/P2/Prelim2017/4E/II41/5N(A)

A funnel is in the form of an inverted right circular cone. Figure 1 shows a vertical cross-section of the funnel. It contains oil and water (which do not mix). The depths of water and oil are all 10 cm, with water at the bottom. It is given that the height of the funnel is 30 cm and the base radius is 9 cm.





(a) Find the volume of the funnel in terms of  $\pi$ .

[1]

- (b) Find the fraction of
  - (i) volume of oil volume of water

**[2]** 

(ii) surface area of the funnel in contact with water total surface area of the interior of the funnel

[2]

(c) All the water in the funnel is then drained through the tap at the vertex of the funnel, into another container formed by a cylinder of diameter 6 cm and surmounted by a hemisphere at the lower part of the cylinder, as shown in Figure 2. The height of the cylindrical part of the container is 15 cm. Find the depth of water in this container.

(Note: Only the water is drained; the oil remains in the funnel.)

[3]

#### GMS(S)/Math/P2/Prelim2017/4E/141/5N(A)

Two outlets of a new fast-food chain sell three types of soft drinks, namely Coke, Sprite and Lemon Tea. The tables below show the sales of the soft drinks in the afternoon and evening respectively.

| 10       | Afternoon |        |           |  |  |
|----------|-----------|--------|-----------|--|--|
|          | Coke      | Sprite | Lemon Tea |  |  |
| Outlet A | 280       | 200    | 150       |  |  |
| Outlet B | 200       | 300    | 350       |  |  |

|          |      | Evening |           |
|----------|------|---------|-----------|
|          | Coke | Sprite  | Lemon Tea |
| Outlet A | 420  | 300     | 260       |
| Outlet B | 350  | 420     | 540       |

The sales of the soft drinks in the afternoon are represented by the matrix A, where

$$\mathbf{A} = \left( \begin{array}{ccc} 280 & 200 & 150 \\ 200 & 300 & 350 \end{array} \right).$$

(a) Write down the 2×3 matrix E representing the sales in the evening for the two outlets respectively. [1]

The cost price of supplying the soft drinks to the fast-food chain is \$1.20, \$1.00 and \$1.50 for Coke, Sprite and Lemon Tea respectively. The selling price for each soft drink is \$2.00, \$2.00 and \$3.50.

The cost price of supplying the soft drinks is represented by matrix C, where

$$C = \begin{pmatrix} 1.20 \\ 1.00 \\ 1.50 \end{pmatrix}$$

- (b) Write down the column matrix S representing the selling price of the soft drinks for the three types of soft drinks respectively. [1]
- (c) Calculate T = A + E, and describe what matrix T represents. [2]
- (d) Evaluate ΛC and describe what is represented by the elements of AC. [2]
- (e) Evaluate T(S-C), and explain what the elements of T(S-C) represent. [2]
- (f) (i) If the fast-food chain's general manager would like to evaluate the combined total amount in sales for both outlets for the day, write down the matrix operation he needs to calculate.

  [1]
  - (ii) Evaluate the matrix that you have specified in part (i) above. [1]

Turn over

# 10 GMS(S)/Math/P2/Prelim2017/4E/141/SN(A) [2] (ii) An n-sided polygon has 3 interior angles measuring 140° each. The remaining interior angles all measure y° each. Find an expression for y in terms of n. [2] (b)

The diagram shows a circle ABC, with centre O. FAD and DCE are tangents to the circle, and OA = OC = 8 cm. Angle  $OAB = 35^{\circ}$  and angle  $CDO = 30^{\circ}$ .

| (i)  | Name the pair of congruent triangles. | [1] |
|------|---------------------------------------|-----|
| (ii) | Find                                  |     |
|      | (a) angle DOA,                        | [1] |
|      | (b) angle CBA,                        | [1] |
|      | (c) angle ECB.                        | [1] |
|      | (d) the area of the shaded region.    | [2] |

[1]

#### OMS(S)/Math/P2/Prelim2017/4E/H41/5N(A)

Answer the whole of this question on a sheet of graph paper. From the top of a mountain, Barry fires a pellet from an air gun upwards into the air. The height, h metres, of the pellet from Barry t seconds after it is released can be modelled by the equation  $h = 1 + 10t - 3t^2$ .

Some corresponding values of t and h are given in the table below.

| 1 | 0 | 1 | 2 | 3 | 4 | 5   | 6   |
|---|---|---|---|---|---|-----|-----|
| h | 1 | 8 | 9 | 4 | m | -24 | -47 |

(a) Calculate the value of m.

Using a scale of 2 cm to represent 1 second, draw a horizontal t-axis for **(b)** Using a scale of 1 cm to represent 5 metres, draw a vertical h-axis for  $-50 \le h \le 10$ .

On your axes, plot the points given in the table and join them with a smooth

[3] curve.

- Use your graph to estimate (c)
  - the maximum height of the pellet above ground level, [11] (i)
  - the length of time that the pellet was more than 2 metres above ground (ii) [2] level.
  - the time elapsed before the pellet reaches the same level as it was fired (iii) [1]
- By drawing a tangent, find the gradient of the curve at (5, -24). [3] State the units of your answer.

| 12    | GMS(S)/Math/P2/Prelim2017/4E/1141/5N(A)          |
|-------|--------------------------------------------------|
| 3. AU | Chara a krateria i S. Lemitent marchia marchiana |

- 12 From July 2017 onwards, the price of water to households will be increased in two steps, on 1 July 2017 and on 1 July 2018. At the same time, the Government will be increasing the annual GST Voucher U-Save rebate for eligible HDB households by between \$40 and \$120, depending on the flat type. The average change in water bill after the increased U-Save rebates is given in Table A on the next page.
  - (a) Show that for a 4-room HDB flat, the U-Save Rebate given in July 2017 is \$7. [1]

Table B shows how the water tariffs will be increased between 2017 and 2018. Charlie owns a new 4-room build-to-order (BTO) HDB flat in Woodleigh. Read and understand the contents of the utility bill dated June 2017 in Table C.

(b) Assuming that the amount of water Charlie used in July 2017 is the same as that for June 2017, calculate the individual charges in July 2017 for

| (i)   | water usage (reading),                                           | [1] |
|-------|------------------------------------------------------------------|-----|
| (ii)  | waterborne fee,                                                  | [1] |
| (iii) | water conservation tax,                                          | [1] |
| (iv)  | total cost of water services (after deduction of U-Save Rebate). | [1] |

- (c) Assuming that the amount of water Charlie uses for July 2018 is the same as that for June 2017, calculate the total cost of water services in July 2018 (before the U-Save Rebate). [3]
- (d) Why do you think that average changes in 2017 and 2018 bills are increasing from 1-room HDB flats to the executive/multi-generation flats? [1]

GMS(8)/Math/P2/Prolim2017/4E/H41/5N(A)

Table A: Average Change in Water Bill after Increased U-Save Rebates (by HDB Flat Type)

Source: https://www.pub.gov.sg/Documents/WaterPriceRevisionsBrochure.pdf

| Water BHI                      | l-room<br>lide flat | 2-room | J-room" | 4-room | 5-room | Carecutive/Multi- |
|--------------------------------|---------------------|--------|---------|--------|--------|-------------------|
| Before price increase          | \$23                | \$29.  | \$33    | \$42   | \$44   | \$49              |
| After price increase (2017)    | \$26                | \$34   | \$37    | \$47   | \$50   | \$55              |
| After increased U-Save         | \$16                | \$24   | \$29    | \$40   | \$45   | \$51              |
| Average change in 2017 Bill    | -\$7                | -\$5   | - \$4   | - \$2  | + \$1  | + \$2             |
| Average change<br>in 2018 Bill | - \$3               | \$0    | + \$2   | + \$5  | + \$8  | + \$11            |

Table B: Water Price Revisions
Source: https://www.pub.gov.sg/Documents/WaterPriceRevisionsBrochure.pdf

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Before 1          | July 2017         | From 1            | uly 2017            | From 1            | July 2018          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|---------------------|-------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Po          | rice (S/m²) [[    | Water Pr          | ice (S/en²) T       | Water Pr          | ice (S/m²)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 - 40m25         | -40m³             | 0 - 40m           | -> 40m <sup>3</sup> | 0 -40m3           | > 40m <sup>3</sup> |
| A STATE OF THE STA | \$1.17            | \$1.40            | \$1.19            | \$1.46              | \$1.21            | \$1.52             |
| Potables Watern Watern Countries Tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0.35<br>(30% of | \$0.63<br>(45% of | \$0.42<br>(35% of | \$0.73<br>(50% of   | \$0.61<br>(50% of | \$0,99<br>(65% of  |
| (% of water tariff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$1.17)           | \$1.40)           | \$1.19)           | \$1.46)             | \$1.21)           | \$1.52)            |
| Waterborne Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0.28            | \$0,28            | \$0.78            | \$1.02              | \$0.92            | \$1.18             |
| Water Senitary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$2.80 per        | r fitting*        |                   | ned into            |                   | ned into           |
| TOTAL PACETORINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$2.10            | \$2.61            | \$2.39            | \$3.21              | \$2.74            | \$3.69             |

Note: Water is charged per cubic metre (m³), which is equivalent to 1000 litres.

All figures are before GST.

Table C: Utility Bill for June 2017

# June 2017 Bill Account No. ########

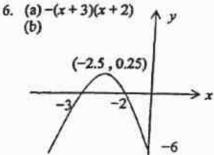
| Breekdown of Current Charges                  | Usage      | Parts (12) | Arreart (A) | Total (6 |
|-----------------------------------------------|------------|------------|-------------|----------|
| Electricity Services                          |            |            |             |          |
| Reading taken on 26 Jun 2017: 83102           | 735 KWn    | 0.2139     | 157.43      | 157.41   |
| Water Services by Public Utilities Sound      |            |            |             |          |
| Reading taken on 28 Jun 2017 : 5094.8         | 38.8 Cu M  | 1.1700     | 41.89       |          |
| Waterborns Fee                                | 35,8 Cu M  | 0.2003     | 10,03       |          |
| Water Gameiration Tax                         | \$41.59    | 30%        | 12.57       |          |
| Sandary Applantis Fee                         | 2 Fittinge | 2.9037     | 6.81        | 70.10    |
| 5. Raftere Removal by Vestle Li Singspore P L | 1 Qiy      | 7.71       | 7.71        | 7.7      |
| Subtotal                                      |            | V          | 235.24      | 238.2    |
| CAT                                           | 8235.24    | 7%         | 16.45       | 16.4     |
| Current Charges e                             |            |            | 2           | \$251.70 |

d of Paper

<sup>\*</sup>For the calculation of total price, the Sanitary Appliance Fee is converted to its volumetric equivalent.

#### GMS(S)/EMath/P1/Prclim2017/4E/5N/H41

#### Answer Key


(b) 
$$3x - 4$$

3. 
$$(2x+3y)(3a-b)$$

4. (a) 
$$b = -\frac{4+c}{2}$$

(b) 
$$b = -9$$
;  $c = 14$ 

5. 
$$AC = 5$$
 cm or 17.7 cm



7. 
$$\frac{5x-4}{(x-2)^2}$$

(b) 
$$\frac{1}{8}$$

10. (a) 
$$x = 2$$

(b) 
$$x = \frac{1}{3}$$
 or  $x = 3$ 

11. (a) 
$$5x(5-6x)$$

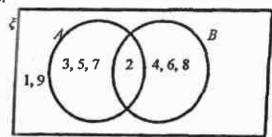
(b) 
$$(5x-2)(x+3)$$

(c) 
$$3(2x+1)(2x-1)$$

12. cheaper in Singapore

(c) 
$$t = 5$$

$$(c) 1 - 1$$


(b) 
$$90-x$$
 or  $218-5x$ 

(c) 
$$x = 32$$

19. (a) 
$$600 = 2^3 \times 3 \times 5^2$$

$$(b) -5$$

20.



22. (a) 
$$\binom{10}{5}$$

# GMS(S)/Math/P2/Prelim2017/4F/H41/5N(A)

#### Answer Key

1. (a) 
$$\frac{2p+7}{(p-2)(4p+3)}$$
(bi)  $x = \frac{aT}{k} + a$ 
(bii)  $T = 2k$ 
2. (a)  $(2x-3)$  cm
(b) -
(c)  $x = 2.59$  or  $-3.09$ 
(d) -

- (e) 13.5 cm
- 3. (a) 3.90 h
  - (b) She was early for the meeting.
  - (c) She would not be able to reach Singapore by 4 pm.
  - (d) 212.54 km/h or 213 km/h (to3s.f.)
  - (e) 29.15% or 29.2% (to 3s.f.)
- 4. (a) -
  - (bi)  $\frac{4}{9}$
  - (bii)
  - (biii)  $\frac{5}{9}$
- 5. (ai) 280° (aii) 165° (aiii) 16.9 m
  - (b) 11.8°
- 6. (ai) -
  - (aii) 18.1 cm
  - (aiii) 4.23 cm
  - (aiv) 38.3 cm<sup>2</sup>
  - (b) 49.0 cm<sup>2</sup>
- 7. (ai) 72.36 or 72.4 (to 3 s.f.)
  - (aii) 17.6
  - (bi) -
  - (bii) -
- 8. (a)  $810\pi \ cm^3$

(bi) 
$$\frac{7}{1}$$
 or 7

$$(bii) \frac{1}{9}$$

(c) 4.33 cm

9. (a) 
$$E = \begin{pmatrix} 420 & 300 & 260 \\ 350 & 420 & 540 \end{pmatrix}$$

[Turn over

# GMS(S)/Math/P2/Prelim2017/4E/H41/5N(A)

(b) 
$$S = \begin{pmatrix} 2.00 \\ 2.00 \\ 3.50 \end{pmatrix}$$
  
(c)  $T = \begin{pmatrix} 700 & 500 & 410 \\ 550 & 720 & 890 \end{pmatrix}$ 

Matrix T represents the sales of Coke, Sprite and Lemon Tea in the afternoon and evening at outlets A and B respectively.

(d) 
$$AC = \begin{pmatrix} 761 \\ 1065 \end{pmatrix}$$

Matrix AC represents the total cost price of supplying soft drinks to the fast-food chain in the afternoon at outlets A and B respectively.

(e) 
$$T(S-C) = \begin{pmatrix} 1880 \\ 2940 \end{pmatrix}$$

Matrix T(S-C) represents the total profits in the afternoon and evening at outlets A and B respectively.

(fi) 
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

(aii) 
$$y = \frac{180n - 780}{n - 3}$$
 or  $180 - \frac{240}{n - 3}$ 

(bi) -

(biia) 60°

(biib) 60°

(biic) 65°

(biid) 43.8 cm<sup>2</sup>

11. (a) 
$$m = -7$$

(b)-

(ci) 9.4 m

(cii) 3.15s

(ciii) 3.35s

(d) -22.64 m/s

12. (a) \$7

(bi) \$42.60

(bii) \$27.92

(biii) \$14.91

(biv) \$78.44

(c) \$97.91

(d) -

Mum over

Free Tuition Listing @ 99Tutors.SG 2017 4E EM Holy Innocents Prelim

Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Geometry and Measurement

Curved surface area of a cone =  $\pi r l$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length  $= r\theta$  , where  $\theta$  is in radians

Sector area = 
$$\frac{1}{2}r^2\theta$$
, where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

$$Standard deviation = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

[1]

2017 Preliminary Examination Mathematics Paper 1

3

Answer all the questions.

| 1. | Calculate | $\frac{0.85^2 - 5.34}{\sqrt{81.2} + 3.134},$ | giving your answer | correct to 3 | significant figures. |
|----|-----------|----------------------------------------------|--------------------|--------------|----------------------|
|----|-----------|----------------------------------------------|--------------------|--------------|----------------------|

| 2. | A se | t of numbers is given below0.4, | $\frac{1}{3}$ , $\sqrt[3]{3}$ , $\frac{\pi}{7}$ , | , 0. <b>66</b> , −√4 |     |
|----|------|---------------------------------|---------------------------------------------------|----------------------|-----|
|    | (a)  | Write the set of numbers is     | a descending or                                   | rder.                |     |
|    |      |                                 |                                                   |                      |     |
|    |      |                                 |                                                   |                      |     |
|    |      |                                 |                                                   |                      |     |
|    |      | Answer                          |                                                   |                      | [1] |
|    | (b)  | Write down the irrational 1     | number(s) from                                    | the given set.       |     |
|    |      |                                 |                                                   |                      |     |
|    |      |                                 |                                                   |                      |     |

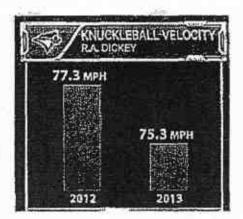
Answer

Holy Innocents' H

Secondary 4 Expre

Answer

4


3. Factorise completely  $6a^2(a^2-1)-(a^2-1)^2$ .

| [2] |
|-----|
|     |

4. The figure below is extracted from a baseball game broadcast.

It shows the knuckleball velocity statistics of a baseball player.

State one aspect of the data that may be misleading and explain how it might lead to a mis-interpretation of the data by the audience.



| - Ann real |   |      | جد ميوانيد ليو هم 100 سد. | का गाउँग संस्कृत स्थान का का अर | مواري هم شاهد مداعد مداهد يورسو | 98 99 95 \$0 TH IN THE ST. ST. AND | كل الديد الديد الديد الديد الديد الديد           |
|------------|---|------|---------------------------|---------------------------------|---------------------------------|------------------------------------|--------------------------------------------------|
| 64 b.      |   | <br> |                           |                                 |                                 |                                    | . We like the first and controls was too see, we |
| <i>=</i> - |   |      |                           |                                 |                                 |                                    |                                                  |
|            |   | <br> |                           |                                 |                                 |                                    |                                                  |
|            |   |      |                           |                                 |                                 |                                    |                                                  |
| 400, 200   | - | <br> | ئِه ويأخينوه يُوا مه جو ث |                                 | د « بن وانمواني مؤايل بداعي     | hit shi në me m m m ma make hë së  | بها فن وأنا سرم به ما فا به م                    |
|            |   |      |                           |                                 |                                 |                                    |                                                  |

5

5. Given that  $a^2 + 6a = 6$ , find the value of  $a^3 + 7a^2$ .

| Answer | Note: The | [2  |
|--------|-----------|-----|
| 42.10  |           | · · |

6. On Monday, the temperature of a certain location at 12 00 was 34°C.
The temperature dropped to -5°C at 14 00 on Tuesday.
Given that the temperature decreases at a constant rate, find the temperature at 07 00 on Tuesday.

nswer \_\_\_\_°C [2

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic) 2017 Preliminary Examination Mathematics Paper 1

6

| 7. | An integer $k$ undergoes a series of operations as shown in the steps below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | Step 1: $\frac{1}{6}$ is added to $k$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|    | Step 2: The value from step 1 is multiplied by 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    | Step 3: The value from step 2 is increased by 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|    | Step 4: The value from step 3 is divided by 2 to give the resultant value $n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|    | (a) Express n in terms of k.  Give your answer in its simplest form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1]               |
|    | (b) Hence explain why $n$ is an integer and a multiple of 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ** # # # #.       |
|    | து அந்திக்கில் இரு பெறியைக்கு இறையில் நடித்த | on our for option |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1]               |
| 8. | V is inversely proportional to the cube of $T$ .  Calculate the percentage change in $V$ , given that $T$ is increased by 300%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |

Holy Innocents' High Sch
Secondary 4 Express 5 Normal (Academic)

Mathematics Paper 1

[1]

#### Free Tuition Listing @ 99Tutors.SG

7

9.  $\xi = \{x : x \text{ is an integer, } 10 < x \le 23\}$   $A = \{x : x \text{ is an prime number}\}$  $B = \{x : x \text{ is a multiple of } 3\}$ 

(a) Complete the Venn diagram below to illustrate this information.

| 5 |    |  |
|---|----|--|
| 1 | 54 |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |

(b) List the elements of  $(A \cup B)$ .

| Answer |                                         | rı   | ı.    |
|--------|-----------------------------------------|------|-------|
|        | *************************************** | . L1 | . A . |

10. It is given that  $\cos (180^{\circ} - A) = -\frac{24}{25}$  and  $0^{\circ} < A < 90^{\circ}$ .

Find, without the use of a calculator, the value of  $\sin (180^{\circ} - A)$ .

Answer 
$$\sin(180^\circ - A) =$$
 [2]

Holy Innocents' Hi Secondary 4 Expres 2017 Preliminary Examination Mathematics Paper I

8

11. Express  $-8x-11+x^2$  in the form  $(x+p)^2+q$ .

| Answer | *********** |  | [2] |
|--------|-------------|--|-----|
|--------|-------------|--|-----|

12. The table below shows the number of books that a group of students has.

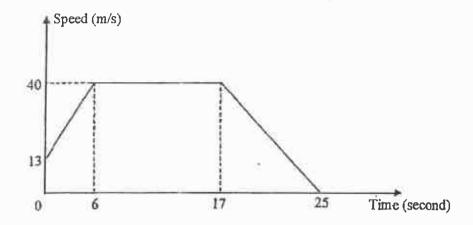
| Number of books    | 1 | 2  | 3 | 4 |
|--------------------|---|----|---|---|
| Number of students | 5 | 14 | х | 7 |

(a) Write down the largest possible value of x if the mode is 2.

| Answer     |   | - [1] |
|------------|---|-------|
| 21/10/1/6/ | _ | . ( A |

(b) Find the value of x if the mean is 2.8.

|     |     |                                  | ,                                     |                  |
|-----|-----|----------------------------------|---------------------------------------|------------------|
| 13. | (a) | Express 60 as the product of its | prime factors.                        |                  |
|     |     |                                  |                                       |                  |
|     |     |                                  | Answer 60=                            | [1]              |
|     | (b) | Find the smallest positive integ | ger value of $x$ for which $60x$ is a | multiple of 378. |
|     |     |                                  |                                       |                  |


10

| 14. | Each | term in this seque                                                                                                                                                          | ence is found b                                                             | y adding the                                                                                                   | e same numb                                                       | er to the pre-                                    | vious term.                                                                                  |     |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
|     |      |                                                                                                                                                                             | a,                                                                          | $c_{1}$                                                                                                        | 37,                                                               |                                                   |                                                                                              |     |
|     | (a)  | Find the values of                                                                                                                                                          | of a, b and c.                                                              |                                                                                                                |                                                                   |                                                   |                                                                                              |     |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                |                                                                   |                                                   |                                                                                              |     |
|     |      |                                                                                                                                                                             |                                                                             | Answer                                                                                                         | a ===                                                             | b=                                                |                                                                                              | [1] |
|     | (b)  | Write down an e                                                                                                                                                             | xpression, in te                                                            | erms of n, fo                                                                                                  | or the n <sup>th</sup> term                                       | n.                                                |                                                                                              |     |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                | *                                                                 |                                                   |                                                                                              |     |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                |                                                                   |                                                   |                                                                                              |     |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                |                                                                   |                                                   |                                                                                              |     |
|     |      |                                                                                                                                                                             |                                                                             | Answer                                                                                                         |                                                                   |                                                   |                                                                                              | [1] |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                |                                                                   |                                                   |                                                                                              |     |
|     | (c)  | Explain why 12                                                                                                                                                              | l is not a term                                                             | in this sequ                                                                                                   | ence.                                                             |                                                   |                                                                                              |     |
|     | Ansi | ver                                                                                                                                                                         |                                                                             | ********                                                                                                       |                                                                   |                                                   |                                                                                              |     |
|     |      | . अपने स्थाप करते करते करते के प्रति पहले प्रति करते हैं।<br>स्थाप स्थाप स् | म प्रवेद प्रेक पुरा गण प्रृतास्थ्य व्यक्ष स्थात प्रवे प्रकार स्था           | कर्ण ज्ञान क्या त्रव्य क्या त्रव क्या प्रक. च्या व्यत् व                                                       |                                                                   |                                                   | र्क् में के क क क क क क क क क क क के कि के क क क क                                           | -   |
|     |      | कुत अर्थ पत्र मिट्ट ग्रंग प्रकृष्ण क्रम क्रम क्रम क्रम                                                                                                                      | प्राच्या पर्यो होते होता विके प्राच्छा अस्ता बाह हेर्सन होते तेने होत्य विद | ang manakan mengahan | व्ये का पर पर को होंगे कि तो की का का                             |                                                   | न्यां का इसे को का है है है है कि का का का का का की की है                                    | ÷   |
|     |      | *********                                                                                                                                                                   |                                                                             | ********                                                                                                       |                                                                   |                                                   | ************                                                                                 |     |
|     |      | من جد الله الله الله الله الله الله الله الل                                                                                                                                | الله الله الله الله الله الله الله الله                                     |                                                                                                                | - 155 and 160 160 160 and 160 160 160 160 160 160 160 160 160 160 | tali jan mer der ter tali and and and and and and | dry per port see and the per per per per per see the see her ser de                          |     |
|     |      | ng naring per pig aer are aar aan aan ber bie                                                                                                                               | कर्ण परंतु कार तक तक कार कार और को रेज्य परंत तक उत्तर                      | क्क स्थान स्थान हुन क्षण नाम् नाम् नामि नामि स्थान स्थान                                                       | r yage gay que quie mais jibb fine giag gage, gar-rang gi         | عند سنو نبود بينه جينه بينه ۱۹۴۰ بنه المدانيو.    | dar dasi nay agay gay nay lagay dida madi dadi dadi gati daliya'an isan na                   | •   |
|     |      | 李 如 如 如 如 可 可 可 可                                                                                                                                                           |                                                                             |                                                                                                                |                                                                   |                                                   | mang mang labah dalah mang meri <sup>k</sup> daran mang mang mang paga pand labah melaj jela | •   |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                |                                                                   |                                                   |                                                                                              | [1] |
|     |      |                                                                                                                                                                             |                                                                             |                                                                                                                |                                                                   |                                                   |                                                                                              |     |

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

11

15. The diagram shows the speed-time graph for the first 25 seconds of a car's journey.



(a) Find the instantaneous speed of the car after travelling for 20 seconds.

Answer m/s [2]

(b) Find the total distance travelled by the car.

Answer

n f2

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

12

16. Solve the equation  $\frac{8}{3-x} = 5x - 2$ .

| Answer | <br>[3] |  |
|--------|---------|--|
|        |         |  |

17. (a) Simplify  $18p^2c^3 \div 4p^5c^{-4}$ .

(b) Given that  $9 \times 27^{2n} = 1$ , find the value of n.

Answer 
$$n = [2]$$

13

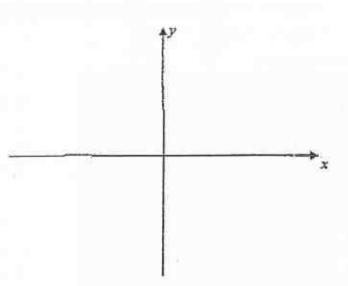
18. (a) Solve the inequalities  $-7 \le 15-5k < 9$ .

| Answer   | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   | [2] |
|----------|-----------------------------------------|-----|
| 2,60,,00 | *************************************** |     |

(b) Write down the integer(s) that satisfy  $-7 \le 15 - 5k < 9$ .

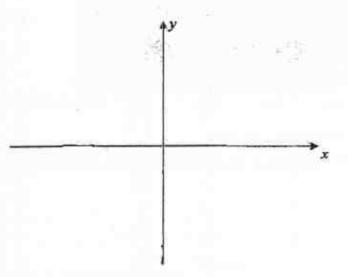
Answer [1

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)


[1]

[1]

[1]


19. (a) (i) Sketch the graph of  $y = -\frac{1}{2}x^2$ .

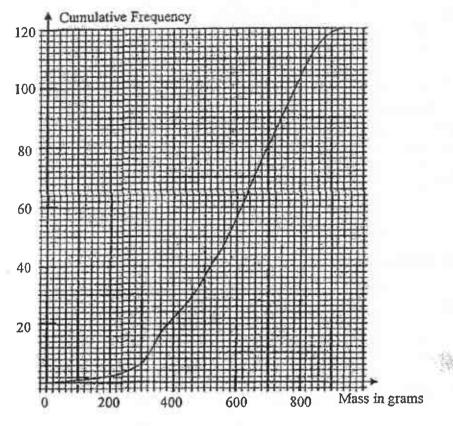
Answer



(ii) Sketch the graph of  $y = \frac{5}{x^2}$ .

Answer




(b) A student claimed that there are roots to the equation  $\frac{x^2}{2} + \frac{5}{x^2} = 0$ .

Do you agree? Justify your answer.

Answer

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

20. The cumulative frequency distribution shows the results of a group of students estimating the mass, in grams, of metal balls in a container.



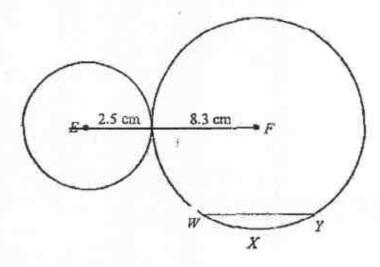
The actual mass of the metal balls is 500 grams.

(a) Find the probability that a student, chosen at random, overestimated the mass.

| A      | [2] |
|--------|-----|
| Answer | [2] |

(b) Find the number of students who gave estimates within 20% of the actual mass.

Answer [2


Holy Innocents' High School Secondary 4 Express 5 Nonnal (Academic)

16

21. Two connected discs of radii 2.5 cm and 8.3 cm are shown below.

A clockwise motion in the smaller disc will result in an anti-clockwise motion of the bigger disc.

W, X, Y are points on the circumference of the bigger disc and EF is parallel to WY. E and F are the center of the smaller and bigger discs respectively.



(a) The smaller disc makes one full complete clockwise rotation. Find, in terms of  $\pi$ , the angle of rotation made by the larger disc. Assume that friction is negligible in this question.

| Answer | radians [2] |
|--------|-------------|

(b) Given that  $\angle EFW = 1.03$  radians, find the area of the minor segment WXY.

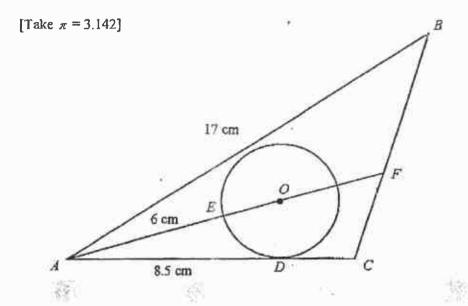
| A      | cm <sup>2</sup> [2] |
|--------|---------------------|
| Answer | <br>CIII Z          |

17

| 22. |      | ke ha<br>repre |                                                 |                                               |         |                                         |
|-----|------|----------------|-------------------------------------------------|-----------------------------------------------|---------|-----------------------------------------|
|     | (a)  | (i)            | Find the scale of map                           | A in the form 1:n.                            |         |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 | -                                             |         |                                         |
|     |      |                |                                                 | Answer                                        |         | [2]                                     |
|     |      | (ii)           | The length of a road on Find the actual length, | n map A is 8.5 cm. in kilometres, of the road | _       |                                         |
|     |      |                | 0.7                                             | , == === = ===                                | ř:      |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     | .Ver |                |                                                 |                                               |         |                                         |
| T   | 100  |                |                                                 | -35.                                          | 14.65   |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 |                                               |         |                                         |
|     |      |                |                                                 | Answer                                        | ******* | km [1]                                  |
|     | (b)  | The            | area of the lake is repres                      | ented on another map B.                       |         | *************************************** |
|     |      | The            | scale of map $B$ is $1:450$                     | 000                                           |         |                                         |
|     |      | Eind.          | the error in the second                         | metres, of the lake repres                    | _       |                                         |

Inswer \_\_\_\_ cm² [2]

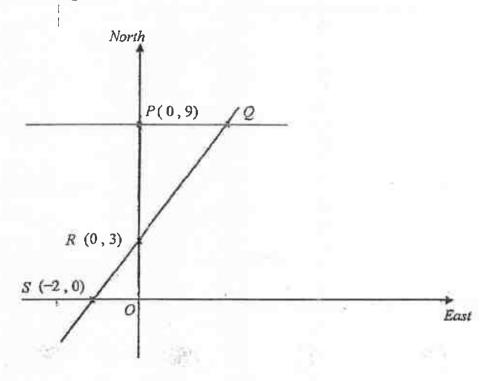
18


| 23. |      | planet Earth can be modelled by a sphere.  Earth's circumference is estimated to be 40 075 km.                      |
|-----|------|---------------------------------------------------------------------------------------------------------------------|
|     | [Tal | $ee \pi = 3.142$                                                                                                    |
|     | (a)  | Find the radius, in kilometres, of the Earth.  Give your answer in standard form, correct to 3 significant figures. |
|     |      | Answer [2]                                                                                                          |
|     | (b)  | The speed of light is $3 \times 10^8$ m/s.  Express this speed in kilometres per hour.                              |

Answer km/h [1]

(c) Find the time taken, in minutes, for a beam of light to travel a distance half the circumference of the Earth.Give your answer in standard form, correct to 3 significant figures.

Answer minutes [2]


24. In the following figure, a circle with center O is located in triangle ABC.
AC meets the circle at point D and AD = 8.5 cm.
E is a point on the circumference of the circle, AB = 17 cm and AE = 6 cm.
The ratio of the area of triangle ABC to the area of the circle is 5:2.
Find the shortest distance from C to AB.



Answer

cm [4]

25. In a battleship board game, the position of four ships labelled P, Q, R and S are represented on a Cartesian Plane with the North and East directions given. Point O is the origin.



(a) Given that line PQ is perpendicular to line OR, Find the coordinates of the ship at Q.

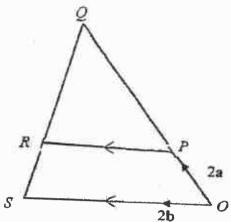
Answer

0

)[3]

| -  | 4 |
|----|---|
| _, | ч |

| (b) Find the distance between | Ship P | and Ship S. |
|-------------------------------|--------|-------------|
|-------------------------------|--------|-------------|


| Answer | units | .] |
|--------|-------|----|
| AIDWEI |       |    |

(c) Find the bearing of Ship R from Ship Q.

|        | 0 | [2] |
|--------|---|-----|
| 4nswer |   | 12  |

26. In the diagram, OPRS is a trapezium where PR is parallel to OS.

The line OP is produced to the point Q such that  $\frac{OP}{OQ} = \frac{1}{3}$ .



(a) Given that  $\overrightarrow{OP} = 2a$  and  $\overrightarrow{OS} = 2b$ , express in terms of a and b, as simply as possible, (i)  $\overrightarrow{SQ}$ ,

(ii)  $\overrightarrow{OR}$  Answer [1

Answer

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

23

| (b)    | It is   | given that $\overrightarrow{OT} = 6a +$                                                                        | 4b.                                                                                                                                                                                                                              |                                                                                                                 |                                           |
|--------|---------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|        | (i)     | Explain why O, R a                                                                                             | nd T lie on a straight lir                                                                                                                                                                                                       | ie.                                                                                                             |                                           |
| Answ   | er      | an an an an an an faire an                                                 |                                                                                                                                                                                                                                  | مند منز منز پين منه پدر پند بند بند من من من من من من بند بند بند ارت ارت ان ا | ط مد مد مد مد بد بد بد بد الله ده مد الله |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         | بعد جد خدم العدادة العدادة المدادة على المدادة المدادة المدادة المدادة المدادة المدادة المدادة المدادة المدادة | علام الله على مثل الله على الله على الله الله على الله ع<br>الله على الله على ال | ي من حال من                                                                 |                                           |
|        |         | ***************                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 | [1]                                       |
|        | (ii)    | State the name of qu                                                                                           | nadrilateral OQTS.                                                                                                                                                                                                               |                                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        | G       |                                                                                                                | Answer                                                                                                                                                                                                                           | ال الله الله الله الله الله الله الله ا                                                                         | [1]                                       |
| (c)    | (i)     | Find, giving your ar                                                                                           | nswer as a fraction in it                                                                                                                                                                                                        | s simplest form, area of                                                                                        | of triangle PQR<br>of triangle OQS        |
|        |         | <b>*</b>                                                                                                       | 802                                                                                                                                                                                                                              | i.a                                                                                                             |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                | Answer                                                                                                                                                                                                                           |                                                                                                                 | [1]                                       |
|        |         |                                                                                                                | area of                                                                                                                                                                                                                          | trianale POR                                                                                                    |                                           |
|        | (ii)    | Hence write down the                                                                                           | the ratio of $\frac{area\ of}{area\ of\ qua}$                                                                                                                                                                                    | drilateral OPRS                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                 |                                           |
|        |         |                                                                                                                | Answer                                                                                                                                                                                                                           |                                                                                                                 | [1]                                       |
|        |         |                                                                                                                | End of Paper 1                                                                                                                                                                                                                   |                                                                                                                 |                                           |
| nnocen | as' Hig | gh School                                                                                                      |                                                                                                                                                                                                                                  | 2017 Prelimina                                                                                                  | y Examination                             |

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

#### Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi l$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle  $ABC = \frac{1}{2}ab \sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

$$Standard deviation = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

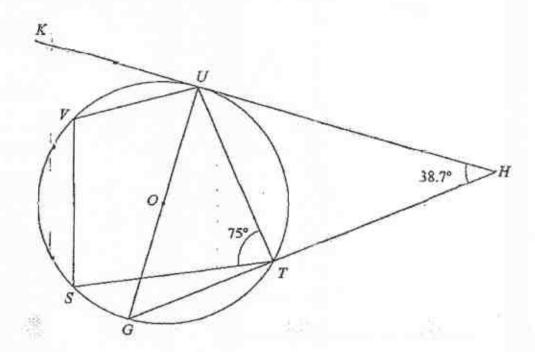
- 1. (a) (i) Simplify the expression  $\frac{2x^2 + 7x 4}{x^2 16}$  [2]
  - (ii) Hence make x the subject of the formula  $y = \frac{2x^2 + 7x 4}{x^2 16}$ . [2]
  - (b) Solve these simultaneous equations. [3]

$$2x = 1 - y,$$
$$4x + 5y = 8.$$

- (c) Given that  $\frac{1}{x+y} + \frac{2}{x-y} = \frac{2x+5y}{x^2-y^2}$ ,
  - (i) show that  $\frac{x}{y} = 4$ . [2]
  - (ii) Hence find the value of  $\left(\frac{3x}{2y}\right)^2$ . [2]
- 2. Alan bought m water bottles for \$128.
  - (a) Write down an expression, in terms of m, for the cost, in dollars, of one water bottle. [1]
  - (h) Alan sold 12 of the water bottles at a profit of \$2 each and the rest at \$7 per water bottle.

Write an expression, in terms of m, for the total amount of money he received from the sale of the water bottles. [1]

(c) Alan found that he made a profit of \$20 from the sale.


Write an equation in m to represent this information and show that it reduces to

$$7m^2 - 208n + 1536 = 0.$$
 [3]

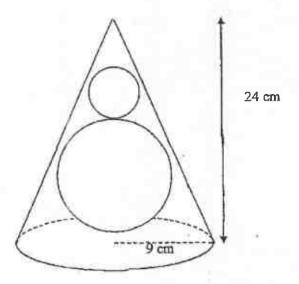
- (d) Solve the equation  $7m^2 208m + 1536 = 0$ . [3]
- (e) Find the selling price of each water bottle so that Alan makes a profit of 20%. [1]

3. In the diagram, the points S, T, U and V lie on a circle with centre O.

G is a point on the circle such that GU is the diameter of the circle. The tangent KU and the chord GT are extended to meet at point H.  $\angle STU = 75^{\circ}$  and  $\angle GHU = 38.7^{\circ}$ .



- (a) Prove that triangle GTU and triangle GUH are similar. [2]
- (b) Given that HU = 8 cm and UT : GT = 5 : 4, find the area of triangle GUH. [3]
- (c) Stating your reasons clearly, calculate


(ii) 
$$\angle GTS$$
,

(iii) 
$$\angle TGU$$
, and [1]

(iv) 
$$\angle TOU$$
.

4. The diagram shows a conical container with radius 9 cm and height 24 cm.

Two balls are placed in the container as shown and  $49.5\pi$  cm<sup>3</sup> of sand are needed to fill the container completely.



(a) Calculate the total surface area of the container.

[2]

(b) If the balls are removed and the container is inverted, find the height of the sand in the container.

[4]

- (c) The radii of the two balls are in the ratio of 2:5.
  - Calculate the radius of the smaller ball.

[4]

#### 5. Answer the whole of this question on a single sheet of graph paper.

The variables x and y are connected by the equation

$$y = x - 2 + \frac{8}{x}$$

 $y = x - 2 + \frac{8}{x}.$  Some corresponding values of x and y are given in the table below.

| x | 1   | 1.5 | 2   | 3   | 4   | 5   | 6   | 7 | 8   |
|---|-----|-----|-----|-----|-----|-----|-----|---|-----|
| y | 7.0 | 4.8 | 4.0 | 3.7 | 4.0 | 4.6 | 5.3 | h | 7.0 |

Find the value of h. (a)

[1]

(b) Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for  $0 \le x \le 8$  and a vertical y-axis for  $0 \le y \le 8$ .

On your axes, plot the points in the given table and join them with a smooth curve. [3]

- By drawing a tangent, find the gradient of the curve at (4, 4.0). (c) [2]
- Use your graph to solve the equation  $x + \frac{8}{x} = 8.5$  for  $0 \le x \le 8$ . (d) [2]
- (e) (i) On the same axes, draw the line y = 7 - x for  $0 \le y \le 8$ . [2]
  - (ii) Write down the x-coordinates of the points at which the two graphs intersect.
  - (iii) Hence state the value of c such that the equation  $2x^2 + cx + 8 = 0$  is satisfied by the values of x found in part (e)(ii). [1]

6. Diagram I shows a table with a horizontal plane ABCD such that AB = 120 cm and AD = 70 cm.

Three vertical planes are erected along three sides of the table such that E and F are vertically above C and D respectively and CE = DF = 30 cm.

O and P are the midpoints of BC and BE respectively.

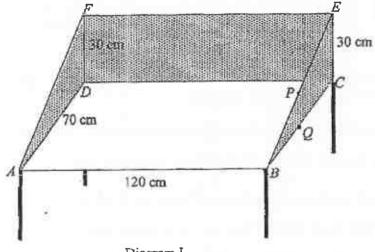
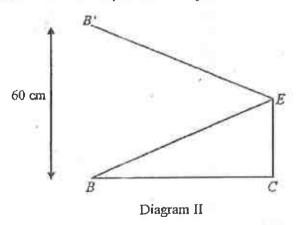



Diagram I

(a) Calculate


(i) AQ,

[2]

(ii) angle PAQ.

[2]

A wooden board is attached along EF with hinges such that it covers ABEF in Diagram I. ABEF then becomes a tabletop that can be used by an architect when he draws his designs. This tabletop can be lifted up and Diagram II shows the side view when this is done. The new position for B is now B, 60 cm directly above B.



(b) (i) Show that angle BEB' is 46.397°, correct to 3 decimal places.

[3]

(ii) Hence find the distance moved by point B, when the tabletop is lifted up to B'. [2]

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

7. A shop sells two types of cookies, Cranberry and Blueberry.

Each type is sold in packets of three different sizes, small (S), medium (M) and large (L). They are each sold at a different price.

The sales for two consecutive weeks, Week I and 2, are given in the following table.

|                                            |     | Week 1 |        |     | Week 2 |        |
|--------------------------------------------|-----|--------|--------|-----|--------|--------|
| Size                                       | S   | M      | L      | S   | M      | L      |
| No. of packet of<br>Cranberry cookies sold | 15  | 10     | 12     | 7   | 11     | 9      |
| No. of packet of<br>Blueberry cookies sold | 13  | 11     | 14     | 12  | 8      | 17     |
| Cost per packet                            | \$4 | \$5.50 | \$6.50 | \$4 | \$5.50 | \$6.50 |

The matrix G shows the sales of the cookies in Week 1.

$$G = \begin{pmatrix} S & M & L \\ 15 & 10 & 12 \\ 13 & 11 & 14 \end{pmatrix}$$
 Cranberry Blueberry

- (a) Write down a matrix D to represent the sales of the cookies in Week 2. [1]
- (b) Evaluate M = (G + D) and state what its elements represent. [2]
- (c) The cost of each packet of cookies for each size can be represented by the matrix C.

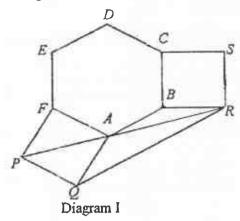
$$C = \begin{pmatrix} 4 \\ 5.5 \\ 6.5 \end{pmatrix} \begin{array}{c} S \\ M \\ L \end{array}$$

Evaluate  $L = \frac{1}{2}$  (MC) and state what its elements represent. [3]

- (d) (i) Write down a matrix T such that TMC gives the total sales for the two weeks. [1]
  - (ii) Hence evaluate TMC. [1]
- (e) The target sales of the cookies in Week 3, as compared to Week 1 are as follow:

  Cranberry: increase by 35%

  Blueberry: decrease to 85%


Write down the value of a and of b such that the matrix product

$$(a \ b)\begin{pmatrix} 15 & 10 & 12 \\ 13 & 11 & 14 \end{pmatrix}$$

gives the target sales of the cookies in Week 3.

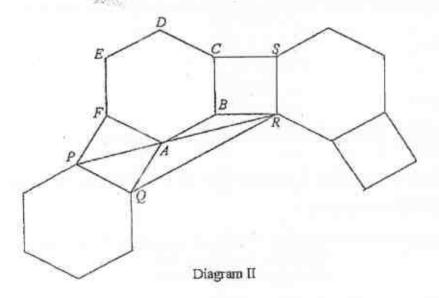
[1]

8. Diagram I shows a regular hexagon ABCDEF and squares AFPQ and CBRS.



- (a) Find
  - (i) reflex  $\angle BAQ$ ,

[2]


(ii) LAQR.

[2]

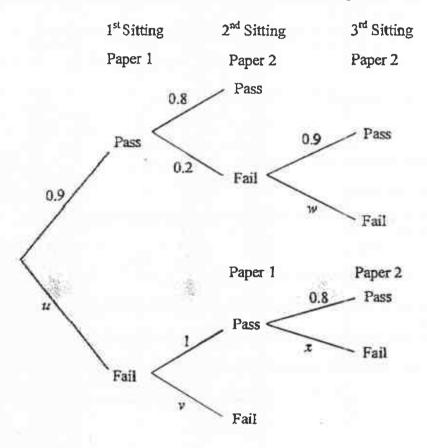
(b) Show that PAR is a straight line.

[2]

(c) Additional squares and hexagons are added to Diagram I to form a regular polygon, ABR....Q, as shown in Diagram II.



Calculate the number of squares added to form the polygon ABR....Q.


[3]

9. (a) An entrance examination consists of 2 different papers, Paper 1 and Paper 2.

A candidate must pass Paper 1 before he can proceed to sit for Paper 2. He must pass both papers in order to pass the examination. He has a maximum of 3 sittings to pass the examination.

The probability of passing Paper 1 and 2 are 0.9 and 0.8 respectively, and increases by 0.1 for each subsequent attempt of the same paper.

(i) The tree diagram shows the probabilities of the possible outcomes.



Find the respective values of u, v, w, and x.

[2]

- (ii) Calculate the probability that a candidate
  - (a) passes the examination at the end of the second sitting,

[1]

(b) does not pass the examination.

[2]

(iii) If 1000 candidates enrolled for the examination, estimate the number of candidates expected to pass eventually.

[1]

The stem-and-leaf diagram shows the amount of time, in seconds, a group of boys can hold their breath when under water.

| Stem | Leaf          |
|------|---------------|
| 1    | 5             |
| 2    |               |
| 3    |               |
| 4    | 00123577      |
| 5    | 244456666678  |
| 6    | 1 2 3 3 5 7 8 |
| 7    | 0 0           |

Key:4 2 means 42

| (ī)   | Find the                                                                                          |     |
|-------|---------------------------------------------------------------------------------------------------|-----|
|       | (a) median time taken, and                                                                        | [1] |
|       | (b) mean time taken.                                                                              | [1] |
| (ii)  | Is the median or the mean time a better representation, for the time taken by this group of boys? |     |
|       | Explain your answer.                                                                              | [1] |
| (iii) | Calculate the standard deviation.                                                                 | [2] |
| (iv)  | Another group of 30 boys measured the time they took to hold their breath underwater.             |     |
|       | Their mean time taken was 53.5 seconds and the standard deviation was 7.86.                       |     |

Compare and comment on the results between these two groups of boys.

10. ERGO is a company that sells ergonomic furniture for homes.

The types of furniture include study table-chair sets, chairs, baby cots and bunk beds. The table below shows the average time taken by the delivery men to assemble each type of furniture.

| Furniture             | Average time taken to assemble each piece (minutes) |
|-----------------------|-----------------------------------------------------|
| Study table-chair set | 45                                                  |
| Chair                 | 3                                                   |
| Baby cot              | 12                                                  |
| Bunk bed              | 105                                                 |

- (a) Find the total average time taken, in hours and minutes, to assemble one set of study table-chair set, one baby cot and one bunk bed. [1]
- (b) The Operation Manager in the company is responsible for planning the daily delivery route.

  On a particular day, the delivery route is as shown below.

| No. | Location       | Order                                                                           | Estimated time of delivery |
|-----|----------------|---------------------------------------------------------------------------------|----------------------------|
| 1   | Happy Valley   | 1 study table-chair set     2 chairs                                            | 09 00 to 10 30             |
| 2   | Joyful Pasture | I baby cot                                                                      | 10 30 to 12 00             |
| 3   | Dream Cove     | 1 baby cot     1 bunk bed                                                       | 10 30 to 12 00             |
| 4   | Blissful Ave   | <ul><li>1 study table-chair set</li><li>1 baby cot</li><li>1 bunk bed</li></ul> | 13 00 to 15 00             |
| 5   | Peace Link     | <ul><li>1 study table-chair set</li><li>1 baby cot</li></ul>                    | 15 00 to 17 00             |

Additional information needed for the delivery is shown on the opposite page.

The delivery men left the office at 09 15 for the first location at Happy Valley. After assembling the orders, they proceeded to the second location at Joyful Pasture and arrived at 10 30.

- (i) Calculate the average speed, in km/h, of the delivery van, leaving your answer to the nearest whole number.

  Do you think the answer is a reasonable estimate of the actual travelling speed of the van? Justify your answer.

  [3]
- (ii) The daily working hours for the delivery men is 08 30 to 18 00, and they are

Determine if the delivery men can leave the office punctually at 18 00 for that day. Support your answer with appropriate calculations.

State one reasonable assumption you have made in your calculations.

[6]

eni

## DISTANCE CHART BETWEEN THE VARIOUS LOCATIONS

| Distance<br>(in km) | ERGO<br>Office | Happy<br>Valley | Joyful<br>Pasture | Dream<br>Cove | Blissful<br>Ave | Peace<br>Link |
|---------------------|----------------|-----------------|-------------------|---------------|-----------------|---------------|
| ERGO<br>Office      | -              | 13.8            | 18.1              | 9.7           | 7.2             | 1.9           |
| Happy<br>Valley     | 13.8           |                 | 4.7               | 3.8           | 8               | 16.3          |
| Joyful<br>Pasture   | 18:1           | 4.7             | _                 | 6.1           | 10.6            | 20            |
| Dream<br>Cove       | 9.7            | 3.8             | 6.1               | -             | 5.4             | 9.3           |
| Blissful<br>Ave     | 7.2            | 8               | 10.6              | 5.4           | -               | 8.8           |
| Peace<br>Link       | 1.9            | 16.3            | 20                | 9.3           | 8.8             | -             |

## SPEED LIMITS FOR VEHICLES

The following speed limits are enforced by LTA to ensure everyone's safety:

| Type of Vehicle                                                                                                                                         | Roads  | Expressways | Tunnels   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-----------|
| Cars & motorcycles                                                                                                                                      | 50km/h | 70-90km/h   | 50-80km/h |
| Buses & coaches                                                                                                                                         | 50km/h | 60km/h      | 50-60km/h |
| Light commercial vehicles (includes<br>Light Goods Vehicles and small buses not<br>exceeding 3.5 tonnes and seating capacity<br>of up to 15 passengers) | 50km/h | 60-70km/h   | 50-70km/h |
| Exceptions: Fire engines, Ambulances, and Government vehicles used by Singapore Police Force or the Singapore Civil Defence Force                       |        |             |           |

https://www.lta.gov.sg/content/ltaweb/en/roads-and-motoring/road-safety-and-regulations/road-regulations.html

End of Paper 2

| Qn | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T   | 1                                                                                                                                                                                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | -0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12a | 13                                                                                                                                                                                                                                                                           |
| 2a | $\sqrt[4]{3}$ , 0.66, $\frac{\pi}{7}$ , $\frac{1}{3}$ , -0.4, $-\sqrt{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12b | x=59                                                                                                                                                                                                                                                                         |
| 2b | $\sqrt[3]{3}$ , $\frac{\pi}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13a | $60 = 2^2 \times 3 \times 5$                                                                                                                                                                                                                                                 |
| 3  | $(a+1)(a-1)(5a^2+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13b | x=63                                                                                                                                                                                                                                                                         |
| 4  | Stating aspect or equivalent – 1 mark Explaining how audience might be mislead or equivalent – 1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14  | a = 5 b = 21 and c = 29                                                                                                                                                                                                                                                      |
| 5  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14b | $T_n=8n-3$                                                                                                                                                                                                                                                                   |
| 6  | 5.5 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14c | When 121 is a term in the sequence, $n$ will have a value of 15.5. A pattern number $n$ must be an integer. The value of 121 is resulted from a value of $n = 15.5$ . This imply that the pattern number of 15.5 doesn't exist and hence 121 is not a term in this sequence. |
| 7a | n=12k+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15a | Speed = 25 m/s                                                                                                                                                                                                                                                               |
| 7b | n=3(4k+1)<br>Since k is an integer, $4k+1$ will always be an integer. Therefore, n will be an integer.<br>Based on $n=3(4k+1)$ , n can be factorized to give $3(4k+1)$ . Hence 3 and $4k+1$ are factors of $n=3(4k+1)$ and n will be a multiple of 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15b | 759 m                                                                                                                                                                                                                                                                        |
| 8  | - 98.4375%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16  | $x=1\frac{2}{5}$ or $x=2$                                                                                                                                                                                                                                                    |
| 9a | 11 19 15 15 18 15 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 15 18 18 15 18 18 15 18 18 18 18 18 18 18 18 18 18 18 18 18 | 17a | $\frac{9c^7}{2p^3}$                                                                                                                                                                                                                                                          |
|    | 17 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17b | $n = -\frac{1}{3}$                                                                                                                                                                                                                                                           |
| 9b | 14, 16, 20 and 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | , ,                                                                                                                                                                                                                                                                          |
| 10 | $\frac{7}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18a | $\left  \frac{1}{5} < k \le 4 \frac{2}{5} \right $                                                                                                                                                                                                                           |
| 11 | $(x-4)^2-27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18b | 2, 3 and 4                                                                                                                                                                                                                                                                   |

| Qn          |                                                                                                                                                                           |               |                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------|
| 19ai        | ¥ V                                                                                                                                                                       | 23a           | 6.38×10 <sup>3</sup> km                                                         |
|             |                                                                                                                                                                           | 23b           | 1.08×10° km/h                                                                   |
|             |                                                                                                                                                                           | 23c           | 1.11×10 <sup>-3</sup> minutes                                                   |
|             | $y = -\frac{1}{2}x^2$                                                                                                                                                     | 24            | x=8.43cm                                                                        |
| 19aïi       | 1 × ×                                                                                                                                                                     | 25a           | Coordinates of ship $Q$ is $(4, 9)$                                             |
|             |                                                                                                                                                                           | 25b           | 9.22 units                                                                      |
|             | 0 × x                                                                                                                                                                     | 25c           | 213.7°                                                                          |
| 19b         | No, I do not agree. There are no roots to the equation as there are no common points of intersection between the two curves. These two curves will never meet each other. | 26ai          | 6a-2b                                                                           |
| 20a         | 7 10                                                                                                                                                                      | 26aii         | $2a+\frac{4}{3}b$                                                               |
| 20b         | 34                                                                                                                                                                        | 26bî          | $\overrightarrow{OT} = 6a + 4b$ $= 3(2a + \frac{4}{3}b)$                        |
|             |                                                                                                                                                                           |               | = 3 OR  OT is parallel to OR and O is a common point. O, R and T are collinear. |
| 21a         | 50 x                                                                                                                                                                      | 26bii         | Trapezium                                                                       |
|             | $\frac{3}{83}\pi$                                                                                                                                                         |               |                                                                                 |
|             | 6.85 cm <sup>2</sup>                                                                                                                                                      | 26ci          | 4                                                                               |
| 21b<br>22ai |                                                                                                                                                                           | 26ci<br>26cii | 4:5                                                                             |
| 21b         | 6.85 cm <sup>2</sup>                                                                                                                                                      | 1             | 4:5                                                                             |

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic)

## Sec 4 Express/5 Normal Prelim Paper 1 Marking Scheme

| SN | Answer                                                                                                                                                                                                                                                                                                                 | Mark     | Comments                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------|
| 1  | $ \frac{0.85^2 - 5.34}{\sqrt{81.2 + 3.134}} $ $= -0.38019$ $= -0.380$                                                                                                                                                                                                                                                  | BI       | Correct rounding off to 3sf must be shown to be awarded BI                              |
| 2a | $\frac{3\sqrt{3}}{7} = 1.442249$ $\frac{\pi}{7} = 0.448857$ $0.66 = \frac{2}{3}$ $\sqrt{3},  0.66,  \frac{\pi}{7},  \frac{1}{3},  -0.4,  -\sqrt{4}$                                                                                                                                                                    | Bl       | Correct order                                                                           |
| 25 | Irrational numbers are $\sqrt[3]{3}$ , $\frac{\pi}{7}$                                                                                                                                                                                                                                                                 | BI       | - HIKAN K-K-K-K-K                                                                       |
| 3  | $6a^{2}(a^{2}-1)-(a^{2}-1)^{2}$ $= (a^{2}-1)[6a^{2}-(a^{2}-1)]$ $= (a^{2}-1)[5a^{2}+1)]$ $= (a+1)(a-1)(5a^{2}+1)$                                                                                                                                                                                                      | MI<br>AI | Accept $5a^{4} - 4a^{2} - 1$ $= (5a^{2} + 1)(a^{2} - 1)$ $= (5a^{2} + 1)(a + 1)(a - 1)$ |
| 4  | The chart shown for year 2012 is approximately twice the size of the chart shown in 2013. However, the value of the knuckle velocity in 2012 is not twice the velocity as shown in 2013.  Audience might be visually misled into thinking that the baseball player has reduced his knuckle velocity by a great amount. | BI<br>B1 | Stating aspect or equivalent  Explaining how audience might be mislead or equivalent    |

| 5  | $a^2 + 6a = 6$                                                                                | T  | $a^3 + 7a^2$                                                                   |
|----|-----------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------|
|    | $a(a^2 + 6a) = 6a$                                                                            |    | $=a^2(a+7)$                                                                    |
|    | $a^3 + 6a^2 = 6a$                                                                             | MI | VI.                                                                            |
|    | $a^3 + 6a^2 + a^2 = 6a + a^2$                                                                 |    | $= a^2[(a+6)+1]$                                                               |
|    | $a^3 + 7a^2 = 6a + a^2$                                                                       |    | $=a^2(a+6)+a^2$                                                                |
|    | =6                                                                                            | AI | $= a(a^2 + 6a) + a^2$                                                          |
|    |                                                                                               |    | $=6a+a^2$                                                                      |
|    |                                                                                               |    | = 6                                                                            |
|    |                                                                                               |    | Or factoise to solve for 2 values of a and perform substitution to find answer |
| 6  | Temperature difference                                                                        |    |                                                                                |
|    | = 34 - (-5)<br>=39 °C                                                                         |    | Accept workings like                                                           |
|    | Required temperature                                                                          |    | Accept workings like                                                           |
|    | $= 34 - \left(\frac{39}{26} \times 19\right)$                                                 | MI | -5+7(1.5)                                                                      |
|    |                                                                                               | A1 | = 5.5                                                                          |
|    | = 5.5 °C                                                                                      |    | 1                                                                              |
| 7a | n = 12k + 3                                                                                   | BI | Accept $n = 3(4k+1)$ o.e.                                                      |
| 7b | n=3(4k+1)                                                                                     |    |                                                                                |
|    | Since $k$ is an integer, $4k+1$ will always be an integer. Therefore, $n$ will be an integer. |    |                                                                                |
|    | Based on $n = 3(4k + 1)$ , n can be factorized to                                             |    | Only award B1 if student                                                       |
|    | give $3(4k+1)$ . Hence 3 and $4k+1$ are factors                                               | BI | managed to explain both                                                        |
|    | of $n = 3(4k + 1)$ and n will be a multiple of 3.                                             |    | conditions of n.                                                               |
| 8  | $V = \frac{k}{T^3}$                                                                           |    |                                                                                |
|    | When T is increased by 300%,<br>New $T = 4T$                                                  |    |                                                                                |
|    |                                                                                               |    |                                                                                |
|    | $V = \frac{k}{(4T)^3}$ $V = \frac{k}{64T^3}$                                                  |    |                                                                                |
|    | (12)                                                                                          |    |                                                                                |
|    | $V = \frac{k}{k}$                                                                             |    |                                                                                |
|    | 64T <sup>3</sup>                                                                              | MI |                                                                                |
|    |                                                                                               |    |                                                                                |

| _  | ψ <u></u>                                                                           |      |                                                  |
|----|-------------------------------------------------------------------------------------|------|--------------------------------------------------|
| H  | Percentage decrease                                                                 |      |                                                  |
|    | $= \frac{\frac{k}{64T^3} \left  \frac{k}{T^3} \right }{\frac{k}{T^3}} \times 100\%$ |      |                                                  |
|    | $=\frac{641}{k}$ × 100%                                                             |      |                                                  |
|    | $\frac{1}{T^{5}}$                                                                   |      |                                                  |
|    | * 1                                                                                 |      | i l                                              |
|    | 1                                                                                   |      |                                                  |
|    | $=\frac{\frac{1}{64}-1}{1}\times 100\%$                                             |      |                                                  |
|    | 1 110070                                                                            |      | 1                                                |
|    | 1                                                                                   | AI   | 1                                                |
|    | =-98.4375%                                                                          | 1    |                                                  |
| 9a | 1                                                                                   |      | Any missing term will                            |
| Ja |                                                                                     |      | result in zero marks                             |
|    | E A 14 16 20 22 B                                                                   |      |                                                  |
|    | A IV IS 22 B                                                                        | İ    |                                                  |
|    |                                                                                     |      |                                                  |
|    | 19 \( 12 \) 18                                                                      |      | 1                                                |
|    |                                                                                     | B1   |                                                  |
|    | 17 / 21                                                                             |      |                                                  |
| į. |                                                                                     |      |                                                  |
|    |                                                                                     |      |                                                  |
| 9b | 14, 16, 20 and 22                                                                   | Bl   |                                                  |
| 90 | 14, 10, 20 and 22                                                                   | 5.   |                                                  |
| 10 | $\cos A = \frac{24}{25}$                                                            | li . | Accept if students show                          |
|    | $\cos A = \frac{1}{25}$                                                             |      | triangles with values of                         |
|    |                                                                                     | 1    | Pythagoras' Theorem applied with writing out the |
|    | Let the unknown side of the triangle be x                                           | V.   | steps.                                           |
|    | $x^2 = 25^2 - 24^2$                                                                 |      | u put                                            |
|    | T i                                                                                 |      |                                                  |
|    | $x^2 = 625 - 576$ $x^2 = 49$                                                        | 1    |                                                  |
|    | x = 49<br>x = 7                                                                     | MI   |                                                  |
|    | i                                                                                   |      |                                                  |
|    | $\sin\left(180^\circ - A\right) = \sin A$                                           |      | 2                                                |
|    | $\sin (180^{\circ} - A) = \sin A$ $= \frac{7}{25}$                                  |      |                                                  |
|    | 25                                                                                  | A1   |                                                  |
|    |                                                                                     |      |                                                  |
|    |                                                                                     |      |                                                  |
|    |                                                                                     |      |                                                  |
|    |                                                                                     | i.   |                                                  |
|    |                                                                                     |      |                                                  |
|    |                                                                                     |      | 1                                                |

| 11  | $-8x-11+x^2$                                                                                                                                                                                                                                                                                          | t 6      |                                                                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $= x^{2} - 8x + \left(\frac{-8}{2}\right)^{2} - \left(\frac{-8}{2}\right)^{2} - 11$ $= (x - 4)^{2} - 27$                                                                                                                                                                                              | M1       | × =                                                                                                                                                                             |
|     | $=(x-4)^2-27$                                                                                                                                                                                                                                                                                         | A1       |                                                                                                                                                                                 |
| 12a | 13                                                                                                                                                                                                                                                                                                    | B1       |                                                                                                                                                                                 |
| 12b | $\frac{5(1)+14(2)+3x+7(4)}{26+x} = 2.8$ $61+3x = 2.8(26+x)$ $61+3x = 72.8+2.8x$ $0.2x = 11.8$ $x = 59$                                                                                                                                                                                                | M1       |                                                                                                                                                                                 |
|     | x = 39                                                                                                                                                                                                                                                                                                | BI       |                                                                                                                                                                                 |
| 13a | $60 = 2^2 \times 3 \times 5$                                                                                                                                                                                                                                                                          | BI       |                                                                                                                                                                                 |
| 13b | $378 = 2 \times 3^{3} \times 7$ LCM of 60 and 378 $= 2^{2} \times 3^{3} \times 5 \times 7$ $= 3780$ $60x = 3780$ $x = 63$                                                                                                                                                                             | MI<br>B1 | Finding LCM  Accept if students have written down workings and could make observations to find the value of x.                                                                  |
| 14a | a=5 b=21 and c=29                                                                                                                                                                                                                                                                                     | BI       |                                                                                                                                                                                 |
| 14b | $T_n = 8n - 3$                                                                                                                                                                                                                                                                                        | B1       | Accept 5+8(n-1)                                                                                                                                                                 |
| 14c | 8n-3=121 $8n=124$ $n=15.5$ When 121 is a term in the sequence, $n$ will have a value of 15.5. A pattern number $n$ must be an integer. The value of 121 is resulted from a value of $n=15.5$ . This imply that the pattern number of 15.5 doesn't exist and hence 121 is not a term in this sequence. | ВІ       | Keywords must be seen in students' answer  Accept words like whole number instead of integer, decimal and fraction accepted too  Students must mention that n is not an integer |

| 15a | Let the speed be x m/s $\frac{x-40}{20-17} = \frac{0-40}{25-17}$                                                                                          | MI       | Deceleration $= \frac{40}{8}$ $= 5 \text{ m/s}^2 \qquad M1$                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|
|     | $\frac{x-40}{3} = -5$ $x-40 = -15$ $x = 25$                                                                                                               |          | Speed = $40 - 3(5)$<br>= $25 \text{ m/s}$ A1                                                     |
|     | Speed = 25 m/s                                                                                                                                            | AI       |                                                                                                  |
| 15b | Total distance travelled $= \frac{1}{2}(13+40)(6)+(17-6)(40)+\frac{1}{2}(25-17)(40)$                                                                      | М1       |                                                                                                  |
|     | = 159 + 440 + 160<br>= 759 m                                                                                                                              | A1       |                                                                                                  |
| 16  | $\frac{8}{3-x} = 5x - 2$ $(3-x)(5x-2) = 8$ $15x - 6 - 5x^2 + 2x = 8$ $-5x^2 + 17x - 14 = 0$                                                               | MI       | Marks awarded if student did not write "x = " (i.e some students wrote down 1.4 or 2 as answers) |
|     | $5x^{2} - 17x + 14 = 0$ $(5x - 7)(x - 2) = 0$ $(5x - 7) = 0 \text{ or } (x - 2) = 0$ $x = 1\frac{2}{5} \text{ or } x = 2$                                 | MI<br>AI | Accept $x = 1.4$                                                                                 |
| 11  |                                                                                                                                                           |          |                                                                                                  |
| 17a | $18p^{2}c^{3} \div 4p^{5}c^{-4}$ $= \frac{18p^{2}c^{3}}{4p^{5}c^{-4}}$ $= \frac{9p^{2-5}c^{3+4}}{2}$ $= \frac{9p^{-3}c^{7}}{2}$ $= \frac{9c^{7}}{2p^{3}}$ | DI       | Accept $\frac{9}{2}p^{-3}c^{7}$ Do not accept $4.5p^{-3}c^{7}$                                   |
|     | $2p^3$                                                                                                                                                    | B1       |                                                                                                  |

| 17b | $9 \times 27^{2n} = 1$                  | -   | T                                                 |
|-----|-----------------------------------------|-----|---------------------------------------------------|
|     | $(3^2 \times (3^3)^{2n} = 3^0$          | M1  |                                                   |
|     | $3^2 \times 3^{6n} = 3^0$<br>2 + 6n = 0 |     |                                                   |
|     | 1                                       |     |                                                   |
|     | $n = -\frac{1}{3}$                      | Al  |                                                   |
| 18a | $-7 \le 15 - 5k < 9$                    |     |                                                   |
|     | $-7 \le 15 - 5k$                        |     |                                                   |
|     | $-5k \ge -22$                           |     |                                                   |
|     | $k \leq \frac{22}{5}$                   |     |                                                   |
|     | $k \le 4\frac{2}{5}$                    |     | 1                                                 |
|     | <i>n</i> ≥ 45                           |     |                                                   |
|     | and                                     | MI  | For both correct inequalities                     |
|     | 15-5k < 9<br>-5k < 9 - 15<br>-5k < -6   |     |                                                   |
|     | $k > 1\frac{1}{5}$                      |     |                                                   |
|     | ,                                       |     | 1                                                 |
|     | <del></del>                             |     |                                                   |
|     | $0 	 1\frac{1}{5} 	 4\frac{2}{5}$       |     |                                                   |
|     | 3                                       |     |                                                   |
|     | $1\frac{1}{5} < k \le 4\frac{2}{5}$     | ÅL  | Accept 1.2< $k \le 4.4$ [Number line is optional] |
| 8b  | 2, 3 and 4                              | BI  |                                                   |
| 9ai |                                         |     |                                                   |
| Ì   | 1,                                      |     |                                                   |
|     |                                         |     |                                                   |
|     | *                                       | ВІ  |                                                   |
|     | 0                                       | 101 |                                                   |
|     |                                         |     |                                                   |
|     | $y = -\frac{1}{2}x$                     |     |                                                   |

| 19aii |                                                                                                                                                                           | 194 |                                                                                                                                                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $y = \frac{5}{x^2}$                                                                                                                                                       | B1  |                                                                                                                                                                                                                                        |
| 19b   | No, I do not agree. There are no roots to the equation as there are no common points of intersection between the two curves. These two curves will never meet each other. | B1  | Accept alternative method $x^4 + 10 = 0$ $x^4 = -10$ $x^4 = \sqrt[4]{-10}$ $= no \ solution$ Therefore, there are no roots.  Students need to mention that $x = no \ solution$ and conclude that there are no roots to be given marks. |
| 20a   | Number of students who overestimate $= 120 - 36$ $= 84$ P(student overestimate the mass) $= \frac{84}{120}$ $= \frac{7}{10}$                                              | M1  | Accept 0.7                                                                                                                                                                                                                             |
| 20b   | 120% of actual mass<br>= $\frac{120}{100} \times 500$<br>= 600<br>80% of actual mass<br>= $\frac{80}{100} \times 500$<br>= 400                                            | M1  | Working out the respective upper and lower limits of the given range                                                                                                                                                                   |

|       | Number of students<br>= 56-22<br>= 34                                                                                                                                                                                                                                                 | A1       | Readings/Markings must be shown on graph to score M1 if students didn't work out/write down the limits on their answer scripts.                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21a   | Arc length travelled by smaller disc<br>= $2.5 \times 2\pi$<br>= $5\pi$ cm<br>Let $\theta$ be the angle of rotation made by the larger disc                                                                                                                                           | M1       |                                                                                                                                                                                     |
|       | $8.3 \theta = 5\pi$ $\theta = \frac{5\pi}{8.3}$ $= \frac{50\pi}{83} \text{ or } \frac{50}{83}\pi \text{ radian}$                                                                                                                                                                      | Al       | Accept 0.602π                                                                                                                                                                       |
| 21b   | $\angle FWY = 1.03$ radian (alternate angles)<br>$\angle WFY = \pi - 2(1.03)$<br>= 1.08159 radian<br>Area of segment =<br>$(\frac{1}{2} \times 8.3^2 \times 1.08159) - (\frac{1}{2} \times 8.3^2 \times \sin 1.08159)$<br>= 37.25536 - 30.40481<br>= 6.85055<br>$= 6.85 \text{ cm}^2$ | M1<br>A1 | Accept  \( \angle WFY = 1.081 \) or 1.082  Area of segment will be 6.84 cm <sup>2</sup> or 6.86 cm <sup>2</sup> respectively.  *premature rounding will only be awarded method mark |
| 22ai  | Map: Actual<br>0.16 cm <sup>2</sup> : 6.25 km <sup>2</sup><br>0.4 cm: 2.5 km<br>1 cm: 6.25 km<br>Scale of map = 1: 625000                                                                                                                                                             | M1       |                                                                                                                                                                                     |
| 22aii | Map:Actual 1 cm: 6.25 km 8.5 cm: 53.125 km  Actual length of road = 53.125 km                                                                                                                                                                                                         | B1       |                                                                                                                                                                                     |

| Map: Actual 1: 450000 1 cm: 450000 cm 1 cm: 4.5 km 1 cm <sup>2</sup> : 20.25 km <sup>2</sup>                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actual: Map<br>$20.25 \text{ km}^2$ : $1 \text{ cm}^2$<br>$1 \text{ km}^2$ : $\frac{1}{20.25} \text{ cm}^2$                                   | Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area = $\frac{1}{20.25} \times 6.25$<br>= 0.308641<br>= 0.309 cm <sup>2</sup>                                                                 | Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accept $\frac{25}{81}$ cm <sup>2</sup> Students should refrain from giving this answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $2\pi = 40075$ Radius $= \frac{40075}{2(3.142)}$ = 6377.3074                                                                                  | мі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= 6.38 \times 10^3 \text{ km}$                                                                                                               | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Speed $= \frac{3 \times 10^8 m}{1s}$ $= \frac{3 \times 10^8 \times 10^{-3}}{\frac{1}{3600}}$ $= 1080000000$ $= 1.08 \times 10^9 \text{ km/h}$ | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accept 1080 000 000 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Time taken $ \frac{\frac{1}{2} \times 40075}{2.08 \times 10^{9}} \times 60 $                                                                  | мі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No marks awarded if speed is wrong.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= 1.11319 \times 10$ = 1.11×10 <sup>-3</sup> minutes                                                                                         | Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | 1: 450000<br>1 cm: 450000 cm<br>1 cm: 4.5 km<br>1 cm <sup>2</sup> : 20.25 km <sup>2</sup><br>Actual: Map<br>20.25 km <sup>2</sup> : 1 cm <sup>2</sup><br>1 km <sup>2</sup> : $\frac{1}{20.25}$ cm <sup>2</sup><br>Area = $\frac{1}{20.25} \times 6.25$<br>= 0.308641<br>= 0.309 cm <sup>2</sup><br>$\frac{2\pi}{2(3.142)} = 6377.3074$<br>= 6.38×10 <sup>3</sup> km<br>Speed<br>= $\frac{3 \times 10^8 m}{1s}$<br>= $\frac{3 \times 10^8 \times 10^{-3}}{1}$<br>= $\frac{3600}{1.08 \times 10^9 \text{ km/h}}$<br>Time taken<br>$\frac{1}{2} \times 40075$<br>= 1.11319×10 <sup>-3</sup> | 1: 450000<br>1 cm: 450000 cm<br>1 cm: 4.5 km<br>1 cm <sup>2</sup> : 20.25 km <sup>2</sup><br>Actual: Map<br>20.25 km <sup>2</sup> : 1 cm <sup>2</sup><br>1 km <sup>2</sup> : $\frac{1}{20.25}$ cm <sup>2</sup><br>Area = $\frac{1}{20.25} \times 6.25$<br>= 0.308641<br>= 0.309 cm <sup>2</sup> A1  2 $\pi$ = 40075<br>Radius<br>= $\frac{40075}{2(3.142)}$ MI<br>= 6.38×10 <sup>3</sup> km  A1  Speed<br>= $\frac{3 \times 10^8 \text{ m}}{1\text{s}}$<br>= $\frac{3 \times 10^8 \times 10^{-3}}{1}$<br>$\frac{1}{3600}$<br>= 10800000000<br>= 1.08×10 <sup>9</sup> km/h  Time taken $\frac{1}{2} \times 40075$<br>= $\frac{1}{2} \times 40075$<br>= $\frac{1}{2} \times 40075$<br>= $\frac{1}{2} \times 40075$<br>= 1.11319×10 <sup>-3</sup> |

| 24  | ZODA = 90° (tangent perpendicular to radius)  |      | W 4 40 1                                          |
|-----|-----------------------------------------------|------|---------------------------------------------------|
|     | Let the radius of the circle be r             |      |                                                   |
|     | $(6+r)^2 = r^2 + 8.5^2$                       | MI   | Application of pythagoras'                        |
|     | $36+12r+r^2=r^2+8.5^2$ $12r=3625$             |      | Theorem                                           |
|     | r = 3.02083                                   | M1   | Finding radius                                    |
|     | Area of triangle ABC                          |      |                                                   |
|     | $= 2.5 \times \pi (3.02083)^2$ $= 71.6802$    | MI   | Finding area of triangle<br>Accept 3.020 or 3.021 |
|     | Let the shortest distance be x                |      |                                                   |
|     | $\frac{1}{2} \times x \times 17 = 71.6802$    | -    |                                                   |
|     | x = 8.4329<br>x = 8.43cm                      | AI   | Finding shortest distance                         |
|     | x = 8.43cm                                    |      |                                                   |
| 25a | Gradient                                      |      |                                                   |
|     | $= \frac{3-0}{0-(-2)} \\ = \frac{3}{2}$       | 1    |                                                   |
|     | 3                                             |      |                                                   |
|     | 1 -                                           | V    | -                                                 |
|     | Equation of line QR is $y = \frac{3}{2}x + 3$ | M1 - |                                                   |
|     | Sub $y = 9$ into $y = \frac{3}{2}x + 3$       |      |                                                   |
|     | ~                                             |      |                                                   |
|     | $9 = \frac{3}{2}x + 3$                        | MI   |                                                   |
|     | 18=3x+6                                       |      |                                                   |
|     | 3x=12 $x=4$                                   |      |                                                   |
|     | Coordinates of ship $Q$ is $(4, 9)$ .         | A1 - |                                                   |
| 25b | Distance between ship P and ship S            |      | Do not accept √85                                 |
|     | $= \sqrt{[0-(-2)]^2 + [9-0]^2}$               |      |                                                   |
|     | $=\sqrt{4+81}$                                |      |                                                   |
|     | $= \sqrt{85}$                                 |      |                                                   |
|     | = 9.2195<br>= 9.22 units                      | B1   | 1                                                 |

| 25c   | $\tan \angle PQR = \frac{6}{4}$                                                                                        |    |                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------|
|       | $\angle PQR = \tan^{-1}(\frac{6}{4})$                                                                                  | M1 |                                                                                                  |
|       | = 56.30993  Bearing of R from Q                                                                                        |    |                                                                                                  |
|       | = 360-90-56.30993<br>= 213.69°<br>= 213.7°;                                                                            | Al |                                                                                                  |
| 26ai  | $\overline{SQ} = \overline{SO} + \overline{OQ}$ $= -2b + 6a$                                                           |    |                                                                                                  |
|       | =6a+2b                                                                                                                 | B1 | Accept $2(3a-b)$                                                                                 |
| 26aii | $\overline{OR} = \overline{OQ} + \overline{QR}$ $= 6a + \frac{2}{3}\overline{QS}$                                      |    |                                                                                                  |
|       | $= 6a + \frac{2}{3}(-6a + 2b)$ $= 6a + 4a + \frac{4}{3}b$                                                              |    |                                                                                                  |
|       | $=2a+\frac{4}{3}b$                                                                                                     | BI | $2(a+\frac{2}{3}b)$                                                                              |
| 26bi  | $\overline{OT} = 6a + 4b$ $= 3(2a + \frac{4}{3}b)$ $= 3\overline{OR}$                                                  | Bi | Students must prove that the value of k = 3 and state that there is a common point O to score B1 |
|       | $\overrightarrow{OT}$ is parallel to $\overrightarrow{OR}$ and $O$ is a common point. $O$ , $R$ and $T$ are collinear. |    |                                                                                                  |
| 26bii | Trapezium                                                                                                              | BI |                                                                                                  |
| 26ci  | $\frac{\text{area of } \triangle PQR}{\text{area of } \triangle OQS}$ $= \left(\frac{2}{2}\right)^2$                   |    |                                                                                                  |
|       | $=\frac{4}{9}$                                                                                                         | ві |                                                                                                  |

| 26cii | Ratio of area of APQR area of quadrilateral OPRS |    |            |
|-------|--------------------------------------------------|----|------------|
|       | $=\frac{4}{5}$                                   |    |            |
|       | = 4:5                                            | Bl | Accept 4/5 |

14

### Answers to 2017 Preliminary Exam Mathematics Paper 2

| Qn   | Answer                                                                                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lai  | 2x-1                                                                                                                                                                            |
|      | x-4                                                                                                                                                                             |
| 8ÎÎ  | $x = \frac{4y - 1}{y - 2}$                                                                                                                                                      |
| ь    | y=2, x=-0.5                                                                                                                                                                     |
| ciř  | 36                                                                                                                                                                              |
| 2a   | \$\frac{128}{m}                                                                                                                                                                 |
| b    | $S\left[12\left(\frac{128}{m}+2\right)+(m-12)7\right]$                                                                                                                          |
| d    | 16, 13.7 (or $13\frac{5}{7}$ )                                                                                                                                                  |
| 8    | \$9.60                                                                                                                                                                          |
| 3я   | ∠GTU = 90° (right angle in semicircle)                                                                                                                                          |
|      | $\angle GUH = 90^{\circ}$ (radius perpendicular to tangent)                                                                                                                     |
|      | ⇒ ∠GTU = GUH = 90°                                                                                                                                                              |
|      | ∠G is a common angle                                                                                                                                                            |
|      | : Triangle GTU and triangle GUH are similar.                                                                                                                                    |
|      | (All 3 corrsponding angles are equal)                                                                                                                                           |
| ь    | 25.6cm <sup>2</sup>                                                                                                                                                             |
| ci   | 105°                                                                                                                                                                            |
| cii  | 15°                                                                                                                                                                             |
| ciii | 51.3°                                                                                                                                                                           |
| civ  | 102.6°                                                                                                                                                                          |
| 4a   | 979 cm²                                                                                                                                                                         |
| ь    | 10.2 cm                                                                                                                                                                         |
| c    | 3 cm                                                                                                                                                                            |
| 5a   | 6.1                                                                                                                                                                             |
| С    | 0.510 (accept 0.4 to 0.6)                                                                                                                                                       |
| d    | $x = 1.05, 7.4 \text{ (accept } \pm 0.05)$                                                                                                                                      |
| eii  | $x = 1.2, 3.25 \text{ (accept } \pm 0.05)$                                                                                                                                      |
| баі  | 125 cm                                                                                                                                                                          |
| aii  | 6.8°                                                                                                                                                                            |
| bii  | 61.7 cm                                                                                                                                                                         |
| 7a   | $ \begin{pmatrix} 7 & 11 & 9 \\ 12 & 8 & 17 \end{pmatrix} $                                                                                                                     |
| ь    | (22     21     21       25     19     31                                                                                                                                        |
|      | It represents the total sale or number of cookies of cach type and each size sold in the two weeks.  [number of cranberry and blueberry cookies sold in small, medium and large |

| Answer                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (170)<br>203)                                                                                                                                                                                                                                                                                                                 |
| Average amount of money<br>collected per week of each type<br>of cooki es.                                                                                                                                                                                                                                                    |
| (1 1)                                                                                                                                                                                                                                                                                                                         |
| (746)                                                                                                                                                                                                                                                                                                                         |
| a = 1.35, b = 0.85                                                                                                                                                                                                                                                                                                            |
| 210°                                                                                                                                                                                                                                                                                                                          |
| 30°                                                                                                                                                                                                                                                                                                                           |
| $\angle BAR = (180^{\circ} - 150^{\circ}) \div 2 = 15^{\circ}$<br>(base $\angle$ of isos. A)<br>$\angle PAR = 45^{\circ} + 120^{\circ} + 15^{\circ} = 180^{\circ}$<br>$\therefore$ By the property Adjacent<br>angles on a straight line is<br>supplementary, PAR is a straight<br>line                                       |
| 4 squares                                                                                                                                                                                                                                                                                                                     |
| u = 0.1, $v = 0$ , $w = 0.1$ , $x = 0.2$                                                                                                                                                                                                                                                                                      |
| $0.9 \times 0.8 = 0.72$                                                                                                                                                                                                                                                                                                       |
| $0.9 \times 0.2 \times 0.1 + 0.1 \times 1 \times 0.2 + 0.1 \times 0 = 0.038$                                                                                                                                                                                                                                                  |
| 1000 - 1000(0.038) = 962                                                                                                                                                                                                                                                                                                      |
| Median time taken = 56 sec                                                                                                                                                                                                                                                                                                    |
| Mean time taken = 53.8 sec                                                                                                                                                                                                                                                                                                    |
| Median, as the extreme value of<br>15 can lower the mean time taken                                                                                                                                                                                                                                                           |
| Standard deviation = 11.3                                                                                                                                                                                                                                                                                                     |
| The 2 groups of boys have comparable lung power since they have almost the same mean, but the second group of boys are more consistent in the amount of time they take to hold their breath under water (or there is a smaller variation in the amount of time they take to hold their breath under water) due to the smaller |
|                                                                                                                                                                                                                                                                                                                               |

Holy Innocents' High School Secondary 4 Express 5 Normal (Academic) 2017 Preliminary Examination Mathematics Paper 2

### PRELIMINARY EXAM 2017

## SECONDARY 4 EXPRESS 5 NORMAL (ACADEMIC)

Mathematics Paper 2

| Qn  | Solution and Answer                                                                                                                                                                                                                 | Marks allocation              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1ai | $\frac{2x^2 + 7x - 4}{x^2 - 16} = \frac{(2x - 1)(x + 4)}{(x - 4)(x + 4)} = \frac{2x - 1}{x - 4}$                                                                                                                                    | M1: factorization A1          |
| aii | $y = \frac{2x^{2} + 7x - 4}{x^{2} - 16}$ $y = \frac{2x - 1}{x - 4}$ $xy - 4y = 2x - 1$ $xy - 2x = 4y - 1$ $x(y - 2) = 4y - 1$ $\frac{4y - 1}{y - 2}$                                                                                | M1                            |
| b   | $2x = 1 - y \qquad \text{Eqn } 1$ $4x + 5y = 8 \qquad \text{Eqn } 2$ Subst. Eqn 1 into Eqn 2 $2(1 - y) + 5y = 8$ $3y = 6$                                                                                                           | M1: method of solving         |
| ci  | $\therefore y = 2, x = -0.5$ $\frac{1}{x+y} + \frac{2}{x-y} = \frac{2x+5y}{x^2-y^2}$ $\frac{x-y+2x+2y}{x^2-y^2} = \frac{2x+5y}{x^2-y^2}$ $\Rightarrow 3x+y=2x+5y$ $\Rightarrow x = 4y$ $\therefore \frac{x}{y} = 4 \text{ (shown)}$ | M1: combine LHS as 1 fraction |
| cii | $\left(\frac{3x}{2y}\right)^2 = \frac{9}{4}\left(\frac{x}{y}\right)^2 = \frac{9}{4}(4)^2 = 36$                                                                                                                                      | M1: using (i) A1              |

| On | Solution and Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks allocation                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2a | \$ 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1: must show unit \$                                                                   |
| ъ  | $\$ \left[ 12 \left( \frac{128}{m} + 2 \right) + (m-12)7 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1: o.e.                                                                                |
|    | $12\left(\frac{128}{m} + 2\right) + (m - 12)7 - 128 = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1; form equation                                                                       |
| С  | $\frac{1536}{m} + 24 + 7m - 84 - 128 = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1: simplification                                                                      |
|    | $1536 + 7m^2 - 208m = 0$ $7m^2 - 208m + 1536 = 0 \text{ (shown)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1: required equation                                                                   |
| đ  | $7m^{2} - 208m + 1536 = 0$ $m = \frac{-(-208) \pm \sqrt{(-208)^{2} - 4(7)(1536)}}{2(7)}$ $= \frac{208 \pm \sqrt{256}}{14}$ $= 16, 13.7 \text{ (or } 13\frac{5}{7})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1: method of solving M1: simplification A1: both answers                               |
| e  | As no. of water bottles must be a whole number, $m = 13.7$ is not accepted.<br>Selling price of each bottle for 20% profit $= \mathbb{S}\left[1.2\left(\frac{128}{16}\right)\right] = \$9.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (students are STRONGLY ENCOURAGED to explain why one of the values is not accepted)  B1 |
| 3a | $\angle GTU = 90^{\circ}$ (right angle in semicircle)<br>$\angle GUH = 90^{\circ}$ (radius perpendicular to tangent)<br>$\Rightarrow \angle GTU = GUH = 90^{\circ}$<br>$\angle G$ is a common angle<br>$\therefore$ Triangle $GTU$ and triangle $GUH$ are similar.<br>(All 3 corrsponding angles are equal)                                                                                                                                                                                                                                                                                                                                         | B1: 2 statements of evidence B1: concluding statement (accept 'By AA similarity')       |
| ъ  | From (a), $\triangle GTU$ and $\triangle GUH$ are similar $\Rightarrow \frac{TU}{UH} = \frac{GT}{GU}$ $\Rightarrow \frac{TU}{GT} = \frac{UH}{GU} = \frac{5}{4} \Rightarrow \frac{8}{GU} = \frac{5}{4} \Rightarrow GU = \frac{4}{5} \times 8 = 6.4 \text{ cm}$ $\therefore \text{ Area of triangle } GUH = \frac{1}{2} \times GU \times HU = \frac{1}{2} \times 6.4 \times 8 = 25.6 \text{ cm}^2$ Alternative approach $\tan 38.7^\circ = \frac{GU}{8} \Rightarrow GU = 8 \tan 38.7^\circ = 6.4092 \text{ cm}$ $\therefore \text{ Area of triangle } GUH = \frac{1}{2} \times GU \times HU = \frac{1}{2} \times 6.4092 \times 8 = 25.6 \text{ cm}^2$ | MI<br>MI, AI                                                                            |

| On   | Solution and Answer                                                                                                                                                                                                                                                                                             | Marks allocation                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 3ci  | $\angle SVU = 180^{\circ} - 75^{\circ} = 105^{\circ}$ (angles in opposite segment)                                                                                                                                                                                                                              | B1: subtract 1 mark from<br>whole question if no or<br>wrong angle properties                                          |
| cii  | $\angle GTU = 90^{\circ}$ (right angle in semicircle)<br>$\therefore \angle GTS = 90^{\circ} - 75^{\circ} = 15^{\circ}$                                                                                                                                                                                         | B1                                                                                                                     |
| ciii | $\angle GUH = 90^{\circ}$ (radius perpendicular to tangent)<br>$\therefore \angle TGU = 18\dot{0}^{\circ} - 90^{\circ} - 38.7^{\circ} = 51.3^{\circ}$ (angle sum in triangle)                                                                                                                                   | B1                                                                                                                     |
| civ  | $\angle TOU = 51.3^{\circ}_{1} \times 2 = 102.6^{\circ}$ (angles at centre is twice angle at circum)                                                                                                                                                                                                            | B1                                                                                                                     |
| 4a   | Slant height of cone, $l = \sqrt{24^2 + 9^2} = \sqrt{657}$ cm<br>$\therefore$ Total surface area of container<br>$= \pi \times \sqrt{657} \times 9 + \pi \times 9^2 = 979.197 \approx 979 \text{ cm}^2 \text{ (3 s.f.)}$                                                                                        | M1                                                                                                                     |
| b    | Volume of container $= \frac{1}{3} \times \pi \times 9^2 \times 24 = 648\pi$ $\frac{\text{(Height of sand)}}{24}^3 = \frac{49.5\pi}{648\pi} = \frac{11}{144}$ $\therefore \text{ Height of sand} = \sqrt[3]{\frac{11}{144}} \times 24 = 10.183 \approx 10.2 \text{ cm (3 s.f.)}$                                | M1 (accept method using ratio of radius to find new volume) M1: ratios of similar solids M1, A1                        |
| С    | Volume of the 2 balls = $648\pi - 49.5\pi = 598.5\pi$ cm <sup>3</sup> Volume of small ball = $\left(\frac{2}{5}\right)^3 = \frac{8}{125}$ $\Rightarrow$ Volume of small ball = $\frac{8}{133} \times 598.5\pi$ $\frac{4}{3} \times \pi \times r^3 = 36\pi$ $\Rightarrow r^3 = 27$ $\therefore r = 3 \text{ cm}$ | M1: ratios of similar solids (accept method using radius as 2 times and 5 times respectively) M1: volume of small ball |
| 5a   | h = 6.1                                                                                                                                                                                                                                                                                                         | B1: c.a.o.                                                                                                             |
| ъ    | See attached graph paper Points Smooth curve                                                                                                                                                                                                                                                                    | P2: all points plotted correctly [P1: at least 6 points plotted correctly] C1: smooth curve                            |
| с    | Tangent drawn at (4, 4.0)   Gradient = 0.510 (accept 0.4 to 0.6)   (Calculated value = 0.5)                                                                                                                                                                                                                     | B1<br>B1                                                                                                               |
| d    | Draw $y = 6.5$<br>$\therefore x = 1.05, 7.4$                                                                                                                                                                                                                                                                    | B1<br>B1: ± 0.05                                                                                                       |
| ei   | Draw the line $y = 7 - x$ for $0 \le x \le 8$                                                                                                                                                                                                                                                                   | B2: correct line that span across the required range [B1: correct line but not long enough]                            |

| Qn   | Solution and Answer                                                                                                                                                                                                                                                                                                           | Marks allocation                                                      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 5eii | x = 1.2, 3.25                                                                                                                                                                                                                                                                                                                 | <b>B1</b> : both, $\pm 0.05$                                          |
| eiii | $x - 2 + \frac{8}{x} = 7 - x$ $2x - 9 + \frac{8}{x} = 0$                                                                                                                                                                                                                                                                      | Method using substitution of x values from (eii) is not accepted      |
|      | $2x^2 - 9x + 8 = 0 \qquad \therefore c = -9$                                                                                                                                                                                                                                                                                  | B1                                                                    |
| 6ai  | BQ = 35  cm<br>$AQ = \sqrt{35^2 + 120^2} = \sqrt{15625} = 125 \text{ cm}$                                                                                                                                                                                                                                                     | M1, A1                                                                |
| aii  | PQ = 15  cm<br>$tan PAQ = \frac{15}{125}$<br>∴ angle $PAQ = tan^{-1} \left(\frac{15}{125}\right) \approx 6.84 \approx 6.8^{\circ} (1 \text{ d.p.})$                                                                                                                                                                           | √M1: s.o.i, using AQ from (ai)                                        |
|      |                                                                                                                                                                                                                                                                                                                               |                                                                       |
|      | $BE = \sqrt{30^2 + 70^2} = \sqrt{5800} \text{ cm}$                                                                                                                                                                                                                                                                            | M1: find BE, s.o.i.                                                   |
|      | $\therefore \cos BEB' = \frac{5800 + 5800 - 60^2}{2(5800)} = \frac{20}{29}$                                                                                                                                                                                                                                                   | M1: applying Cosine Rule                                              |
| bi   | $\angle BEB' = \cos^{-1}\left(\frac{20}{29}\right) = 46.3971 \approx 46.397^{\circ} (3 \text{ d.p.}) \text{ [shown]}$                                                                                                                                                                                                         | A1                                                                    |
| O1   | Alternative approach                                                                                                                                                                                                                                                                                                          |                                                                       |
|      | $\tan EBC = \frac{30}{70} \Rightarrow \angle EBC = \tan^{-1} \left( \frac{30}{70} \right) = 23.1985^{\circ}$                                                                                                                                                                                                                  | M1                                                                    |
|      | /0 (70)<br>$/B^*BE = 90^\circ - 23.1985^\circ = 66.8015^\circ$                                                                                                                                                                                                                                                                | M1                                                                    |
|      | $\therefore \angle BEB' = 180^{\circ} - 66.8015^{\circ} \times 2 = 46.397^{\circ} (\angle \text{sum in isos. } \Delta)$                                                                                                                                                                                                       | A1                                                                    |
| bii  | Distance moved by B is the length of arc on a circle centre E and radius BE, over an angle of BEB'.  Distance moved by B $= \frac{46.397}{2000} \times 2\pi \times \sqrt{5800} = 61.671 \approx 61.7 \text{ cm } (3 \text{ s.f.})$                                                                                            | M1, A1                                                                |
| 7a   | $\mathbf{p} = \begin{pmatrix} 7 & 11 & 9 \\ 12 & 8 & 17 \end{pmatrix}$                                                                                                                                                                                                                                                        | BI                                                                    |
|      | $\mathbf{M} = \begin{pmatrix} 22 & 21 & 21 \\ 25 & 19 & 31 \end{pmatrix}$                                                                                                                                                                                                                                                     | B1                                                                    |
| ь    | It represents the total sale or number of cookies of each type and each size sold in the two weeks.  (number of cranberry and blueberry cookies sold in small, medium and large size respectively in 2 weeks.)                                                                                                                | B1                                                                    |
| С    | $L = \frac{1}{2} \begin{pmatrix} 22 & 21 & 21 \\ 25 & 19 & 31 \end{pmatrix} \begin{pmatrix} 4 \\ 5.5 \\ 6.5 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 88 + 115.5 + 136.5 \\ 100 + 104.5 + 201.5 \end{pmatrix} = \begin{pmatrix} 170 \\ 203 \end{pmatrix}$ <b>Average amount of money collected per week</b> of each type of | √M1: using M from (b), product step, s.o.i A1 B1: interpretation with |
|      | cookies.                                                                                                                                                                                                                                                                                                                      | 'earnings' or ea                                                      |

| Qn   | Solution and Answer                                                                                                                                                                                                                                                                                                                               | Marks allocation                                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 7di  | $T = \begin{pmatrix} 1 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                         | BI                                                     |
| dii  | TMC = $(1 	 1) \binom{340}{406} = (340 + 406) = (746)$                                                                                                                                                                                                                                                                                            | B1: not awarded if not in proper matrix representation |
| е    | a = 1.35, b = 0.85                                                                                                                                                                                                                                                                                                                                | B1: both, o.e.                                         |
| 0    | Int. ∠ of hexagon = 720° ÷ 6 = 120°                                                                                                                                                                                                                                                                                                               | MI                                                     |
| Sai  | Reflex $\angle BAQ = 90^{\circ} + 120^{\circ} = 210^{\circ}$                                                                                                                                                                                                                                                                                      | A1                                                     |
| - 12 | $\angle BAQ = 360^{\circ} - 210^{\circ} = 150^{\circ} \ (\angle \text{ sum at a pt.})$                                                                                                                                                                                                                                                            | MI                                                     |
| ail  | $\therefore \angle AQR = 180^{\circ} - 150^{\circ} = 30^{\circ} \text{ (int. } \angle s, AB // QR)$                                                                                                                                                                                                                                               | A1                                                     |
|      | $\angle BAR = (180^{\circ} - 150^{\circ}) \div 2 = 15^{\circ} \text{ (base } \angle \text{ of isos. } \Delta)$                                                                                                                                                                                                                                    | M1                                                     |
|      | $\angle PAR = 45^{\circ} + 120^{\circ} + 15^{\circ} = 180^{\circ}$                                                                                                                                                                                                                                                                                | A1: showing $\angle PAR$ is                            |
|      | By the property Adjacent angles on a straight line is                                                                                                                                                                                                                                                                                             | 180°, with ∠ property and                              |
| 2    | supplementary, PAR is a straight line                                                                                                                                                                                                                                                                                                             | concluding statement                                   |
| ь    | Alternative approach                                                                                                                                                                                                                                                                                                                              |                                                        |
|      | $\angle BAR = (180^{\circ} - 150^{\circ}) \div 2 = 15^{\circ}$ (base $\angle$ of isos. $\triangle$ )                                                                                                                                                                                                                                              |                                                        |
|      | $\angle QAR = 150^{\circ} - 15^{\circ} = 135^{\circ}$                                                                                                                                                                                                                                                                                             |                                                        |
|      | $\angle PAQ + \angle QAR = 45^{\circ} + 135^{\circ} = 180^{\circ}$                                                                                                                                                                                                                                                                                |                                                        |
|      | Int. $\angle$ of polygon = $\angle BAQ = 150^{\circ}$                                                                                                                                                                                                                                                                                             |                                                        |
|      | $\Rightarrow$ ext. $\angle$ of polygon = 30°                                                                                                                                                                                                                                                                                                      |                                                        |
|      | $\Rightarrow$ no. of sides of polygon = $360^{\circ} \div 30^{\circ} = 12$                                                                                                                                                                                                                                                                        | MI                                                     |
| C    | No. of pairs of square and hexagon = 6                                                                                                                                                                                                                                                                                                            | √M1: using no. of sides                                |
|      | Total no. of squares = 6                                                                                                                                                                                                                                                                                                                          |                                                        |
|      | .: No. of squares added = 4                                                                                                                                                                                                                                                                                                                       | A1                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                   | B2: all                                                |
| 9ai  | u = 0.1, v = 0, w = 0.1, x = 0.2                                                                                                                                                                                                                                                                                                                  | [B1: 2 correct]                                        |
| aiia | $0.9 \times 0.8 = 0.72$                                                                                                                                                                                                                                                                                                                           | B1: o.e.                                               |
| aiib | $0.9 \times 0.2 \times 0.1 + 0.1 \times 1 \times 0.2 + 0.1 \times 0 = 0.038$                                                                                                                                                                                                                                                                      | M1, A1: o.e.                                           |
| aiii | 1000 - 1000(0.038) = 962                                                                                                                                                                                                                                                                                                                          | B1                                                     |
| 9bia | Median time taken = 56 sec                                                                                                                                                                                                                                                                                                                        | B1                                                     |
| bib  | Mean time taken = 53.8 sec                                                                                                                                                                                                                                                                                                                        | <u>B1</u>                                              |
| bii  | Median, as the extreme value of 15 can lower the mean time taken                                                                                                                                                                                                                                                                                  | B1                                                     |
| biii | Standard deviation = 11.3                                                                                                                                                                                                                                                                                                                         | B2 [B1: correct value but not 3 s.f.]                  |
| biv  | The 2 groups of boys have comparable lung power since they have almost the same mean, but the second group of boys are more consistent in the amount of time they take to hold their breath under water (or there is a smaller variation in the amount of time they take to hold their breath under water) due to the smaller standard deviation. | B1: words in bold and underlined must be seen          |

| 0-  | Solution and Answer                                                                                                                                                                                                                    | Marks                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Qn  |                                                                                                                                                                                                                                        | allocation                             |
|     | Total time needed to assemble a study table-chair set, 1 baby cot and a bunk                                                                                                                                                           | neti                                   |
| 10a |                                                                                                                                                                                                                                        | B1: working                            |
| _   | = 45 + 12 +105 = 162 mins = 2 hrs 42 mins                                                                                                                                                                                              | expected                               |
|     | Total distance from ERGO office to Joyful Pasture<br>= 13.8 + 4.7 = 18.5 km                                                                                                                                                            |                                        |
|     | Total time taken for travelling                                                                                                                                                                                                        |                                        |
|     | = Time duration from 09 15 to 10 30 - Total assemble time at Happy                                                                                                                                                                     |                                        |
|     | Valley                                                                                                                                                                                                                                 |                                        |
|     | =75-(45+6)=24  mins                                                                                                                                                                                                                    | M1: total                              |
|     | Average speed of delivery van                                                                                                                                                                                                          | distance + total                       |
| bi  |                                                                                                                                                                                                                                        | travelling time                        |
|     | = $18.5 \div \frac{24}{60}$ = $46.25 \approx 46$ km/h (nearest whole number)                                                                                                                                                           | A1                                     |
|     | This value may not be a reasonable estimate of the actual travelling speed                                                                                                                                                             | B1: comment                            |
|     | of the van, as it could be higher, but due to the road condition and time                                                                                                                                                              | that actual speed                      |
|     | spent for stopping at traffic lights, the average speed is lower.                                                                                                                                                                      | could be higher                        |
|     | Accept also: Yes it is a reasonable value as it is within the speed limit by                                                                                                                                                           |                                        |
|     | LTA.                                                                                                                                                                                                                                   |                                        |
|     | Assumption:                                                                                                                                                                                                                            | B1: any valid                          |
|     | • Traffic condition is about the same on the roads to the various locations,                                                                                                                                                           | assumptions                            |
|     | such that the average speed of the van is 46 km/h.                                                                                                                                                                                     |                                        |
|     | Owners are at home when the delivery men reach each location                                                                                                                                                                           |                                        |
| - N | There is no major traffic delay that day  Delivery van travels on normal road and not using expressway                                                                                                                                 |                                        |
|     | Delivery van travels on normal road and not using expressively                                                                                                                                                                         |                                        |
| ill | Total traveiling time between the various locations from Joyful Pasture to                                                                                                                                                             |                                        |
|     | ERGO Office                                                                                                                                                                                                                            |                                        |
|     |                                                                                                                                                                                                                                        | h                                      |
|     | $= \frac{(6.1 + 5.4 + 8.8 + 1.9) \text{ km}}{46 \text{ km/h}} \approx 29 \text{ mins (nearest min)}$                                                                                                                                   | √Mi*: using                            |
|     |                                                                                                                                                                                                                                        | speed in (bi)                          |
|     | Total assemble time at Joyful Pasture to Peace Link                                                                                                                                                                                    |                                        |
|     | $=12\times4+105\times2+45\times2=348$ mins                                                                                                                                                                                             | M1*                                    |
|     | - A FROOM                                                                                                                                                                                                                              |                                        |
| oii | ⇒ Total time needed to complete all delivery and return to ERGO office<br>= 29 + 348 + 45 = 422 mins = 7 hrs 2 mins                                                                                                                    |                                        |
| 011 | = 29 + 348 + 45 = 422 mins - 7 ms 2 mins                                                                                                                                                                                               | M1*                                    |
|     | Time to reach ERGO office after all delivery                                                                                                                                                                                           |                                        |
|     |                                                                                                                                                                                                                                        |                                        |
|     |                                                                                                                                                                                                                                        | 261                                    |
|     | = 10 30 + 7 hrs 2 mins<br>= 17 32                                                                                                                                                                                                      | M1                                     |
|     | = 10 30 + 7 hrs 2 mins<br>= 17 32                                                                                                                                                                                                      | M1                                     |
|     | = 10 30 + 7 hrs 2 mins                                                                                                                                                                                                                 |                                        |
|     | = 10 30 + 7 hrs 2 mins<br>= 17 32                                                                                                                                                                                                      |                                        |
|     | = 10 30 + 7 hrs 2 mins<br>= 17 32<br>The delivery men will be able to leave work punctually at 18 00 that                                                                                                                              | B1: must be                            |
|     | = 10 30 + 7 hrs 2 mins<br>= 17 32<br>∴ The delivery men will be able to leave work punctually at 18 00 that day.                                                                                                                       | B1: must be supported with             |
|     | <ul> <li>= 10 30 + 7 hrs 2 mins</li> <li>= 17 32</li> <li>∴ The delivery men will be able to leave work punctually at 18 00 that day.</li> <li>* award marks if calculated from the start: ERGO office to all locations and</li> </ul> | B1: must be supported with appropriate |
|     | = 10 30 + 7 hrs 2 mins<br>= 17 32<br>∴ The delivery men will be able to leave work punctually at 18 00 that day.                                                                                                                       | B1: must be supported with appropriate |
|     | <ul> <li>= 10 30 + 7 hrs 2 mins</li> <li>= 17 32</li> <li>∴ The delivery men will be able to leave work punctually at 18 00 that day.</li> <li>* award marks if calculated from the start: ERGO office to all locations and</li> </ul> | B1: must be supported with appropriate |
|     | <ul> <li>= 10 30 + 7 hrs 2 mins</li> <li>= 17 32</li> <li>∴ The delivery men will be able to leave work punctually at 18 00 that day.</li> <li>* award marks if calculated from the start: ERGO office to all locations and</li> </ul> | B1: must be supported with appropriate |

| Alternative approach:                                                                                                                                 | B1: valid                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                       | assumptions as                 |
| Total time to complete all delivery before lunch                                                                                                      | above                          |
| = Total travelling time from 10 30 to next location after lunch + total                                                                               |                                |
| assemble time                                                                                                                                         |                                |
| $= \frac{6.1+5.4}{46} + \left(\frac{12+12+105}{60}\right) = \frac{1}{4} + 2\frac{3}{20} = 2h 24 \text{ mins}$                                         |                                |
| $\Rightarrow$ Lunch time at (10 30 + 2 h 24 mins) = 12 54                                                                                             | M1*                            |
| ⇒ Time reach Blissful Ave after lunch = 12 54 + 45 mins = 13 39                                                                                       | мі                             |
| Time to reach office after last delivery                                                                                                              | M1                             |
| = 13 39 + Total assemble time after luncgh + Total travelling time after lunch                                                                        |                                |
| $= 1339 + \frac{12 \times 2 + 105 + 45 \times 2}{60} + \frac{8.8 + 1.9}{46}$                                                                          |                                |
| = 1339 + 3 h 5 3 mins                                                                                                                                 |                                |
| =1732 .: The delivery men will be able to leave work punctually at 18 00 that day.                                                                    | M1* B1: must be supported with |
|                                                                                                                                                       | appropriate calculation        |
| * award marks if calculated from the start: ERGO office to all locations and                                                                          | Carculation                    |
| back to ERGO office again                                                                                                                             |                                |
| Accept method using total time to complete delivery and back to office is shorter than total time available from start of delivery at 09 15 to 18 00. |                                |

| JUNYUAN SECONDARY SCHOOL PRELIMINARY EXAMINATION 2017 SECONDARY FOUR EXPRESS / FIVE NO                                                                                                                                                                                          | ORMAL (ACADEMIC) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| CANDIDATE NAME                                                                                                                                                                                                                                                                  |                  |
| CLASS                                                                                                                                                                                                                                                                           | INDEX NUMBER     |
| MATHEMATICS                                                                                                                                                                                                                                                                     | 4048/01          |
| Paper 1                                                                                                                                                                                                                                                                         | 7 August 2017    |
|                                                                                                                                                                                                                                                                                 | 2 hours          |
| Candidates answer on the Question Paper.                                                                                                                                                                                                                                        |                  |
| READ THESE INSTRUCTIONS FIRST                                                                                                                                                                                                                                                   |                  |
| Write your name, class and index number on all the work you Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use paper clips, highlighters, glue or correction fluid.                                                               | hand in.         |
| Answer all questions.  If working is needed for any question it must be shown with the Omission of essential working will result in loss of marks.  The use of an approved scientific calculator is expected, when the degree of accuracy is not specified in the question, and | re appropriate.  |

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ 

answer to three significant figures. Give answers in degrees to one decimal place.

The total of the marks for this paper is 80.

| For Examiner's Use |     |  |  |
|--------------------|-----|--|--|
|                    | 2   |  |  |
| ×                  | .00 |  |  |
|                    |     |  |  |
|                    |     |  |  |
|                    |     |  |  |

This document consists of 19 printed pages (including the Cover Sheet).

Turn over

2

Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = ml

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi^2h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab \sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

|   | 1                              |  |
|---|--------------------------------|--|
| Ĺ | Solve $0.5(4-\frac{3}{3})=1$ . |  |

Answer 
$$x =$$
 [2]

Write as a single fraction  $c-d+\frac{1}{c}+\frac{1}{d}-\frac{c^2-d^2}{c+d}$ .

| Answer | 4-4-6-47-777-77-77-77-76-6-6-6-6-6-6-6-6 | [2] |
|--------|------------------------------------------|-----|
|        | ********************************         | r~1 |

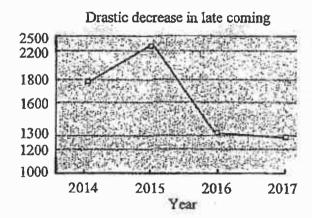
Brad invested  $$\frac{4}{7}$$  000 into an account which pays r% per annum interest compounded monthly. His account tripled in value after 320 months.

Find r.

Answer 
$$r =$$
 [2]

4E5N Math P1 2017 Prelim

[Turn over


4

An interior angle of a regular polygon is 120° bigger than its exterior angle.

Find the number of sides of the polygon.

| Answer | ##PPPIF PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP | 12 |
|--------|------------------------------------------|----|
|        |                                          |    |

The total count of student late coming occurrences in a school is represented by a line graph as shown.



State and explain how the graph can be modified to give a more accurate representation of the late coming occurrences in the school.

| Ånswer |          |
|--------|----------|
|        |          |
|        | <u> </u> |

4E5N Math Pl 2017 Prelim

5

|                   | erfect squares) actors of 12}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                      |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--|
| 2 (1.             | ioto.5 of Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                      |                                      |  |
| (a) I             | Draw a Venn diagram to illu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | strate this informati                                  | on.                                  |  |
| A                 | Inswer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
| (b) T             | ist the element/s) contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lin the cet 1 - PL                                     |                                      |  |
| (b) L             | ist the element(s) contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In the set $A \cap B$ .                                |                                      |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Answer                               |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                      |  |
| spendir<br>•      | ore's tourism hit a record hig rose by 13.9%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er of tourists and tou                                 |                                      |  |
| spendir<br>•      | ng rose by 13.9%.  Information about the number of the second of the sec | er of tourists and tou                                 |                                      |  |
| spendir<br>•      | ng rose by 13.9%.  Information about the number of Tourists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er of tourists and tou                                 | prism spending are given a           |  |
| spendir<br>Some i | Year Number of Tourists Tourism Spending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er of tourists and tou<br>2016<br>1.64×10 <sup>7</sup> | 2015 S\$21.4 billion                 |  |
| spendir<br>Some i | ng rose by 13.9%.  Information about the number of Tourists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er of tourists and tou<br>2016<br>1.64×10 <sup>7</sup> | 2015 S\$21.4 billion                 |  |
| spendir<br>Some i | Year Number of Tourists Tourism Spending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er of tourists and tou<br>2016<br>1.64×10 <sup>7</sup> | 2015 S\$21.4 billion                 |  |
| spendir<br>Some i | Year Number of Tourists Tourism Spending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er of tourists and tou<br>2016<br>1.64×10 <sup>7</sup> | 2015 S\$21.4 billion                 |  |
| spendir<br>Some i | Year Number of Tourists Tourism Spending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er of tourists and tou<br>2016<br>1.64×10 <sup>7</sup> | 2015 S\$21.4 billion                 |  |
| spendir<br>Some i | Year Number of Tourists Tourism Spending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2016 1.64×10 <sup>7</sup> average tourism spe          | 2015 S\$21.4 billion anding in 2016. |  |
| spendir<br>Some i | Year Number of Tourists Tourism Spending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er of tourists and tou<br>2016<br>1.64×10 <sup>7</sup> | 2015 S\$21.4 billion anding in 2016. |  |

6

| 8 | Factorise  | complete  | lv   |
|---|------------|-----------|------|
| 0 | T Detorine | COLIDIOIC | ,, y |

(a) 
$$(d+e)^2 - 2(d+e) - 8$$
,

| Answer | ************************************* | [1 | 1 |
|--------|---------------------------------------|----|---|
|        |                                       |    |   |

(b) 
$$1+x-2a-2ax$$
.

| Answer | minus nonemo bipel s om he sid h hade The he being the new name | [2] |
|--------|-----------------------------------------------------------------|-----|
|--------|-----------------------------------------------------------------|-----|

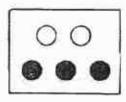
If the volume of the larger cone is 32 cm<sup>3</sup>, find the volume of the smaller cone.

Answer ...... cm<sup>3</sup> [3

4E5N Math P1 2017 Prelin

Two solid metal cones, which are geometrically similar, have surface areas  $A_1$  and  $A_2$  such that  $9A_1 = 16A_2$ .

[Turn over


### Free Tuition Listing @ 99Tutors.SG

|    |                                                                                                           | Answ                                             | er                  | [1]              |
|----|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|------------------|
|    | (b) Using your answer to par                                                                              | et (a), explain why 2 700b is a p                | perfect cube when b |                  |
|    |                                                                                                           | ******************                               |                     |                  |
|    |                                                                                                           |                                                  |                     | [1]              |
|    |                                                                                                           | of $p$ so that 2 700 $\times \sqrt{p}$ is divisi |                     |                  |
|    | (c) I no the sipanose value o                                                                             | TP 50 title 2 700 X q P is divisi                | bio by TV,          |                  |
|    |                                                                                                           |                                                  |                     |                  |
|    |                                                                                                           |                                                  |                     | F33              |
|    |                                                                                                           | Answ                                             | er p =              | [1]              |
|    | 7                                                                                                         |                                                  |                     |                  |
| 11 | The length of a rectangle is 3 r                                                                          |                                                  | -8,                 | 3-2-0612×1111115 |
| 11 | The length of a rectangle is 3 r<br>Its perimeter is equal in value to<br>Find the dimensions of this rec | to its area.                                     |                     |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     | - \$                |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| n  | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| n  | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |
| 11 | Its perimeter is equal in value                                                                           | to its area.                                     |                     |                  |

4ESN Math P1 2017 Prelim

8

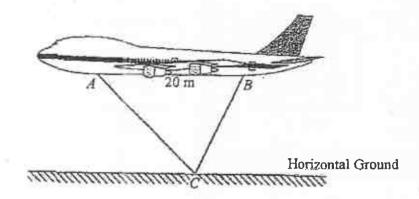
12





Box A

Box B


In Box A, there are 3 black balls and 2 white balls. In Box B, there are 2 black balls and 1 white ball.

Ravi takes at random a ball from Box A and places it in Box B. He then takes at random a ball from Box B.

Work out the probability that the ball he takes from Box B will be black.

| Answer    | [3]  |
|-----------|------|
| 1/13/1/2/ | <br> |

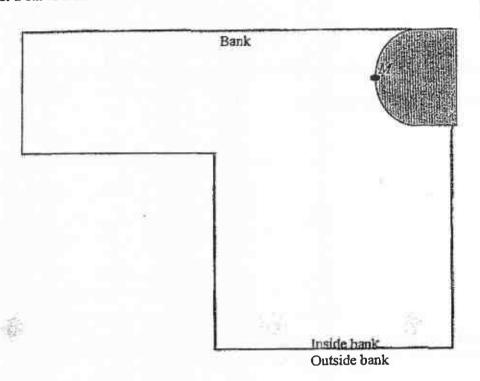
4E5N Math P1 2017 Prelim



An aeroplane is flying parallel to the ground. Lights have been fitted at A and B as shown. When the aeroplane is flying at a certain height, the beams from these lights meet exactly on the ground at C.

The angle of depression of the beam of light from A to C is  $50^{\circ}$ . The angle of depression of the beam of light from B to C is  $70^{\circ}$ . The distance AB is 20 metres.

Find the height of the aeroplane from the ground when the lights meet at C.


| Answer | ******************************* | m | [3] |
|--------|---------------------------------|---|-----|
|--------|---------------------------------|---|-----|

North

10

14 The diagram represents an aerial view of a bank. Mark is at the information counter at M.

Scale: 1 cm to 2 m



(a) Mark tethered his dog to a lamp post outside the bank, by means of a leash, at a bearing of 220° and 15 m from M.

On the diagram, mark out the location outside the bank where the dog is tethered to and label this point X. [1]

(b) Jasmine is keeping a lookout for the dog inside the bank.
She is standing at a point that is equidistant from points M and X.

By showing your working clearly, work out one possible position Jasmine is standing at and label this point J. [1]

(c) The dog is unable to enter the bank. The leash is 2 m long.

Draw the boundary of the region in which the dog can roam.

[1]

11

| 15  | (a)    | (-5, 2) is the maximum point of a quad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ratic curve.                                     |
|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|     |        | Write the equation of the graph in the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\text{rm } y = p - (x + q)^2.$                  |
|     |        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Answer[1]                                        |
| ×   | (b)    | A straight line on the xy-axes passes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rough $(-5, 2)$ and cuts the x-axis at $x = 1$ . |
|     |        | Find the equation of the straight line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Answer [2]                                       |
|     | 170    | SGD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at the rate of 1 USD = 1.46 SGD and received     |
|     | Find   | . <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 174 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annual Control                                   |
|     |        | Mary and the same of the same | Answer x =[3]                                    |
| 4E5 | N Math | Pl 2017 Prelim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Turn over                                       |

12

17 (a) Write down all the integers satisfying the inequalities  $-11 < 1-3x \le 2$ .

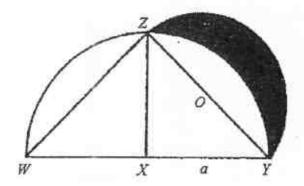
Answer [3]

(b) Given  $-6 \le a \le -1$  and  $2 \le b \le 6$ , find the range of possible values of  $\frac{b}{a}$ .

Answer .....[1]

18 (a) Simplify  $x \left(2x^{\frac{1}{4}}\right)^4$ .

Answer [2]


(b) Evaluate  $\frac{3^{n+2}}{5(3^{n-1})}$ .

Answer ...... [2]

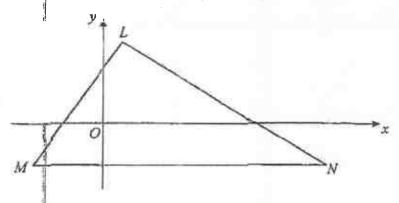
4E5N Math P1 2017 Prelim

WY is the diameter of a semi-circle with centre X and radius a cm.
 Z is on the circumference and angle ZXY is a right angle.
 A smaller semi-circle, centred at O, is drawn with ZY as diameter.

Find the area of the shaded region, in terms of a, in its simplest form.



| Answer | ******************************* | $cm^2$ | [4] |
|--------|---------------------------------|--------|-----|
|        |                                 |        | ~ ~ |


14

| 20 | The area A of a television screen varies proportionally to the square of its diagonal d. |
|----|------------------------------------------------------------------------------------------|
|    | A television set with a diagonal of 30 cm has an area of 440 cm <sup>2</sup> .           |

(a) Find the area of a television screen with a diagonal of 75 cm.

| ic. | 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Answercm <sup>2</sup> | [3] |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|
| (b) | State the percentage change in $A$ when $d$ is $d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | decreased by 15%.     |     |
|     | data was the street of the str |                       | T11 |

21 The diagram below, not drawn to scale, shows triangle LMN.



The equations of the lines LM and LN are 2y = 3x + 5 and x + 4y = 24 respectively.

(a) Find the coordinates of L.

| Answer | ( | [3] |
|--------|---|-----|
|        | ( | 1-1 |

(b) The coordinates of M are (-3, -2) and MN is parallel to the x-axis.

Write the equation of line MN.

| Answer | <br>[1] |
|--------|---------|
|        | <br>-   |

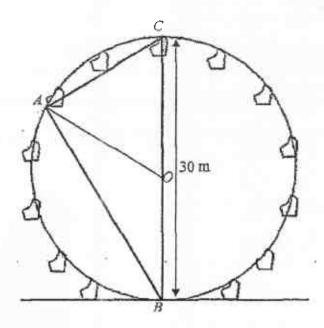
4E5N Math PI 2017 Prelim

Justin is locked out of his house. He intends to borrow a ladder.

The only open window is on the second floor, 8 m above the ground.

There is a bush along the edge of the house, 1 m away from the house and 2 m in height.

The bush is too thick for Justin to pass through on foot or climb through along the ladder.


What is the minimum length of the ladder Justin needs in order for him to reach the window?



Answer ...... m [4

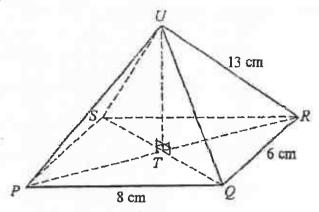
23 The diagram shows a circle which represents a ferris wheel with centre O. The diameter is 30 m.

NOT TO SCALE



| (a) | A seat starts | at B and tra | vels one-third | of the circu | umference to A. |
|-----|---------------|--------------|----------------|--------------|-----------------|
|-----|---------------|--------------|----------------|--------------|-----------------|

Explain why angle AOB is equal to  $\frac{2\pi}{3}$  radian.


| Answer   | <br>[1] |
|----------|---------|
| 22110110 | <br>- 1 |

(b) Find the exact value, in radian, of angle ABO.

(c) It takes 2.5 minutes for a seat to travel from position B to A.
Find the average speed, in metres per second, of the wheel.

| Answer | #F##TER# 1284#22***** | m/s | 13 |
|--------|-----------------------|-----|----|

#### 24 NOT TO SCALE



The diagram shows a pyramid on a horizontal rectangular base PQRS. The diagonals of PQRS meet at T. U is vertically above T. PQ = 8 cm, QR = 6 cm and UR = 13 cm.

(a) Calculate angle URP.

| Answer | ****************************** | 0 | [3] |
|--------|--------------------------------|---|-----|
|        |                                |   |     |

(b) Find the volume of the pyramid.

| Answer    | ************************             | cm <sup>3</sup> | [2 |
|-----------|--------------------------------------|-----------------|----|
| 121201101 | ************************************ | 7-05            | L  |

4E5N Math P1 2017 Prelim

| (c) | Show that | at triangle PTQ is congruent to triangle RTS. |
|-----|-----------|-----------------------------------------------|
|     | Answer    | ļ                                             |
|     |           |                                               |
|     |           |                                               |
|     |           |                                               |
|     |           |                                               |

**End of Paper** 

4ESN Math P1 2017 Prelim

### JYSS 4E5N Prelim 2017 Paper 1

| No. | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Workings                                                                                                                                             | Marks    | *Remarks                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|
| 1   | x = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.5(4 - \frac{x}{3}) = 1$ $2 - \frac{x}{6} = 1$ $\frac{x}{6} = 1$ $x = 6$                                                                           | M1       | Alternative:<br>$4 - \frac{x}{3} = 2$ $\frac{x}{3} = 2$ $x = 6$                                             |
| 2   | c+d<br>cd                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $c-d+\frac{1}{c}+\frac{1}{d}-\frac{c^2-d^2}{c+d}$ $=c-d+\frac{1}{c}+\frac{1}{d}-\frac{(c+d)(c-d)}{c+d}$ $=\frac{1}{c}+\frac{1}{d}$ $=\frac{c+d}{cd}$ | M1       | M1 – For any correct method that eliminates $c-d-\frac{c^2-d^2}{c+d}$ to 0.                                 |
| 3   | r = 4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      | AI       |                                                                                                             |
| 3   | 7-4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $12000 = 4000(1 + \frac{r/12}{100})^{320}$ $3 = (1 + \frac{r}{1200})^{320}$ $r = 4.1268$ $= 4.13$                                                    | M1<br>A1 | Award M1 for correct substitution of values                                                                 |
| 4   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Let x be the size of an exterior angle.<br>$2x + 120^{\circ} = 180^{\circ}$<br>$x = 30^{\circ}$                                                      | М1       |                                                                                                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{360^{\circ}}{30^{\circ}} = 12$                                                                                                                | A1       |                                                                                                             |
| 5   | The title is biased and does not allow readers to make their own judgement. It should only state "Late coming occurrences in the past 4 years".  or  The vertical axis has to start from zero so that it does not exaggerate the differences between the number of counts of late-coming.  or  The scale of the vertical axis have to be consistent and the intervals between the values on the vertical axis have to be equal. This prevents distortion of the graph. |                                                                                                                                                      | B2       | B1 - State the modification  B1 - Explain how the modification will make the graph a better representation. |

| 6 | (a) | $\xi = \{4, 6, 8, 10, 12, 1, 4, 6, 8, 10, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$ | 4}<br>6 B                                                                                                                                                                                                                        | B2       | Deduct 1m for                                                                               |
|---|-----|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------|
|   |     |                                                                                       | 12                                                                                                                                                                                                                               |          | each mistake                                                                                |
|   | (b) | { } or \$\phi\$                                                                       |                                                                                                                                                                                                                                  | B1       |                                                                                             |
|   | 7   | \$1486                                                                                | Tourism spending in 2016 $= \frac{113.9}{100} \times 21.4 \times 10^{9}$ $= S\$ 2.43746 \times 10^{10}$                                                                                                                          | MI       | No mark is<br>awarded to<br>finding number of<br>visitors in 2015 as<br>this information is |
|   |     |                                                                                       | Average visitor spending $= \frac{2.43746 \times 10^{10}}{1.64 \times 10^{7}}$ = \$1486.256 = \$1486 (nearest dollar)                                                                                                            | MI       | not needed.                                                                                 |
| 8 | (a) | (d+e+2)(d+e-4)                                                                        | $(d+e)^{2} - 2(d+e) - 8$ $= (d+e+2)(d+e-4)$                                                                                                                                                                                      | B1       |                                                                                             |
|   | (b) | (1-2a)(1+x)                                                                           | 1+x-2a-2ax  = 1+x-2a(1+x)  = (1-2a)(1+x)                                                                                                                                                                                         | M1<br>AI |                                                                                             |
| 9 |     | 13.5cm <sup>3</sup>                                                                   | $\frac{A_1}{A_2} = \frac{16}{9}$ $\frac{L_1}{L_2} = \sqrt{\frac{16}{9}} = \frac{4}{3}$ Using $\frac{V_1}{V_2} = (\frac{L_1}{L_2})^3$ , $\frac{32}{V_1} = (\frac{4}{3})^3$ $\Rightarrow V_1 = 13.5 \text{ cm}^3 (3 \text{ s.f.})$ | M1       |                                                                                             |
|   |     |                                                                                       | $\overline{V_1} = (\overline{3})^5$<br>$\Rightarrow V_1 = 13.5 \text{ cm}^3 (3 \text{ s.f.})$                                                                                                                                    | M1<br>A1 |                                                                                             |

| No. |     | Answer Workings                    |                                                                                                                                                                                                  | Marks          | *Remarks                                                                                                        |
|-----|-----|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| 10  | (a) | $2700 = 2^2 \times 3^3 \times 5^2$ |                                                                                                                                                                                                  | B1             |                                                                                                                 |
|     | (b) | Since all the powers               | $\times 5^{2} \times (2 \times 5) = 2^{3} \times 3^{3} \times 5^{3}$ s of 2700×10 are multiples of 3, $3^{3} \times 5^{3} = 2 \times 3 \times 5$ , it is a perfect                               | BI             | Accept any correct explanation that $2^3 \times 3^3 \times 5^3$ is a perfect cube.                              |
|     | (c) | p <del> </del> 49                  | $\frac{2700 \times \sqrt{p}}{14}$ $= \frac{2^2 \times 3^3 \times 5^2 \times \sqrt{p}}{2 \times 7}$ $\Rightarrow \sqrt{p} = 7$ $\Rightarrow p = 49$                                               | B1             |                                                                                                                 |
| 11  |     | 3 m by 6 m                         | Let width = $x$ m<br>length = $(x+3)$ m<br>Perimeter = Area<br>2(x+x+3) = x(x+3)<br>$4x+6=x^2+3x$<br>$x^2-x-6=0$<br>(x+2)(x-3)=0<br>x=3 or $x=-2$ (rej)<br>Width = 3 m<br>Length = 6 m           | M1<br>MI<br>A1 | Correct expression for both area and perimeter  Correct factorization  Correct values for both width and length |
| 12  |     | 13<br>20                           | Black from Box A then black from Bex B: $\frac{3}{5} \times \frac{3}{4} = \frac{9}{20}$ White from Box A then black from Box B: $\frac{2}{5} \times \frac{2}{4} = \frac{1}{5}$ Total probability | M1 M1          |                                                                                                                 |
|     |     |                                    | $= \frac{9}{20} + \frac{1}{5}$ $= \frac{13}{30}$                                                                                                                                                 | A1             | Accept 0.65                                                                                                     |

| No.<br>13 |            | Answer                           | Workings                                                                                                                                                            | Marks                              | *Remarks                                                                                                            |
|-----------|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1         | 3          | 16.6 m                           | $\angle ACB = 60^{\circ}$ By Sine Rule, $\frac{20}{\sin 60^{\circ}} = \frac{BC}{\sin 50^{\circ}}$ $BC = 17.6910 \text{ m}$                                          | M1                                 |                                                                                                                     |
|           |            |                                  | $\sin 70^\circ = \frac{h}{17.6910}$                                                                                                                                 | M1                                 |                                                                                                                     |
|           |            |                                  | h=16.6m                                                                                                                                                             | A1                                 |                                                                                                                     |
| 14        | (a)        |                                  |                                                                                                                                                                     | B1                                 |                                                                                                                     |
|           | (b)<br>(c) |                                  |                                                                                                                                                                     | BI<br>No mark<br>for no<br>working | Accept position of<br>J anywhere along<br>the correct<br>perpendicular<br>bisector drawn<br>and inside the<br>bank. |
|           |            |                                  |                                                                                                                                                                     | B1                                 | Accept boundary as the arc of 1 cm outside the bank.  No mark given if arc extends inside the bank.                 |
| 15        | (a)        | $y = 2 - (x+5)^2$                |                                                                                                                                                                     | B1                                 |                                                                                                                     |
|           | (b)        | $y = \frac{1}{3}x - \frac{1}{3}$ | Gradient of line passing through $(-5,2) \text{ and } (1,0)$ $= \frac{2-0}{-5-1} = \frac{1}{3}$ $y = -\frac{1}{3}x + c$ $0 = -\frac{1}{3}(1) + c$ $c = \frac{1}{3}$ | M1                                 |                                                                                                                     |
|           |            |                                  | $\Rightarrow y = -\frac{1}{3}x + \frac{1}{3}$                                                                                                                       | A1                                 | Accept $\frac{1}{3} = 0.333$                                                                                        |

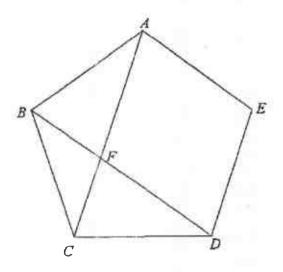
| I  | Vo. | Answer                                | Workings                                                                                                     | Marks    | *Remarks                                                          |
|----|-----|---------------------------------------|--------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------|
| 16 |     | x = 0.73                              | SGD 1.46 = 1 USD<br>SGD 170 = $\frac{170}{1.46}$ = 116.438 USD                                               | M1       |                                                                   |
|    |     |                                       | Total amount of USD =\frac{116.438}{8} \times 100 = 1455.475 USD  2000 SGD = 1455.475 USD I SGD = 0.7277 USD | M1       |                                                                   |
|    |     |                                       | x = 0.73 (2  d.p.)                                                                                           | A1       |                                                                   |
| 17 | (a) | x = 0, 1, 2, 3                        | $-11 < 1 - 3x \le 2$ $-1 \le 3x < 12$ $-\frac{1}{3} \le x < 4$                                               | M1       | Award M2 for any correct method to get $-\frac{1}{3} \le x < 4$ . |
|    |     |                                       | $\Rightarrow x=0,1,2,3$                                                                                      | A1       |                                                                   |
|    | (b) | $-6 \le \frac{b}{a} \le -\frac{1}{3}$ | , 4 1, 5, 5                                                                                                  | B1       | Accept $\frac{1}{3} = 0.333$                                      |
| 18 | (a) | 16                                    | $x(2x^{-\frac{1}{4}})^4 = x(16x^{-1}) = 16$                                                                  | MI<br>Al |                                                                   |
|    | (b) | 5.4                                   | $ \frac{3^{n+2}}{5(3^{n-1})} = \frac{3^{n+2-n+3}}{5} = \frac{3^3}{5} $                                       | M1       | Also accept final answer as $\frac{27}{5}$ or $5\frac{2}{5}$ .    |
|    |     |                                       | $= \frac{3}{5}$ $= 5.4$                                                                                      | AI       |                                                                   |

| 1  | No. | Answer                                            | Workings                                                  | Marks | *Remarks                                 |
|----|-----|---------------------------------------------------|-----------------------------------------------------------|-------|------------------------------------------|
| 19 |     | $\frac{1}{2}a^2$                                  | Area of quadrant = $\frac{1}{4}\pi a^2$                   |       |                                          |
|    |     |                                                   | Area of triangle ZXY = $\frac{1}{2}a^2$                   | 1 -   |                                          |
|    |     |                                                   | Area of segment ZY                                        |       | ji                                       |
|    |     |                                                   | $=\frac{1}{4}\pi a^2-\frac{1}{2}a^2$                      | MI    |                                          |
|    |     |                                                   | Diameter ZY = $\sqrt{a^2 + a^2}$                          |       |                                          |
|    |     |                                                   | $=\sqrt{2}a$                                              | MI    |                                          |
|    |     |                                                   | Area of semi-circle                                       |       |                                          |
|    |     |                                                   | $=\frac{1}{2}\pi(\frac{\sqrt{2}a}{2})^2$                  | 7     | 1                                        |
|    |     | 1                                                 | 2 2                                                       | MI    |                                          |
|    |     |                                                   | $=\frac{1}{4}\pi\alpha^2$                                 |       |                                          |
|    |     |                                                   | Area of shaded region                                     |       |                                          |
|    |     |                                                   | $=\frac{1}{4}\pi a^2-(\frac{1}{4}\pi a^2-\frac{1}{2}a^2)$ |       |                                          |
|    |     |                                                   | $=\frac{1}{2}a^2$                                         | A1    | Accept $0.5a^2$                          |
| 20 | (a) | 2750 cm                                           | $A = kd^2$                                                |       |                                          |
|    |     |                                                   | $440 = k(30)^2$ $k = \frac{22}{100}$                      | M1    |                                          |
|    |     | -                                                 | $k = \frac{22}{45}$                                       |       |                                          |
|    |     |                                                   | $A = \frac{22}{45} (75)^2$                                | MI    |                                          |
|    | /h) | When deleganes h                                  | = 2750 cm <sup>2</sup>                                    | A1    | Manage                                   |
|    | (b) | When d decreases be A becomes (0.85) <sup>2</sup> |                                                           |       | May use calculator to                    |
|    |     | A decreases by 27.7                               | 75%.                                                      | Bl    | verify                                   |
| 1  | (a) | (2, 5.5)                                          | 2y = 3x + 5 (1) $x + 4y = 24 (2)$                         |       | Im for correct<br>substitution or        |
|    |     |                                                   | x + 4y = 24(2)<br>x = 24 - 4y(3)                          |       | elimination                              |
|    |     |                                                   | Sub (3) into (1),                                         | M1    | method<br>Im for correct x               |
|    |     |                                                   | 2y = 3(24 - 4y) + 5 $14y = 77$                            |       | and y                                    |
|    |     |                                                   | y = 5.5                                                   | MI    | Im for correct coordinates               |
|    |     |                                                   | x = 2                                                     | A1    | (accept $5\frac{1}{2} or \frac{11}{2}$ ) |

|    | (b) | y = -2                              |                                                                                                                                                                                          | B1             |                                                                       |
|----|-----|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------|
| 2  | 2   | 8.11 m                              | Let x be the distance from the bush to the ladder.  Using similar triangles, $\frac{2}{x} = \frac{8}{x+1}$ $6x = 2$ $x = \frac{1}{3}$ Length of ladder $= \sqrt{(1\frac{1}{3})^2 + 8^2}$ | M1<br>M1       |                                                                       |
|    |     |                                     | =8.11 m                                                                                                                                                                                  | A1             |                                                                       |
| 23 | (a) | $\frac{2\pi}{3}$ radian is one thin | d of one revolution $(2\pi)$ .                                                                                                                                                           | B1             |                                                                       |
|    | (b) | $\frac{\pi}{6}$ radian              | angle ABO $= \frac{180^{\circ} - 120^{\circ}}{2}$ $= 30^{\circ}$ $= \frac{\pi}{6}$                                                                                                       | M1             | Accept radian method $\frac{\pi - \frac{2\pi}{3}}{2} = \frac{\pi}{6}$ |
|    | (c) | 0.209 m/s                           | Total time = $2.5 \times 60 = 150 \text{ s}$<br>Total distance<br>= $r\theta$<br>= $\frac{2\pi}{3}(15)$<br>= $10\pi$<br>Average speed<br>= $\frac{10\pi}{150}$<br>= 0.209 m/s            | M1<br>M1<br>A1 |                                                                       |
| 24 | (a) | 67 4°                               | $TR = \sqrt{3^2 + 4^2} = 5$ $\cos URT = \frac{5}{13}$ Angle $URT = 67.4^\circ$                                                                                                           | M1<br>M1<br>A1 |                                                                       |
|    | (b) | 192 cm <sup>3</sup>                 | $UT = \sqrt{13^2 - 5^2} = 12$<br>Volume                                                                                                                                                  | MI             |                                                                       |
|    |     |                                     |                                                                                                                                                                                          | A1             |                                                                       |

| (e) | SR = PQ (sides of rectangle) ST = TQ (T is the midpoint of diagonal) TR = TP (T is the midpoint of diagonal) | M1 | Accept correct<br>SAS and ASA<br>tests too. |
|-----|--------------------------------------------------------------------------------------------------------------|----|---------------------------------------------|
|     | By SSS Test, triangle PTQ is congruent to triangle RTS.                                                      | Al |                                             |

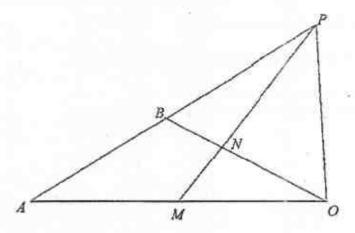
1 (a) Simplify 
$$\frac{5(x-y)^4}{(x+y)^2} \cdot \frac{(x-y)^3}{6x+6y}$$
. [2]


(b) Express 
$$\frac{5}{x-1} - \frac{2}{x^2-1}$$
 as a single fraction in its simplest form. [2]

(c) It is given that 
$$z = \frac{x^2 - y^2}{y}$$
.

(ii) If 
$$x = 2$$
 and  $z = 3$ , find the value(s) of y. [3]

(d) Given that 
$$\frac{x+3y}{5x-4y} = \frac{2}{3}$$
, find the ratio  $x : y$ . [3]


2 (a) The diagram below shows a regular pentagon ABCDE. AC and BD intersect at F.



(ii) Explain why angle 
$$DFA = 108^{\circ}$$
. [2]

4

(b) In the triangle OAB, M is the midpoint of OA.
 N is a point on OB such that ON: NB = 2: 1.
 MN is produced to P so that MN: NP = 1: 2.



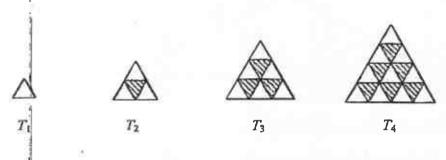
It is given that  $\overrightarrow{OA} = a$  and  $\overrightarrow{OB} = b$ .

(i) Express, in terms of a and/or b,

(a) 
$$\overline{NB}$$
, [1]

(b) 
$$\overline{MN}$$
, [1]

(c) 
$$\overrightarrow{NP}$$
. [1]


(ii) Express 
$$\overrightarrow{AB}$$
 and  $\overrightarrow{BP}$  in terms of a and b. [2]

(iii) Write down two facts about points 
$$A$$
,  $B$  and  $P$ . [2]

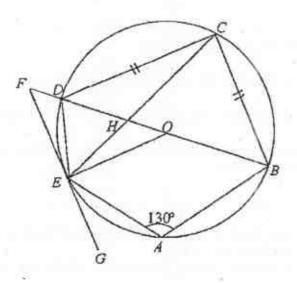
(iv) Find 
$$\frac{\text{area of triangle } PMB}{\text{area of triangle } PMA}$$
 [1]

3 (a) The  $n^{th}$  ferm of a sequence is given by  $T_n = \frac{n(n+3)}{2}$ .

- (i) Which term of the sequence has value 275? [2]
- (ii) Explain why each term of the sequence is a whole number. [1]
- (b) The diagram shows a sequence of shapes  $T_1, T_2, T_3, \ldots$ . Each shape consists of a number of shaded and unshaded triangles.



The letter r represents the number of rows of triangles in each shape


The letters S, U and N represent the number of shaded triangles, unshaded triangles and total number of triangles respectively.

The data is recorded in the table below.

| Shape                           |   | $T_1$ | T <sub>2</sub> | <i>T</i> <sub>3</sub> | <i>T</i> <sub>4</sub> | $T_5$ |
|---------------------------------|---|-------|----------------|-----------------------|-----------------------|-------|
| Number of rows                  | r | 1     | 2              | 3                     | 4                     | 5     |
| Number of shaded<br>triangles   | S | 0     | 1              | 3                     | 6                     | а     |
| Number of unshaded<br>triangles | U | 1     | 3              | б                     | 10                    | ь     |
| Total number of triangles       | N | 1     | 4              | 9                     | 16                    | c     |

- (i) Write down the value of a, of b and of c. [3]
- (ii) Write a formula for the total number of triangles in the  $r^{th}$  shape,  $N_r$  [1]
- (iii) Write a formula for the number of unshaded triangles in the  $r^{tb}$  shape,  $U_r$ . [1]
- (iv) Find the number of shaded triangles in shape  $T_{50}$ . [2]

In the diagram, which is not drawn to scale, O is the centre of the circle. Points A, B, C, D and E lie on the circumference.



BD is a diameter. The tangent at E meets BD produced at F. EC meets BD at H. BC = CD and angle  $EAB = 130^{\circ}$ .

(a) Stating your reasons clearly, find

|     | (i) reflex angle EOB,                                                        | [1] |
|-----|------------------------------------------------------------------------------|-----|
|     | (ii) angle ECB,                                                              | [1] |
|     | (iii) angle CBD,                                                             | [1] |
|     | (iv) angle DOE,                                                              | [1] |
|     | (v) angle OFE.                                                               | [1] |
| (b) | Is the line ED parallel to line BC?  Justify your answer with clear working. | [2] |

7

- The distance between Town P and Town Q is 150 km.

  An express bus travels from Town P to Town Q at the average speed of x km/h.

  If the average speed of the bus is increased by 15 km/h, the time taken would be 21 minutes less.
  - (a) Express, in terms of x,
    - (i) the time taken by the bus at its original speed,

[1]

(ii) the time taken by the bus when the speed is increased by 15 km/h.

[1]

- (b) Form an equation in x and show that it can be reduced to  $7x^2 + 105x 45\,000 = 0$ . [3]
- (c) Solve the equation in part (b) and hence find the original time taken in hours and minutes, correct to the nearest minute. [4]
- At the end of a semester, the final grade of the students is recorded based on their marks obtained from tests, projects, homework and quizzes.

  The marks obtained by three students, Aaron, Beatrice and Carly, are given in the following table.

|          | Tests | Projects | Homework | Quizzes |
|----------|-------|----------|----------|---------|
| Aaron    | 82    | 95       | 89       | 60      |
| Beatrice | 72    | 85       | 65       | 57      |
| Carly    | 88    | 91       | 70       | 64      |

- (a) (i) Write down a 3×4 matrix M that represents the information in the table. [1]
  - (ii) The weightage for each component are as follows:

| Tests    | 50% |
|----------|-----|
| Projects | 20% |
| Homework | 10% |
| Quizzes  | 20% |

Represent the weightage as a decimal number in a  $4 \times 1$  matrix X. [1]

(iii) Evaluate the matric F = MX.

[2]

(iv) State what the elements of F represent.

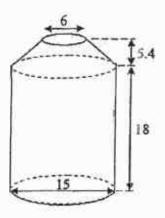
[1]

(b) Overall, the cohort did better in projects than in quizzes.

Suggest how the weightage for each component could change so as to improve the final grade of the students. [1]

4E5N Math P2 2017 Prelim

Turn Over


8

7 The diagram, not drawn to scale, shows an open container which is made up of a cylinder and a frustum.

A frustum is a cone with part of its top removed.

The cylinder has height 18 cm and diameter of 15 cm.

The conical section has base diameter 15 cm, top diameter 6 cm and height 5.4 cm.



- (a) Show that the height of the cone before its top was removed is 9 cm.
- [2]

(b) The container is filled to its brim with water.

Calculate

- (i) the volume of the water in the container, [2]
- (ii) the total surface area of the container in contact with water. [3]
- (c) All the water in the container is poured into a rectangular tank with a base area of 120 cm<sup>2</sup>.

Find the minimum height of the tank so that the water does not overflow.

Give your answer as a whole number.

[2]

9

8 The variables x and y are connected by the equation  $y = 2x + \frac{50}{x} - 30$ , where  $x \ne 0$ .

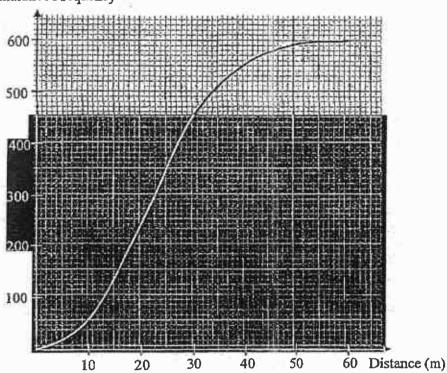
Some corresponding values of x and y are given in the following table, corrected to 2 decimal places.

| x | 1     | 1.5 | 3     | 5      | 7     | 9     | 11 | 13    | 15   | 16   |
|---|-------|-----|-------|--------|-------|-------|----|-------|------|------|
| у | 22.00 | p   | -7.33 | -10.00 | -8.86 | -6.44 | q  | -0.15 | 3.33 | 5.13 |

(a) Find the value of p and of q.

[2]

- (b) Using a scale of 1 cm to 1 unit on the horizontal x-axis and 2 cm to 5 units on the vertical y-axis, draw the graph of  $y = 2x + \frac{50}{x} 30$  for  $1 \le x \le 16$ . [3]
- (c) By drawing a tangent, find the gradient of the curve at the point x = 10. [2]
- (d) (i) On the same axes, draw the line y=3-2x.


[1]

[2]

- (ii) From the graph, state the x-coordinate of the points where this line intersects the curve. [2]
- (iii) These values of x are the solutions of the equation  $Ax^2 33x + B = 0$ . Find the value of A and of B.

9 (a) A group of 600 young children was tested to find the distance that each of them was able to swim in an indoor swimming pool.
The results of the test are shown on the cumulative frequency curve below.

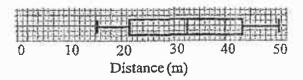
Cumulative Frequency



- (i) Using the given curve, find for this distribution,
  - (a) the median,

[1]

(b) the interquartile range.


[2]

(ii) The distance to pass the test was 35 metres.

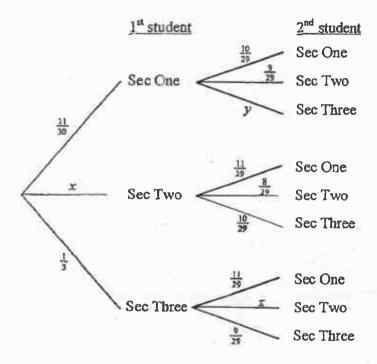
Estimate the percentage of children who passed the test.

[2]

(iii) The same group of children was tested to swim in the outdoor swimming pool. The box-and-whisker plot shows the distribution of the test.



Make two comparisons between the performances of the children in the two tests. [2]


(b) A room consists of 30 students.

The students are selected from three different levels.

There are 11 students from Sec One, 9 students from Sec Two and 10 students from Sec Three.

Two students are selected from the room to compete with other students from another room.

The tree diagram below shows the possible outcomes and some of their probabilities.



- (i) Calculate the value of x, of y and of z as shown on the tree diagram. [3]
- (ii) Expressing your answers in fractions in its lowest term, calculate the probability that
  - (a) both students are from the same level, [1]
  - (b) both students are of different levels, [1]
  - (c) one student will be from Sec One and the other from Sec Three. [1]

12

- Sarah wants to sell chocolate cupcakes at the next neighbourhood Food Fair. She intends to bake 180 to 200 cupcakes. She bakes in batches of 16 cupcakes. Information that Sarah needs is provided below.
  - (a) How many times must she bake in order to have a total of 180 to 200 cupcakes? [2]

Sarah needs to decide how much to charge customers for a box of 6 chocolate cupcakes. She must make sure that she charges enough money to cover all of her costs.

- (b) Using your answer from (a), find the number of boxes she will need for the packaging.
  [1]
- (c) Suggest a sensible amount for her to charge for a box of 6 cupcakes.

  Justify the decision you make and show your calculations clearly.

  [7]

| Ingredie<br>Recipe ma | e <b>nts</b><br>kes 16 cupcakes |  |
|-----------------------|---------------------------------|--|
| 114 g                 | butter                          |  |
| 2                     | eggs                            |  |
| 160 g                 | caster sugar                    |  |
| 100 g                 | plain flour                     |  |
| 60 g                  | cocoa powder                    |  |
| 125 ml                | evaporated milk                 |  |
| Chocolat              | e cream frosting                |  |

| Baking supplies                          |                    |           |
|------------------------------------------|--------------------|-----------|
| Items                                    | Description        | Unit cost |
| Butter                                   | Pack of 500 g      | \$4.95    |
| Eggs                                     | Pack of 30 eggs    | \$3.85    |
| Caster sugar                             | Pack of 800 g      | \$2.65    |
| Plain flour                              | Pack of 1 kg       | \$1.70    |
| Cocoa powder                             | Pack of 250 g      | \$4.10    |
| Evaporated Milk                          | Can of 350 ml      | \$1.60    |
| Chocolate Cream Frosting for 50 cupcakes | 1 tub              | \$18      |
| Cupcake liners                           | Pack of 100 pieces | \$4.00    |
| Cupcake boxes                            | Pack of 5 boxes    | \$3.00    |

Booth Rental Fee: \$100

END OF PAPER

# 4E5N Prelim 2017 Paper 2 Answer Key

| la l    | 30(x-y)                                         |
|---------|-------------------------------------------------|
|         | x+y                                             |
| lb      | 5x+3.                                           |
|         | (x-1)(x+1)                                      |
| lc(i)   | $x = \pm \sqrt{y^2 + yz}$                       |
|         | or                                              |
|         | $x = \pm \sqrt{y(y+z)}$                         |
| lc(ii)  | y=-4 or $y=1$                                   |
| 1d      | 17:7                                            |
| 2a(i)   | 36°                                             |
| 2b(i)   |                                                 |
| (-)     | (a) $\frac{1}{3}$ b                             |
|         | 2. 1                                            |
|         | (b) $\frac{2}{3}b - \frac{1}{2}a$               |
|         | (c) $\frac{4}{3}b-a$                            |
|         | $(c) \frac{-b-a}{3}$                            |
| 2b(ii)  | $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ |
|         |                                                 |
|         | $\overrightarrow{BP} = \mathbf{b} - \mathbf{a}$ |
| 2b(iv)  | 1                                               |
|         | $\overline{2}$                                  |
| 3a(i)   | 2 22nd term / T22                               |
| 3b(i)   | a=10                                            |
|         | b=15                                            |
|         | c=25                                            |
| 3b(ii)  | $N = r^2$                                       |
| 3b(iii) | $U_r = \frac{r(r+1)}{2}$                        |
|         | $U_r = \frac{1}{2}$                             |
| 3b(iv)  | 1 225                                           |
| 4a(i)   | 260°                                            |
| 4a(ii)  | 50"                                             |
| 4a(iii) | 45*                                             |
| 4a(v)   | 10'                                             |
| 4a(iv)  | 80"                                             |
| 4b      | Not parallel                                    |
| 5a(i)   | 150 <sub>h</sub>                                |
|         | $\frac{1}{x}$                                   |
| 5a(ii)  | 150 h                                           |
|         | $\frac{1}{x+15}$ n                              |

| 5c      | 2 hours 3 mins                                                |  |  |  |  |  |
|---------|---------------------------------------------------------------|--|--|--|--|--|
| 6a(i)   | (82 95 89 60)                                                 |  |  |  |  |  |
|         | M = 72 85 65 57                                               |  |  |  |  |  |
|         | 88 91 70 64                                                   |  |  |  |  |  |
| 6a(ii)  |                                                               |  |  |  |  |  |
| Oa(II)  | (0.5)                                                         |  |  |  |  |  |
|         | $\mathbf{X} = \begin{bmatrix} 0.2 \\ 1.1 \end{bmatrix}$       |  |  |  |  |  |
|         | 0.1                                                           |  |  |  |  |  |
|         | (0.2)                                                         |  |  |  |  |  |
| 6a(iii) | (80.9)                                                        |  |  |  |  |  |
|         | 70.9                                                          |  |  |  |  |  |
|         | 82                                                            |  |  |  |  |  |
| 7b(i)   | 3 680 cm <sup>3</sup> (3 sf)                                  |  |  |  |  |  |
| 7b(ii)  | 1 260 cm <sup>2</sup> (3 sf)                                  |  |  |  |  |  |
| 7c      | 31 cm                                                         |  |  |  |  |  |
| 8a      | p = 6.33                                                      |  |  |  |  |  |
|         | q = -3.45                                                     |  |  |  |  |  |
| 8c      | 1.5 (±1)                                                      |  |  |  |  |  |
| 8d(ii)  | $x = 2.2(\pm 0.2)$                                            |  |  |  |  |  |
|         | $x = 6.25(\pm 0.2)$                                           |  |  |  |  |  |
| 8d(iii) | A=4                                                           |  |  |  |  |  |
|         | B = 50                                                        |  |  |  |  |  |
| 9a(i)   | (a) 23 m                                                      |  |  |  |  |  |
| 0-/::)  | (b) 14 m                                                      |  |  |  |  |  |
| 9a(ii)  | 14.2 %                                                        |  |  |  |  |  |
| 9b(i)   | $x = \frac{3}{10}$ , $y = \frac{10}{29}$ , $z = \frac{9}{29}$ |  |  |  |  |  |
| 9b(ii)  | 10 29 25                                                      |  |  |  |  |  |
| 70(11)  | (a) <del>125</del>                                            |  |  |  |  |  |
|         | 299                                                           |  |  |  |  |  |
|         | (b) $\frac{255}{435}$                                         |  |  |  |  |  |
|         | 22                                                            |  |  |  |  |  |
|         | (b) $\frac{299}{435}$ (c) $\frac{22}{87}$                     |  |  |  |  |  |
| 10a     | 12 times                                                      |  |  |  |  |  |
| 10b     | 32 boxes                                                      |  |  |  |  |  |
| 10c     | minimum \$7.90 per box so as                                  |  |  |  |  |  |
|         | to cover cost.                                                |  |  |  |  |  |

14

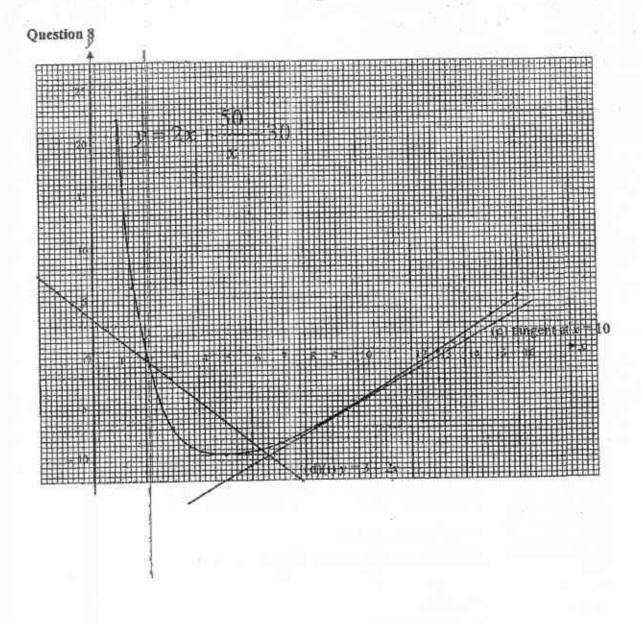
### Marking Scheme 4E5N Prelim 2017 Paper 2

| Qn     | Answer Key                                             |                                                                                                                                                | Marks                    |
|--------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| la     | $\frac{30(x-y)}{x+y}$                                  | $\frac{5(x-y)^4}{(x+y)^2} = \frac{(x-y)^3}{6x+6y}$ $= \frac{5(x-y)^4}{(x+y)^2} \times \frac{6(x+y)}{(x-y)^3}$ $= \frac{30(x-y)}{x+y}$          | M1<br>A1                 |
| 1b     | $\frac{5x+3}{(x-1)(x+1)}$                              | $\frac{5}{x-1} \frac{2}{x^2-1}$ $= \frac{5(x+1)}{(x-1)(x+1)} - \frac{2}{(x-1)(x+1)}$ $= \frac{5x+5-2}{(x-1)(x+1)}$ $= \frac{5x+3}{(x-1)(x+1)}$ | M1                       |
| lc(i)  | $x = \pm \sqrt{y^{1} + yz}$ or $x = \pm \sqrt{y(y+z)}$ | $z = \frac{x^2 - y^2}{y}$ $yz = x^2 - y^2$ $x^2 = y^2 + yz$ $x = \pm \sqrt{y^2 + yz}$                                                          | MI<br>AI                 |
| lc(ii) | y=-4 or $y=1$                                          | $3 = \frac{(2)^2 - y^2}{y}$ $3y = 4 - y^2$ $y^2 + 3y - 4 = 0$                                                                                  | mi<br>prisation M1<br>A1 |
| ld     | 17:7                                                   | $\frac{x+3y}{5x-4y} = \frac{2}{3}$ $3(x+3y) = 2(5x-4y)$ $3x+9y=10x-8y$ $17y = 7x$ $\frac{x}{y} = \frac{17}{7}$ $x: y = 17:7$                   | MI<br>MI                 |

| 2a(i)   | 36°                                                                                     | $\angle BCD$ = Each interior angle = $\frac{(5-2)\times180}{5}$ = $108^{\circ}$<br>$\angle CDF$<br>= $\frac{180^{\circ}-108^{\circ}}{5}$                                      | MI                             |
|---------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|         |                                                                                         | 2                                                                                                                                                                             | A1                             |
|         |                                                                                         | =36° (base ∠ of isos.Δ)                                                                                                                                                       | BI                             |
| 2a(ii)  |                                                                                         | $\angle ACB = 36^{\circ}$ (symmetry / congruent triangles)                                                                                                                    | B.                             |
|         |                                                                                         | $\angle BFC = 180^{\circ} - 36^{\circ} - 36^{\circ} = 108^{\circ} \text{ (isos. } \triangle)$                                                                                 | BI                             |
|         |                                                                                         | $\angle DFA = 108^{\circ} \text{ (vert. opp } \angle s)$                                                                                                                      |                                |
| 2b(i)   | (a) $\frac{1}{3}$ b<br>(b) $\frac{2}{3}$ b $-\frac{1}{2}$ a<br>(c) $\frac{4}{3}$ b $-a$ | (a) $\overrightarrow{NB} = \frac{1}{3}\overrightarrow{OB} = \frac{1}{3}\mathbf{b}$<br>(b) $\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$                   | BI                             |
|         | $(c) \frac{4}{3}b - a$                                                                  | $= \frac{2}{3}b - \frac{1}{2}a  (preferred \ answer)$ $= \frac{1}{6}(4b - 3a)$ (c) $\overrightarrow{NP} = 2\overrightarrow{MN}$                                               | B1                             |
|         |                                                                                         | $= \frac{4}{3}b - a  (preferred \ answer)$ $= \frac{1}{3}(4b - 3a)$                                                                                                           | B1                             |
| 2b(ii)  | $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$                                         | $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \mathbf{b} - \mathbf{a}$                                                                                   | BI                             |
|         | $\overrightarrow{BP} = \mathbf{b} - \mathbf{a}$                                         | $\overrightarrow{BP} = \overrightarrow{NP} - \overrightarrow{NB}$ $= \frac{4}{3}\mathbf{b} - \mathbf{a} - \frac{1}{3}\mathbf{b}$                                              | Bl                             |
| 2b(iii) |                                                                                         | = b-a  1. B is the midpoint of line ABP.                                                                                                                                      | B2                             |
| LU(III) |                                                                                         | 2. A, B and P are collinear/ABP lies on a straight line                                                                                                                       |                                |
| 2b(iv)  | 1 2                                                                                     | area of triangle $PMB$ area of triangle $PMA$ $= \frac{\frac{1}{2}(PM)(PB)\sin P}{\frac{1}{2}(PM)(PA)\sin P} = \frac{PB}{PA} = \frac{1}{2}$ Alternative Mtd Use common height | B1                             |
| 3a(i)   | 22 <sup>nd</sup> term / T <sub>22</sub>                                                 | $\frac{n(n+3)}{2} = 275$ $n^2 + 3n - 550 = 0$ $(n-22)(n+25) = 0$ $n = 22 \text{ or } n = -25 \text{ (reject: } n > 0)$                                                        | M1<br>A1                       |
| 3a(ii)  |                                                                                         | For any integer value of $n$ , either $n$ is even or $(n+3)$ is even. Hence, $n(n+3)$ is always divisible by 2.                                                               | B1 Accept equivalent reasoning |

16

| 3b(i)   | a = 10                         | T                                                                                                                          | B1    |
|---------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|
|         | b = 15                         |                                                                                                                            | BI    |
|         | c = 25                         |                                                                                                                            | B1    |
| 3b(ii)  | $N_r = r^2$                    |                                                                                                                            | B1    |
| 3b(iii) | $U_r = \frac{r(r+1)}{2}$ 1 225 |                                                                                                                            | В1    |
| 3b(iv)  | 1 225                          | $N_{50} = 50^{2} = 2500$ triangles in total $U_{50} = \frac{50(50+1)}{2} = 1275 \text{ triangles unshaded}$                | MI    |
| - 40    |                                | Number of shaded triangles = $2500 - 1275 = 1225$                                                                          | A1    |
| 4a(i)   | 260°                           | reflex $\angle EOB$<br>= $130^{\circ} \times 2$ ( $\angle$ at centre = $2 \angle$ at circumference)<br>= $260^{\circ}$     | BI    |
| 4a(ii)  | 50°                            | $\angle ECB = 180^{\circ} - 130^{\circ}$ (angles in opposite segment)<br>= 50°                                             | BI    |
| 4a(iii) | 45°                            | $\angle CBD = (180^{\circ} - 90^{\circ}) \div 2$ (isosceles triangle, $BC = CD$ )<br>= 45°                                 | BI    |
| 4a(iv)  | 80°                            | ∠DOE = 260° −180°<br>= 80°                                                                                                 | B1    |
| 4a(v)   | 10°                            | $\angle OFE = 180^{\circ} - 90^{\circ} - 80^{\circ} \text{ (tangent } \bot \text{ radius )}$<br>= 10°                      | B1√   |
| 4b      | Not parallel                   | $\angle BDE = 50^{\circ} \text{ (angles in same segment)}$ $\angle CBD = 45^{\circ} \text{ (from aiii)}$                   | M1    |
|         |                                | ∠CBD ≠ ∠BDE ∴ Line ED is not parallel to line BC  [accept any other mathematically logical method]                         | Al    |
| 5a(i)   | 150 <sub>h</sub>               |                                                                                                                            | B1    |
| 5a(ii)  | $\frac{150}{x+15}$ h           |                                                                                                                            | BI    |
| 5b      |                                | $\frac{\frac{150}{x} - \frac{150}{x+15}}{\frac{150(x+15) - 150x}{x(x+15)}} = \frac{7}{20}$ $\frac{2250}{x} = \frac{7}{20}$ | M1    |
|         |                                | $\frac{2250}{x(x+15)} = \frac{7}{20}$ $45000 = 7x(x+15)$ $7x^2 + 105x - 45000 = 0$                                         | Al    |
|         |                                |                                                                                                                            | 4 8 8 |


17

| 5c      | 2 hours 3 mins                                                             | $7x^2 + 105x - 45000 = 0$                                                                                                                                                          |                             |
|---------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|         |                                                                            | $x = \frac{-105 \pm \sqrt{105^2 - 4(7)(-45000)}}{2(7)}$                                                                                                                            | Ml                          |
|         |                                                                            | x = 73.028 or $x = -88.028$                                                                                                                                                        | AI                          |
|         |                                                                            | Original time taken = $\frac{150}{73.028}$ = 2.054 hours<br>= 2 hours 3 minutes                                                                                                    | Mi<br>Al                    |
| 6a(i)   | $\mathbf{M} = \begin{pmatrix} 82 & 95 \\ 72 & 85 \\ 88 & 91 \end{pmatrix}$ | 89 60<br>65 57<br>70 64                                                                                                                                                            | B1                          |
| 6a(ii)  | $X = \begin{pmatrix} 0.5 \\ 0.2 \\ 0.1 \end{pmatrix}$                      |                                                                                                                                                                                    | Bi                          |
| 6a(iii) | (0.2)<br>(80.9)<br>70.9<br>(82)                                            | $ \mathbf{F} = \mathbf{MX} \\ = \begin{pmatrix} 82 & 95 & 89 & 60 \\ 72 & 85 & 65 & 57 \\ 88 & 91 & 70 & 64 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.2 \\ 0.1 \\ 0.2 \end{pmatrix} $ | B2<br>All correct<br>B1     |
|         |                                                                            | $= \begin{pmatrix} 80.9 \\ 70.9 \\ 82 \end{pmatrix}$                                                                                                                               | O<br>More than<br>I mistake |
| 6a(iv)  |                                                                            | The elements in F represent the respective final combined score/grade of Aaron, Beatrice and Carly at the end of the semester.                                                     | B1                          |
| 6b      |                                                                            | The teacher could increase the weightage of projects and decrease the weightage of quizzes.  (Any other suitable suggestions)                                                      | B1                          |
| 7a      |                                                                            | Let the height of the original cone be x cm.  Using similarity, $\frac{x-5.4}{x} = \frac{6}{15}$                                                                                   | M1                          |
|         |                                                                            | 15x - 81 = 6x $x = 9  (shown)$                                                                                                                                                     | Al                          |
| 7b(i)   | 3 680 cm <sup>3</sup> (3 sf)                                               | Height of cone that has been removed  9 - 5.4 = 3.6 cm  Volume of water in cylinder                                                                                                |                             |
|         |                                                                            | $= \pi (7.5)^{2} (18)$ $= 1012.5\pi \text{ cm}^{3}$                                                                                                                                | M1<br>for                   |

|        |                                           | Volume in cone (with top removed)<br>= $\frac{1}{3}\pi(7.5)^2(9) - \frac{1}{3}\pi(3)^2(3.6)$<br>= $157.95\pi$ cm <sup>3</sup> 496.2 cm <sup>3</sup>                                                                                            | either<br>of the<br>two              |
|--------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|        |                                           | Volume of water in container<br>= $1012.5\pi + 157.95\pi$<br>= $3677.1$<br>= $3680 \text{ cm}^3$                                                                                                                                               | Al                                   |
| 7b(ii) | 1 260 cm <sup>2</sup> (3 sf)              | Slant height, $L = \sqrt{9^2 + 7.5^2} = 11.72 \text{ cm } (4 \text{ sf})$<br>Slant height $l = \sqrt{3.6^2 + 3^2} = 4.686 \text{ cm } (4 \text{ sf})$                                                                                          | M1<br>(cither enc)                   |
|        |                                           | Surface area of cylinder in contact with water $= 2\pi (7.5)(18) + \pi (7.5)^{2}$ $= 326.25\pi \text{ cm}^{2}$ 1025 cm <sup>2</sup> Surface area of cone in contact with water $= \pi (7.5)(11.72) - \pi (3)(4.686)$ $= 231.98 \text{ cm}^{2}$ | M1<br>for<br>either<br>of the<br>two |
|        |                                           | Required surface area = $326.25\pi + 231.98$<br>= $1256.92$<br>= $1260 \text{ cm}^2$                                                                                                                                                           | A1                                   |
| 7c     | 31 cm                                     | Height = $\frac{3677.1}{120}$ = 30.64 cm                                                                                                                                                                                                       | MI                                   |
|        |                                           | Minimum height = 31 cm (whole number)                                                                                                                                                                                                          | Al                                   |
| 8a     | p = 6.33<br>q = -3.45                     |                                                                                                                                                                                                                                                | BI<br>BI                             |
| 8ь     |                                           | See attached: Correct Scale Plotted points Smooth Curve                                                                                                                                                                                        | S1<br>P1<br>C1                       |
| 8c     | 1.5 (±1)                                  | Draw a tangent at $x = 10$ .<br>Gradient = 1.5 (±0.1)                                                                                                                                                                                          | 1                                    |
| 8d(i)  |                                           | Draw the line $y = 3 - 2x$ .                                                                                                                                                                                                                   | 1                                    |
| 8d(ii) | $x = 2.2(\pm 0.2)$<br>$x = 6.25(\pm 0.2)$ |                                                                                                                                                                                                                                                | Bi<br>Bi                             |

| 4131    |                                                                       | 1 20                                                                                                                                                                                                                                         |                             |
|---------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 8d(iii) | A = 4 $B = 50$                                                        | $2x + \frac{50}{x} - 30 = 3 - 2x$ $2x^{2} + 50 - 30x = 3x - 2x^{2}$                                                                                                                                                                          | M1                          |
|         |                                                                       | $4x^2 - 33x + 50 = 0$                                                                                                                                                                                                                        |                             |
|         |                                                                       | $\therefore A = 4$ and $B = 50$                                                                                                                                                                                                              | A1                          |
| 9a(i)   | (a) 23 m<br>(b) 14 m                                                  | Median = 23 m<br>Interquartile Range = $Q_3 - Q_1$                                                                                                                                                                                           | B1                          |
|         |                                                                       | = 30 - 16<br>= 14 m                                                                                                                                                                                                                          | MI<br>Al                    |
| 0~(;;)  | 14.2 %                                                                | Number of students who passed the test                                                                                                                                                                                                       | MI                          |
| 9a(ii)  | 14.2 /6                                                               | = 600 - 515*<br>= 85                                                                                                                                                                                                                         | (*accept<br>80 or 90)       |
|         |                                                                       | Percentage of students                                                                                                                                                                                                                       | *Possible                   |
|         |                                                                       |                                                                                                                                                                                                                                              | answers;                    |
|         |                                                                       | $=\frac{85}{600}\times100\%$                                                                                                                                                                                                                 | or 15%                      |
|         |                                                                       | = 14.2 % (3 s.f)                                                                                                                                                                                                                             | Al                          |
| 9a(iii) |                                                                       | Children on average swam <u>further</u> at the outdoor swimming pool as can be seen from the <u>bigger median</u> of 32 m.                                                                                                                   | B2<br>Any two               |
|         |                                                                       | The maximum distance that was covered in the outdoor swimming pool is 50 m, which is lower than the maximum distance covered in the indoor swimming pool which is 60 m.                                                                      |                             |
|         |                                                                       | The interquartile range for the test in the outdoor swimming pool is 22 m, which is <u>more than</u> the test in the indoor swimming pool, 14 m indicating that the distance covered at the indoor swimming pool is <u>more consistent</u> . |                             |
| 9b(i)   |                                                                       | $x = \frac{9}{30} = \frac{3}{10}$ , $y = \frac{10}{29}$ , $z = \frac{9}{29}$                                                                                                                                                                 | B1<br>B1<br>B1              |
| 9b(ii)  | (a) 136<br>435<br>299                                                 | (a) $\left(\frac{11}{30}\right)\left(\frac{10}{29}\right) + \left(\frac{3}{10}\right)\left(\frac{8}{29}\right) + \left(\frac{1}{3}\right)\left(\frac{9}{29}\right) = \frac{136}{435}$                                                        | BI                          |
|         | (a) $\frac{136}{435}$<br>(b) $\frac{299}{435}$<br>(c) $\frac{22}{87}$ | <b>(b)</b> $\frac{136}{435} = \frac{299}{435}$                                                                                                                                                                                               | В1                          |
|         | 57.5                                                                  | (c) $\left(\frac{11}{30}\right)\left(\frac{10}{29}\right) + \left(\frac{1}{3}\right)\left(\frac{11}{29}\right) = \frac{22}{87}$                                                                                                              | BI                          |
| 10a     | 12 times                                                              | Number of batches                                                                                                                                                                                                                            | M1                          |
|         |                                                                       | $= \frac{200}{16} = 12.5 \approx 12$                                                                                                                                                                                                         | A1<br>Equivalent<br>working |
|         |                                                                       | If she bakes 12 times, she will get 12×16=192 cupcakes                                                                                                                                                                                       | acceptable                  |

| 10b      | 32 boxes                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | With 192 cupcakes, she needs $\frac{192}{6} = 32 \text{ boxes}$ |                  |                                         |                                                                                       |                  | В   |
|----------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|-----------------------------------------|---------------------------------------------------------------------------------------|------------------|-----|
| 10c      |                                                                                                 | How much of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | ient is ne       | eeded                                   | i:                                                                                    |                  | 17  |
| follow   | B2<br>Quantity of ingredients                                                                   | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 batch                                                         | For 1<br>batch   | 2                                       | Sold                                                                                  | as: Need to get: |     |
| rough    | for 192 cupcakes                                                                                | Butter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114 g                                                           | 1368             | Ø                                       | 500                                                                                   | g: 30 H          |     |
| om their | (shaded box)                                                                                    | Eggs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                               | 24               | . 1                                     | 30                                                                                    |                  | 1   |
| answer   | • 1 mistake (-1m)                                                                               | Caster sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160 g                                                           | 1920             | g                                       | 800                                                                                   | g BESWE          |     |
| 1        | • > 1 mistake (-2m)                                                                             | Plain flour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 g                                                           | 1200             | g                                       | 1 k                                                                                   | g 印度处理和          | 1   |
|          | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                         | Cocoa powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60 g                                                            | 720              |                                         | 250                                                                                   |                  |     |
|          | B2√                                                                                             | Evaporated<br>Milk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125 ml                                                          | 1500 i           | nil                                     | 350                                                                                   | ml 5             |     |
|          | Cost of ingredients for 192 cupcakes                                                            | Chocolate<br>Cream Frosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16<br>cupcakes                                                  | 192<br>cupcal    |                                         | 50<br>cupca                                                                           | #HDHBOOKS254000  |     |
|          | (expenses)  • i mistake (-1m)                                                                   | Cupcake liners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16<br>cupcakes                                                  | 192 lin          | ers                                     |                                                                                       | O PROPERTY       |     |
|          | • > 1 mistake (-2m)                                                                             | Cupcake boxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | 32 box           | ces                                     | 5 box                                                                                 | xes              | 1   |
|          | B1<br>Add Booth Rental Fee                                                                      | Cost breakdow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | لــــــا         | (Destala)                               | O September 1                                                                         |                  |     |
|          | 1 ,                                                                                             | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                  |                                         |                                                                                       | Expenses         | 1   |
|          | BI√                                                                                             | Butter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 | 4.95             | in the co                               | 31/5                                                                                  | \$14.85          | 1   |
|          | Find cost price of 6                                                                            | The state of the s |                                                                 | 3.85             | 1 TO |                                                                                       | \$3.85           |     |
|          | cupcakes (\$7.85)                                                                               | Caster sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 2.65             |                                         |                                                                                       | \$7.95           |     |
|          | 1-4                                                                                             | Plain flour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |                  |                                         | 29<br>3 999                                                                           | \$3,40           |     |
|          | <u>B1</u>                                                                                       | Cocoa powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 4.10             |                                         | 5<br><b>5</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> | \$12.30          | 1   |
|          | Sensible amount with                                                                            | Evaporated Milk Chocolate Cream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 1.60             | PER CANADA                              | SUSSESSED.                                                                            | 20,00            | 1   |
|          | justification. Profit,<br>transport costs etc are                                               | Frosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$1                                                             | 8.00             |                                         |                                                                                       | \$72.00          | 1   |
| la .     | additional                                                                                      | Cupcake liners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$                                                              | 4.00             | 111.30                                  | 2回邻部                                                                                  | \$8.00           | l . |
| E        | consideration.                                                                                  | Cupcake boxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$                                                              | 3.00             | MIN                                     | 7,418.5                                                                               | \$21.00          |     |
|          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                  | Sub                                     | Total                                                                                 | \$151.35         | 1   |
|          | So long as it makes                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 8                | oth r                                   | estil                                                                                 | \$100.00         | 1   |
|          | sense and covers the<br>basic cost price. The<br>minimum amount<br>should be \$7.90 per<br>box. | Total expenses Cost price for 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≈ \$250.<br>cupcakes                                            | = \$251.:<br>192 | 35<br>— × (                             | 6= \$7                                                                                | 7.85             |     |
|          |                                                                                                 | Consider:  • transport co • electricity o • profit to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | osts,                                                           | }                |                                         | 31                                                                                    |                  |     |
|          |                                                                                                 | - المارية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                  |                                         |                                                                                       |                  |     |



Class Name Register Number Calculator Model



# MANJUSRI SECONDARY SCHOOL

#### **PRELIMINARY EXAMINATION 2017**

Subject:

Mathematics

Paper:

4048/01

Level:

Secondary 4 Express / 5 Normal (Academic)

Date:

7 August 2017

Duration:

2 hours

Setter:

Mr Lee Beng Huat

Candidates answer on the Question Paper Additional materials: Geometrical Instruments

#### READ THESE INSTRUCTIONS FIRST

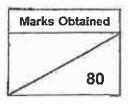
Write your Name, Register Number and Class on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

#### Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.


If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in tenns of at.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.



This paper consists of 15 printed pages including this cover page.

Mathematical Formulae

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi v^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab \sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area = 
$$\frac{1}{2}r^2\theta$$
, where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

**Statistics** 

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

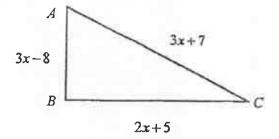
| Answer    | all | the    | q | uestions  |
|-----------|-----|--------|---|-----------|
| WII2 MACI | all | TT I C | м | MOSTIOITS |

|   |      | Answer all                          | _                                                                        |      |
|---|------|-------------------------------------|--------------------------------------------------------------------------|------|
| 1 | (a)  | Estimate, correct to the nearest wh | hole number, the value of $\frac{4.97^2 - \sqrt{15}}{\sqrt[3]{30}}$ with | hout |
|   |      | the use of a calculator.            | 750                                                                      |      |
|   | (b)  | Write down the following in order   | Answer of size, smallest first.                                          | [1]  |
|   | (13) | $\sqrt{0.35}$                       | $\frac{35\%}{53}$ 3.5 $\frac{35}{53}$                                    |      |
| 2 | (a)  | Solve $\frac{x}{3} + 15 = 9$ .      |                                                                          | [2]  |
|   | (b)  | Simplify $15(x-13)+14(13-x)$ .      | Answer x =                                                               | [1]  |
|   |      |                                     | Answer                                                                   | [2]  |

[2]

|   |                                                                                                                     | 4             |
|---|---------------------------------------------------------------------------------------------------------------------|---------------|
| 4 | (a) Simplify $18a^3b \div 6ab^{-3}$ .                                                                               |               |
|   | 4.                                                                                                                  |               |
|   |                                                                                                                     | Answer[1]     |
|   | (b) Given that $\sqrt{2} \times 4^a = 1$ , find the                                                                 | value of n.   |
|   |                                                                                                                     |               |
|   |                                                                                                                     | Answer n= [2] |
| 5 | $\xi = \{\text{integers } x : 11 \le x < 19\}$<br>$A = \{\text{multiples of 3}\}$<br>$B = \{\text{prime numbers}\}$ |               |
|   | List the elements in                                                                                                | 59            |
|   | (a) $A^{\dagger}$ ,                                                                                                 |               |
|   |                                                                                                                     | Answer[1]     |
|   | (b) A'∩B,                                                                                                           |               |
|   |                                                                                                                     |               |
|   | (c) (A∪B)'.                                                                                                         | Answer[1]     |
|   |                                                                                                                     | Answer[1]     |

5


| 6 | Facto                                                                                                                                                                                                                                                                                                                                                                                                 | orise completel                | y 3 <i>ap</i> +8 <i>bq</i> -1 | 12aq – 2bp .                   |                                     |         |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------------|---------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               | Answer                         | .,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,, | [2]     |
| 7 | The                                                                                                                                                                                                                                                                                                                                                                                                   | plan of a muser                | um is drawn to                | a scale of 1:500.              |                                     |         |
|   | (a)                                                                                                                                                                                                                                                                                                                                                                                                   | Find the leng<br>long on the p | •                             | of a corridor which            | th is represented by a line 10      | ).5 cm  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               | ×                              |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               | Answer                         | ·                                   | ı [1]   |
|   | <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                            | The area of the on the plan.   | ne floor of a bo              | okshop is 500 m <sup>2</sup> . | Find, in square centimeters, i      | is area |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       | <b>F</b>                       |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               | Answer                         | cm                                  | [2]     |
| 8 | After Pluto is no longer considered a planet, Mercury is now the smallest planet while Jupiter is still the biggest planet in our solar system.  Planet Mercury has a mass of $3.3 \times 10^{23}$ kg and Jupitar has a mass of $1.898 \times 10^{27}$ kg. How many times is the mass of Jupiter compare to the mass of Mercury? Give your answer in standard form, correct to 3 significant figures. |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                               |                                |                                     |         |

4048/01/PRE/2017

[2]

6

9 The diagram shows a triangle ABC.

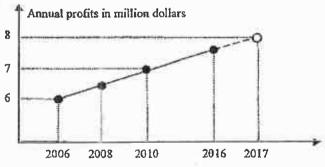


(a) One property of a triangle is that the length of the longest side must be less than the sum of the lengths of the two shorter sides. Form an inequality in x and solve it.

| Answer | . При п | [2 |
|--------|---------------------------------------------|----|

(b) Given also that the perimeter of the triangle is no more than 85 cm. Find the largest possible length of the longest side, given x is a prime number.

4048/01/PRE/2017


Write as a single fraction in its simplest form  $\frac{x}{x^2-4} - \frac{2}{2-x}$ .

| *************************************** | [2] |
|-----------------------------------------|-----|
|                                         |     |

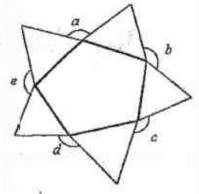
Given that  $n \neq n$  a positive integer and  $n - \frac{1}{n} = 5$ . Find the value of  $n^2 + \frac{1}{n^2}$ .

| Answer | <br>[2] |
|--------|---------|
|        | 1       |

The CEO used the following line graph to show the annual profits made by the company over a number years.



State one aspect of the graph that may be misleading and explain how the annual profits in 2017 can be projected wrongly.


| Answer | reservered littled between erenants conflictly setting the print the reserver our freedisting t |     |
|--------|-------------------------------------------------------------------------------------------------|-----|
|        |                                                                                                 |     |
|        |                                                                                                 | [2] |

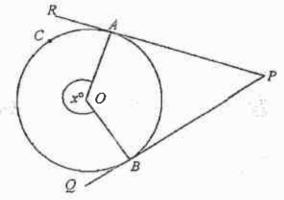
4048/01/PRE/2017

13 Given that  $x \ y = 0.2 : 0.5$  and  $y : z = \frac{1}{3} : \frac{1}{2}$ , find x : y : z.

| Answer | क्रम के क्षेत्र में कि हो तम में मान के हैं है के मानक के क्ष्म करने क्षम संस्थानक पर के क्षम कर है के बात कर क | [3] |
|--------|-----------------------------------------------------------------------------------------------------------------|-----|
|        |                                                                                                                 | ۲,  |

14 The diagram shows a pentagon and five equilateral triangles. Calculate the sum of the angles a, b, c, d and e.



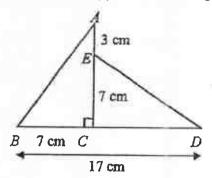

Answer

Q

15 Jane can make 8 dresses in 7 hours. Judy can make 7 dresses in 6 hours.
If Jane and Judy continue to make dresses at the same rate, how long will it take them to make 20 dresses? Give your answer in hours and minutes, to the nearest minutes.

| Answer | ********* | hours |  | minutes | [3] |
|--------|-----------|-------|--|---------|-----|
|--------|-----------|-------|--|---------|-----|

16 A, B and C are points on the circle centre O. PBQ and PAR are tangents to the circle. Reflex  $\angle AOB = x^{\circ}$ .




(a) Given C is a point along the major arc AB, express  $\angle ACB$  in terms of x.

(b) Express  $\angle APB$  in terms of x.

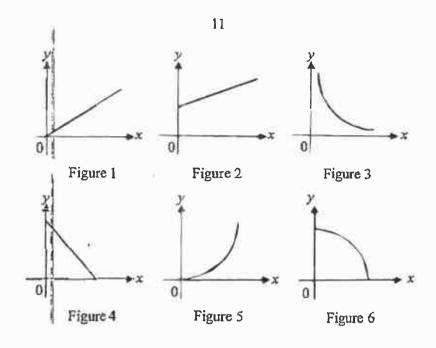
Answer 
$$\angle APB =$$
 [2]

17 In the diagram, AE = 3 cm, EC = 7 cm, BC = 7 cm and BD = 17 cm. Name a pair of congruent triangles, stating your case of congruency.



| ************                | <br>***********************            |
|-----------------------------|----------------------------------------|
| रक वर्गनिव विकास सम्बद्ध कर | ************************************** |
| *****                       | 1 M <sup>3</sup> 7 R6                  |

18 (a) Express 168 as a product of its prime factors.


Answer 
$$168 = ...$$
 [2]

(b) Find the smallest positive integer m such that  $\frac{168}{\sqrt{m}}$  is a perfect cube.

Answer 
$$m =$$
 [2]

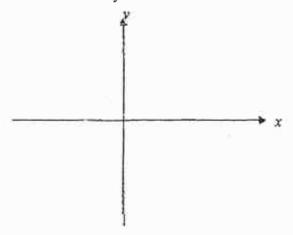
(c) Alice uses all 168 cubes of side I unit to make a cuboid. Each of the sides of the cuboid is made up of more than 3 cubes. Find the number of cubes on each side of the cuboid.

| Answer | by | by | [2 | [] |
|--------|----|----|----|----|
|--------|----|----|----|----|



From the graphs above, select one which illustrates each of the following statements.

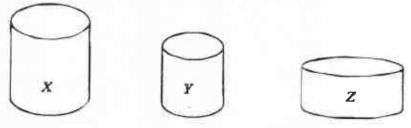
(a) The amount of pressure y, exerted is inversely proportional to the surface area of a cube, of sides x cm.


(b) The surface area y, of a sphere is proportional to the square of the radius, x cm.

Answer Figure .....[1]

(c) The total taxi fare \$y, of a fixed flag down fees plus x metres of distance travelled, given 1 cent is charged for every metre travelled.

Answer Figure ..... [1]


Sketch the graph of y = (x+3)(5-x) on the axes below, indicating its turning point and all the intercepts on the axes clearly.

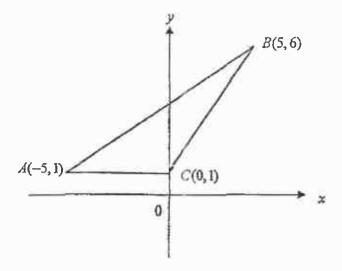


[3]

12

21 There are three mugs X, Y and Z. Mugs X and Y are geometrically similar. The volume of X and Y are 512 cm<sup>3</sup> and 216 cm<sup>3</sup> respectively.




| (a) | Find the | ratio of | the surface | area of X to | Y. |
|-----|----------|----------|-------------|--------------|----|
|-----|----------|----------|-------------|--------------|----|

| Answer |                 |      | [2] | 1 |
|--------|-----------------|------|-----|---|
| NIWWEI | *************** | **** | 12  | ı |

(b) The volume of Y is given by the formula  $V = \pi r^2 h$  where h is the height of the mug and r the radius of the circular base. Find the volume of Z which has  $\frac{2}{3}$  the height of Y and twice the radius of the circular base of Y.

| Answer  | ~ 3    | (27 |
|---------|--------|-----|
| TIM MAN | <br>cm | 141 |

In the diagram, the vertices of a triangle A, B and C are (-5,1), (5,6) and (0,1) respectively.



Find

(a) the equation of line BC,

| Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The second secon | COLUMN TO SERVICE SERV | L 4 |

(b) the equation of the line which passes through A and is parallel to 3x + 6y = 5,

(c) the area of the triangle ABC.

|        |                 | -      |     |
|--------|-----------------|--------|-----|
| Answer | *************** | units2 | [2] |

23 A frustum and a cone were obtained by slicing a conical container, height 2h, as shown in Diagram I at the midway of the height. These figures were then attached to a cylinder, height h, to form a new container as shown in Diagram II. Water was poured into the empty container in Diagram II at a constant rate from the top and it took 33 seconds to fill to the brim.

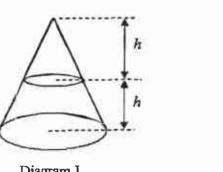



Diagram I

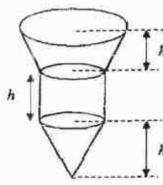
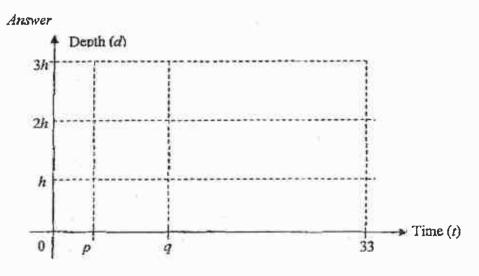




Diagram II

Given that it took p seconds for the water to reach the container to a height of h and q seconds to reach the height 2h.

(a) Find the value of p and of q.

(b) On the grid in the answer space, sketch the graph of the depth of water (d) against the time (t).



[2]

|            |                                                         |                                |                                                                             |                                   |                                 | _ C                          |     |
|------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------------|---------------------------------|------------------------------|-----|
|            | *                                                       | •                              |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            | 1                                                       |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            | 1                                                       |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                |                                                                             |                                   |                                 |                              |     |
|            | 1                                                       |                                |                                                                             |                                   |                                 |                              |     |
|            |                                                         |                                | • 5                                                                         |                                   |                                 |                              |     |
| (a)        | By constr                                               | ucting su                      | itable lines a                                                              | nd arcs in th                     | m A and B and<br>e answer space | 30 m from C. above, mark and | d   |
|            | By constr<br>clearly the                                | ucting su<br>e position        | in the field equitable lines and of the ball X                              | nd arcs in th                     | e answer space                  | e above, mark and            | d   |
|            | By constr<br>clearly the                                | ucting su<br>e position        | in the field equitable lines and of the ball X                              | nd arcs in th                     |                                 | e above, mark and            | d   |
|            | By constr<br>clearly the                                | ucting su<br>e position        | in the field equitable lines and of the ball X                              | nd arcs in th                     | e answer space $A$ and the ba   | e above, mark and            | d   |
|            | By constr<br>clearly the                                | ucting su<br>e position        | in the field equitable lines and of the ball X                              | nd arcs in th                     | e answer space $A$ and the ba   | e above, mark and            | d   |
| (a)<br>(b) | By construction of the clearly the Measure a  Both play | e position and state ers A and | in the field equitable lines at of the ball X the distance h                | Answer for the ball. m/s while pl | e answer space er A and the ba  | e above, mark and            | d d |
| (b)        | By construction of the clearly the Measure a Both play  | e position and state ers A and | in the field equitable lines at of the ball X the distance had a speed of 6 | Answer for the ball. m/s while pl | e answer space er A and the ba  | e above, mark and            | d   |
| (b)        | By construction of the clearly the Measure a Both play  | e position and state ers A and | in the field equitable lines at of the ball X the distance had a speed of 6 | Answer for the ball. m/s while pl | e answer space er A and the ba  | e above, mark and            | ď   |
| (b)        | By construction of the clearly the Measure a Both play  | e position and state ers A and | in the field equitable lines at of the ball X the distance had a speed of 6 | Answer for the ball. m/s while pl | e answer space er A and the ba  | e above, mark and            | ď   |
| (b)        | By construction of the clearly the Measure a Both play  | e position and state ers A and | in the field equitable lines at of the ball X the distance had a speed of 6 | Answer for the ball. m/s while pl | e answer space er A and the ba  | e above, mark and            | ď   |

3

#### Answer all the questions.

- 1 (a) It is given that  $H = \frac{k}{\sqrt{m-n}}$ 
  - (i) Find H when k = 12, m = 6 and n = -3. [1]
  - (ii) Express n in terms of H, k and m. [2]
  - (b) Simplify  $\frac{9a^2b}{(2a)^2} \cdot \frac{12ab^3}{8b^5}$ , leaving your answer in positive indices. [2]
  - (c) Solve the equation  $\frac{5}{x+7} + \frac{4}{11-x} = 1.$  [3]
  - (d) Solve the following simultaneous equations:

$$5x-3y = 22$$

$$y-4x+12 = 0$$
(3)

2 (a) Alex needs a loan of \$45 000 to buy a new car.

Bank ABC charges an interest rate of 2 45% per appum con

Bank ABC charges an interest rate of 2.45% per annum compounded monthly. Bank XYZ charges a simple interest rate of 2.65% per annum.

If Alex plans to take a five year loan, which bank should he loan from?

Justify your answer.

[4]

- (b) Alex buys the new car on hire purchase. He uses the \$45 000 loan to pay the 30% down payment and then makes monthly payments of \$1950 for 5 years.
  - (i) Calculate the cash price of the new car.

[1]

(ii) Calculate the interest Alex has to pay in this hire purchase scheme.

[2]

(iii) Calculate the rate of simple interest charged for hire purchase. Leave your answer in 3 decimal places.

[1]

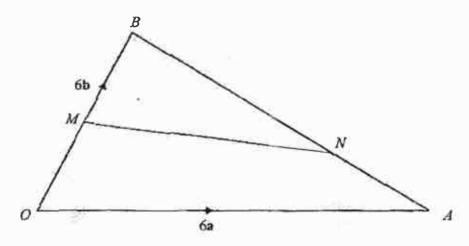
(c) Alex took his new car for a road trip from Singapore to Bangkok.

Before the trip. Alex paid S\$109 for 50 litres of petrol to fill up the tank.

In Bangkok, Alex paid a total of 9 408 Thai bahts for 320 litres of petrol he pumped into his car.

Given S\$1 = 24.5 Thai bahts.

Alex said that the petrol price in Bangkok is less than half the petrol price in Singapore.


Do you agree? Justify your answer.

[3]

4

3 (a) Given 
$$\overrightarrow{PQ} = \begin{pmatrix} -7 \\ 24 \end{pmatrix}$$
 and  $\overrightarrow{PS} = \begin{pmatrix} k \\ 12 \end{pmatrix}$ .

- (i) Find  $|\vec{PQ}|$ . [1]
- (ii) Find the value of k such that P, Q and S are collinear. [2]
- (iii) Find the coordinates of Q if P is the point (10, -15) [1]
- (b) In the diagram,  $\overrightarrow{OA} = 6a$ ,  $\overrightarrow{OB} = 6b$  and  $3\overrightarrow{AN} = \overrightarrow{AB}$ . M is the mid-point of OB.



Express, as simply as possible, in terms of a and/or b,

(i) 
$$\overrightarrow{AN}$$
, [1]

(ii) 
$$\overrightarrow{ON}$$
, [1]

(iii) 
$$\overline{NM}$$
. [1]

P is a point not shown in the diagram such that  $\overrightarrow{MP} = 3\overrightarrow{MN}$ .

(iv) Find the position vector of 
$$P$$
. [1]

(v) Make two statements about the points 
$$O$$
,  $A$  and  $P$ . [2]

Calculate the value of

(vi) 
$$\frac{\text{area of } \triangle AMN}{\text{area of } \triangle BMN}$$
, [1]

(vii) 
$$\frac{\text{area of } \Delta BMN}{\text{area of } \Delta BOA}$$
. [1]

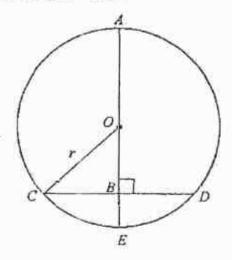
.

- 4 A photocopier prints pages in either 'black and white' or in 'colour'.
  - (a) In one minute, this photocopier prints x pages in black and white.
    Write down an expression in terms of x, for the number of seconds it takes to print one page in black and white.

[1]

(b) In one minute, this photocopier prints 2 more copies in black and white than it does in colour. Write down an expression, in terms of x, for the number of seconds it takes to print one page in colour.

[1]


(c) It takes 1.2 seconds longer to print one page in colour than it takes to print one page in black and white. Form an equation in terms of x and show that it reduces to

$$x^2 - 2x - 100 = 0. ag{3}$$

- (d) Solve the equation  $x^2 2x 100 = 0$ , leaving your answers in 2 decimal places. [2]
- (e) Hence, find the time taken in minutes and seconds to print 85 pages in colour. Give your answer corrected to the nearest second.

[2]

5 The diagram sho was circle, centre O and radius r cm. AB is perpendicular to the CD. Given that AB = 9 cm and CD = 6 cm.



(a) Express OB in terms of r.

[1]

(b) Show that the radius of the circle = 5 cm.

[3]

(c) Calculate the area of the minor segment CDE.

[4]

6

6 (a) The first four terms in a sequence of numbers,  $u_1, u_2, u_3, u_4, ...$ , are given below

$$u_1 = 1^2 + 1 = 2$$

$$u_2 = 2^2 + 3 = 7$$

$$u_3 = 3^2 + 5 = 14$$

$$u_4 = 4^2 + 7 = 23$$

(i) Write down an expression for  $u_5$  and show that  $u_5 = 34$ .

[1]

(ii) Find an expression, in terms of n, for  $u_n$ .

[2]

(iii) Evaluate u<sub>30</sub>.

[1]

(b) A toy manufacturing company makes toy boats and toy cars.
The following table is used in calculating the cost of manufacturing each toy boat and toy car.

|      | Labour Wood Paint |   |   |  |  |  |  |
|------|-------------------|---|---|--|--|--|--|
| Boat | 6                 | 4 | 5 |  |  |  |  |
| Car  | 4                 | 2 | 3 |  |  |  |  |

This information can be represented by the matrix  $T = \begin{pmatrix} 6 & 4 & 5 \\ 4 & 2 & 3 \end{pmatrix}$ .

(i) Labour cost \$8 per hour, wood cost \$5 per block and paint costs \$3 per tin. Represent the cost by a  $3 \times 1$  column matrix C.

[1]

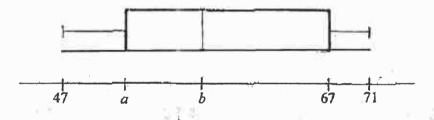
(ii) Evaluate the matrix V = TC.

[2]

(iii) State what the elements of V represent.

[1]

(iv) Given that  $W = (80 \ 50)$ , evaluate WV and explain what the answer represents.


[2]

The stem and leaf diagram below shows the mass of 21 students.

| Stem | L | ea | ſ |   |   |   |   |   |   |
|------|---|----|---|---|---|---|---|---|---|
| 4    | 7 | 7  | 8 |   |   |   |   |   | _ |
| 5    | 0 | 3  | 3 | 4 | 6 | 6 | 6 | 8 | 9 |
| 6    | 1 | 2  | 4 | 7 | 7 | 8 | 8 |   |   |
| 7    | 0 | 1  |   |   |   |   |   |   |   |

Key: 5|2 means 52 kg

- (a) Find
  - (i) the modal mass, [1]
  - (ii) the percentage of students more than 62 kg. [1]
- (b) The box-and-whisker plot for the above distribution is shown below.



- (i) Write down the value of a and of b. [2]
- (ii) Find the interquartile range. [I]
- (c) Two students are selected from the group.

  Calculate the probability that only one student is at least 50 kg. [2]

8 The diagram shows three markers A, B and C placed on a horizontal ground. The marker A is 250 m from C and the marker B is 400 m due West from A. Angle  $BAC = 65^{\circ}$ 

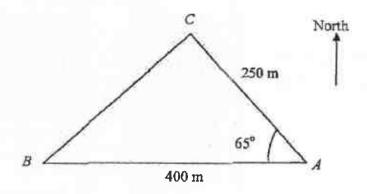
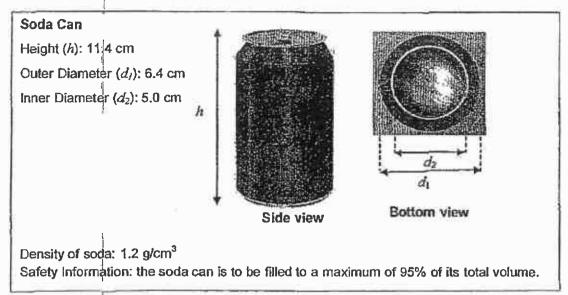



Diagram is not drawn to scale

(a) Calculate

(i) the length BC,

(ii) the area of the triangle ABC,


(iii) the angle ABC and

(iv) the bearing of C from B.

[3]

(b) An eagle is hovering vertically above A.
The angle of elevation of the eagle from B is 18°.
Find the angle of depression of C from the eagle.

9 Some information about a soda can is shown below.



In this question, the soda can (above) can be modelled as a cylinder with an inner hemisphere that is hollowed inwards (concave) at the base of the can.



- (a) Calculate
  - (1) the base area, in square centimetres, of the soda can and

[2]

(ii) the total volume, in cubic centimetres, of the soda can.

[2]

(b) The material used to make the wall of the soda can must be carefully chosen such that the total mass of each filled soda can is below 620 g.
The manager of the soda manager proposed to use an alloy which has a mass of 0.8 g for every 1 cm² to make the can.
If the thickness of the soda can is negligible, will you accept his proposal?
Justify your answer with suitable calculation.

[6]

10 Answer the whole of this question on a sheet of graph paper.

The table below gives the values of x and y connected by the equation  $y = \frac{x^2}{6} + \frac{12}{x} - 6$ . The table below shows some corresponding values of x and y.

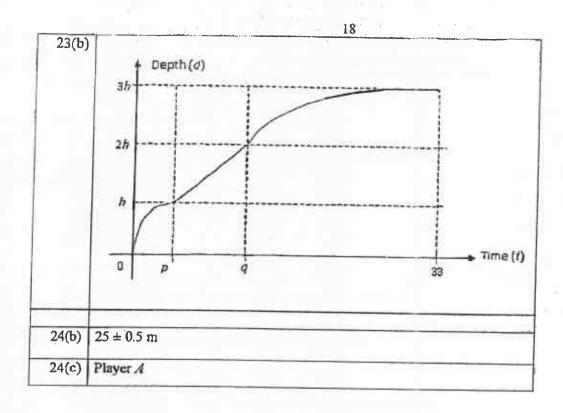
| x | 1   | 1.5 | 2   | 3    | 4    | 5   | 6 | 7   |
|---|-----|-----|-----|------|------|-----|---|-----|
| y | 6.2 | 2.4 | 0.7 | -0.5 | -0.3 | 0.6 | k | 3.9 |

(a) Calculate the value of k.

[1]

- Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for 0 ≤ x ≤ 8.
   Using a scale of 2 cm to 1 unit, draw a vertical y-axis for -1 ≤ y ≤ 7.
   On your axes, plot the points given in the table and join them with a smooth curve. [3]
- (c) By drawing a tangent, find the gradient of the curve at x = 1.5.

[2]


- (d) (i) On the same axes, draw the line  $y = \frac{x}{6}$ . [1]
  - (ii) Write down the x-coordinate of the points where the line intersects the curve. [2]
  - (iii) These values of x is a solution of the equation  $x^3 x^2 + Ax + B = 0$ . Find the value of A and value of B. [2]

... End of Paper 2 ...

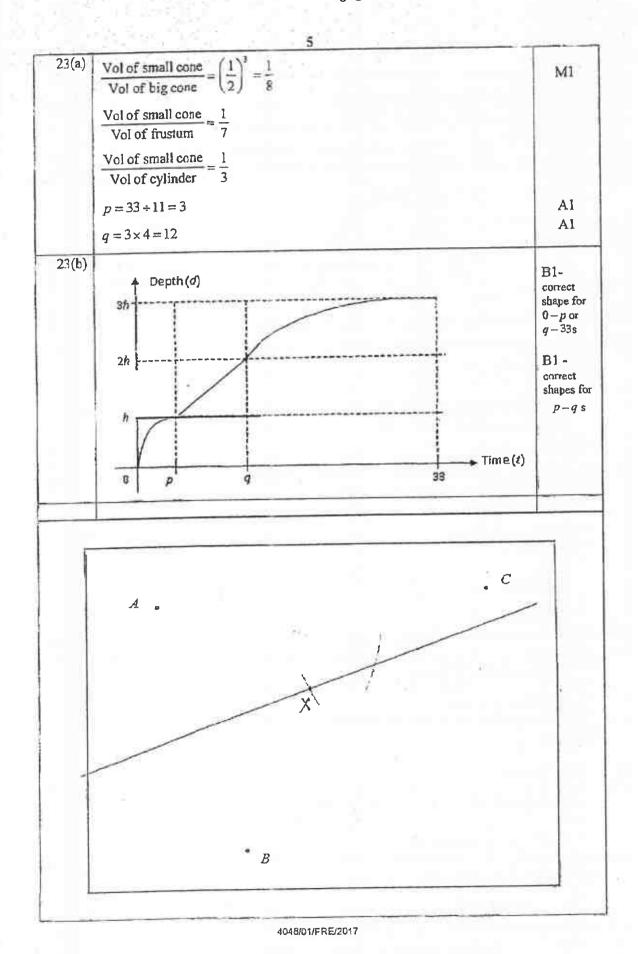
# Manjusri Secondary School Preliminary Examination 2017 Elementary Mathematics 4048 Paper 1 Answer key

|      | Answer key                                                                                                                                                        |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| l(a) | 7                                                                                                                                                                 |  |
| 1(b) | 35%, $\sqrt{0.35}$ , $\frac{35}{53}$ , 3.5                                                                                                                        |  |
| 2(a) | -18                                                                                                                                                               |  |
| 2(b) | x-13                                                                                                                                                              |  |
| 3    | \$215                                                                                                                                                             |  |
| 4(a) | $3a^2b^4$                                                                                                                                                         |  |
| 4(b) | $-\frac{1}{4}$                                                                                                                                                    |  |
| 5(a) | 11, 13, 14, 16, 17                                                                                                                                                |  |
| 5(b) | 11, 13, 17                                                                                                                                                        |  |
| 5(c) | 14, 16                                                                                                                                                            |  |
| 6    | (3a-2b)(p-4q)                                                                                                                                                     |  |
| 7(a) | 52.5 cm                                                                                                                                                           |  |
| 7(b) | 3.6cm                                                                                                                                                             |  |
|      | 20 cm <sup>2</sup>                                                                                                                                                |  |
| 8    | 5.75×10 <sup>3</sup>                                                                                                                                              |  |
| 9(a) | x > 5                                                                                                                                                             |  |
| 9(b) | 28 cm                                                                                                                                                             |  |
| 10   | $\frac{3x+4}{(x+2)(x-2)}$ or $\frac{3x+4}{x^2-4}$                                                                                                                 |  |
| 11   | 27                                                                                                                                                                |  |
| 12   | Data from Year 2007, 2009, 2011 to 2015 are missing.  The scale in horizontal axis is not consistent.  The line graph may not be sloping upward as it seem to be. |  |
| 13   | 4:10:15                                                                                                                                                           |  |
|      | 660°                                                                                                                                                              |  |

|                | 17                                                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 15             | 8 hours 40 minutes                                                                                                                        |
| 16(a)          | $\frac{1}{2}(360^{\circ} - x)$ or $180^{\circ} - \frac{1}{2}x$                                                                            |
| 16(b)          | x-180°                                                                                                                                    |
| 17             | BC = EC = 7  cm<br>CD = CA = 10  cm<br>$\angle ACB = \angle DCE = 90^{\circ}$<br>$\therefore \triangle ABC = \triangle DEC \text{ (SAS)}$ |
| 18(a)          | $2^3 \times 3 \times 7$                                                                                                                   |
| 18(b)          | 441                                                                                                                                       |
| 18(c)          | 4×6×7                                                                                                                                     |
| 19(a)          | Figure 3                                                                                                                                  |
| 19(b)          | Figure 5                                                                                                                                  |
| 19(c)          | Figure 2                                                                                                                                  |
| 20             | 3 (1,16)                                                                                                                                  |
| 21(a)          | 16:9                                                                                                                                      |
| 21/4/          |                                                                                                                                           |
| and the second | 576 cm²                                                                                                                                   |
| 21(b)          | 576 cm <sup>3</sup> y = x + 1                                                                                                             |
| 21(b)          |                                                                                                                                           |
| 21(b)<br>22(a) | 576 cm <sup>3</sup> y = x + 1                                                                                                             |



# Preliminary Examination 2017 4 Express/ 5 Normal Academic Elementary Mathematics 4048 Paper 1 Marking Scheme


| 1 (a) | $\frac{5^2 - \sqrt{16}}{\sqrt[3]{27}} = 7$       | BI |
|-------|--------------------------------------------------|----|
| 1 (b) | $\sqrt{0.35} \approx 0.59$                       |    |
|       | 35% = 0.35                                       |    |
|       | $\frac{35}{53} \approx 0.66$                     | M1 |
|       | $35\%$ , $\sqrt{0.35}$ , $\frac{35}{53}$ , $3.5$ | Al |
| 2 (a) | x + 45 = 27                                      |    |
|       | x = -18                                          | BI |
| 2 (b) | 15(x-13)-14(x-13)                                | MI |
|       | =x-13                                            | Al |
| 3     | 100                                              |    |
|       | $\frac{100}{85} \times 182.75$                   | M1 |
|       | =\$215                                           | A1 |
| 4 (a) | $3a^2b^4$                                        | B1 |
| 4 (b) | $2^{\frac{1}{2}} \times 2^{2n} = 2^{0}$          |    |
|       | $\frac{1}{2} + 2n = 0$                           | M1 |
|       | $z = -\frac{1}{4}$                               | A1 |
| 5 (a) | 11, 13, 14, 16, 17                               | B1 |
|       |                                                  | Б1 |
| 5 (b) | 11, 13, 17                                       | Bl |
| 5 (c) | 14, 16                                           | B1 |
| 6     | 3ap-12aq+8bq-2bp                                 |    |
|       | =3a(p-4q)+2b(4q-p)                               | M1 |
|       | = (3a-2b)(p-4q)                                  | Al |

|       |                                                   | Le |  |
|-------|---------------------------------------------------|----|--|
| 7 (a) | 1 cm: 500 cm                                      |    |  |
|       | 1 cm : 5 m                                        |    |  |
|       | $10.5 \text{ cm}: 10.5 \times 5 = 52.5 \text{ m}$ |    |  |

| ` '   | 1 cm : 500 cm                                                                   |          |
|-------|---------------------------------------------------------------------------------|----------|
|       | 1 cm : 5 m                                                                      | -        |
|       | $10.5 \text{ cm} : 10.5 \times 5 = 52.5 \text{ m}$                              | E        |
| 7 (b) | 1 cm <sup>2</sup> : 25 m <sup>2</sup>                                           | N        |
|       | 500 2 500                                                                       |          |
|       | $500 \text{ m}^2: \frac{500}{25} = 20 \text{ cm}^2$                             | A        |
| 8     | $\frac{1.898 \times 10^{27}}{3.3 \times 10^{23}} \approx 5751$                  | -        |
|       | 3.3×10 <sup>23</sup> 33751                                                      | M        |
|       | = 5.75 × 10 <sup>3</sup>                                                        | A        |
| 9 (a) | 3x-8+2x+5>3x+7                                                                  | M        |
|       | x > 5                                                                           | A        |
| 9 (b) | $(3x-8)+(2x+5)+(3x+7) \le 85$                                                   | M        |
|       | $x \le 10\frac{1}{8}$                                                           | В        |
| 17    | Largest possible length = $3 \times 7 + 7 = 28$ cm                              | A        |
|       | x 2                                                                             |          |
| 10    | $\frac{x}{x^2-4} + \frac{2}{x-2}$                                               |          |
|       |                                                                                 |          |
|       | $\frac{x+2(x+2)}{(x+2)(x-2)}$                                                   | M        |
|       | 3x+4 $3x+4$                                                                     |          |
|       | $= \frac{3x+4}{(x+2)(x-2)} \text{ or } \frac{3x+4}{x^2-4}$                      | A        |
| 11    | . l <sub>32</sub> . 2 2 1                                                       |          |
|       | $(n - \frac{1}{n})^2 = n^2 - 2 + \frac{1}{n^2}$ $n^2 + \frac{1}{n^2} = 5^2 + 2$ | M        |
|       | $n^2 + \frac{1}{1} - 5^2 + 2$                                                   | - 1      |
|       | $n + \frac{1}{n^2} = 3 + 2$                                                     |          |
| _     | = 27                                                                            | Al       |
| 12    | Data from Year 2007, 2009, 2011 to 2015 are missing.                            | BI       |
|       | The scale in horizontal axis is not consistent.                                 | 1        |
|       | The line graph may not be sloping upward as it seem to be.                      | Bl       |
|       | (Do not accept: the vertical axis does not start from 0)                        | 1        |
|       |                                                                                 |          |
| 13    | x: y=2:5                                                                        | RI       |
|       | x: y=2:5<br>y: z=2:3                                                            | BI<br>BI |

| n of interior angles in pentagon = $(5-2) \times 180^{\circ}$<br>= $540^{\circ}$<br>n of angles $a$ , $b$ , $c$ , $d$ and $e = 5(360^{\circ}) - 540^{\circ} - 10(60^{\circ})$<br>= $660^{\circ}$<br>duct one mark if student assumed regular pentagon)<br>hour,<br>$e$ made $\frac{8}{7}$ dresses. Judy made $\frac{7}{6}$ dresses.<br>The made $((\frac{8}{7} + \frac{7}{6}) = \frac{97}{42}$ dresses.<br>The to make 20 dresses = $20 \div \frac{97}{42}$<br>= $8.659$ hour<br>= $8 \text{ hours } 40 \text{ minutes}$<br>$OB = 360^{\circ} - x$<br>$CB = \frac{1}{2}(360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2}x$<br>$OAP = \angle OBP = 90^{\circ}$<br>$PB = \frac{1}{3}(360^{\circ} - x) = x - 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1 A1  M1 A1  M1 A1  M1 A1                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| duct one mark if student assumed regular pentagon)  hour,  e made $\frac{8}{7}$ dresses. Judy made $\frac{7}{6}$ dresses.  h made $((\frac{8}{7} + \frac{7}{6}) = \frac{97}{42}$ dresses.  he to make 20 dresses = $20 \div \frac{97}{42}$ = 8.659 hour  = 8 hours 40 minutes $OB = \frac{1}{4} (360^{\circ} - x)$ or $180^{\circ} - \frac{1}{2}x$ $OAP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MI<br>MI<br>A1                                                                                                                                                                          |
| duct one mark if student assumed regular pentagon)  hour,  e made $\frac{8}{7}$ dresses. Judy made $\frac{7}{6}$ dresses.  h made $((\frac{8}{7} + \frac{7}{6}) = \frac{97}{42}$ dresses.  he to make 20 dresses = $20 \div \frac{97}{42}$ = 8.659 hour  = 8 hours 40 minutes $OB = \frac{1}{4} (360^{\circ} - x)$ or $180^{\circ} - \frac{1}{2}x$ $OAP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MI<br>MI<br>A1                                                                                                                                                                          |
| hour,<br>e made $\frac{8}{7}$ dresses. Judy made $\frac{7}{6}$ dresses.<br>the made $((\frac{8}{7} + \frac{7}{6}) = \frac{97}{42}$ dresses.<br>the to make 20 dresses = $20 \div \frac{97}{42}$<br>= 8.659 hour<br>= 8 hours 40 minutes<br>$OB = \frac{1}{4} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $OAP = 20BP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MI<br>M1<br>A1                                                                                                                                                                          |
| the made $\frac{8}{7}$ dresses. Judy made $\frac{7}{6}$ dresses.  The made $((\frac{8}{7} + \frac{7}{6}) = \frac{97}{42}$ dresses.  The to make 20 dresses = $20 \div \frac{97}{42}$ $= 8.659 \text{ hour}$ $= 8 \text{ hours 40 minutes}$ $OB = \frac{1}{4} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $OAP = 20BP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 A1 M1 A1                                                                                                                                                                             |
| th made $((\frac{8}{7} + \frac{7}{6}) = \frac{97}{42}$ dresses.<br>The to make 20 dresses = $20 \div \frac{97}{42}$<br>= 8.659 hour<br>= 8 hours 40 minutes<br>$OB = \frac{1}{4} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $OAP = 200 = 20^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1 A1 M1 A1                                                                                                                                                                             |
| the to make 20 dresses = $20 \div \frac{97}{42}$<br>= 8.659 hour<br>= 8 hours 40 minutes<br>$\frac{1}{OB} = \frac{1}{3}60^{\circ} - x$ $CB = \frac{1}{4}\frac{1}{2}(360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2}x$ $OAP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1 A1 M1 A1                                                                                                                                                                             |
| = 8.659 hour<br>= 8 hours 40 minutes<br>$OB = 360^{\circ} - x$ $CB = \frac{1}{2}(360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2}x$ $OAP = \angle OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 A1 M1 A1                                                                                                                                                                             |
| = 8 hours 40 minutes $OB = 360^{\circ} - x$ $CB = \frac{1}{4} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $OAP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 A1                                                                                                                                                                                   |
| $OB = 360^{\circ} - x$ $CB = \frac{1}{3} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $OAP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1<br>A1                                                                                                                                                                                |
| $CB = \frac{1}{4} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $0AP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                                                                                                                                                                      |
| $CB = \frac{1}{4} \frac{1}{2} (360^{\circ} - x) \text{ or } 180^{\circ} - \frac{1}{2} x$ $0AP = 2OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                                                                                                                                                                      |
| $OAP \stackrel{!}{=} \angle OBP = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1, A                                                                                                                                                                                   |
| $PB = \frac{1}{7}180^{\circ} - (360^{\circ} - x) = x - 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1, A                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |
| =EC=7 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mi                                                                                                                                                                                      |
| CA = 10  cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MI                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |
| $\triangle ABG \equiv \triangle DEC \text{ (SAS)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                                                                                                                                                                      |
| 2   168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |
| 2 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MI                                                                                                                                                                                      |
| 2 42 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |
| 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |
| 3 = 2 × 3 × 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                                                                                                                                                                                      |
| $\frac{18}{8} = \frac{1}{2}$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1411                                                                                                                                                                                    |
| A Company of the Comp |                                                                                                                                                                                         |
| m = 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Al                                                                                                                                                                                      |
| $8 = 2^2 \times (2 \times 3) \times 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MI                                                                                                                                                                                      |
| =4×6×7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al                                                                                                                                                                                      |
| 8 6 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ACB = \Delta DEC \text{ (SAS)}$ $2  168$ $2  84$ $2  42$ $3  7$ $1$ $1$ $8 = 2  \times 3 \times 7$ $68$ $\times 7$ $\sqrt{m} = 21$ $m = 441$ $68 = 2^{2} \times (2 \times 3) \times 7$ |

| 19 (a) | Figure 3                                                                                                                                     | B1          |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 19 (b) | Figure 5                                                                                                                                     | BI          |
| 19 (c) | Figure 2                                                                                                                                     | Bl          |
| 20     | B1 – co. B1 – ind                                                                                                                            | rect shape  |
|        | turning B1 – x a y-interce                                                                                                                   | point<br>nd |
| 21(a)  | $\sqrt{\frac{512}{216}} = \frac{4}{3}$ Surface area of $x$ Surface area of $y = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Ratio = 16:9      | M1<br>A1    |
| 21(b)  | Volume of $Z$<br>$= \pi (2r)^2 \frac{2}{3}h$ $= \frac{8}{3} \times \pi r^2 h$ $= \frac{8}{3} \times 216$ $= 576 \text{ cm}^3$                | MI          |
| 1      | Gradient $BC = \frac{6-1}{5-0} = 1$<br>Equation: $y = x+1$                                                                                   | B1          |
| 22(b)  | $m=-\frac{1}{2}$                                                                                                                             |             |
|        | $y = mx + c$ $1 = -\frac{1}{2}(-5) + c \qquad \Rightarrow \qquad c = -\frac{3}{2}$ $y = -\frac{1}{2}x - \frac{3}{2} \text{ or } 2y = -x - 3$ | MI<br>A1    |
| 22(c)  | Area = $\frac{1}{2}(6-1)(0+5)$<br>= 12.5 units <sup>2</sup>                                                                                  | MI          |
|        | - 12.5 mins                                                                                                                                  | Al          |



| 24(a) | Construct the perpendicular bisector of AB                                                  | BI |
|-------|---------------------------------------------------------------------------------------------|----|
|       | Mark the point X 6 cm from C.                                                               | B1 |
| 24(b) | $5 \times 5 = 25 \pm 0.5 \text{ m}$                                                         | B1 |
| 24(c) | Time taken to reach the ball  A: $\frac{25}{6} = 4.17 \text{ sec}$ C: $\frac{30}{3} = 4.28$ | MI |
|       | Player A will get the ball first.                                                           | AI |

# Preliminary Examination 2017 4 Express/ 5 Normal Academic Elementary Mathematics 4048 Paper 2 Answer key

| 1 | (a)(i)   | 4                                                                                                                     |   |
|---|----------|-----------------------------------------------------------------------------------------------------------------------|---|
|   | (a)(ii)  | $n = m - \left(\frac{k}{H}\right)^2$                                                                                  |   |
| 1 | (b)      | $\frac{3b^3}{2a}$                                                                                                     |   |
| 1 | (c)      | 2 or 3                                                                                                                |   |
| 1 | (d)      | x = 2 and $y = -4$                                                                                                    |   |
| 2 | (a)      | Bank ABC.                                                                                                             |   |
| 2 | (b)(i)   | \$150 000                                                                                                             | _ |
| 2 | (b)(ii)  | \$12 000                                                                                                              |   |
| 2 | (b)(iii) | 2.286%                                                                                                                |   |
| 2 | (c)      | No                                                                                                                    |   |
| 3 | (a)(i)   | 25 units                                                                                                              |   |
| 3 | (a)(ii)  | -3.5                                                                                                                  |   |
| 3 | (a)(iii) | (3, 9)                                                                                                                |   |
| 3 | (b)(i)   | 2b-2a                                                                                                                 |   |
| 3 | (b)(ii)  | 4a + 2b                                                                                                               |   |
| 3 | (b)(iii) | b-4a                                                                                                                  |   |
| 3 | (b)(iv)  | 12a                                                                                                                   |   |
| 3 | (b)(v)   | Points $O$ , $A$ and $P$ are collinear points/ form a straight line.  A is a mid-point of $OP / OA = \frac{1}{2}OP$ . |   |
| 3 | (b)(vi)  | $\frac{1}{2}$                                                                                                         |   |

4048/02/PRE/2017

| 3 | (b)(vii) | <u>1</u>                                                                                   |   |   |
|---|----------|--------------------------------------------------------------------------------------------|---|---|
| 4 | (a)      | 60<br>x                                                                                    |   |   |
| 4 | (b)      | $\frac{60}{x-2}$                                                                           |   |   |
| 4 | (c)      | $\frac{60}{x-2} - \frac{60}{x} = 1.2$                                                      |   |   |
| 4 | (d)      | x = -9.05 or 11.05                                                                         |   |   |
| 4 | (e)      | 9 min 24 sec                                                                               |   |   |
| 5 | (a)      | 9-r                                                                                        | - | - |
|   | (b)      | $(9-r)^2 + 3^2 = r^2$                                                                      |   |   |
|   | (c)      | 4.09 cm <sup>2</sup>                                                                       |   |   |
| 6 | (a)(i)   | $u_5 = 5^2 + 9 = 34$                                                                       |   |   |
| 6 | (a)(ii)  | $u_n = n^2 + 2n - 1$                                                                       | 1 |   |
| 6 | (a)(iii) | 959                                                                                        |   |   |
| 6 | (b)(i)   | (8)<br>(5)<br>(3)                                                                          |   |   |
| 6 | (b)(ii)  | (83)<br>51)                                                                                |   |   |
| 6 | (b)(iii) | Elements of V represent the cost of manufacturing each toy boat and toy car respectively.  |   |   |
| 6 | (b)(iv)  | (9190) The answer represents the total cost of manufacturing 80 toy boats and 50 toy cars. |   |   |
| 7 | (a)(i)   | 56.kg                                                                                      |   |   |
| 7 | (a)(ii)  | $33\frac{1}{3}\%$ or $33.3\%$                                                              |   | 5 |
| 7 | (b)(i)   | a = 53, $b = 58$                                                                           |   |   |
| 7 | (b)(ii)  | 14 kg                                                                                      |   |   |

| 7  | (c)      | $\frac{9}{35}$                                                               |  |
|----|----------|------------------------------------------------------------------------------|--|
|    |          | 35                                                                           |  |
|    |          |                                                                              |  |
| 8  | (a)(i)   | 371, m                                                                       |  |
| 8  | (a)(ii)  | 45 300 m <sup>2</sup>                                                        |  |
| 8  | (a)(iii) | 37.6°                                                                        |  |
| 8  | (a)(iv)  | 052 4°                                                                       |  |
| 8  | (b)      | 27.5°                                                                        |  |
| 9  | (a)(i)   | 51.8 cm <sup>2</sup>                                                         |  |
| 9  | (a)(ii)  | 334 cm <sup>3</sup>                                                          |  |
| 9  | (b)      | Total mass of each filled soda can = 631.308 g Will NOT accept the proposal, |  |
| 10 | (a)      | k=2                                                                          |  |
| 10 | (c)      | Gradient = -4.8 ± 0.5<br>(Range accepted from -5.1 to -4.3)                  |  |
| 10 | (d)(i)   | Draw the line $y = \frac{x}{6}$                                              |  |
| 10 | (d)(ii)  | $x = 2.1 \pm 0.1$ or $x = 5.2 \pm 0.1$                                       |  |
| 10 | (d)(iii) | A = -36, $B = 72$                                                            |  |

# Preliminary Examination 2017 4 Express/ 5 Normal Academic Elementary Mathematics 4048 Paper 2 Marking Scheme

|   |         | Bank XYZ: Interest = $45000 \times \frac{2.65}{100} \times 5 = \$5962.50$<br>Amount = $\$50962$                      | MI         |                    |
|---|---------|----------------------------------------------------------------------------------------------------------------------|------------|--------------------|
|   |         | = \$50 858                                                                                                           | M1         |                    |
| 2 | (a)     | Bank ABC: Amount = $45000\left[1 + \frac{2.45}{12(100)}\right]^{5x12}$                                               | M1         |                    |
|   |         |                                                                                                                      |            | 11 Marks           |
|   |         | x = 2  and  y = -4                                                                                                   | Al Al      |                    |
|   | (d)     | Substitute $y = 4x-12$ into $5x-3y=22$<br>5x-3(4x-12)=22                                                             | M1         | Elimination method |
|   |         | x=2 or $x=3$                                                                                                         | A1         |                    |
|   |         | (x-2)(x-3)=0                                                                                                         | M1         | Factorise          |
|   | (c)     | $5(11-x)+4(x+7)=(x+7)(11-x)$ $x^2-5x+6=0$                                                                            | MI         |                    |
|   |         | $=\frac{2a}{2a}$                                                                                                     | <b>A</b> 1 |                    |
|   |         | $\frac{9a^2b}{4a^2} \times \frac{8b^5}{12ab^3} = \frac{9 \times 8}{4 \times 12} a^{2-3}b^{1+5-3}$ $= \frac{3b^3}{2}$ | Ml         |                    |
|   | (b)     | 9a²b 8b <sup>5</sup> 9×8 <sub>22-3 b,1+5-3</sub>                                                                     |            |                    |
|   |         | $n = m - \left(\frac{k}{H}\right)^2$                                                                                 | A1         |                    |
|   |         | $m-n = \left(\frac{k}{H}\right)^2$                                                                                   | Ml         |                    |
|   | (a)(ii) | $H\sqrt{m-n}=k$                                                                                                      |            |                    |
|   | (a)(i)  | $H = \frac{12}{\sqrt{6 - (-3)}}$ $= 4$                                                                               | BI         |                    |

4XPSNA / MAJ MYE / P2 / 2017

|    | (b)(i)    | Cash Price:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                        |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------|
|    |           | $\frac{100}{30} \times 450000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                        |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BI   | 1                                      |
|    | 1         | = \$150 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101  |                                        |
|    | (b)(ii)   | Hire Purchase Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                        |
|    |           | $45000 + (1950 \times 5 \times 12) = $162000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1   |                                        |
|    |           | Interest = \$12 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1   |                                        |
|    | (b)(iii)  | Parts = 12 000×100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                        |
|    | 100 10000 | $Rate = \frac{12000 \times 100}{105000 \times 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                        |
|    |           | = 2.286% (3 d.p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1   |                                        |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |
|    | (c)       | Price of 1 litre of petrol in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                        |
|    |           | Singapore: $\frac{109}{50} = S$2.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MI   |                                        |
|    | 1         | Bangkok: $\frac{9408}{320}$ = 29.4 Thai bahts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    |                                        |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1                                      |
|    |           | $=\frac{29.4}{24.5}=S\$1.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1   |                                        |
|    | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |
|    |           | Half of Singapore price = $\frac{1}{2} \times 2.18 = \$1.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    |                                        |
|    |           | Since 1.20 > 1.09, I do not agree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                        |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1   |                                        |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10   | 11 Marks                               |
|    | (a)(i)    | $\sqrt{(-7)^2 + 24^2} = 25 \text{ units}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BI   |                                        |
| 6. | (a)(ii)   | $\overrightarrow{PQ} = n\overrightarrow{PS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.4  | Accept                                 |
|    |           | $\binom{-7}{24} = n \binom{k}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MI   | $\frac{12}{k} = \frac{24}{-7}$ but not |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | k = -7 but not                         |
|    |           | n=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.07 | k -7                                   |
|    | 23205     | k = -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Al   | $\frac{k}{12} = \frac{-7}{24}$         |
|    | (a)(iii)  | $\overline{OQ} = \overline{OP} + \overline{PQ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |
|    |           | $=$ $\begin{pmatrix} 10 \\ -15 \end{pmatrix} + \begin{pmatrix} -7 \\ 24 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                        |
|    |           | The contract of the contract o |      |                                        |
|    |           | Coordinates of $Q = (3, 9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1   |                                        |
|    | (b)(i)    | $\overrightarrow{AN} = \overrightarrow{1} \overrightarrow{AR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    |                                        |
|    |           | $\overrightarrow{AN} = \frac{1}{3}\overrightarrow{AB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                        |
|    |           | =2b-2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1   |                                        |

|   | (b)(ii)  | $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$ $= 4a + 2b$                                      | Di |                     |
|---|----------|--------------------------------------------------------------------------------------------------------------------|----|---------------------|
|   | (b)(iii) |                                                                                                                    | Bl |                     |
|   | (b)(iii) | $\overline{NM} = \overline{OM} - \overline{ON}$ $= \mathbf{b} - 4\mathbf{a}$                                       | BI |                     |
|   | (b)(iv)  | $\overrightarrow{MP} = 3\overrightarrow{MN}$<br>$\overrightarrow{OP} = \overrightarrow{OM} - 3\overrightarrow{NM}$ |    |                     |
|   |          | = 3b - 3(b - 4a) $= 12a$                                                                                           | BI |                     |
|   | (b)(v)   | Points O, A and P are collinear points/ form a straight line.                                                      | B1 |                     |
|   |          | A is a mid-point of $OP / OA = \frac{1}{2}OP$ .                                                                    | B1 |                     |
|   | (b)(vi)  | $\frac{\text{Area of } \Delta AMN}{\text{Area of } \Delta BMN} = \frac{1}{2}$                                      | B1 |                     |
|   | (b)(vii) | $\frac{\text{Area of } \Delta BMN}{\text{Area of } \Delta BOA} = \frac{1}{3}$                                      | Bi |                     |
|   |          |                                                                                                                    |    | 12 Marks            |
| 4 | (a)      | 60 x                                                                                                               | B1 |                     |
|   | (b)      | $\frac{60}{x-2}$                                                                                                   | В1 |                     |
|   | (c)      | $\frac{60}{x-2} - \frac{60}{x} = 1.2$                                                                              | M1 | Form equation       |
|   |          | x-2                                                                                                                | MI | 1                   |
|   |          | $x^2 - 2x - 100 = 0 \text{ (shown)}$                                                                               | Al | Attempt to simplify |
|   | (d)      | $x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-100)}}{2(1)}$                                                                | M1 |                     |
|   |          | x = -9.05 or 11.05 (2 d.p)                                                                                         | AI | -                   |
|   | (e)      | Time taken = $85 \left( \frac{60}{11.05 - 2} \right)$                                                              | MI |                     |
|   |          | = 564 seconds                                                                                                      |    |                     |
|   | }        | = 9 min 24 sec                                                                                                     | B1 |                     |
|   |          | 14                                                                                                                 |    | 9 Marks             |

| 5 | (a)      | OB = 9 - r                                                                                                                                      | B1    |              |
|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
|   | (b)      | $(9-r)^2 + 3^2 = r^2$                                                                                                                           | B1    |              |
|   |          | $81 - 18r + r^2 + 9 = r^2$                                                                                                                      | MI    |              |
|   |          | r=5 cm (Shown)                                                                                                                                  | AI    |              |
|   | (c)      | $\sin \angle BOC = \frac{3}{5}$                                                                                                                 | B1    |              |
|   |          | $\angle BOC = 36.869^{\circ} \text{ or } 0.6435 \text{ rad}$                                                                                    |       |              |
|   |          | $\angle COD = 73.739^{\circ} \text{ or } 1.287 \text{ rad}$                                                                                     |       |              |
|   |          | Area of sector = $\frac{73.739}{360} \times \pi \times 5^2$ or $\frac{1}{2} \times 5^2 \times 1.287$                                            | M1    |              |
|   |          | $= 16.0875 \text{ cm}^2$                                                                                                                        | 1 1   | 1            |
|   |          | Area of $\triangle OCD = \frac{1}{2} \times 4 \times 6 = 12 \text{ cm}^2$                                                                       | M1    |              |
| _ |          | Area of req. segment = $4.09 \text{ cm}^2$ . $(3 \text{ s.f.})$                                                                                 | Al    |              |
| _ | (a)(i)   | $u_5 = 5^2 + 9 = 34$                                                                                                                            |       | 8 Marks      |
| 6 | (a)(i)   | $u_5 = 5^- + 9 = 34$                                                                                                                            | BI    |              |
|   | (a)(ii)  | $u_n = n^2 + 2n - 1$                                                                                                                            | B1 B1 | B1 for $n^2$ |
|   |          |                                                                                                                                                 |       | B1 for 2n-1  |
|   | (a)(iii) | $U_{30} = 30^2 + 2(30) - 1$                                                                                                                     | ~ V   |              |
|   |          | = 959                                                                                                                                           | Bi    |              |
|   | (b)(i)   | (0)                                                                                                                                             |       |              |
| 6 |          | $\begin{pmatrix} 8 \\ 5 \\ 3 \end{pmatrix}$                                                                                                     | B1    |              |
|   | (b)(ii)  | $V = \begin{pmatrix} 6 & 4 & 5 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 83 \\ 51 \end{pmatrix}$ |       |              |
|   |          | $= \begin{pmatrix} 83 \\ 51 \end{pmatrix}$                                                                                                      | BIBI  |              |
|   | (b)(iii) | Elements of V represent the cost of manufacturing each toy boat and toy car respectively.                                                       | ВІ    |              |
|   | (b)(iv)  | $WV = \begin{pmatrix} 80 & 50 \end{pmatrix} \begin{pmatrix} 83 \\ 51 \end{pmatrix} = \begin{pmatrix} 9190 \end{pmatrix}$                        | В1    |              |
|   |          | The answer represents the total cost of manufacturing 80 toy boats and 50 toy cars.                                                             | BI    |              |

|          |                                                                                                   |      | 10 Marks |
|----------|---------------------------------------------------------------------------------------------------|------|----------|
| 7 (a)    | (i) Modal mass = 56 kg                                                                            | B1   |          |
| (a)(     | ii) $\frac{7}{21} \times 100\% = 33\frac{1}{3}\% \text{ or } 33.3\%$                              | BI   |          |
| (b)(     | (i) $a = 53$                                                                                      | B1   |          |
|          | b = 58                                                                                            | BI   |          |
| (b)(     | ii) Interquartile range = 67 - 53<br>= 14 kg                                                      | B1   |          |
| (c)      | $\left(\frac{18}{21} \times \frac{3}{20}\right) + \left(\frac{3}{21} \times \frac{18}{20}\right)$ | MI   |          |
|          | $=\frac{9}{35}$                                                                                   | A1   |          |
|          |                                                                                                   |      | 7 Marks  |
| 8 (a)(i) | $BC^2 = 250^2 + 400^2 - 2(250)(400)\cos 65^\circ$                                                 | BIBI |          |
|          | BC = 371.45<br>= 371 m (3 s.f.)                                                                   | A1   |          |
|          | 1                                                                                                 |      |          |
| (a)(i    |                                                                                                   | M1   |          |
|          | $= 45 300 \text{ m}^2 (3 \text{ s.f.})$                                                           | A1   |          |
| (a)(ii   | $\frac{\sin \angle ABC}{250} = \frac{\sin 65^{\circ}}{371.45}$                                    | MI   |          |
|          | $\angle ABC = 37.588$                                                                             |      |          |
|          | ≈ 37.6° (1 d.p.)                                                                                  | A1   | 9        |
| (a)(i    | $V$ ) Bearing = $90^{\circ} - 37.6^{\circ}$                                                       |      |          |
|          | = 052.4°                                                                                          | B1   | 1        |
| (b)      |                                                                                                   | 1    |          |
|          | $\frac{h}{400} = \tan 18^{\circ}$                                                                 |      |          |
|          | h= 129.967 m                                                                                      | B1   |          |
|          | $\tan \angle ACE = \frac{129.967}{250}$                                                           | MI   |          |
|          | $\angle ACE = 27.46^{\circ}$                                                                      |      |          |
|          | Angle of depression = $27.5^{\circ}$ (to 1 d.p.)                                                  | Al   |          |
|          |                                                                                                   | -    | 11 Marks |

б

| 9     | (a)(i)  | Area of hemisphere = $2\pi(2.5)^2$<br>= 39.2699 cm <sup>2</sup>                                                                                                                                 | M1                 | Any one part of<br>working shown                                   |  |
|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|--|
|       |         | Area of ring = $\pi(3.2^2 - 2.5^2)$<br>= 12.534 cm <sup>2</sup>                                                                                                                                 |                    | Tronds duving                                                      |  |
|       |         | Area of the base = $51.8048$<br>= $51.8 \text{ cm}^2$                                                                                                                                           | A1                 |                                                                    |  |
| ak os | (a)(ii) | Volume of hemisphere = $\frac{1}{2} \times \frac{4}{3} \times \pi (2.5)^3$<br>= 32.7249 cm <sup>3</sup><br>Volume of cylinder = $\pi \times 3.2^2 \times 11.4$ )<br>= 366.73696 cm <sup>3</sup> | M1                 | Any one part of<br>working shown                                   |  |
|       |         | Volume of the soda can = $334.01$<br>= $334 \text{ cm}^3 (3 \text{ s.f.})$                                                                                                                      | A1                 |                                                                    |  |
|       | (b)     | Surface area of the can $=2\pi(3.2)\times11.4+\pi(3.2)^2+51.8048$                                                                                                                               | M1                 | Allow error from<br>part (a) to carry<br>forward in this           |  |
|       |         | =313.185<br>= 313 cm <sup>2</sup>                                                                                                                                                               | B1                 | whole part of<br>question.                                         |  |
|       |         | Mass of the empty can using the proposed material = 313.185 × 0.8 = 250.548 g                                                                                                                   | B1                 |                                                                    |  |
|       |         | Mass of soda in each can<br>= 95% × 334 × 1.2<br>=380.76 g                                                                                                                                      | MI                 |                                                                    |  |
|       |         | Total mass of each filled soda can<br>= 250.548 + 380.76<br>= 631.308 g                                                                                                                         | MI                 |                                                                    |  |
|       |         | Since 631.308 > 620 g,<br>∴ I will NOT accept the proposal.                                                                                                                                     | Al                 |                                                                    |  |
|       |         |                                                                                                                                                                                                 |                    | 10 Marks                                                           |  |
| 0     | (a)     | k=2                                                                                                                                                                                             | B1                 |                                                                    |  |
|       | (b)     | Refer to attached graph.                                                                                                                                                                        | B1 – Poin<br>corre | exes drawn to scale coints are plotted prectly mooth curve plotted |  |

| 0 (c)    | Tangent is drawn at the point x = 1.5 Refer to attached graph                 | BI    |              |
|----------|-------------------------------------------------------------------------------|-------|--------------|
|          | Gradient = $-4.8 \pm 0.5$<br>(Range accepted from $-5.3$ to $-4.3$ )          | B1    |              |
| - (d)(i) | r                                                                             | Bi    |              |
| (d)(ii)  | $x = 2.2 \pm 0.1$ or $x = 5.2 \pm 0.1$                                        | B1 B1 |              |
| (d)(iii  | $\frac{x^2}{6} + \frac{12}{x^2} - 6 = \frac{x}{6}$ $x^3 - x^2 - 36x + 72 = 0$ | MI    |              |
|          | A = -36, $B = 72$                                                             | A1    | Both correct |
|          |                                                                               |       | 11 Marks     |

| Name: | _( )  |
|-------|-------|
| lass: | Date: |
|       |       |
|       |       |
|       |       |
|       |       |



# SERANGOON GARDEN SECONDARY SCHOOL

Vision:

Critical Thinkers, Thoughtful Leaders

Mission:

Love to Learn, Learn to Lead

### PRELIMINARY EXAMINATION 2017

| CANDIDATE NAME |                    |  |
|----------------|--------------------|--|
| CLASS          | REGISTER<br>NUMBER |  |

#### MATHEMATICS

4048/02

Paper 2

22 August 2017

Secondary 4 Express/ 5 Normal Academic

2 hours 30 minutes 0800 - 1030

Additional Materials:

Writing Paper

Graph Paper (1 sheet)

#### READ THESE INSTRUCTIONS FIRST

Write your name, class and class register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

| Ar                                      | eas for Improveme | nt               |
|-----------------------------------------|-------------------|------------------|
| Error                                   | Penalty           | Qn. No.(s)       |
| Accuracy of non-exact answers           | -1                |                  |
| Missing/ wrong units (for Paper 2 only) | -1 .              | -7               |
| Presentation/ Not using ink             | -1                |                  |
|                                         |                   | FOR MARKER'S USE |
|                                         |                   |                  |

This question paper consists of 13 printed pages and 1 blank page.

Setter: Mr Ng HJ

Vetter: Mr Ko TH

#### MATHEMATICAL FORMULAE

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of cone =  $\pi rl$ 

Surface area of a sphere =  $4 \pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle ABC = 
$$\frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

#### Answer all the questions.

- [2] n is a positive integer. Show that  $n^2 + n$  is always even. (a) Solve the equation  $p^2 - 7p + 12 = 0$ . [2] (b) [2] Hence solve the equation  $q^4 - 7q^2 + 12 = 0$ . A 2.5 km<sup>2</sup> lake has an area of 40 cm<sup>2</sup> on a map. If the scale of the map is such that I cm represents n km, find the [2] value of n. The distance between the hospital and the village town on the map is (ii) 30 cm. Find the actual distance, in kilometres, between the hospital [1] and the village town. Mr Kia is going on a business trip to a province in the same country. There are two options for him to go to the province: by domestic flight or by car.
- 2
  - o If he decides to drive, he would cover a distance of 400 km at a speed of x km/h.
  - o If he decides to take a domestic flight, he would cover a distance of 300 km at a speed of (x + 250) km/h.
  - Find an expression, in terms of x, for the time taken to travel from home (i) to the province if Mr Kia decides to drive. [1]
  - Find an expression, in terms of x, for the time taken to travel from home to the province if Mr Kia decides to take a domestic flight. [1]
  - If the flight time is 210 minutes less than the driving time, form an equation in x and show that it reduces to  $7x^2 + 1550x - 200000 = 0$ . [3]
  - Solve the equation  $7x^2 + 1550x 200000 = 0$ , giving your answers (IV) [3] correct to 1 decimal place.
  - If Mr Kia needs to meet his client punctually at 1400, find the latest time that he needs to leave home if he decides to drive. Assume that time has been factored in for the usual traffic conditions. [2]

4

3 (a) A set of 10 cards is made as shown.

| 1   | Income and | -    | ·     | 1   |    |       |     | 1   |     |
|-----|------------|------|-------|-----|----|-------|-----|-----|-----|
| 181 | 1 7        |      |       | In  | 8  | 7     | ПП  | 101 | 0   |
| 101 | 1 4        | 1 77 | 1 4 1 | 1 1 | 10 | 1 4 1 | 11. | 101 | 101 |
| 1   | L          | 1    |       |     |    |       |     |     |     |

The cards are shuffled and placed face down on a desk. A card is drawn at random from the set of cards. It is then replaced and shuffled again before another card is being drawn again.

Calculate the probability that

(i) both cards show the letter T,

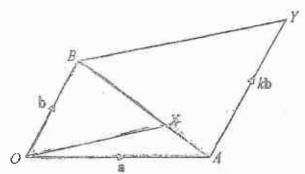
[27

(ii) exactly one of the cards shows the letter T.

[2]

(b) The table shows the ages of 1100 people who entered a 10-km run

| Age       | (x years) | $20 \le x < 30$ | $30 \le x < 40$ | $40 \le x < 50$ |
|-----------|-----------|-----------------|-----------------|-----------------|
| Frequency | Men       | 375             | 186             | 99              |
|           | Women     | 250             | 122             | 68              |


One person is chosen at random. Find, as a fraction in its lowest term, the probability that the person is a man aged less than 40 years old.

[1]

[2]

(ii) Two persons are chosen at random. Find the probability that both of them are women aged 30 or more.

In the diagram,  $\overrightarrow{OA} = a$ ,  $\overrightarrow{OB} = b$  and  $\overrightarrow{AY} = kb$ . X lies on the line AB such that  $\overrightarrow{AX} = \frac{1}{3}\overrightarrow{AB}$ .



- (i) Express  $\overrightarrow{AX}$  and  $\overrightarrow{OX}$  in terms of a and b. [2]
- (ii) Express  $\overrightarrow{BY}$  in terms of k, a and b. [1]
- (iii) Given that OX is parallel to BY, find the value of k. [2]
- (iv) The line OX when produced, meets AY at Z. Express  $\overrightarrow{AZ}$  in terms of b. [1]
- (v) Find the value of
  - (a)  $\frac{\text{area of } \Delta OAX}{\text{area of } \Delta OBX}$ , [1]
  - (b)  $\frac{\text{area of } \Delta AXZ}{\text{area of quadrilateral } XBYZ}$  [2]

5 The following shows the work done by a student in calculating the sum of the first n natural numbers.

| п  | Series           | Sum | Formula                              |
|----|------------------|-----|--------------------------------------|
| 1  | <u>J</u> -       | 1   | $\frac{1}{2}(1)(1+1)$                |
| 2  | 1+2              | 3   | $\frac{1}{2}(2)(2+1)$                |
| 3  | 1 + 2 + 3        | 6   | $\frac{1}{2}(3)(3+1)$                |
| 4  | 1+2+3+4          | 10  | $\frac{1}{2}(4)(4+1)$                |
|    |                  |     | :                                    |
| 86 | 1+2+3+4+5+6      | a   | Ь                                    |
| 1  | :                | 1   | Wilders Selector Committee Selectors |
| n  | $1+2+3+\cdots+n$ | C   |                                      |

- (i) Study the pattern and write down the values of a and b. [2]
- (ii) Find in terms of n, the value of c. [1]

After doing some additional calculations, the student realised that

$$1^3 + 2^3 + 3^3 = 36 = 6^2$$
,  
 $1^3 + 2^3 + 3^3 + 4^3 = 100 = 10^2$ .

(iii) Determine the sum of the series

(a) 
$$1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3$$
, [1]

(b) 
$$1^3 + 2^3 + 3^3 + \dots + n^3$$
 in terms of  $n$ .

(iv) Hence, using (iii)(b), determine the exact value of the sum of the series

$$3^3 + 6^3 + 9^3 + 12^3 + \dots + 300^3$$
. [2]

[2]

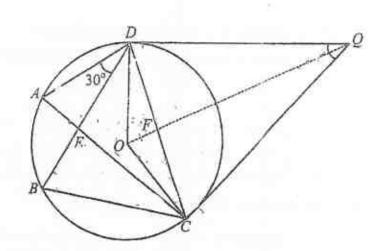
(a) State the order and name of each matrix.

|      | Matrix    | Order | Name of matrix |
|------|-----------|-------|----------------|
|      | (2)       |       |                |
| (i)  | 5         |       | II             |
|      | [12]      |       |                |
| 40   | (0 0)     |       |                |
| (ii) | $(0 \ 0)$ |       |                |

(b) The Tan family owns two cars. Every week (Monday to Friday) on average, Mr Tan spends \$150, \$70 and \$10 on petrol, carpark charges and road pricing (ERP) respectively. Every week (Monday to Friday) on average, Mrs Tan spends \$80, \$45 and \$30 on petrol, carpark charges and road pricing (ERP) respectively.

The information can be represented by the matrix

During weekends, the Tan family drives the weekend car and spends on average \$20, \$10 and \$2 on petrol, carpark charges and ERP respectively.


In a year, on average, both Mr Tan and Mrs Tan work for 48 weeks.

- (i) Represent the average weekend car expenses of the Tan family by a matrix R.
- (ii) Evaluate  $\mathbb{Q} = \mathbb{P} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  and  $\mathbb{S} = 48\mathbb{Q} + 52\mathbb{R}$ . [3]
- (iii) State what the elements of S represent. [1]
- (iv) The matrix  $\mathbb{T}$  is given by  $\mathbb{T} = \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbb{S}$ . Evaluate matrix  $\mathbb{T}$  and describe in a sentence what the element(s) of the matrix  $\mathbb{T}$  represent. [2]
- (v) A recent credit card promotion entitles Mr and Mrs Tan 12.5% savings on petrol every time they pump petrol.

Calculate the new expenses for petrol, carpark charges and ERP for the Tan family in a year. [2]

[1]

Turn over



In the diagram above, AEC and BED are chords of the circle with centre O.  $\angle ADE = 30^{\circ}$  and  $\angle CQD = 50^{\circ}$ . CQ and DQ are tangents to the circle and F is the midpoint of chord CD.

Explain why  $\triangle ADE$  is similar to  $\triangle BCE$ . (i) [2] Name a pair of congruent triangles. (ii) [1] (iii) Find, stating your reasons clearly,  $\angle DAC$ , (a) [2] (b) ∠BEC. [1] (iv) Is it possible to draw a circle that passes through C, O, D and Q? Explain your answer clearly. [1]

### 8 Answer the whole of this question on a single sheet of graph paper.

The table below gives the values of x- and y-coordinates of some points on the graph of  $y = \frac{ax}{x+b}$ .

| x | -0.5 | 0 | 1 | 2 | 3   | 4 | 5   |
|---|------|---|---|---|-----|---|-----|
| У | -2   | 0 | 2 | 3 | 3.6 | 4 | 4.3 |

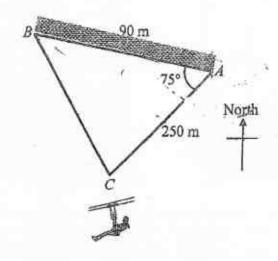
(a) By formulating two equations, find the values of a and b.

[3]

- (b) Using a scale of 2 cm to represent 1 unit on both the x-axis and y-axis, plot the points given in the table and join them with a smooth curve for  $-0.5 \le x \le 5$ .
- [3]
- (c) By drawing a suitable tangent, find the gradient of the curve at the point x = 1.5. [2]

Using the values of a and b found in (a),

(d) find the solution(s) of the equation


$$\frac{ax}{x+b} = -\frac{1}{3}x+1,$$

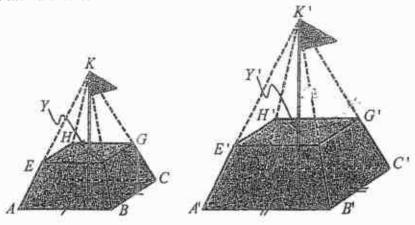
by drawing a suitable straight line on the same axes,

[2]

(e) find the range of values of x such that 
$$\frac{ax}{x+b} < 2.5$$
. [2]

Points A and B are points at the bottom a cliff 50 metres tall in height. Point C on a flat ground is 250 metres away from A with AB making an angle of  $75^{\circ}$  with the line AC. The bearing of C from A is  $217^{\circ}$  and A and B are 90 m apart.




Calculate the

- (a) bearing of B from A, [1]
- (b) area of the land formed by the points A, B and C, [2]
- (c) shortest distance from C to the bottom of the cliff. [2]

An outdoor adventure company wants to build a flying fox using a metal cable with the starting point X on the cliff and the landing point at C.

- (d) Find the distance away from B vertically below X such that the slope is the greatest. [2]
- (e) Find the angle that the metal cable makes with the ground at point C. [2]

10 A company manufactures geometrically similar flagpole bases of two different sizes as shown below.



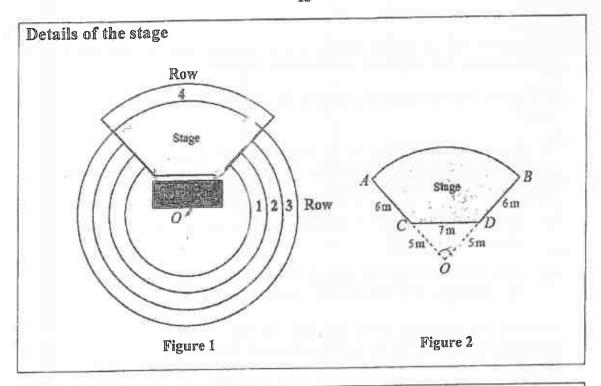
The bases are made of cement and are in the shape of truncated right pyramids. If each pyramid could be completed, its vertex would be the top of the flagpole at K and K' respectively. The height of the flagpole for the bigger-sized base is 2.5 metres and the ratio of the side length of the bottom surfaces ABCD and A'B'C'D' is 3:5.

- (a) The area of the bottom surface A'B'C'D' is 2500 cm<sup>2</sup>. What is the area of the bottom surface ABCD? [2]
- (b) Given that E'F'=F'G'=40 cm, find the length K'Y' and the volume of the base (as represented by the shaded part) for the bigger-sized flagpole base. [3]
- (c) Hence, find the volume of the base for the smaller-sized flagpole base. [2]
- (d) If it costs \$15 to buy a smaller-sized flagpole base and \$25 to buy a bigger-sized flagpole base, which flagpole base is more value for money? Explain with clear working. [2]

[Turn over

11 The concert band of a school intends to rent a concert venue for their annual performance as their school hall is undergoing a renovation.

Information that the chairperson Peter and his committee need is on the opposite page.


As shown in Figure 1, seats in the concert hall are arranged along arcs of concentric circles of equal spacing. There are three rows of seats in front and one row of limited seats behind the stage.

- (i) Show that angle COD = 1.55 radians and find the area taken up by the stage. [3]
- (ii) Each normal concert chair takes up 80 cm of the arc. Show that row 1 can fit a maximum of 47 normal concert chairs. [2]

Peter and his committee decide that they will have a total of 3 rehearsals (including the rehearsal on the actual performance day) and a total of 30 VIP guests. They need to decide whether they should take up Package A or Package B of the concert hall rental offered by the venue management.

(iii) Assuming that Peter and his committee decide to charge \$20, \$15, \$12 and \$25 for Row 1, 2, 3 and 4 respectively, help Peter to decide which package he should take up. Justify the decision with clear calculations and assumption(s) so that Peter can present the proposal to his teacher-in-charge.

[5]



| Package | Details<br>(All prices in this column are nett<br>prices)                                                                                                                                                                                                | Cost of renting<br>one normal<br>concert chair<br>(excluding 7%<br>GST) | Cost of renting one VIP concert chair (excluding 7% GST) |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| A       | Basic rental cost: \$2800 Freebies: Free 150 normal concert chairs Free 25 VIP chairs Ist rehearsal (unlimited time usage on day of event): \$100 2nd rehearsal: 20% off normal rehearsal price 3rd rehearsal and beyond: 10% off normal rehearsal price | \$8                                                                     | \$18                                                     |
| В       | Basic rental cost: \$1500 Freebies: Free 100 normal concert chairs Free 10 VIP chairs All rehearsals cost \$120 each with unlimited time usage Terms and Condition: Row 4 cannot be opened for selling of tickets.                                       | \$12                                                                    | \$20                                                     |

END OF PAPER

# Sec 4E/5NA Prelims P2 Suggested Mark Scheme

| Qn    | Solution                                                                       |           |
|-------|--------------------------------------------------------------------------------|-----------|
| Algeb | ra                                                                             |           |
| 1(a)  | $n^2 + n = n(n+1)$                                                             |           |
|       | If $n$ is odd, then $(n+1)$ is even.                                           |           |
|       | If $n$ is even, then $(n+1)$ is odd.                                           |           |
|       | Product of an odd number and an even number is even.<br>Thus $n(n+1)$ is even. |           |
|       | Alternative:                                                                   | 1         |
|       | If $n$ is odd, then $n^2$ is odd.                                              | 1         |
|       | Then sum of two odd numbers $n$ and $n^2$ is even.                             |           |
|       | If $n$ is even, then $n^2$ is even.                                            |           |
|       | Then sum of two even numbers $n$ and $n^2$ is even.                            |           |
| (b)   | $p^2 - 7p + 12 = 0$                                                            |           |
|       | (p-3)(p-4)=0                                                                   |           |
|       | p=3 or $p=4$                                                                   |           |
|       | $q^4 - 7q^2 + 12 = 0$                                                          |           |
|       | Let $p=q^2$ .                                                                  |           |
|       | $q^2 = 3 \Rightarrow q = \pm \sqrt{3}$ or $q^2 = 4 \Rightarrow q = \pm 2$      |           |
| (c)   | 40 cm <sup>2</sup> : 2.5 km <sup>2</sup>                                       |           |
| (i)   | $1  \text{cm}^2 : 0.0625  \text{km}^2$                                         |           |
| w     | 1cm: 0.25km                                                                    |           |
| (ii)  | n = 0.25  Actual distance between the hospital and the village town            |           |
| (")   | = 30 × 0.25 km                                                                 |           |
|       | = 7.5 km                                                                       |           |
|       | - 1.5 Mail                                                                     |           |
|       |                                                                                | Total for |
|       |                                                                                | Q1: 9     |

| <del></del> | problem and quadratic equations                                                                                     |  |
|-------------|---------------------------------------------------------------------------------------------------------------------|--|
|             | Time taken to travel from home to the province if Mr Kia decides to drive = $\frac{400}{x}$ h.                      |  |
|             | Time taken to travel from home to the province if Mr Kia decides to take a domestic flight = $\frac{300}{x+250}$ h. |  |

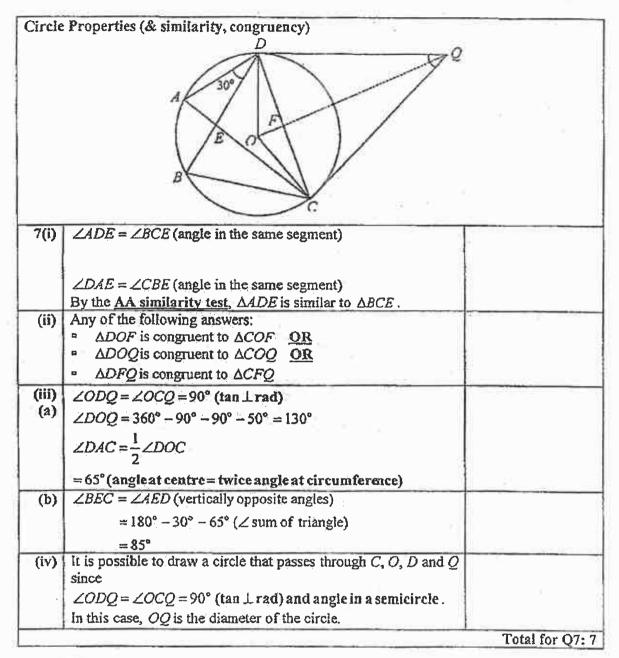
SGS/EM/4E/2016/Prelims/4048/1/MS

11

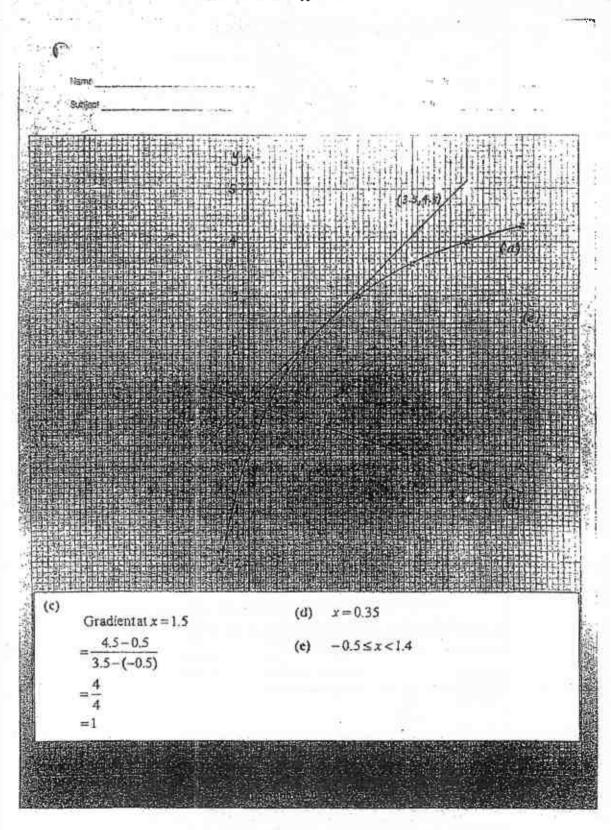
| (iii) | 400 300 7                                                       |                  |
|-------|-----------------------------------------------------------------|------------------|
|       | $\frac{1}{x} \frac{1}{x+250} = \frac{1}{2}$                     |                  |
|       | $400(x+250)-300(x) = \frac{7}{2}(x)(x+250)$                     |                  |
|       | $400x + 100000 - 300x = \frac{7}{2}x^2 + 875x$                  |                  |
|       | $\frac{7}{2}x^2 + 775x - 100000 = 0$                            |                  |
|       | $7x^2 + 1550x - 200000 = 0  \text{(shown)}$                     |                  |
|       | $7x^2 + 1550x - 200000 = 0$                                     |                  |
| - 1   | $x = \frac{-1550 \pm \sqrt{(1550)^2 - 4(7)(-200000)}}{1500}$    |                  |
| 1     | 14                                                              |                  |
|       | $-1550\pm\sqrt{8002500}$                                        |                  |
| - 1   | 14                                                              | 1                |
| - 1   | =94.919 or -312.776                                             |                  |
|       | =94.9 or $-312.8$ (id.p.)                                       |                  |
| (v) : | x must be positive, thus $x = 94.919$                           |                  |
| 1     | If Mr Kia drives, time taken = $\frac{400}{94.919} h = 4.2141h$ |                  |
|       | 0947 hrs 13 minutes 1000 hrs 4 hr 1400 hrs                      |                  |
|       | He must leave home latest by 0947.                              |                  |
|       |                                                                 | Total for Q2: 10 |

| Proba  | bility                                         | ST          | AT             | I S          | TIC     | S |
|--------|------------------------------------------------|-------------|----------------|--------------|---------|---|
| 38, 31 | , A, 2I, C                                     |             |                |              |         |   |
| 3(a)   | P(both card                                    | s show the  | e letter T)    |              |         |   |
| (i)    |                                                |             | •              |              |         |   |
|        | $=\frac{9}{100}$                               | - J. J. 15. |                |              |         |   |
| (ii)   |                                                |             | cards shows th | ne letter T) |         |   |
|        | $=\frac{3}{10}\times\frac{7}{10}+\frac{1}{10}$ |             |                | •            |         | 1 |
|        | $=\frac{42}{100}=\frac{21}{50}$                |             |                |              |         |   |
| (b)    | Ag                                             | e (x years) | 20≤x<30        | 30≤x<40      | 40≤x<50 |   |
| (i)    |                                                | Men         | 375            | 186          | 99      |   |
|        | Frequency                                      | Women       | 250            | 122          | 68      |   |

|     | 375+186                                                 |               |
|-----|---------------------------------------------------------|---------------|
|     | 1100                                                    |               |
|     | 561                                                     | 1             |
|     | 1100                                                    |               |
|     | $=\frac{51}{100}$                                       |               |
| 1   |                                                         |               |
|     | Probability that both of them are women aged 30 or more |               |
|     | $=\frac{122+68}{1100}\times\frac{122+68-1}{1099}$       |               |
| 1   |                                                         |               |
| - 1 | $=\frac{190}{1100} \times \frac{189}{1099}$             |               |
|     | $=\frac{513}{1000}=0.0297$                              |               |
| - 1 | $=\frac{17270}{17270}=0.0297$                           |               |
|     |                                                         | Total for Q3: |


| Vector     | S B A A A                                                                                                                                                                                                                                       |                 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 4(i)       | $\overrightarrow{AX} = \frac{1}{3} \overrightarrow{AB} = \frac{1}{3} (\mathbf{b} - \mathbf{a})$                                                                                                                                                 |                 |
|            | $\overrightarrow{OX} - \overrightarrow{OA} = \frac{1}{3}(b-a)$ $\overrightarrow{OX} = \frac{1}{3}(b-a) + a = \frac{1}{3}(2a+b)$                                                                                                                 |                 |
| (ii)       | $\overrightarrow{BY} = -\mathbf{b} + \mathbf{a} + k\mathbf{b} = \mathbf{a} + (k-1)\mathbf{b}$                                                                                                                                                   |                 |
| (iii)      | OX is parallel to BY $\Rightarrow mOX = BY$<br>$\frac{1}{3}m(2a+b) = a + (k-1)b$<br>$\begin{cases} \frac{2}{3}m = 1 \Rightarrow m = \frac{1}{2} \\ \frac{1}{3}m = k - 1 \Rightarrow k = 1 + \frac{1}{3}(\frac{3}{2}) = \frac{3}{2} \end{cases}$ | b .             |
| (îv)       | $\overrightarrow{AZ} = \frac{1}{2}\mathbf{b}$ since $\overrightarrow{OZ} = \overrightarrow{BY}$ and $\overrightarrow{OB} = \overrightarrow{ZY}$ .                                                                                               |                 |
| (v)<br>(a) | $\frac{\text{area of }\triangle OAX}{\text{area of }\triangle OBX} = \frac{AX}{BX} = \frac{\binom{1}{3}}{\binom{2}{3}} = \frac{1}{2}$                                                                                                           |                 |
| (b)        | $\frac{\text{area of } \Delta AXZ}{\text{area of } \Delta ABY} = \left(\frac{1}{3}\right)^{3} = \frac{1}{9}$ $\frac{\text{area of } \Delta AXZ}{\text{area of quadrilateral } XBYZ} = \frac{1}{8}$                                              |                 |
|            |                                                                                                                                                                                                                                                 | Total for Q4: 9 |

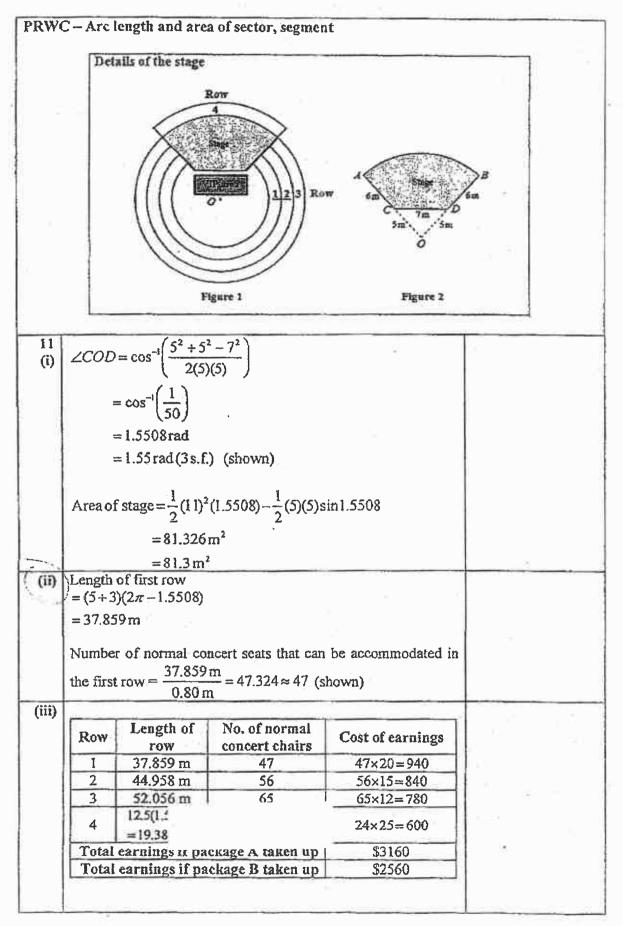
SGS/Mathematics/4E5N/2017/Prelims/4048/MS/P2


| dumb                 | er patterns                                                          |                                                                                                                   |                       |                            |
|----------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|
| n Series 1 1 2 1+2   |                                                                      | Series                                                                                                            | Sum                   | Formula                    |
|                      |                                                                      | 1                                                                                                                 | 1                     | $\frac{1}{2}(1)(1+1)$      |
|                      |                                                                      | 1+2                                                                                                               | 3                     | $\frac{1}{2}(2)(2+1)$      |
|                      | 3                                                                    | 1+2+3                                                                                                             | 6                     | $\frac{1}{2}(3)(3+1)$      |
|                      | 4                                                                    | 1+2+3+4                                                                                                           | 10                    | $\frac{1}{2}(4)(4+1)$      |
|                      |                                                                      | <b>:</b>                                                                                                          | *                     |                            |
|                      | 6                                                                    | 1+2+3+4+5+6                                                                                                       | а                     | b                          |
|                      | •                                                                    | :<br>1+2+3+…+n                                                                                                    | :<br>c                | M.Decomposite and a second |
| (ii)<br>(iii)<br>(a) | 13 . 23 . 23 . 43 . 53 . 63 . 22 . 44                                |                                                                                                                   |                       |                            |
| (b)                  | 1 <sup>3</sup> + 2 <sup>3</sup> + 3 <sup>3</sup> + · · ·             | $+n^3=\left\lceil\frac{1}{2}n(n+1)\right\rceil^2$                                                                 |                       |                            |
| (iv)                 | $3^{3} + 6^{3} + 9^{3} + 12$ $= (3 \times 1)^{3} + (3 \times 2)^{3}$ | $2^{3} + \dots + 300^{3}$<br>$2^{3} + (3 \times 3)^{3} + (3 \times 4)^{2} + \dots$<br>$+ 4^{3} + \dots + 100^{3}$ | +(3×100) <sup>3</sup> |                            |
|                      |                                                                      |                                                                                                                   |                       | Total for Q5               |

| 6(a)       |                                                            | Matrix                                                             | Order               | Name of matrix                                 |  |
|------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------|------------------------------------------------|--|
|            | (i)                                                        | (2<br>5<br>12)                                                     | 3×1<br>OR<br>3 by 1 | Column matrix                                  |  |
|            | (ii)                                                       | $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$                     | 2×2<br>OR<br>2 by 2 | Square matrix  OR  Null matrix OR  Zero matrix |  |
| (b)<br>(i) | $\mathbf{R} = \begin{pmatrix} 20 \\ 10 \\ 2 \end{pmatrix}$ |                                                                    |                     |                                                |  |
| (ii)       | Given P                                                    | $r = \begin{pmatrix} 150 & 80 \\ 70 & 45 \\ 10 & 30 \end{pmatrix}$ |                     |                                                |  |

|       | $Q = P \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 150 & 80 \\ 70 & 45 \\ 10 & 30 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 230 \\ 115 \\ 40 \end{pmatrix}$                                                             |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | $S = 48Q + 52R = 48 \begin{pmatrix} 230 \\ 115 \\ 40 \end{pmatrix} + 52 \begin{pmatrix} 20 \\ 10 \\ 2 \end{pmatrix} = \begin{pmatrix} 12080 \\ 6040 \\ 2040 \end{pmatrix}$                                                                                    |  |
| (iii) | The elements 12080, 6040 and 2040 represent the Tan family's yearly car expenses on petrol, carpark charges and ERP respectively.                                                                                                                             |  |
| (iv)  | $T = (1 	 1 	 1)S$ $= (1 	 1 	 1) \begin{pmatrix} 12080 \\ 6040 \\ 2040 \end{pmatrix} = (12080 + 6040 + 2040)$ $= (20160)_{lxl}$ It represents the Tan family's total car expenses in a year.                                                                 |  |
| (v)   | Method 1:  New yearly expenses for petrol = 0.875×12080 = \$10570  carpark charges = \$6040  ERP = \$2040                                                                                                                                                     |  |
|       | Method 2:  Given $P_{\text{new}} = \begin{pmatrix} 131.25 & 70 \\ 70 & 45 \\ 10 & 30 \end{pmatrix}$                                                                                                                                                           |  |
|       | $Q_{\text{new}} = P_{\text{new}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 131.25 & 70 \\ 70 & 45 \\ 10 & 30 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 201.25 \\ 115 \\ 40 \end{pmatrix}$ $(201.25)  (17.5)  (10570)$ |  |
|       | $S_{new} = 48Q_{new} + 52R_{new} = 48\begin{pmatrix} 201.25\\115\\40 \end{pmatrix} + 52\begin{pmatrix} 17.5\\10\\2 \end{pmatrix} = \begin{pmatrix} 10570\\6040\\2040 \end{pmatrix}$                                                                           |  |




| Grap | 1                                                   |                  |
|------|-----------------------------------------------------|------------------|
| 8(a) | $y = \frac{\alpha x}{x + b}$                        | -                |
|      | $(1,2):  2 = \frac{a}{1+b} \Rightarrow a-2b=2$      |                  |
|      | (2,3): $3 = \frac{2a}{2+b} \Rightarrow 2a - 3b = 6$ | -                |
|      | Solving the two equations simultaneously, $a=6,b=2$ |                  |
| (b)  | Refer to graph on page 7.                           |                  |
| (c)  |                                                     |                  |
| (d)  |                                                     |                  |
| (e)  | 7.1                                                 |                  |
|      |                                                     | Total for Q8: 12 |



|      | nometry                                                              |     |
|------|----------------------------------------------------------------------|-----|
| 9(a) | Bearing of B from $A = 217^{\circ} + 75^{\circ} = 292^{\circ}$       |     |
|      |                                                                      |     |
|      | 90 m 4                                                               |     |
|      |                                                                      |     |
|      | 75°(12/4)                                                            |     |
|      |                                                                      |     |
|      | North                                                                |     |
|      | \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                              |     |
|      |                                                                      |     |
|      | C                                                                    |     |
|      | · · · · · · · · · · · · · · · · · · ·                                |     |
|      |                                                                      |     |
| (b)  | Area of the land formed by the points A, B and C                     |     |
|      | $=\frac{1}{2}(90)(250)\sin 75^{\circ}$                               |     |
| 1    | = 10866.67                                                           |     |
|      | $=10900 \mathrm{m^2} (3\mathrm{s.f.})$                               |     |
| (c)  | Shortest distance from C to the bottom of the cliff.                 |     |
| ì    | = d                                                                  |     |
|      | = 250sin 75°                                                         |     |
|      | = 241.48<br>= $241 \text{ m} (3 \text{ s.f.})$                       |     |
| (d)  | Slope is greatest when angle of elevation is the greatest from $C$ . |     |
| ( )  | Distance away from B                                                 |     |
| 1    | $=90-250\cos 75^{\circ}$                                             |     |
|      | =25.295                                                              |     |
| 7.0  | = 25.3 m (3 s.f.) Required angle                                     |     |
| (e)  |                                                                      |     |
| 1.42 | $= \tan^{-1} \left( \frac{50}{241.48} \right)$                       |     |
|      | =11.7° (1d.p.)                                                       |     |
|      |                                                                      |     |
|      |                                                                      | 2 2 |
| -    |                                                                      |     |
|      |                                                                      |     |
|      |                                                                      |     |
|      |                                                                      | 20  |
|      |                                                                      |     |
|      |                                                                      |     |
|      |                                                                      |     |

| Mensu     | aration and similarity involving areas and volumes                                                                | G'             |
|-----------|-------------------------------------------------------------------------------------------------------------------|----------------|
| 10<br>(a) | $\frac{\text{area of } ABCD}{\text{area of } A'B'C'D'} = \left(\frac{3}{5}\right)^2$                              |                |
|           | $\frac{\text{area of } ABCD}{2500} = \left(\frac{3}{5}\right)^2$                                                  |                |
| · .       | $\Rightarrow \text{ area of } ABCD = \frac{9}{25} \times 2500 = 900 \text{ cm}^2$                                 |                |
| (b)       | $\frac{K'Y'}{K'X'} = \frac{40}{50} \Longrightarrow K'Y' = \frac{4}{5} \times 2.5 = 2 \text{ m}$                   |                |
|           | Volume of the base = $\frac{1}{3} \times 2500 \times 250 - \frac{1}{3} \times 1600 \times 200$                    |                |
|           | $= 101666 \frac{2}{3} \text{ cm}^3$                                                                               |                |
| (e)       | $\frac{\text{volume of smaller base}}{\text{volume of bigger base}} = \left(\frac{3}{5}\right)^3$                 |                |
|           | $\frac{\text{volume of smaller base}}{101666\frac{2}{3}} = \left(\frac{3}{5}\right)^3$                            |                |
|           | ⇒ volume of smaller base = 21960 cm <sup>3</sup>                                                                  |                |
| (d)       | 1 cm <sup>3</sup> of the smaller base costs $\$\frac{15}{21960} \approx \$0.000683$                               |                |
|           | 1 cm <sup>3</sup> of the bigger base costs $\$\frac{25}{101666\frac{2}{3}} \approx \$0.000246$                    |                |
|           | Since 1 cm <sup>3</sup> of the bigger base costs cheaper, the bigger-sized flagpole base is more value for money. |                |
|           |                                                                                                                   | Total for Q10: |

SGS/Mathematics/4E5N/2017/Prelims/4048/MS/P2



| Package | Cost of renting VIP chairs             | Cost of renting normal concert chairs    | Cost of rehearsals   |
|---------|----------------------------------------|------------------------------------------|----------------------|
| A       | 5×18×1,07<br>=\$96,30                  | (192-150)×8<br>×1.07<br>=\$359.52        | 100+80+90<br>= \$270 |
|         |                                        | r using package A<br>5.30 + 359.52 + 270 |                      |
| В       | 20×20×1.07<br>= \$428                  | (192-100)×12<br>×1.07<br>= \$1181.28     | 120×3<br>= \$360     |
| В       | 20×20×1.07<br>= \$428<br>Total cost fo | ×1.07                                    | = \$30               |

Profit after taking up package A

= \$3160 - 3525.82

= -\$365.82

Profit after taking up package B

=\$2560-3469.28

=-\$909.28

Although package B seems cheaper than package A, taking into consideration the earnings, package A has a smaller loss than package B. Thus Peter and his committee should take up package A.

#### Assumptions:

 Other factors are not taken into consideration. The decision is made purely based on the profit made.

Total for Q11: 10



# TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2017

Preliminary Examination 2017 Secondary 4

| CANDIDATE<br>NAME                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLASS                                  |                                                                               | INDEX NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MATHEMA'                               | TICS                                                                          | 4048/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Paper 1                                |                                                                               | Friday 18 August 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                                                                               | 2 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Jandidates ansv                        | ver on the Question Paper.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| READ THESE IN                          | ISTRUCTIONS FIRST                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vrite your name,<br>Vrite in dark blue | class and register number on all the or black pen.                            | ne work you hand in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | encil for any diagrams or graphs.<br>es, paper clips, highlighters, glue or   | correction fluid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nswer all questi                       | ons.<br>led for any question it must be sho                                   | wn with the answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mission of esse                        | ntial working will result in loss of m                                        | arks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ou are expected<br>the degree of a     | to use a scientific calculator to eva<br>ocuracy is not specified in the ques | aluate explicit numerical expressions.<br>stion, and if the answer is not exact, give the answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | t figures. Give answers in degrees                                            | to one decimal place. ses the question requires the answer in terms of $\pi$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | examination, fasten all your work searks is given in brackets [ ] at the      | ecurely together.<br>end of each question or part question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ne total of the ma                     | arks for this paper is 80.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               | Was Paranta da Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                                                               | For Examiner's Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               | A STATE OF THE STA |
|                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                               | to or to prince pages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

[Turn over

### Mathematical Formulae

Compound Interest

Total Amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi r \ell$ 

Curved surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3} \pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2} ab \sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area = 
$$\frac{1}{2} r^2 \theta$$
, where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

**Statistics** 

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

4048/1/2017 Secar remains

|   | 4                                                      |                  | 4      |
|---|--------------------------------------------------------|------------------|--------|
| Ü | Answer all the q                                       | uestions.        | 1      |
| 1 | Calculate $\sqrt[3]{(-3.01)^2 + 2.8}$ .                |                  | - 1    |
|   | (a) Write down the first five digits on your calc      | culator display. |        |
|   | .*                                                     |                  | [1]    |
|   |                                                        | Answer (a)       |        |
|   | (b) Write your answer to part (a) correct to 3 de      | ecimal places.   | - 1    |
|   |                                                        | Answer (b)       | [1]    |
| _ | There are the first form terms of a seguence           | 1                |        |
| 2 | These are the first four terms of a sequence.          |                  | - 1    |
|   | 42 34 26                                               | 18               |        |
|   | (-) White James the nighth town in the commence        |                  |        |
|   | (a) Write down the eighth term in the sequence         | Answer (a)       | [1]    |
|   |                                                        |                  |        |
|   | (b) Write down an expression, in terms of $n$ , for    |                  |        |
|   |                                                        | Answer (b)       | [1     |
|   |                                                        |                  |        |
| 3 | Given that $81 \div 27^{\frac{n}{3}} = 9$ , find $n$ . |                  |        |
|   |                                                        |                  |        |
|   |                                                        |                  |        |
|   |                                                        |                  |        |
|   |                                                        |                  |        |
|   |                                                        | ž.               |        |
|   |                                                        |                  |        |
|   |                                                        | Answer           |        |
|   |                                                        | TAND IVE         |        |
|   |                                                        |                  |        |
|   | 4048/1/2017Sec                                         | AProllega        | urn ov |

| !   |          |                   |                        |                                                   |                   |     |
|-----|----------|-------------------|------------------------|---------------------------------------------------|-------------------|-----|
| 4   | (a)      | is 6 and their le | owest common multip    | ach that their highest coale is 60.               | mmon factor       |     |
|     |          | Find the value    | of integer x.          |                                                   |                   |     |
|     |          |                   |                        |                                                   |                   |     |
|     |          |                   |                        |                                                   |                   |     |
|     |          |                   |                        |                                                   |                   |     |
|     |          |                   |                        |                                                   |                   |     |
|     |          |                   |                        | Anguar                                            | (a) x = [1]       |     |
|     |          |                   |                        | Miswel (                                          | u/ x = ( x )      | ,   |
|     | (b)      |                   |                        | with storage of $1 \times 10^{12}$                |                   |     |
|     |          | A 5-minute-lon    | ng high definition vid | eo takes up 7.2 × 109 by                          | rtes.             |     |
|     |          | Assuming he co    | ontinues to record all | his videos in high defired in the external hard o | ution, what would |     |
|     |          |                   | ver to the nearest min |                                                   | MI 7 0.           | 1   |
|     |          |                   |                        |                                                   |                   | - 1 |
|     |          |                   |                        |                                                   |                   |     |
|     |          |                   | -<br>-%.               | PAC .                                             | 器                 |     |
|     |          |                   | -7n.                   | <i>\$</i> 100                                     |                   |     |
|     |          |                   | -<br>-\$r              | PACE 1                                            | 器1                |     |
|     |          |                   |                        | Answer (b) _                                      | minutes           |     |
| [1] |          |                   | -7n                    | Answer (b)                                        | minutes           |     |
| [1] |          |                   |                        | Answer (b)                                        | minutes           |     |
| [1] | (e.      |                   |                        | Answer (b)                                        | minutes           |     |
| [1] | (# )     |                   | 7.                     | Answer (b)                                        | minutes           |     |
| [1] | :*<br>=- |                   | -V.                    | Answer (b)                                        | minutes           |     |
| [1] | 78 T     |                   |                        | Answer (b)                                        | minutes           |     |
| [1] | 7e       |                   |                        | Answer (b)                                        | minutes           |     |
| [1] |          |                   |                        | Answer (b)                                        | minutes           |     |
| [1] | * = Y    |                   |                        | Answer (b)                                        | minutes           |     |
| [1] | 7 Y      |                   |                        | Answer (b)                                        | minutes           |     |

99Tutors.SG | Page 394

|   | For    |   |
|---|--------|---|
| E | uminer | > |
|   | (fac   |   |

6

| (a) Ca            | lculate the value of x.                                                                                    |                      |       |
|-------------------|------------------------------------------------------------------------------------------------------------|----------------------|-------|
|                   |                                                                                                            |                      |       |
|                   |                                                                                                            | Answer (a)           | [2    |
| (b) W             | nat is the name of the quadrilateral?                                                                      |                      |       |
|                   |                                                                                                            | Answer (b)           | [1    |
| The va            | lue of 200 homes at Mount Ace estate                                                                       | is shown below.      |       |
|                   | Value of homes (\$x)                                                                                       | Number of homes      |       |
|                   | $200\ 000 < x \le 300\ 000$                                                                                | 24                   |       |
|                   | $300\ 000 < x \le 400\ 000$                                                                                | 16                   |       |
|                   | $400\ 000 < x \le 500\ 000$                                                                                | 85                   | 4 .6- |
|                   | $500\ 000 < x \le 600\ 000$                                                                                | 67                   | - 0   |
|                   | 600 000 < x ≤3 000 000                                                                                     |                      |       |
| Explain           | ean value for the homes at Mount Ace if the mean value is a fair representate tate. Give your reason.      | estate is \$505 500. | Mount |
| Explain           | ean value for the homes at Mount Ace<br>if the mean value is a fair represental<br>tate. Give your reason. | estate is \$505 500. | Mount |
| Explain<br>Ace es | ean value for the homes at Mount Ace<br>if the mean value is a fair represental<br>tate. Give your reason. | estate is \$505 500. | Mount |
| Explain<br>Ace es | ean value for the homes at Mount Ace<br>if the mean value is a fair represental<br>tate. Give your reason. | estate is \$505 500. |       |
| Explain<br>Ace es | ean value for the homes at Mount Ace<br>if the mean value is a fair represental<br>tate. Give your reason. | estate is \$505 500. |       |
| Explain<br>Ace es | ean value for the homes at Mount Ace<br>if the mean value is a fair represental<br>tate. Give your reason. | estate is \$505 500. | [2    |
| Explain<br>Ace es | ean value for the homes at Mount Ace<br>if the mean value is a fair represental<br>tate. Give your reason. | estate is \$505 500. |       |

| 7 (a) Factorise completely $8y^2z - 18z +$                                             | 4 2 2 0 2                           |          |
|----------------------------------------------------------------------------------------|-------------------------------------|----------|
| (a) I actorise completely 8 y-z - 18z 4                                                | $-4x^2y^2-9x^2$                     |          |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        | Answer (a)                          | [2]      |
| a. a 1                                                                                 |                                     |          |
| (b) Simplify $(-ab^{-1})^3 \div \frac{1}{2}a^3b^{-2}$ , exp                            | ressing your answer in positive ind | ex form. |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        | Answer (b)                          | [3]      |
| 8 $\xi = \{integers x : 1 \le x \le 20\}$                                              |                                     |          |
| 8 $\xi = \{\text{integers} x : 1 \le x \le 20\}$<br>$P = \{x : \text{prime numbers}\}$ |                                     |          |
| $Q = \{x: 1+3x < 18\}$                                                                 |                                     |          |
|                                                                                        |                                     | 001      |
| (a) List the elements in                                                               |                                     |          |
| (i) $Q$ ,                                                                              |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        | Answer(a)(i)                        | [1       |
|                                                                                        | VVVV 350 150 160 1                  | •        |
| (ii) $P \cap Q$ .                                                                      |                                     |          |
|                                                                                        | Answer(a)(ii)                       | [1       |
|                                                                                        |                                     |          |
| (b) Show that $P' \cap Q \neq \phi$ .                                                  |                                     |          |
| (b) Show that I'v g v y v                                                              |                                     |          |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |
| Answer (b)                                                                             |                                     |          |
| STREAM - CHARLES                                                                       |                                     |          |
| · · · · · · · · · · · · · · · · · · ·                                                  |                                     | [1       |
|                                                                                        |                                     |          |
|                                                                                        |                                     |          |

| 100         |
|-------------|
| Por         |
| Transmet, 3 |
| (die        |

For Swaminer's

| 9 Tr | wo geometrically similar bottles $A$ and $B$ have base areas of 27 cm <sup>2</sup> and 75 cm <sup>2</sup> spectively. |
|------|-----------------------------------------------------------------------------------------------------------------------|
|      | iven that the capacity of bottle $A$ is 0.21 litres, find the capacity of bottle $B$ .                                |
|      |                                                                                                                       |
|      |                                                                                                                       |
|      |                                                                                                                       |
|      |                                                                                                                       |
| 1    |                                                                                                                       |
|      | Answer                                                                                                                |
| 10 A | group of 15 students tack a Saignes tack and their results are resulted in the                                        |
|      | group of 15 students took a Science test and their results are represented in the m-and-leaf diagram below.           |
|      | Stem   Leaf                                                                                                           |
|      | 5 3 4 6 7 6 2 2 4 9 9                                                                                                 |
|      | 7 1 3 7<br>8 0 2 x                                                                                                    |
|      |                                                                                                                       |
| 14   | 5   3 represents 53 marks                                                                                             |
| (a)  | Given that the range of the Science test results is 32, find the value of $x$ .                                       |
|      | $Answer(a) x = \underline{\qquad} [1]$                                                                                |
| (b)  | The passing mark for the Science test is 55. A student from this group is                                             |
|      | chosen at random. Find the probability that this student failed the test.                                             |
|      |                                                                                                                       |
|      | Answer (b) [ 1                                                                                                        |
| (c)  | Find the percentage of students who scored more than 75 marks.                                                        |
|      |                                                                                                                       |
|      |                                                                                                                       |
|      |                                                                                                                       |
|      | Answer (c) % [                                                                                                        |
|      |                                                                                                                       |
|      |                                                                                                                       |

|           | HH                |                                    | THEFT      | antimo      | ants grown in                  | 717                       | ,                     |
|-----------|-------------------|------------------------------------|------------|-------------|--------------------------------|---------------------------|-----------------------|
|           |                   |                                    |            |             |                                | 掛                         |                       |
| Nursery A |                   |                                    |            |             |                                |                           |                       |
| Nursery B | 2                 | 10.                                | 20         | 30          | 40                             | 50                        | height (cm)           |
| (a)       | Find th           | e interquarti                      | e range fo | r Nursery A |                                |                           | ē                     |
|           |                   |                                    |            | A           | nswer (a)                      |                           |                       |
| (b)       | For eac<br>Give a | reason for ea                      | ements bel | ow, write v | whether you age arly which sta | ree or dis<br>atistics yo | agree.<br>u use to ma |
| 100       | your de           | ecision.                           |            |             |                                |                           |                       |
| ŷ.        | your do           | ecision.<br>On average,            |            |             | A grows talle                  | r than in 1               | Nursery B.            |
| \$        | your do           | ecision.                           |            |             |                                | r than in 1               | Nursery B.            |
| 3         | your do           | ecision.<br>On average,            |            |             |                                | r than in 1               |                       |
|           | your do           | On average,  Answer                | pportion o | because _   |                                |                           |                       |
|           | your do           | On average,  Answer  A greater pre | pportion o | because _   |                                |                           |                       |
|           | your do           | On average,  Answer  A greater pre | pportion o | the plants  |                                |                           | of 40 cm in           |
|           | your do           | On average,  Answer  A greater pre | pportion o | the plants  |                                |                           | of 40 cm in           |
|           | your do           | On average,  Answer  A greater pre | pportion o | the plants  |                                |                           |                       |

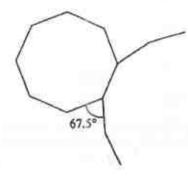
[Turn over

10

For Examiner's

| 12 | (a) Express $x^2 - 6x + 4$ in the | e form $(x-a)^2$  | + <i>b</i> .           |                     |
|----|-----------------------------------|-------------------|------------------------|---------------------|
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   | Answer (a)             | [                   |
|    | as about a source                 | 2                 |                        |                     |
|    | (b) Sketch the graph of $y = 3$   | x - 6x + 4.       |                        | 23                  |
|    | Answer (b)                        |                   |                        | ι                   |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    | \                                 | 0                 |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   | e.                |                        |                     |
|    | (c) The graph of $y = x^2 - 6x$   | +4 is reflected i | n the y-axis. Write do | own the equation of |
|    | the line of symmetry for          | the new graph.    |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   | Answer (c)             | [                   |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   |                        |                     |
|    |                                   |                   | Ĭ.                     |                     |
|    |                                   |                   |                        |                     |

| Which company will offer a cheaper deal calculations.                |                                        |     |
|----------------------------------------------------------------------|----------------------------------------|-----|
| TIMBRE WORKS \$35 per sqm (for first 40 sqm) 30% discount thereafter | TILE KING<br>FLAT RATE<br>\$25 per sqm |     |
|                                                                      |                                        |     |
|                                                                      |                                        |     |
|                                                                      |                                        |     |
|                                                                      | Answer                                 | [3] |
| Find (a) an equation for x in terms of t,                            |                                        |     |
|                                                                      |                                        |     |
|                                                                      |                                        |     |
|                                                                      | Answer (a)                             | [2  |
| (b) the time taken, in hours and minutes t                           | o fill a volume of 400 litres.         |     |
|                                                                      |                                        |     |
|                                                                      |                                        |     |


| For        |  |
|------------|--|
| Examiner's |  |
| Use        |  |

12

(a) Explain whether it is possible to form a regular polygon with an interior angle of 125°.

Answer (a)

(b) The diagram shows a sketch of a n-sided regular polygon and a regular octagon. Calculate n.



Answer (b) n =

4040/ 1/20 1/ SECHETOIIII

| For        |   |
|------------|---|
| Exemples ! | è |
| Une        |   |

For Examiner Use

- Bag A contains three balls numbered 2, 3 and 4 respectively.
  Bag B contains four balls numbered 1, 3, 5 and 7 respectively.
  A ball is taken at random from each bag and their respective numbers f and g are recorded.
  - (a) Complete the table to show the possible outcomes for the sum of the two numbers f and g, on the balls selected.

|                                       |   | f, number on ball from Bag A |   |   |
|---------------------------------------|---|------------------------------|---|---|
|                                       |   | 2                            | 3 | 4 |
| g, number<br>on ball<br>from Bag<br>B | 1 |                              |   |   |
|                                       | 3 |                              |   |   |
|                                       | 5 |                              |   |   |
|                                       | 7 |                              |   |   |

[1]

- (b) Find the probability that
  - (i) f+g < 7,

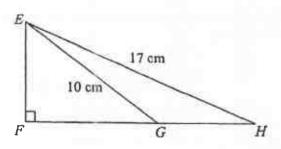
| Answer | (b)(i) | <br>1 | 1 |
|--------|--------|-------|---|
|        | (ツ(ツ)  | _     |   |

(ii) f+g is an odd number,

| Answer    | (h)(ii) | ſ | 1   | • |
|-----------|---------|---|-----|---|
| 331107701 | 10/140/ |   | - 4 |   |

(iii) f > g

Answer (b)(iii) \_\_\_\_\_\_[1]


4048/1/2017Sec4Prelims

| For        |
|------------|
| Examiner's |
| I Iva      |

14

For Examiner's

17 The figure shows triangle EFH where EH = 17 cm and  $\angle EFH = 90^{\circ}$  G is a point on FH such that EG = 10 cm.



- (a) Given that  $\sin \angle EGH = \frac{3}{5}$ , find
  - (i) EF,

Answer (a)(i) cm [ 1 ]

(ii)  $\tan \angle EGH$ .

Answer (a)(ii)\_\_\_\_\_[2]

(b) Find the shortest distance from F to EH.

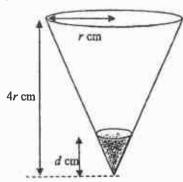
Answer (b) \_\_\_\_\_ cm [3]

(c) A circle C<sub>1</sub> is drawn passing through E, F and G.
 A second circle C<sub>2</sub> is drawn passing through E, F and H.
 Find the ratio of the circumference of C<sub>1</sub> to circumference of C<sub>2</sub>,

Answer (c) \_\_\_\_\_ [1]

4048/1/2017Sec4Prellms

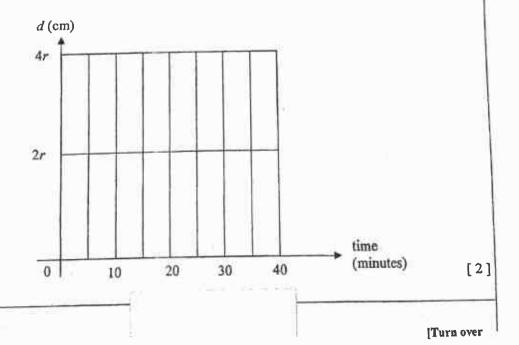
|    | 15                                                                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  |                                                                                                                                                                                |
| 18 | The mean, median and mode of the distribution of heights for 9 athletes are all equal to 165 cm.                                                                               |
|    | Three of the athletes have a height of 165 cm and the tallest athlete is 170 cm.                                                                                               |
|    | Given that the heights of the athletes are integers, find the least possible height of the shortest athlete.                                                                   |
|    |                                                                                                                                                                                |
|    |                                                                                                                                                                                |
|    | Answer cm [ 3 ]                                                                                                                                                                |
| 19 | The diagram shows an isosceles triangle inscribed in a circle where $XZ = 7$ cm and $XY = YZ = 5$ cm. Determine whether $XZ$ is a diameter of the circle. Explain your answer. |
|    | X                                                                                                                                                                              |
|    |                                                                                                                                                                                |
|    | Answer                                                                                                                                                                         |
|    | Answer                                                                                                                                                                         |
|    | Answer                                                                                                                                                                         |


For Examiner's Use

20

16

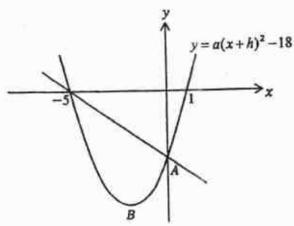
For Examiner's


A container in the shape of an inverted cone has a top radius of r cm and a height of 4r cm. Water is poured into the container at a constant rate. It takes 40 minutes to fill the container completely with water.



(a) Calculate the time taken to fill the container to a height of 2r cm.

Answer (a) minutes [2]


(b) A graph is drawn to show the relationship between the depth of the water, d cm, and the time taken, t minutes, as the container is filled. Complete the graph to represent how the depth of water changes with time.



For Examiner's 17

For Examiner's

The diagram below shows a curve of  $y = a(x+h)^2 - 18$ . The curve cuts the x-axis at -5 and 1 and the y-axis at A. B is the minimum point on the curve.



(a) Express the equation of the curve in the form of  $y = a(x+h)^2 - 18$ , where a and h are constants.

Answer (a) 
$$y =$$
 [3]

(b) A straight line cuts the curve at x = -5 and point A. Find the equation of the straight line.

[2]

4048/1/2017Sec4Prelims

| For<br>miner's<br>Use | 18                                                                                                                                                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22                    | The points A, B, C, and D lie on the circumference of a circle such that $\angle BDC = 38^{\circ}$ , $\angle ABD = 42^{\circ}$ and $\angle ABC = 90^{\circ}$ . Chords AC and BD intersect at E. |
|                       | (a) (i) Giving your reason, find angle ACD.  Answer (a)(i)                                                                                                                                      |
|                       | (ii) State whether EC is longer than ED. Give your reason clearly.                                                                                                                              |
|                       | Answer (a)(ii)[ 1 ]  (b) Describe where the centre of the circle is.                                                                                                                            |
|                       | Answer (b)[1]                                                                                                                                                                                   |
| -                     |                                                                                                                                                                                                 |

4048/1/2017Sec4Prelims

| For        |
|------------|
|            |
| Examiner's |
|            |

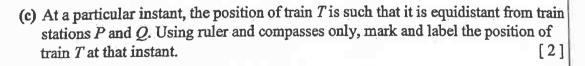
For Examiner

The scale drawing shows the positions of two train stations, P and Q. The scale is 1 cm to 10 km.

A third train station, R is 80 km from P on a bearing of 150°.

(a) Mark and label on the diagram the position of train station R.

[1]


A train, T travels along a path which is equidistant from PR and RQ.

(b) Using ruler and compasses only, mark and label the path in which train T moves.

[1]

1





(d) Train T approaches train station R at an average speed of 95 km/h. Calculate the time taken from its position in (c) to arrive at R. Give your answer in minutes.

Answer (d) \_\_\_\_\_ minutes [2]

END OF PAPER

4048/1/2017Sec4Prelims



## TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2017 Secondary 4

| CANDIDATE<br>NAME                               |    |                     |       |
|-------------------------------------------------|----|---------------------|-------|
| CLASS                                           |    | INDEX NUMBER        |       |
| MATHEMATICS                                     |    | 404                 | 8/02  |
| Paper 2                                         |    | Wednesday 23 August | 2017  |
|                                                 |    | 2 hours 30 mi       | nutes |
| Additional Materials: Writing Paper Graph Paper | 15 |                     |       |

#### **READ THESE INSTRUCTIONS FIRST**

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total of the marks for this paper is 100.

Turn over

This document consists of 11 printed pages and 1 blank page.

- A soccer club offers annual memberships for both adults and juniors. The adult annual membership fee is \$150.

  Junior members need to pay 80% of the adult annual membership fee.
  - (a) Calculate the discount each junior member receives.

[1]

If an adult member does not pay the membership fee by the due date, the club will charge a penalty of 5% per month until the fee is paid.

Simon paid the \$150 membership fee exactly two months after the due date.

(b) Calculate the penalty that Simon will be charged.

[1]

The soccer club received a statement of the transactions in its saving account for the month of January 2017.

| Date        | Details         | Deposit   | Withdrawal | Balance    |
|-------------|-----------------|-----------|------------|------------|
| 01 Jan 2017 | Brought Forward |           |            | \$63950.00 |
| 09 Jan 2017 | Match Fees      | \$750.00  |            | \$64700.00 |
| 15 Jan 2017 | Withdrawal      |           |            | \$42700.00 |
| 23 Jan 2017 | Membership Fees | \$3800.00 |            | \$46500.00 |
| 31 Jan 2017 | Interest        | \$124.54  |            | \$46624.54 |

(c) (i) Calculate the withdrawal amount on 15 Jan 2017.

[1]

(ii) Interest on the account is calculated on the minimum balance for the month and added to the account on the last day of the month.

What is the annual rate of interest for this account? Write your answer, correct to one decimal place.

[2]

(d) The soccer club plans to invest \$120 000 in an account which pays compound interest at the rate of 2% per annum, compounded monthly.

Find the total amount that can be withdrawn at the end of 4 years.

[2]

4

A toothpaste firm supplies tubes of toothpaste to 2 different stores.

The number of tubes of toothpaste supplied per delivery to each store, the sizes of the tubes and the number of deliveries made to each store over a year are shown below. [Turn over

|         |        | Numbe | r of tubes per | delivery | Number of                 |
|---------|--------|-------|----------------|----------|---------------------------|
| Size o  | f tube | 50 ml | 75 ml          | 100 ml   | deliveries<br>over a year |
| Name of | Econ   | 400   | 300            | 400      | 2                         |
| store   | Prime  |       | 200            | 600      | 4                         |

(i) Given that 
$$T = \begin{pmatrix} 400 & 300 & 400 \\ 0 & 200 & 600 \end{pmatrix}$$
, find the matrix product  $S = T \begin{pmatrix} 50 \\ 75 \\ 100 \end{pmatrix}$ . [1]

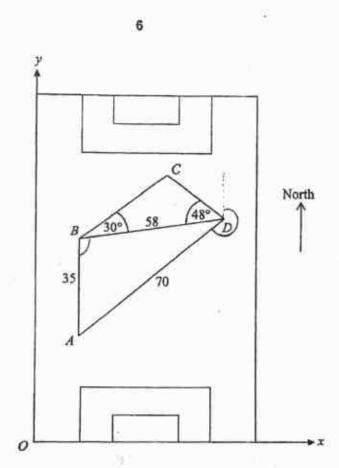
- (ii) Describe what the elements in S represent. [1]
- (iii) Write down two matrices such that the elements of their product under matrix multiplication would give the total number of tubes of toothpaste of each size supplied by the firm over a year. Find this product. [2]

3 (a) Solve the inequality 
$$\frac{2p-1}{5} \le \frac{3+p}{2}$$
. [2]

**(b)** Simplify 
$$\frac{12x^2}{4y} \div \frac{6x^3}{y^4}$$
. [2]

(c) Simplify the expression 
$$\frac{4w^2 - 36}{2w^2 + 7w + 3}$$
. [3]

(d) (i) Express as a single fraction in its simplest form


$$\frac{2}{y+3} - \frac{3}{y-1}.$$
 [2]

(ii) Solve the equation

$$\frac{2}{y+3} - \frac{3}{y-1} = 5.$$
 [3]

5

| (a) | (i)   | Express 4536 as the product of its prime factors.                                                          | [1]        |
|-----|-------|------------------------------------------------------------------------------------------------------------|------------|
|     | (ii)  | Given that $\frac{4536}{k} = p^3$ , where k and p are integers and p is as large as                        |            |
|     |       | possible, find the values of $k$ and of $p$ .                                                              | [1]        |
|     |       |                                                                                                            |            |
|     | (iii) | The lowest common multiple of two numbers is 4536.  The highest common factor of these two numbers is 126. |            |
|     |       | Both numbers are greater than 126.                                                                         |            |
|     |       | Find the two numbers.                                                                                      | [2]        |
|     |       |                                                                                                            |            |
| (b) | Who   | en $n$ is a positive integer, $2n+3$ is an odd number.                                                     |            |
|     | (i)   | Write down an expression for the next odd number greater than $2n + 3$ .                                   | [1]        |
|     | (ii)  | Find and simplify an expression for the difference between the squares of these two odd numbers.           | [2]        |
|     | (iii) | Hence explain why the difference between the squares of two consecutive numbers is always a multiple of 8. | odd<br>[1] |
|     |       |                                                                                                            |            |



(a) During a soccer match a ball is passed from A to B and then from B to D as shown in the diagram. B is due north of A. AB = 35 m, BD = 58 m and AD = 70 m.

(i) Show that angle 
$$DAB = 55.7^{\circ}$$
. [1]

(b) Another player is standing at 
$$C$$
.

Angle  $CBD = 30^\circ$  and angle  $BDC = 48^\circ$ .

Calculate the length  $CD$ . [2]

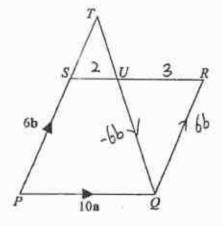
(c) The x- and y- axes are shown in the diagram.

5

$$\overrightarrow{AD} = \begin{pmatrix} p \\ q \end{pmatrix}$$
, where p and q are measured in metres.

(i) Show that 
$$p = 57.8$$
. [1]

(ii) Find the value of 
$$q$$
. [2]


4048/2/Sec4Prelims'17

6 (a) A has coordinates (-3, 5) and  $\overrightarrow{AB}$  is given by  $\begin{pmatrix} -7 \\ -4 \end{pmatrix}$ .

Find

- (i)  $|\overrightarrow{AB}|$ , [1]
- (ii) the position vector of B. [1]
- (iii) Given that  $\overrightarrow{CD}$  is parallel to  $\overrightarrow{AB}$ , and  $\overrightarrow{CD} = \begin{pmatrix} k \\ 16 \end{pmatrix}$ , find the value of k. [2]

**(b)** 



 $\overrightarrow{PQRS}$  is a parallelogram.  $\overrightarrow{PS} = 6b$  and  $\overrightarrow{PQ} = 10a$ .

U is the point on SR such that SU: SR = 2:5. When produced, PS and QU meet at T.

- (i) Express each of the following, as simply as possible, in terms of a and/or b,
  - (a)  $\overrightarrow{PR}$ ,

[1]

(b)  $\overrightarrow{SU}$ ,

[1]

(c)  $\overrightarrow{TU}$ .

[2]

- (ii) Calculate the value of
  - (a)  $\frac{\text{area of triangle } QRU}{\text{area of triangle } QUS}$

[1]

(b)  $\frac{\text{area of triangle } SUT}{\text{area of triangle } PQT}$ 

[1]

7 Answer the whole of this question on a sheet of graph paper.

An open rectangular tank has a square base of side x metres. The volume of the tank is  $9 \text{ m}^3$ .

- (a) (i) Find an expression, in terms of x, for the height of the tank. [1]
  - (ii) Hence show that the total external surface area of the tank, A square metres, is given by

$$A = x^2 + \frac{36}{x}.$$
 [1]

(b) The table below shows some values of x and the corresponding values of A.

| x | 2  | 2.5  | 3  | 4  | 5    | 6  | 7    | 8 |
|---|----|------|----|----|------|----|------|---|
| A | 22 | 20.7 | 21 | 25 | 32.2 | 42 | 54.1 | р |

(i) Find the value of p.

[1]

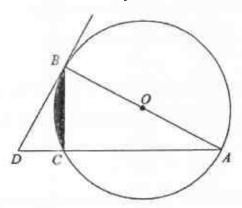
(ii) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for  $2 \le x \le 8$ . Using a scale of 2 cm to represent 10 m<sup>2</sup>, draw a vertical A-axis for  $20 \le A \le 80$ .

On your axes, plot the points given in the table and join them with a smooth curve.

[3]

(iii) By drawing a tangent, find the gradient of the curve at the point where x = 4.

[2]


- (iv) Use your graph to find
  - (a) the value of x for which the surface area is  $50 \text{ m}^2$ .

[1]

(b) the dimensions of the tank which has the least possible surface area. [2]

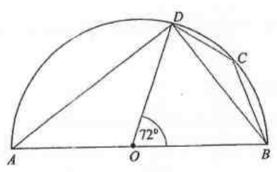
9

The diagram shows a circle, ABC, centre O.
BD is a tangent to the circle and it meets AC produced at D.



(a) Show that triangles ABD and BCD are similar.

[2]


- (b) Given that ratio area of triangle ABD: area of triangle BCD = 4:1 and the radius of the circle is 7.5 cm,
  - (i) show that angle  $BAC = \frac{\pi}{6}$  radian,

[2]

(ii) find the perimeter of the shaded region.

[3]

(c) In the diagram, A, B, C and D are points on the circumference of a semi-circle, centre O.



- (a) Calculate, stating your reasons clearly,
  - (i) angle DAB,

[1]

(ii) angle ABD,

[1]

(iii) reflex angle BCD.

[2]

(b) Given that OB = 3.5 cm, find the area of the segment BCD.

[3]

10

(a) The table shows the sizes of 50 pairs of ladies' shoes sold one day in a shoe shop.

| Shoe sizes      | 5 | 6  | 7 | 75  | 0 | 0.  |   |
|-----------------|---|----|---|-----|---|-----|---|
| Number of pairs | 7 |    | - | 1.3 | 0 | 8.5 | 9 |
| of shoes sold   | 4 | 18 | 3 | 5   | 8 | 7   | 5 |

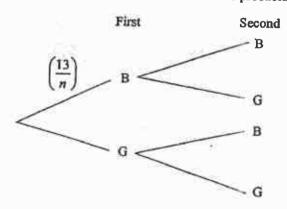
(i) Find the median shoe size.

[1]

(ii) Find the modal shoe size.

[1]

- (iii) Explain which central measure would be the most appropriate and useful to the manager when she is ordering stock. [2]
- (iv) Find the standard deviation of the shoe sizes.


[1]

(v) The standard deviation of the shoe sizes of mens' shoes sold on the same day was 1.52.

Use this information to comment on one difference between the two distributions.

[1]

(b) In a class of n students, 13 of them are boys and the rest are girls. Two students are selected at random to represent the class at a conference. The tree diagram shows the possible outcomes and their probabilities.



(i) Copy and complete the tree diagram.

[2]

- (ii) Find, as a single fraction in terms of n, the probability that
  - (a) the first student selected is a girl,

[1]

(b) two boys are selected.

[2]

(iii) The probability that two girls selected is  $\frac{5}{18}$ .

Find the total number of students in the class.

[4]

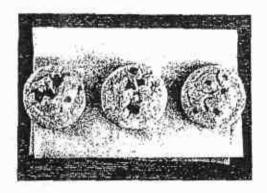
11

#### 10 Amos makes cookies.

The amount of dough needed to make one cookie is 8 grammes.

The density of the dough is 0.5333 g/cm<sup>3</sup>.

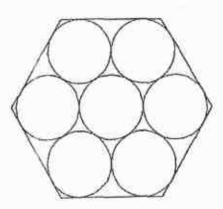
(i) Find the volume of dough needed for each cookie.


[1]

The dough is rolled into a sphere before baking.

(ii) Calculate the radius of the sphere.

[2]


When each cookie is baked, it forms a shape as shown. The cookie can be modelled as a cylinder of radius 3 cm and a height of 0.7 cm. The increase in volume is due to air trapped in the cookie.



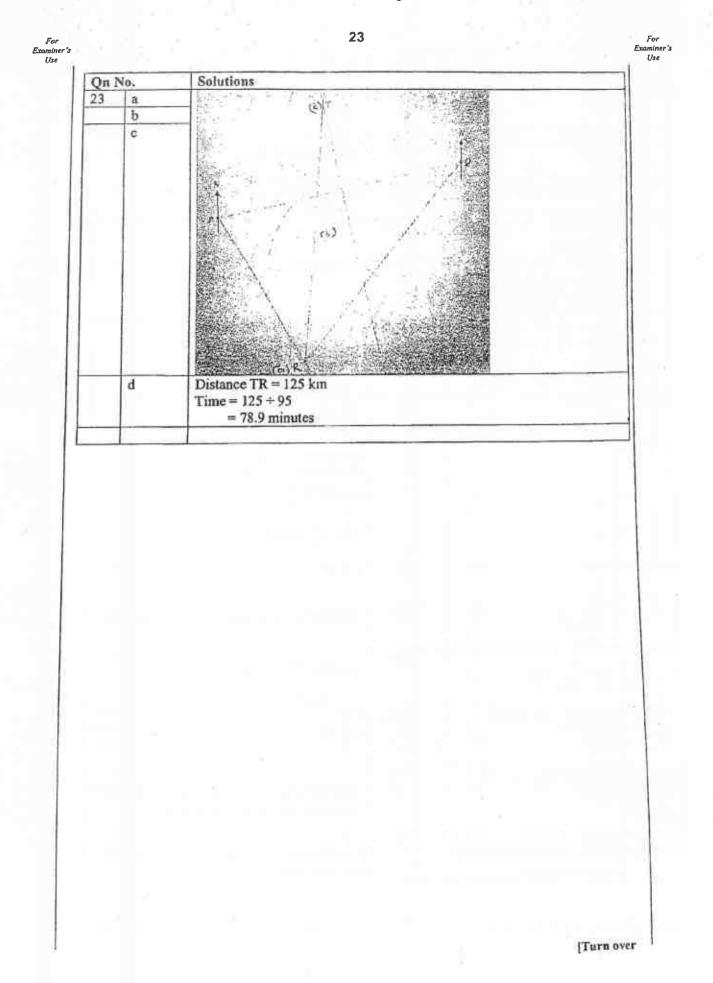
(iii) Calculate the volume of air trapped in the cookie.

[2]

A regular hexagonal box is designed to hold 7 such cookies per layer, as shown.



(iv) Find the volume of the box if it is to hold five layers of cookies.


[5]

## **End of Paper**

| 5 | ai   | $\cos D\hat{A}B = \frac{35^2 + 70^2 - 58^2}{2(35)(70)}$ |    | bi   | First $\left(\frac{12}{n-1}\right)$ Second B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|------|---------------------------------------------------------|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      |                                                         |    |      | $\left(\frac{13}{n}\right)$ B $\left(\frac{n-13}{n-1}\right)$ G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |      |                                                         |    |      | $\left(\frac{n-13}{n}\right)  G \qquad \left(\frac{13}{n-1}\right)  B  G  \left(\frac{n-14}{n-1}\right)  G$ |
|   | aii  | 235.7º                                                  |    | blia | $\frac{n-13}{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | aiii | 1011.97 m <sup>2</sup>                                  |    | bilb | $\frac{156}{n(n-1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | b    | CD = 29.6                                               |    | biii | n = 28  or  n = 9  (rej)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | ci   | $\cos(90^{\circ} - 55.7^{\circ}) = \frac{p}{70}$        | 10 | i    | 15.0 cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | cii  | q = 39.4                                                |    | ii   | r = 1.53 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6 | ai   | 8.06                                                    |    | iii  | 4.80 cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | aii  | $\begin{pmatrix} -10 \\ 1 \end{pmatrix}$                |    | iv   | 814.4745 cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | aiii | k = 28                                                  |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | bia  | $\overrightarrow{PR} = 10a + 6b$                        |    | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | bib  | $\overrightarrow{SU} = 4a$                              |    | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | bic  | $\overrightarrow{TU} = -4\mathbf{b} + 4\mathbf{a}$      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | biia | $\frac{3}{2}$                                           |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 | biib | 4 25                                                    |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

12

| 1 | 8      | \$30                                                                                                                     | 7 | aì    | 9                                                                                                                                                                                                             |
|---|--------|--------------------------------------------------------------------------------------------------------------------------|---|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L |        |                                                                                                                          |   |       | $\frac{1}{x^2}$                                                                                                                                                                                               |
|   | b      | \$15                                                                                                                     |   | ail   | $4x\left(\frac{9}{x^2}\right)$                                                                                                                                                                                |
|   | ci     | \$22 000                                                                                                                 |   | bi    | p = 68.5                                                                                                                                                                                                      |
| _ | cii    | 3.5%                                                                                                                     | 1 | bii   | All points correctly plotted                                                                                                                                                                                  |
|   |        |                                                                                                                          |   |       | Smooth curve drawn                                                                                                                                                                                            |
|   | d      | 129985.79                                                                                                                |   | biii  | Draw tangent at $x = 4$<br>Grad = 6.38                                                                                                                                                                        |
| 2 | i      | (82500)<br>75000)                                                                                                        |   | biva  | x = 6.8                                                                                                                                                                                                       |
|   | ii     | The element in S represent the total <u>volume</u> of toothpaste (in ml) <u>supplied to Econ and</u> Prime respectively. |   | bivb  | Dimensions= 2.5 m × 2.5 m × 1.44 m                                                                                                                                                                            |
|   | ABY    | (2 4) (400 300 400)<br>(800 1400 3200)                                                                                   | 8 | a     | ∠BCD = 90° (angles in semi-circle)<br>∠ABD = 90° (tangent perpen. radius)<br>∴ ∠ABC = ∠BCD<br>∠BDC is common angle<br>∴ △ABD and △BCD are similar                                                             |
|   | 3      | p≥-17                                                                                                                    |   | bi    | $\frac{BD}{CD} = \frac{2}{1} \implies \frac{AB}{BC} = \frac{2}{1}$ Since radius = 7.5 cm $AB = 15 \text{ and BC} = 7.5 \text{ cm}$ $\sin B\hat{A}C = \frac{1}{2}$ $B\hat{A}C = \frac{\pi}{6} \text{ (shown)}$ |
| 1 | b      | $\frac{y^3}{2x}$                                                                                                         |   | bii   | 15.4 cm                                                                                                                                                                                                       |
|   | c      | $\frac{4(w-3)}{2w+1}$                                                                                                    |   | cai   | $\angle DAB = 36^{\circ}$ ( $\angle$ at centre = 2 $\angle$ at circumference)                                                                                                                                 |
|   | di     | $\frac{-y-11}{(y+3)(y-1)}$                                                                                               |   | caii  | $\angle ABD = \frac{180 - 72}{2}$ (base $\angle$ of isos. $\triangle$ ) $= 54^{\circ}$                                                                                                                        |
|   | dii    | y = 0.318 or $-2.52$                                                                                                     |   | caiii | 216°                                                                                                                                                                                                          |
|   | ai     | $2^3 \times 3^4 \times 7$                                                                                                |   | cb    | 1.87 cm <sup>2</sup>                                                                                                                                                                                          |
|   | aii    | k=21 $p=6$                                                                                                               | 9 | a i   | 7.25                                                                                                                                                                                                          |
| - | aiii   | 504 and 1134                                                                                                             |   | ii    | 6                                                                                                                                                                                                             |
| _ | 4bi    | 2n + 5                                                                                                                   |   | iii   | Mode will be the most appropriate and useful as the manager can stock up more shoes of size 6.                                                                                                                |
|   | lbii : | 8n+16                                                                                                                    |   | iv    | 1.25                                                                                                                                                                                                          |
| - |        | 077 - 10                                                                                                                 | - | _     | men a 1 C1 11                                                                                                                                                                                                 |
| - | biii   | 8(n+2) is a multiple of 8 for n                                                                                          |   | V     | The shoe sizes of ladies are more consistent than the                                                                                                                                                         |



For Examiner's 22

For Examiner's

| Q  | n No.         | Solutions                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    | b(i)          | 5                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |               | 12                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    | b(ii)         | $\frac{2}{3}$                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|    |               | $\frac{1}{3}$                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|    | b(iii)        | 1                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |               | $\overline{3}$                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    |               |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| 17 | a(i)          | EF = 6 cm                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|    | a(ii)         | $\tan \angle EGH = -\frac{6}{8} = -\frac{3}{4}$                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    | b             | 5.61cm                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|    | С             | 10:17                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 10 |               | 7                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 18 |               | Least possible height = 150 cm                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 19 | +             | $XY^2 + YZ^2 = 5^2 + 5^2 = 50$                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| -  |               |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |               | $XZ^2 = 7^2 = 49$                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |               | Since $XY^2 + YZ^2 \neq XZ^2$ , $XZY$ is not a right-angled triangle. Hence, XZ is                                                                                                                                                                                                |  |  |  |  |  |  |  |
| _  |               | not a diameter (Angle in semicircle).                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 20 | -             | Time taken = $40 \div 2^3$                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 20 | a             | = 5 mins                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| -  | ь             | d (cm)                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |               | <b>†</b>                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|    |               | 47                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    | 1             |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    | 1             | 3*                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |               |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |               |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |               | 20                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |               | 20                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |               | 27                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|    |               | <u> </u>                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|    |               | time                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |               |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| 1  |               | time (minutes)                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| I  | a             | $y = 2(x+2)^2 - 18$ time (minutes)                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 1  | a<br>b        | time (minutes)                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    | b             | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 1  | b<br>a(i)     | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$ $\angle ACD = 42^\circ \text{ (angles in same segment)}$                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | b             | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$ $\angle ACD = 42^\circ \text{ (angles in same segment)}$ $EC = ED$                                                                                                                                                                        |  |  |  |  |  |  |  |
|    | b<br>a(i)     | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$ $\angle ACD = 42^\circ \text{ (angles in same segment)}$ $\frac{EC}{\sin 38^\circ} = \frac{ED}{\sin 42^\circ}$                                                                                                                            |  |  |  |  |  |  |  |
|    | a(i)<br>a(ii) | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$ $\angle ACD = 42^\circ \text{ (angles in same segment)}$ $\frac{EC}{\sin 38^\circ} = \frac{ED}{\sin 42^\circ}$ Since $42^\circ > 38^\circ$ , ED is longer than EC                                                                         |  |  |  |  |  |  |  |
|    | b<br>a(i)     | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$ $\angle ACD = 42^\circ \text{ (angles in same segment)}$ $\frac{EC}{\sin 38^\circ} = \frac{ED}{\sin 42^\circ}$ Since $42^\circ > 38^\circ$ , ED is longer than EC Given angle ABC = $90^\circ$ , AC is a diameter of the circle (angle in |  |  |  |  |  |  |  |
|    | a(i)<br>a(ii) | $y = 2(x+2)^2 - 18$ Eqn: $y = -2x - 10$ $\angle ACD = 42^\circ \text{ (angles in same segment)}$ $\frac{EC}{\sin 38^\circ} = \frac{ED}{\sin 42^\circ}$ Since $42^\circ > 38^\circ$ , ED is longer than EC                                                                         |  |  |  |  |  |  |  |

Examiner's Use

| Qr | No. | Soluti                                               | ons                                                                     |                               |                          |                 |                 |  |
|----|-----|------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------|-----------------|--|
|    | b   | _                                                    | (3, -5)                                                                 |                               |                          |                 |                 |  |
|    | С   | x = - 3                                              |                                                                         |                               |                          |                 |                 |  |
| 13 |     | = (40)(<br>=\$1890<br>Price fo<br>= 25(60<br>= \$150 | or Tile King<br>0)                                                      |                               |                          |                 |                 |  |
| 14 | a   | $x = \frac{144}{180}$ $x = \frac{4}{5}t$             | $\frac{1}{t}t$                                                          |                               |                          |                 |                 |  |
|    | b   | t = 8h 2                                             | 20 min                                                                  |                               |                          |                 |                 |  |
| 15 | а   | No of since nu                                       | le of polygon =<br>ides of polygor<br>imber of sides<br>with interior a | $a = \frac{360}{55}$ is not a | = 6.545<br>n integer, it | t is not poss   | sible to form a |  |
|    | b   | 16 sides                                             |                                                                         |                               |                          |                 | - H             |  |
| 6  | a   |                                                      |                                                                         |                               | f, num                   | ber on ball fro |                 |  |
|    |     |                                                      |                                                                         | 1                             | 3                        | 3 4             | 5               |  |
|    |     |                                                      | g, number                                                               | 3                             | 5                        | 6               | 7               |  |
|    |     |                                                      | on ball                                                                 | 5                             | 7                        | 8               | 9               |  |
|    |     |                                                      | from Bag B                                                              | J                             | /                        | "               | , 1             |  |

For Examiner's 20

For Examiner's

| 1 | a     | 2.2804                                                                                                                                                                                                                         |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | b     | 2.280                                                                                                                                                                                                                          |
| 2 | a     | -14                                                                                                                                                                                                                            |
|   | b     | -8n + 50                                                                                                                                                                                                                       |
| 3 |       | $3^{4-n} = 3^2$                                                                                                                                                                                                                |
|   |       | n=2                                                                                                                                                                                                                            |
| 4 | a     | $x = 2 \times 3 \times 5 = 30$                                                                                                                                                                                                 |
|   | b     | 694 min                                                                                                                                                                                                                        |
| 5 | a     | x = 10°                                                                                                                                                                                                                        |
|   | b     | Kite                                                                                                                                                                                                                           |
| 6 |       | It is not a fair representation as  only 37.5% of the homes are valued above \$500,000 (majority of homes are valued less than \$505500)  the mean value is skewed by extreme values in the \$600,000 < x < \$3,000,000 group. |
| 7 | a     | $(2z+x^2)(2y+3)(2y-3)$                                                                                                                                                                                                         |
|   | ь     | $\frac{-2}{b}$                                                                                                                                                                                                                 |
|   | a(i)  | 1, 2, 3, 4, 5                                                                                                                                                                                                                  |
|   | a(ii) | 2, 3, 5                                                                                                                                                                                                                        |
|   | b     | P' are not prime numbers. Since Q contains elements that are not prime, $P' \cap Q$ is not a null set.  OR $P' \cap Q = \{1,4\}$ Hence, $P' \cap Q \neq \emptyset$                                                             |
|   |       | $V_{big} = 0.972l$                                                                                                                                                                                                             |
| ) | a     | 5                                                                                                                                                                                                                              |
|   | b     | $\frac{2}{15}$                                                                                                                                                                                                                 |
|   | С     | 26.7%                                                                                                                                                                                                                          |
|   | a     | 23                                                                                                                                                                                                                             |
|   | b(i)  | Disagree because the median height in A is lesser than in B.                                                                                                                                                                   |
|   | b(ii) | Disagree because more than 25% of the plants in A grow to height greater than 40cm.                                                                                                                                            |
|   |       | (4. 2) 2. 5                                                                                                                                                                                                                    |
|   | a     | $(x-3)^2-5$                                                                                                                                                                                                                    |

4048/1/2017Sec4Prellms

|Turn over



# XINMIN SECONDARY SCHOOL

Mid-Year Examination 2017

CANDIDATE NAME

CLASS

| 40-     |              |  |
|---------|--------------|--|
| , , , , | INDEX NUMBER |  |

# **MATHEMATICS**

4048/1

Paper 1

Secondary 4 Express / 5 Normal (Academic)

2 hours

9 May 2017

Setter Vetter

: Ms Pang Hui Chin : Mrs Vivien Tay Moderator: Mrs Sabrina Phang

Additional Materials: Nil

## **READ THESE INSTRUCTIONS FIRST**

Write your name, register number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

#### Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact. give the answer to three significant figures. Give answers in degrees to one decimal

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

| Errors       | Qn No. | Errors          | Qn No.     |  |
|--------------|--------|-----------------|------------|--|
| Accuracy     |        | Simplification  |            |  |
| Brackets     |        | Units           |            |  |
| Geometry     |        | Marks Awarded   | 12.10      |  |
| Presentation | -:     | Marks Penalised | 75 A.S. S. |  |

80

For Examiner's Use

Parent's/Guardian's Signature:

2

#### Mathematical Formulae

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length  $= r\theta$ , where  $\theta$  is in radians

Sector area = 
$$\frac{1}{2}r^2\theta$$
, where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

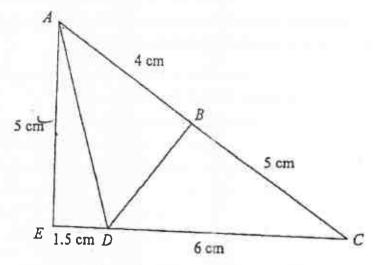
1 (a) Factorise completely 3ac - 7c - 18ab + 42b.

Answer (a) ...... [1]

(b) If  $9x^2 + 30x + k$  is a perfect square, state the value of k.

Answer (b) k = [1]

2 Solve the inequality  $-2 \le 2x - 7 < 19$ .

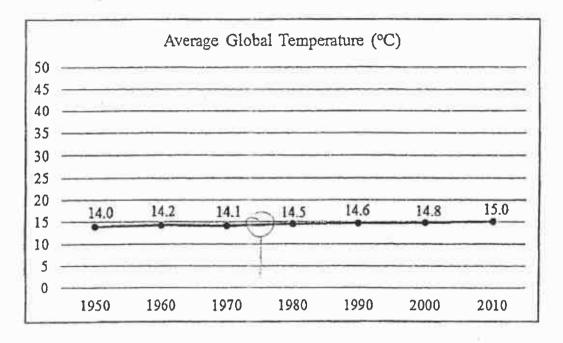

er ...... [2]

| 3 | 4 Evaluate, giving your answer in standard fo                                                        | rm,                                                 |
|---|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|   | (a) $\frac{17.31+13.13}{4.041\times\sqrt{898.9}},$                                                   |                                                     |
|   | (b) $2(7.8 \times 10^{-1}) + (3.9 \times 10^{2})$ .                                                  | Answer (a)                                          |
|   |                                                                                                      |                                                     |
|   |                                                                                                      | Answer (b)[1]                                       |
| 4 | Given that x is an integer such that $-4 \le x \le $ | 3 and y is a prime number such that $0 < y \le 7$ , |
|   | (b) the least possible value of $x^2 - y^2$ .                                                        | Answer (a)[1]                                       |

Answer (b) .....

5

In the diagram, AB = 4 cm, BC = 5 cm, CD = 6 cm, DE = 1.5 cm and AE = 5 cm.




Show that triangles ACE and DCB are similar.

| Answer In triangles ACE and DCB, | **************                         |                   | •     |
|----------------------------------|----------------------------------------|-------------------|-------|
|                                  | ***********                            |                   | •     |
|                                  | ***************                        | ***************** | •     |
|                                  | ************************************** |                   | . [2] |

Given that  $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ , express v in terms of u and f.

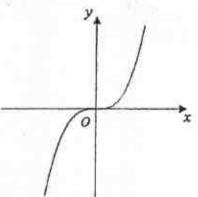
An article in a newspaper reported the trend in the average global temperature from 1950 to 2010. The article contained the line graph shown below.



Can we determine the average global temperature in 1975 from the line graph? Explain your answer.

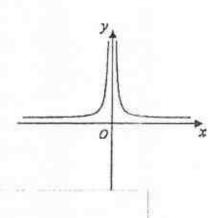
Answer .

[2]


8 Solve  $8^{3x-1} = 16$ .

7

Answer 
$$x = \dots$$
 [2]


The equations of the 2 graphs are in the form  $y = x^n$ . For each of the following, state a possible value of n.

(a)



Answer (a) n = [1]

(b)



99Tutors.SG | Page 434

 $\operatorname{pr}(b) \ n = \dots [1]$ 

|    |      | 8                                                     |                                            |      |
|----|------|-------------------------------------------------------|--------------------------------------------|------|
| 10 | Writ | tten as the product of its prime factors,             |                                            |      |
|    |      | 2160 = 2                                              | 2 <sup>4</sup> × 3 <sup>3</sup> × 5 ,      |      |
|    |      | 252 = 2                                               | $^2 \times 3^2 \times 7$ .                 |      |
|    | (a)  | Find the smallest positive integer $k$ such           | th that $\frac{2160}{2}$ is a perfect cube |      |
|    | (4)  | That mo smanost postavo imogat vi sat                 | k                                          |      |
|    |      | 5                                                     |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       | 4                                          | ſ1   |
|    |      |                                                       | Answer (a) $k = \dots$                     | [1   |
|    | (b)  | Write down the HCF of 252 and 2160                    | in index notation.                         |      |
|    | (~)  |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       | Answer (b)                                 | [1]  |
|    |      |                                                       |                                            | C-21 |
| 11 |      | scale of a map is 2 cm: 0.4 km.                       |                                            | 9    |
|    | (a)  | Write this scale in the form $1:n$ .                  |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       |                                            |      |
|    |      |                                                       | Answer (a):                                | [1]  |
|    |      |                                                       | 22.2                                       | ξ*.  |
|    | (b)  | The actual area of a park is 4 km <sup>2</sup> . Find | the area, in square centimetres, of the    |      |
|    |      | park on the map.                                      |                                            |      |

9

12 Solve the following simultaneous equations.

$$3x - 4y = 25$$

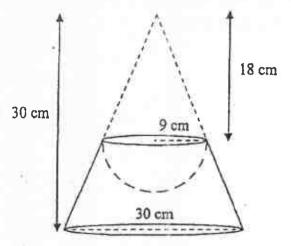
$$4x - 5y = 32$$

| Answer | <i>x</i> = | ******* | <br> |    |
|--------|------------|---------|------|----|
|        | <i>y</i> = | ,,,,,,, | <br> | 31 |

In Singapore, Charlie pays \$1.45 for 500 ml of bottled water.

When Charlie visited Japan, he paid ¥220 for 32 ounces of bottled water.

1 Singapore dollars = 77.96 Japanese Yen (¥)
1 ounce = 29.57 ml


Is bottled water cheaper in Singapore or in Japan? You must show your calculations.

[3]

14 Simplify 
$$\frac{1}{3-x} + \frac{3-x}{x^2-9}$$
.

15 Simplify 
$$\left(\frac{25x^2y^0}{3x^0y^7}\right)^0 \times \left(\frac{3a}{2}\right)^{-3}$$
.

16 The diagram below shows a solid pet feeding bowl made from a truncated right circular cone with a hemispherical depression.



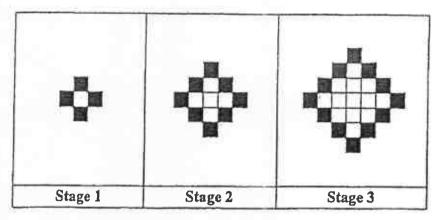
The truncated right circular cone is made by removing a cone with base radius 9 cm and and vertical height of 18 cm from a larger solid cone with a base diameter of 30 cm and a vertical height of 30 cm. The hemispherical depression has a radius of 9 cm.

The feeding bowl is to be made out of metal.

Calculate the volume of metal needed to make 10 of such feeding bowls, leaving your answer to the nearest whole number.

| er | ************************* | cm <sup>3</sup> | [4] |
|----|---------------------------|-----------------|-----|
|    |                           |                 |     |

- Given that P is inversely proportional to  $Q^2 + 1$  and that P = 13 when Q = 1,
  - (a) express P in terms of Q,


Answer (a) ......[2]

(b) find the values of Q when P = 1.

)  $Q = \dots$  or ...... [2]

13

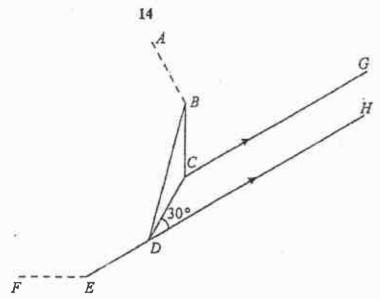
18 The diagram below shows a sequence of patterns made of squares of sides 1 unit each.



(a) Study the pattern and find the values of x and y.

| Stage, n | Shaded area, S | Perimeter, P |  |  |
|----------|----------------|--------------|--|--|
| 1        | 4              | 12           |  |  |
| 2        | 8              | 20           |  |  |
| 3        | 12             | 28           |  |  |
| 4        | x              | у            |  |  |

| Answer (a) | <i>x</i> = | *************************************** |     |
|------------|------------|-----------------------------------------|-----|
|            | <i>y</i> = | *******************                     | [2] |


(b) Express P in terms of n.

| Answer (b) | ) | [1] |
|------------|---|-----|
|------------|---|-----|

(c) Determine if the number 166 would appear in the P column, stating your reasons clearly.

| Answer (c) | ***************** | • • • • • • • • • • • • • • • • • • • • | ***************** |
|------------|-------------------|-----------------------------------------|-------------------|
| ******     | *************     | *********                               |                   |

[1]



In the diagram, ABCDEF is an *n*-sided regular polygon with exterior angle  $CDH = 30^{\circ}$ . The lines CG and DH are parallel to each other. Find

(a) the value of n,

Answer (a) n = ..... [1]

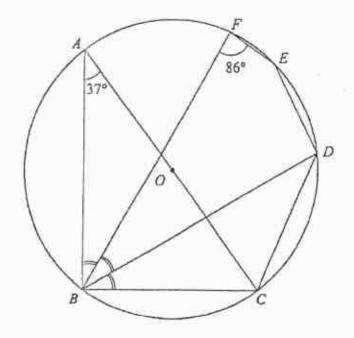
(b) obtuse  $\angle DCG$ ,

Answer (b)  $\angle DCG = \dots$  [1]

(c)  $\angle CBD$ .

(CBD = ..... ° [2]

15  $\xi = \{x : x \text{ is an integer such that } 40 \le x \le 50\}$ 20  $A = \{x : x \text{ is a multiple of 3}\}$  $B = \{x: 2x+5 < 99\}$ (a) Draw a Venn diagram to illustrate this information.


Answer (a)

(c)

[2] [1]

List the elements of  $A' \cap B'$  in set notation. (b) Answer (b) ..... On your Venn diagram, shade the region which represents  $A \cup B'$ . [1]

In the diagram, A, B, C, D, E and F lie on a circle with centre O. AC is the diameter of the circle.  $\angle ABF = \angle DBF = \angle CBD$ .

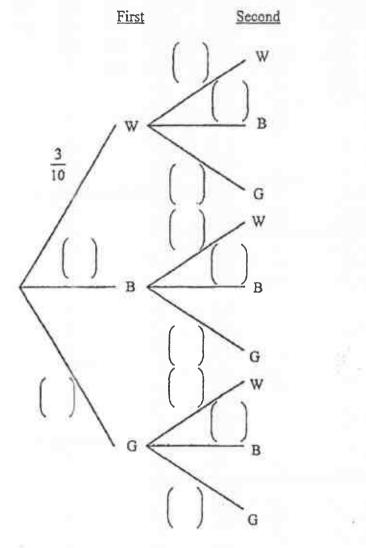


If  $\angle BAC = 37^{\circ}$  and  $\angle BFE = 86^{\circ}$ , find, giving reasons for each answer,

(a)  $\angle ACB$ ,

Answer (a) 
$$\angle ACB = \dots$$
 [2]

(b)  $\angle DCA$ ,


Answer (b) 
$$\angle DCA = \dots$$
 [1]

(c) ∠FED.

|    | Free Tuition Listing @ 99Tutors.SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22 | The staff of a company were asked about their monthly salary. The results are shown in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | the stem-and-leaf diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | 1 010 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 2 055 055 980 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 3 010 010 050 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 4 485 800 800 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 5 600 800 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 6 750 750<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 10 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | 1 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | Key 3   010 means \$3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | (a) Find the mean salary of the staff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | - 100 mm - |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | Answer (a) \$ [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | (b) Find the median salary of the staff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(c)

- 3 pairs of white socks, 2 pairs of black socks and 5 pairs of grey socks are mixed and placed in a drawer. On a particular day, Yan Xin woke up late. He randomly snatched two socks from the drawer, put them on and rushed to school.
  - (a) Complete the following tree diagram to show this information.



- (b) Find, in its simplest form, the probability that Yan Xin has taken
  - (i) a pair of socks of the same colour,

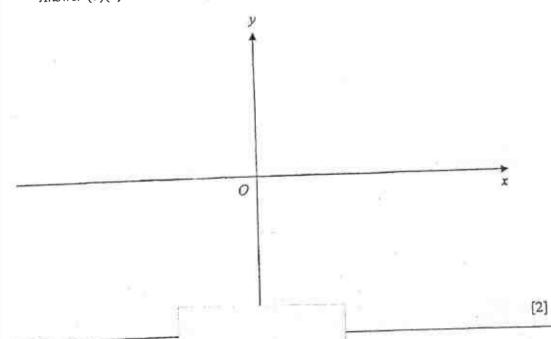
[2]

23 (b) (ii) a pair of socks of different colours,

Answer (b)(ii) .....[1]

Please turn over for Question 24

20
24 (a) By completing the square, express  $x^2 - 6x + 5$  in the form  $(x-a)^2 - b$ .


Answer (a) ..... [2]

(b) Hence,


(i) solve the equation  $x^2 - 6x + 5 = 0$ ,

(ii) sketch the graph of  $y = x^2 - 6x + 5$ .

Answer (b)(ii)



99Tutors.SG | Page 447



In the diagram, ABC is a right-angled triangle such that two of its vertices A and B are the centres of two circles.

The minor arc length  $WY = \frac{3\pi}{2}$  cm, AY = 5 cm and BC = 12 cm.

Show that the length of BY is 3 cm. Answer (a)

[1]

(b) Find the size of the angle XAY in radians.

Answer (b)  $\angle XAY =$  [2]

99Tutors.SG | Page 448

|      |         |         |   |          | _    |
|------|---------|---------|---|----------|------|
| Free | Tuition | Listing | @ | 99Tutors | s.SG |

25 (c) Hence, find the area of the shaded region.

END OF PAPER



### XINMIN SECONDARY SCHOOL

### Mid-Year Examination 2017

| CANDIDATE NAME |              |
|----------------|--------------|
| CLASS          | INDEX NUMBER |

#### **MATHEMATICS**

4048/2

Paper 2

2 May 2017

Secondary 4 Express / 5 Normal (Academic)

2 hours and 30 minutes

Setter

: Mr Bennett Lim

Vetter

: Mrs Vivien Tay Moderator: Mrs Sabrina Phang

Additional Materials: Writing Paper; Graph Paper (1 sheet)

#### READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact. give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

| Errors       | Qn No. | Errors          | Qn No. |
|--------------|--------|-----------------|--------|
| Accuracy     |        | Simplification  |        |
| Brackets     |        | Units           | - 20   |
| Geometry     |        | Marks Awarded   |        |
| Presentation |        | Marks Penallsed | nie &  |

For Examiner's Use 100

Parent's/Guardian's Signature:

2

Mathematical Formulae

Compound Interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^8$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Answer all the questions.

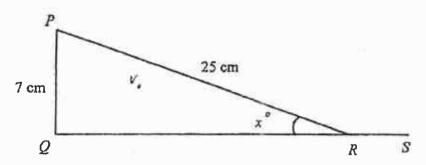
1. Solve the equation  $\frac{3}{x-5} - 5 = \frac{2x}{3-x}$ . [4]

- 2. The Hangzhou-Changsa High-speed Railway runs at a speed of 350 km/h and covers a distance of 933 km between the two cities.
  - (a) Find the speed of the train in m/s.

[2]

(b) Calculate the time taken for the train ride, giving your answer in hours and minutes, correct to the nearest minute.

[2]


3. (a) On 12 September 2013, Tyler invested some money in a bank that pays simple interest at a rate of 3% per annum. He received \$573.75 in total interest on 12 December 2015. How much money did Tyler invest in the bank?

[2]

(b) Tyler also invested \$12 000 in another bank that pays compound interest at a rate of 2.25% per annum compounded half-yearly. How much money will Tyler get back at the end of 5 years?

[2]

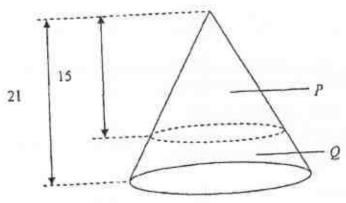
4.



PQR is a right-angled triangle in which  $\angle PRQ = x^{\circ}$ , PQ = 7 cm and PR = 25 cm. The point S lies on QR produced. Write down, as a fraction, the value of

(a) cos ∠PRS,

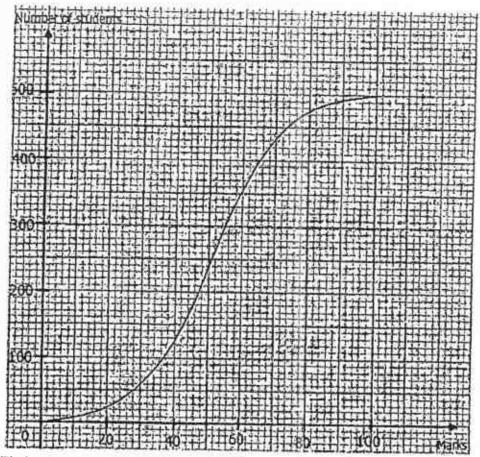
[2]


(b)  $\tan(90-x)^{\circ}$ ,

[1]

(c)  $\sin(180-x)^{\circ}$ .

[1]

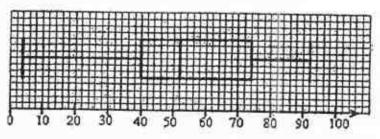

5. The following diagram shows an inverted solid cone that is cut up into 2 sections, P and Q, such that section P is a cone similar to the original cone. The height of cone P is 15 cm and the height of the original cone is 21 cm.



- (a) If the curved surface area of cone P is 250 cm<sup>2</sup>, calculate the curved surface area [2] of the original cone.
- of the original cone.

  (b) Calculate the ratio of the volume of the original cone to the volume of cone P. [1]
- (b) Calculate the ratio of the volume of cone P in terms
  (c) If the volume of section Q is v cm³, calculate the volume of cone P in terms of v.
- 6. The position vector of point A is  $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$  and  $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ .
  - (a) Find  $\overrightarrow{AB}$ .
  - (b) Find the coordinates of B. [2]
  - (c) Given that  $\overrightarrow{CD}$  is parallel to  $\overrightarrow{BA}$  and  $\overrightarrow{CD} = \begin{pmatrix} k \\ 13.6 \end{pmatrix}$ , find the value of k. [3]

7. The cumulative frequency curve below illustrates the marks obtained, out of 100, by 500 students in XMSS Mid-Year Examination.



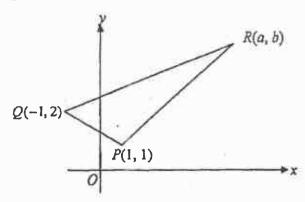

- (a) Find
  - (i) the median mark.

[1]

(ii) the interquartile range,

- [2]
- (iii) the percentage of students who scored less than 50 marks.
- [2]
- (b) Given that 15% of students scored a distinction, find the minimum marks students must score to get a distinction.
- [1]
- (c) The same 500 students sat for their Preliminary Examination. The box and whiskers diagram below illustrates the marks obtained.




- (i) Which examination was more difficult? Give a reason for your answer.
- (ii) Which examination had more students scoring more than 70 marks? Explain your answer.

[1]

[1]

[Turn over

8. The figure shows a triangle PQR with P(1,1), Q(-1,2) and R(a,b). The gradient of PQ, PR and QR are -2n, 2n and n respectively.



Find ·

- (a) the length of PQ,
  (b) the value of n,
  (c) the coordinates of R,
  (d) the equation of line QR.
- 9. (a) It is given that  $A = \begin{pmatrix} 2 & 2 \\ -4 & 6 \end{pmatrix}$  and  $B = \begin{pmatrix} 1 & 5 \\ 0 & -1 \end{pmatrix}$ .

Find

(i) matrix 
$$P$$
 if  $P = B^2$ , [1]

(ii) matrix 
$$Q$$
 if  $A + 2Q = 2B$ . [3]

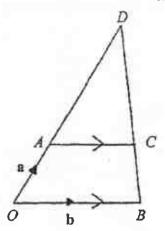
(b) A tour agency records the weekly average number of tour packages to Japan and Korea sold in the months of May and June in 2016.
In May 2016, 25 Japan tour packages and 32 Korea tour packages were sold weekly. In June 2016, 30 Japan tour packages and 40 Korea tour packages were sold weekly. This information can be represented by the matrix

Japan Korea

$$L = \begin{pmatrix} 25 & 32 \\ 30 & 40 \end{pmatrix} \text{ May}$$

It is assumed that there are 4 weeks in each month.

(i) The prices of the Japan and Korea tour packages in 2016 were \$690 and \$900 respectively. Represent the prices of the tour packages by a 2×1 column matrix N.


[1]

- (ii) Evaluate the matrix R = 4LN. [2]
- (iii) State what the elements of R represent. [1]
- (iv) The tour agency decides to offer a discount on the tour packages bought in May and June 2017. The agency estimated a 30% increase and 60% increase in the sales of the Japan tour packages and Korea tour packages respectively compared to 2016.

By using matrix multiplication involving L, calculate the total estimated number of Japan and Korea tour packages sold weekly in May 2017 and June 2017 respec

[2]

10. In the diagram, OACB is a trapezium where AC is parallel to OB. The lines OA and BC are produced to the point D such that  $\frac{OA}{AD} = \frac{1}{2}$ .



(a) Given that  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ , express, as simply as possible, in terms of a and/or  $\mathbf{b}$ ,

(i)  $\overrightarrow{BD}$ ,

[1]

(ii) 
$$\overrightarrow{OC}$$
.

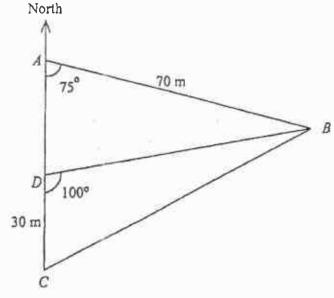
[2]

- (b) Given that  $\overrightarrow{OE} = 3a + 2b$ ,
  - (i) state the name of the quadrilateral ODEB,

[1]

(ii) explain why O, C and E lie in a straight line.

[2]


- (c) Find
  - (i) area of  $\triangle ADC$  area of  $\triangle ODB$

[2]

(ii) area of  $\triangle ODB$  area of quadrilateral ODEB

[3]

11. In a laser tag enclosure, A, B, C and D are points on level ground, with A due north of C and D.  $\angle BAD = 75^{\circ}$ ,  $\angle BDC = 100^{\circ}$ , AB = 70 m and CD = 30 m.



- (a) Show that the length of BD = 68.66 cm, correct to 2 decimal places. [2]
- (b) Calculate
  - (i) the bearing of D from B, [1]
  - (ii) the length of CB, [2]
  - (iii) the area of  $\triangle ABD$ . [2]

In a game, Mario at point B ran along the path BA towards point A at a speed of 8 m/s. Sonic at the top of a 20-metre high guard tower at point D spotted Mario at point B.

He fired a shot that hit Mario when he was closest to the guard tower.

Assume that the time taken by the shot to hit the target from the time it was fired was negligible.

- (c) Find
  - (i) the angle of depression of Mario from Sonic when the shot was fired, [3]
  - (ii) the time that elapsed from the instant Sonic spotted Mario at point B to the instant Sonic fired the shot. [2]

#### 12. Answer the whole of this question on a sheet of graph paper.

The speed, v, in metres per second of a toy car on a race track propelled by a spring launcher is given by  $v = 5 + 4t - t^2$ , where t is the time in seconds. The table below shows the corresponding values of t and v.

| 1 | 0 | 1 | 1.5  | 2.5  | 4 | 5 |
|---|---|---|------|------|---|---|
| ν | 5 | 8 | 8.75 | 8.75 | 5 | 0 |

(a) Draw the graph of  $v = 5 + 4t - t^2$  for  $0 \le t \le 5$ . Use a scale of 2 cm to 1 s on the horizontal t-axis and 2 cm to 1 m/s on the vertical v-axis.

[3]

(b) Use your graph to find the maximum speed reached by the car.

[1]

(c) (i) By drawing a tangent, find the gradient of the graph at the point when t = 3.5 s.

[2]

(ii) Use your answer to c(i) to explain what was happening to the car at t = 3.5 s.

[1]

(d) (i) By adding a suitable line to your graph, solve  $4t-t^2-2=0$ .

[4]

(ii) What do the solutions represent?

[1]

13. Mr Mah is a motorcycle shop owner in Singapore who sells brand new motorcycles. He is interested in importing the brand new Kawasaki Z100SX motorcycle from Japan. The total costs to be incurred for importing the motorcycles to Singapore, include the amount payable to the manufacturer, shipping costs, government taxes and duty.

Information that Mr Mah needs is on the following page. Mr Mah is interested in importing 20 motorcycles to sell.

- (a) Calculate
  - (i) the cost of each motorcycle payable to the manufacturer,

[1]

(ii) the shipping and insurance cost of each motorcycle.

[2]

Mr Mah targets a profit of 15% of his total costs incurred.

Mr Mah needs to decide how much he should sell each motorcycle.

(b) Suggest a sensible selling price for each motorcycle.

Justify your proposed selling price with a concluding statement.

[7]

| Motorcycle Specific | ations            |
|---------------------|-------------------|
| Motorcycle Model    | Kawasaki Z1000 SX |
| Year                | 2017              |
| Weight              | 228 kg            |

| Cost Payable to Manufac | turer     |
|-------------------------|-----------|
| Price per Unit (S\$)    | S\$18,250 |
| Discount for purchases: | 2.50/     |
| > 9 units               | 2.5%      |
| > 19 units              | 5.0%      |
| > 29 units              | 7.5%      |

| Net weight (kg) | Cost (SS) |
|-----------------|-----------|
| < 2,000         | 3,250     |
| 2,000 - 3,000   | 4,000     |
| 3,001 – 4,000   | 4,750     |
| 4,001 – 5,000   | 5,500     |
| 5,001 – 10,000  | 6,000     |
| > 10,000        | 6,500     |

The following is extracted from the Singapore Land and Transport Authority (LTA1) website.

## TAX STRUCTURE FOR MOTORCYCLES & SCOOTERS

| Registration Fee <sup>2</sup> (RF) | \$\$140                                       |          |
|------------------------------------|-----------------------------------------------|----------|
|                                    | Tiered Rate:                                  | ARF Rate |
| Additional Registration f          | First S\$5,000                                | 15%      |
| Fee (ARF)                          | Next S\$5,000<br>(i.e. S\$5,001 to S\$10,000) | 50%      |
|                                    | Above S\$10,000                               | 100%     |
| Excise Duty                        | 12% of OMV                                    |          |

LTA is responsible for planning, operating, and maintaining Singapore's land transport infrastructure and systems.

2.3 The RF and ARF are government taxes to be paid by the importer for the registration of the motorcycles for sale in Singapore.

4 OMV (Open Market Value) - Refer

5 It is a tax on the cost paid to the ma

acturer of the motorcycle.

$$(5)$$
  $\frac{8}{270^3}$ 

$$17a) P = \frac{26}{Q^2 + 1}$$

$$23 \text{ hi}) \frac{33}{95}$$

$$24a) (\chi -3)^2 -4$$

(a) 
$$(3a-7)(c-66)$$

$$6) \quad v = \frac{uf}{u-f}$$

(88a) 2.24 b) 
$$\epsilon$$
  $n = \frac{1}{4}$   
c)  $R(7,14)$  d)  $4y = x + 9$   
(10) (10) (11) (24)  
bi)  $N = \begin{pmatrix} 690 \\ 900 \end{pmatrix}$  (11) (184 200)  
(11) (83.7)  
(10) (83.7)  
(10) (83.7)  
(10) (83.7)  
(10) (13)  $60 = 300$   
(11)  $60 = 300$   
(11)  $60 = 300$   
(11)  $60 = 300$   
(11)  $60 = 300$   
(11)  $60 = 300$   
(12)  $60 = 300$   
(13)  $60 = 300$   
(14)  $60 = 300$   
(15)  $60 = 300$   
(16)  $60 = 300$   
(17)  $60 = 300$   
(17)  $60 = 300$   
(18)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 = 300$   
(19)  $60 =$ 

[Turn over



Setter: Mr Eric Koh

# YUSOF ISHAK SECONDARY SCHOOL PRELIMINARY EXAMINATION 2017

| THE FIRST PRESIDENT SCHOOL THE FIRST PRESIDENT S |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CANDIDATE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |
| CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INDEX<br>NUMBER              |
| MATHEMATICS 4 Express / 5 Normal (Academic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4048 / 01                    |
| Paper 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 <sup>th</sup> August 2017 |
| Candidates answer on the Question Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 hours                      |
| READ THESE INSTRUCTIONS FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
| Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use a HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters or correction fluid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| Answer all questions. If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not three significant figures. Give answers in degrees to one decimal place. For $\pi$ , use either your calculator value or 3.142, unless the question requires the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| At the end of the examination, fasten all your work securely together.  The number of marks is given in brackets [ ] at the end of each question or page.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | art question.                |
| The total number of marks for this paper is 80.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For Examiner's Use           |
| This document consists of 17 printed pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |

99Tutors.SG | Page 468

- 3 -

Answer all the questions.

1. Evaluate the following, leaving your answer correct to four significant figures.

$$\frac{-3.3^2 \times \sqrt{2^3}}{\left[1 - 8(7 + 7^{-1})\right]^2} \times \sin\frac{\pi}{3}$$

| Answer |  |  |  |  |  |  |  |  |  |  |   | ٠ |   |   |   | ſ   | 1 | -   |
|--------|--|--|--|--|--|--|--|--|--|--|---|---|---|---|---|-----|---|-----|
|        |  |  |  |  |  |  |  |  |  |  | - | • | • | • | ۰ | - 8 | - | - 1 |

2. The value of a house decreased by 14.3% between 2000 and 2016. In 2000 the house was valued at \$850 000. Find its value in 2016.

3. A container is unloaded by 6 men in 24 minutes.

Given that all the men work at the same rate, find how long it would take 9 men to unload the same container.

Answer ..... minutes [2]

**©YI THE FIRST PRESIDENT SCHOOL** 

4 EXPRESS/5 Normai (Academic)

-4-

- 4. A car manufacturer states that a particular car
  - Uses 5 litres of fuel in travelling 100 km
  - produces 115 grams of CO<sub>2</sub> for each kilometer travelled.

Use this information to calculate the mass of  $CO_2$  produced by 1 litre of fuel. Give your answer in kilograms.

Answer ..... kg [2]

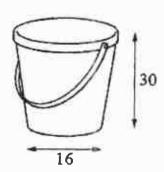
- 5. (a) Factorise completely  $50 p^2 72 q^2$ .
  - (b) Solve the equation  $\frac{x-2}{4} \frac{x+1}{3} = 1$ .
  - (c)  $T = 2\pi \sqrt{\frac{h}{g}}$ . Make h the subject of the formula.

| Answer (a) | [2 | 2] |
|------------|----|----|
|------------|----|----|

PRELIMINARY EXAMINATION 2017

CYLTHE FIRST PRESIDENT SCHOOL

4 EXPRESS/5 Normal (Academic)


-5-

6. Similar buckets are available in two sizes.

The larger bucket has height 30 cm and base diameter 16 cm.

The small bucket has base diameter 8 cm.





- (a) Find the height of the small bucket.
- (b) Given that the small bucket has volume 850 cm<sup>3</sup>, find the volume of the large bucket.

7. The temperature inside a greenhouse is  $p^*C$ , and outside it is  $-q^*C$ , where p and q are positive integers.

Write down an expression for

- (a) the difference between the two temperatures,
- (b) the mean of the two temperatures.

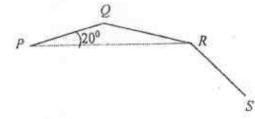
|                               | Answer (a) | °C                      | []  |
|-------------------------------|------------|-------------------------|-----|
|                               | Answer (b) | °C                      | [1] |
|                               | PRELI      | MINARY EXAMINATION 2017 |     |
| 4 EXPRESS/5 Normal (Academic) | E-4        |                         |     |

**©YI THE FIRST PRESIDENT SCHOOL** 

- 6 -

8. Green Line trains run every 10 minutes.

Red Line trains run every 20 minutes.


Purple Line trains run every 35 minutes.

One train from each Line leaves the city centre at 09 00.

After how many minutes will trains from all three Lines next leave the city centre in the same time?

..... minutes [2] Answer

- 9. PQ, QR and RS are adjacent sides of a regular polygon. Given that  $\angle RPQ = 20^{\circ}$ , calculate
  - the exterior angle of the polygon, (a)
  - the number of sides of the polygon, (b)
  - $\angle PRS$ . (c)



Answer (a) .....[1]

(b) ......[1]

(c)  $\angle PRS = [1]$ PRELIMINARY EXAMINATION 2017

4 EXPRESSIS Normal (Academic)

©YI THE FIRST PRESIDENT SCHOOL

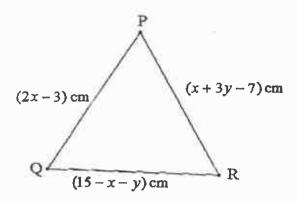

-7-

10. P is directly proportional to  $Q^2$ .

If Q is increased by 200%, find the percentage increase of P.

11. Solve the inequalities  $\frac{10x+8}{3}+2<5+4x<8$ .

Show your solution on the number line below.




[3]

©YITHE FIRST PRESIDENT SCHOOL

- 8 -

12. The diagram shows an equilateral triangle PQR with PQ = (2x-3) cm, QR = (15-x-y) cm and PR = (x+3y-7) cm.



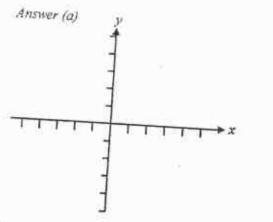
- (a) Using the information shown in the diagram, write down and simplify two simultaneous equations in x and y.
- (b) Solve these equations to find the value of x and the value of y.

| Answer | (a) | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  | <br> |  |
|--------|-----|------|------|------|------|--|--|--|--|--|--|--|------|--|

(b) 
$$x = \dots y = \dots [2]$$

-9-

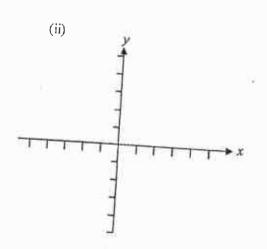
13. The information shows the common injuries children suffer in the United States of America (USA) in 2013.


Common in juries children suffer
Top traumatic orthopedic in juries for which children are hospitalized:

14.7%
Lower arm
Upper arm
Upper arm
21.5%
21.7%

|     |         | tarior.                                            | By Shannon I                            | Relify and Frank Forupa, USA TODAY                 |       |
|-----|---------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|-------|
|     | (a) E   | xplain one way in whic                             | h the information is r                  | misleading.                                        |       |
|     | Answ    | er                                                 |                                         |                                                    |       |
|     |         |                                                    |                                         |                                                    |       |
|     |         |                                                    |                                         | ······································             | [2]   |
|     | (b) Si  | uggest one recommend                               | ation to overcome th                    | ne misleading information provided.                |       |
|     | Answ    | er                                                 | • • • • • • • • • • • • • • • • • • • • | •••••                                              |       |
|     |         |                                                    |                                         |                                                    |       |
|     |         |                                                    |                                         | ***************************************            |       |
| 14. | A ma    | p is drawn to a scale of<br>An airport runway is r | 1:50 000.<br>represented by a line      | of length 5.8 cm on the map. Calculate, in km.     | the   |
|     |         | actual length of the ru                            | nway.                                   |                                                    |       |
|     | (b)     | The actual area of the                             | airport is 6.5 km². Ca                  | alculate, in square centimetres, the area on the r | nap   |
|     |         | which represents the a                             | irport.                                 |                                                    |       |
|     |         |                                                    |                                         |                                                    |       |
|     |         |                                                    |                                         |                                                    |       |
|     |         |                                                    |                                         |                                                    |       |
|     |         |                                                    |                                         |                                                    |       |
|     |         |                                                    |                                         | Answer (a) kr                                      | n[1]  |
|     |         |                                                    | P                                       | (b) cm                                             | 2 [2] |
|     | ©YI THE | FIRST PRESIDENT SCHOOL                             | In the second                           | PRELIMINARY EXAMINATION 2017                       |       |

-10 -


15. (a) Sketch the graph of v = (1-x)(x-3)



[2]

- (b) (i) Express  $x^2 4x + 5$  in the form  $(x a)^2 + b$ .
  - (ii) Sketch the graph of  $y = x^2 4x + 5$ .

Answer (b)(i) 
$$x^2 - 4x + 5 =$$
 [1]



[2]

-11=

16. A company produces three types of soft drinks in 2 different sizes.

The following matrices shows the weekly production, in thousands of litres and the cost per litre in cents, for producing soft drinks of any flavour in 2 different sizes.

Raspberry Orange Lemon

(a) Find (45 60) $\begin{pmatrix} 15 & 26 & 18 \\ 14 & 24 & 16 \end{pmatrix}$ .

| Answer (a) | <br>[2] |
|------------|---------|
|            |         |

(b) Explain what your answer to (a) represents.

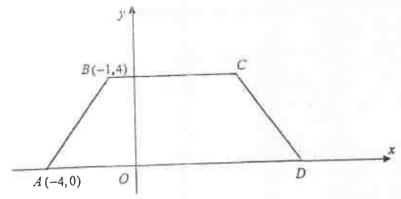
| Answer (b) |     |
|------------|-----|
|            | [1] |

17.

$$\varepsilon = \{x : x \text{ is an integer and } 0 < x \le 15\}$$

$$\Lambda = \{x : x \text{ is a prime number}\}\$$

$$B = \{x : x \text{ is an integer divisible by 3}\}$$


Draw a Venn diagram to illustrate this information, showing elements in each set clearly.

Answer &

**GYI THE FIRST PRESIDENT SCHOOL** 

- 12 -

18. ABCD is a trapezium in which BC = 8 units. A is the point (-4,0) and B is the point (-1,4). The area of the trapezium is 50 square units.



(a) Calculate the length of AB.

|            | C13     |
|------------|---------|
| Acres Carl | <br>[1] |
| angwar (B) | <br>    |

(b) Find the coordinates of C.

(c) Find the coordinates of D.

(d) Write down the value of  $\cos \angle ABC$ .

Answer (d) 
$$\cos \angle ABC = \dots$$
 [1]

OYI THE FIRST PRESIDENT SCHOOL

MATHEMATICS PAPER 1 4 EXPRESS/5 Normal (Academic)

- 13 -

| 9. | Two sep  | uction line produces lo<br>parate production lines<br>e which had the follow | , $P$ and $Q$ , were ope |                  | ms each.<br>es were taken as samples fron | n   |
|----|----------|------------------------------------------------------------------------------|--------------------------|------------------|-------------------------------------------|-----|
|    | Line P   | 502, 487, 488, 490, 5                                                        | 07, 500, 498, 491, 5     | 505, 490         |                                           |     |
|    | Line $Q$ | 510, 501, 482, 489, 4                                                        | 96, 506, 478, 489, 5     | 503, 492         |                                           |     |
|    | (a) Find | the mean mass of the                                                         | products from both       | lines.           | ور                                        |     |
|    |          |                                                                              |                          |                  |                                           |     |
|    |          |                                                                              |                          | Answer (a)       | Line <i>P</i>                             | [1] |
|    |          |                                                                              |                          |                  | Line <i>Q</i>                             | [1] |
|    | (b) Find | the standard deviation                                                       | of the product mass      | from both lines. |                                           |     |
|    |          |                                                                              | ,                        |                  |                                           |     |
|    |          |                                                                              |                          |                  |                                           |     |
|    |          |                                                                              |                          |                  |                                           |     |
|    |          |                                                                              |                          |                  |                                           |     |
|    |          | 20                                                                           |                          | Answer (b)       | Line <i>P</i>                             | [1] |
|    |          |                                                                              |                          |                  | Line Q                                    | [1] |
|    |          |                                                                              |                          |                  |                                           |     |
| (  | respec   | eaf from each line is pictively, which line did<br>y your decision with e    | the lighter loaf like    |                  | grams and 485 grams                       |     |
| 1  | Answer   | •••                                                                          |                          |                  |                                           |     |
|    |          |                                                                              |                          |                  | ***************************************   |     |
|    | 100      |                                                                              |                          | ************     |                                           | [2] |
|    |          |                                                                              | MATHEMATICS PA           | 0.50             | DDEL ISSINIADY EVASSISIATION 2017         |     |

4 EXPRESS/5 Normal (Academic)

- 14 -

20. On a plate there are ten biscuits.
Four of the biscuits are round and six of the biscuits are square.
Joe chooses a biscuit at random from the plate and eats it.
He then chooses another biscuit at random from the plate.
The tree diagram shows the possible outcomes and some of the probabilities.

First biscuit

Second biscuit

round

square

round

square

square

[2]

- (a) Complete the tree diagram.
- (b) Calculate the probability that Joe chooses
  - (i) two round biscuits,
  - (ii) one round biscuit and one square biscuit.

Answer (b)(i) ......[1]

(b)(ii) ......[2]

GYI THE FIRST PRESIDENT SCHOOL

MATHEMATICS PAPER 1 EXPRESS/5 Normal (Academic)

- 15 -

21. (a) Simplify the expression  $(3x^2y)^3 \times (5x^{-3}y^4)^{-1}$ , giving your answer in positive index notation.

| Answer | (a) | ********************** | [2] |
|--------|-----|------------------------|-----|
|--------|-----|------------------------|-----|

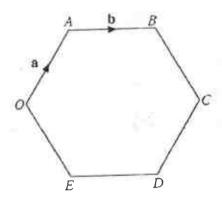
**(b)** Solve  $\left(\frac{1}{8}\right)^{-\frac{2}{3}} \times 32^{\frac{3}{5}} = 2^{p-2} \div 2^2$ .

(c) Express the number 0.0040589 in standard form.

**©YITHE FIRST PRESIDENT SCHOOL** 

MATHEMATICS PAPER 1 4 EXPRESS/5 Normal (Academic)

- 16 -


22.

- (a) Given that  $p = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$  and  $q = \begin{pmatrix} m \\ 2 \end{pmatrix}$ , find
  - (i) |p|
  - (ii) the value of m such that p + q is parallel to the y-axis.

Answer (a)(i) .....units [1]

Answer (a)(ii).....[1]

(b) In the diagram, OABCDE is a regular hexagon.  $\overrightarrow{OA} = \mathbf{a}$ ,  $\overrightarrow{AB} = \mathbf{b}$ .



- (I) Express the following vectors, as simply as possible, in terms of a and b.
- (i)  $\overrightarrow{OC}$ ,
- (ii)  $\overrightarrow{BC}$ ,
- (iii)  $\overrightarrow{AD}$ .
- (II) What type of quadrilateral is ABCD? Justify your answer using vectors.

| Answer (b)(I)(i). |  | 1 |
|-------------------|--|---|
|-------------------|--|---|

- (ii) ......[1]
- (iii) ......[1]

Anguar (11)

- 17 -

| 23. | All | construction | lines | must | be | clearly | shown. |
|-----|-----|--------------|-------|------|----|---------|--------|
|-----|-----|--------------|-------|------|----|---------|--------|

- (a) Construct, and label clearly, the quadrilateral ABCD in which AB = BC = CD, ∠ABC = 70° and ∠BAD = 100°.
   The line AB has been drawn for you.
- (b) On the quadrilateral, construct

  (i) the bisector of angle ABC, [1]
  - (ii) the perpendicular bisector of the line BC. [1]
- (c) The two bisectors in (b) intersect at the point P. Measure and write down the length of BP, in cm, correct to 1 decimal place.



Answer (c) .....[1]

End of Paper

CYLTHE FIRST PRESIDENT SCHOOL

MATHEMATICS PAPER 1 4 EXPRESSIS Normal (Academic)



# YUSOF ISHAK SECONDARY SCHOOL PRELIMINARY EXAMINATION 2017

| THE FIRST PRESIDENT SCHOOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CANDIDATE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CLASS INDEX NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mathematics 4048/02<br>4 Express / 5 Normal Academic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Paper 2 18 August 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 hours 30 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Additional Materials: Answer paper Graph Paper (1 sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| READ THESE INSTRUCTIONS FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Answer all questions. If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks. You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of $\pi$ . The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is $\underline{100}$ . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| This document consists of 12 printed pages.  Setter: Mr Eric Koh  [Turn over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

99Tutors.SG | Page 485

[2]

Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where is  $\theta$  in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

[3]

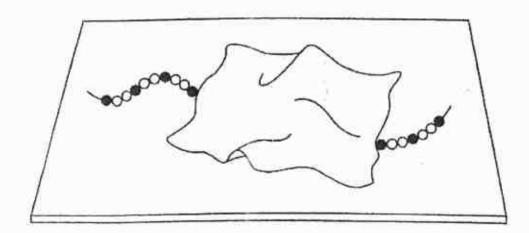
1. (a) Solve the equation  $(1+4x)^2 = 81$ .

[2]

[2]

- (b) Express as a single fraction in its simplest form  $\frac{1}{2x+3} + \frac{3}{2x-1}$ (c) Find the integers x such that 2x+1 < 9 < 3x+1.
- [2]

(d) Factorise completely  $a^2 + 9b^2 - 6ab - 2a + 6b$ .


- [2]
- 2. (a) A string of beads on a table is partly covered by a piece of cloth as shown. There are 2 white beads between every 2 black beads.

  Altogether, there are 14 black beads.

  John guessed that the number of white beads was 28.

  Do you agree? Justify your decision with calculations.





- (b) It is given that 3b = 4a and 2c = 5a.
- (i) Find a:b:c.

[2]

(ii) If a + b + c = 10, find b.

[3]

[4]

- 3. John bought x light bulbs for \$25.
  - (a) Write down an expression in terms of x for the price, in dollars, he had paid for each light bulb.
  - (b) He wanted to sell each light bulb at a profit of 50 cents.

    [1] Show that his selling price for each light bulb was  $\$ \frac{50 + x}{2x}$ .
  - (c) John managed to sell 8 light bulbs at this price. Write down an expression, in terms of x, for
    - (i) the total amount of money, in dollars, he had received for selling the 8 light bulbs.
    - (ii) the number of light bulbs that remained unsold.
  - (d) John sold the remaining light bulbs at \$2 each.
    Write down an expression in terms of x for the total amount of money, in dollars, he had received from selling these light bulbs.
  - (e) John received \$46 altogether. Form an equation in x and show that it reduces to  $x^2 - 29x + 100 = 0$ . [3]
  - (f) Hence or otherwise, find the number of light bulbs John had bought. [3]

[5]

4.

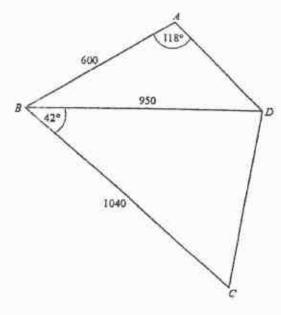



Figure 1

Figure 1 shows the quadrilateral ABCD. Quadrilateral ABCD represent a level enclosed area for the rabbits with a path BD.

AB = 600 m, BC = 1040 m, BD = 950 m and  $\angle CBD = 42^{\circ}$  and  $\angle BAD = 118^{\circ}$ .

(a) Calculate

(i)  $\angle ABD$ , [4]

(ii) the length of CD, [4]

(iii) the shortest distance from C to BD. [2]

(b) An eagle is flying directly above the path BD at a height of 500 m.

Calculate the greatest angle of depression of the point C as seen by the eagle. [2]

[6]

| 5. | Р, (  | Q, $R$ , $S$ and $T$ are the differ                                             | rent shaped blocks o            | f ice stored in the r                       | efrigerated enclose  | d room. |
|----|-------|---------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|----------------------|---------|
|    |       | At 10 p.m. on Monday the At the end of each 24 hou at the start of that period. | ir period, the volum            | iled, and the blocks<br>e of each block was | started to melt.     | volume  |
|    | (i)   | Block P has a volume Calculate its volume at                                    | t 10 p.m. on Wedne              | sday.                                       | Ð                    | [2]     |
|    | (ii)  | Block $Q$ had a volume Calculate the volume a                                   | t 10 p.m. on the pre            | vious day.                                  |                      | [2]     |
|    | (iii) | Showing your working volume at 10 p.m. on M                                     | g clearly, find on w<br>Aonday. | hich day the volun                          | ne of R was half its | [2]     |
|    | (b) A | At 10 p.m. on Monday, Blo<br>Calculate                                          | ock S was a hemispl             | nere with radius 18                         | cm.                  |         |
| (  | (i)   | its volume,                                                                     |                                 |                                             |                      | [2]     |
| (  | (ii)  | its total surface area.                                                         | 7                               | - 1                                         | E,                   | [2]     |
| (  | 1.5   | s block T melted, its shape<br>had a volume of 5000 cm                          | when its height W               | as 12 cm.                                   | its original shape.  |         |
|    | C     | alculate its height when its                                                    | s volume was 1080               | cm³.                                        |                      | [2]     |

[7]

6. Figure 2A shows the cross-section of an underground train tunnel.

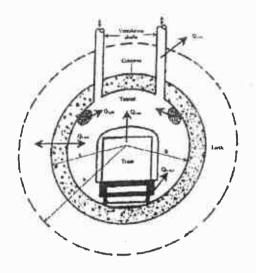



Figure 2A

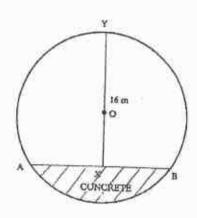



Figure 2B

With reference to Figure 2B.

AB represents the horizontal track surface, where the shaded region beneath it is covered with concrete.

Arc AYB represents the metal ceiling of the tunnel.

O is the centre of the circle with radius r metres.

X is the midpoint of AB and its vertically below Y.

Given that AB = XY = 16 m.

- (a) Calculate
  - (i) the value of r,

[3]

(ii)  $\angle AOX$ ,

[1]

- (iii) the volume of concrete used for the tunnel, given the tunnel is 900 m long.
- [3]
- (b) A similar model of the tunnel is made. The radius of the model's cross-section is 5 cm.

Calculate the curved surface area of the model's ceiling.

[3]

(c) A 130 metre long train travelling at a speed of 50 km/h entered the tunnel.
 Calculate the time, in minutes and seconds, needed for the train to completely travel out of the tunnel.

©YI THE FIRST PRESIDENT SCHOOL



[8]

7.

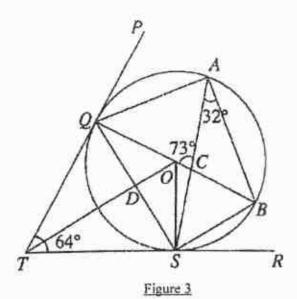



Figure 3 shows the circle ABSQ. ABSQ has centre O. TQP and TSR are tangents to the circle.  $\angle QTS = 64$ ,  $\angle SAB = 32^{\circ}$  and  $\angle ACQ = 73^{\circ}$ .

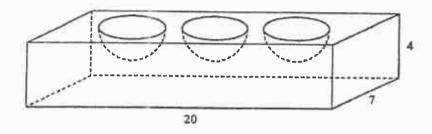
- (a) Joseph commented that there are at least three right angles in Figure 3.

  Justify his comment with workings and reasons.

  [3]
- (b) Calculate

(iv)

 $\angle BSR$ .


(i)  $\angle SQB$ , [1] (ii)  $\angle TOQ$ , [2] (iii)  $\angle ABQ$ , [2]

[2]

[9]

8. A wooden cuboid has length 20 cm, width 7 cm and height 4 cm.

Three hemisphere, each of radius 1.5 cm, are hollowed out of the top of the cuboid, to leave the block as shown in the diagram.



(a) Calculate the volume of wood in the block.

[2]

(b) The four vertical sides are painted pink.

Calculate the total area that is painted pink.

[1]

- (c) The inside of each hemispherical hollow is painted white. The flat part of the top of the block is painted green. Calculate the total area that is painted
  - (i) white,

[1]

(ii) green.

[1]

[10]

9. Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation  $y = 4x + \frac{60}{x} - 30$ . Some corresponding values of x and y are given in the following table.

| x | 1.5 | 2 | 2.5 | 3 | 4 | 5 | 7   | 8   |
|---|-----|---|-----|---|---|---|-----|-----|
| y | 16  | а | 4   | 2 | 1 | ь | 6.6 | 9.5 |

(a) Calculate the values of a and b.

[1]

- (b) Using the scales of 2 cm to represent 1 unit of x and 1 cm to represent 1 unit of y, draw the graph of  $y = 4x + \frac{60}{x} 30$  for the range  $1.5 \le x \le 8$ . [3]
- (c) From your graph, find

(i) the least value of y,

[1]

- (ii) the range of values of x for which  $y = 4x + \frac{60}{x} 30 < 8$ . [2]
- (d) Find, by drawing a tangent, the gradient of the curve when x = 5.

[2]

(e) By drawing a suitable straight line on the same axes, find the solutions of the equation  $3x^2 + 60 - 30x = 0$ . [3]

[11]

10. All employees in Singapore have a compulsory savings known as the Central Provident Fund (CPF).

Each worker is required to save a certain percentage of what he earns each month with the CPF and the employer contributes another percentage of his salary to his CPF account.

The total CPF contribution is then kept into 3 accounts in the proportion as shown in the table below.

Contribution rates from 1 January 2016 for private sector and public sector non-pensionable employees being:

- Singapore Citizen
- SPR\* from the third year of obtaining SPR status
- SPR during the first two years of obtaining SPR status but who has jointly applied with employer to contribute at full employer-full employee rates
- \*SPR (Permanent Resident)

| Employee's age<br>(years) | Contrib<br>(for            | ution Rates from t<br>monthly wages ≥ | Jan 2016<br>8750)    |
|---------------------------|----------------------------|---------------------------------------|----------------------|
| 1500                      | By Employer<br>(% of wage) | By Employee<br>(% of wage)            | Total<br>(% of wage) |
| 55 and below              | 17                         | 20                                    | 37                   |
| Above 55 to 60            | 13                         | 13                                    | 26                   |
| Above 60 to 65            | 9                          | 7.5                                   | 16.5                 |
| Above 65                  | 7 5                        | 5                                     | 12.5                 |

Figure 4A

Allocation rates from 1 January 2016 for private sector and public sector non-pensionable employees

| Employee's age<br>(years) | Alfocatio                    | ion Rates from 1 Jan 2015<br>monthly wages > \$750) |                                    |
|---------------------------|------------------------------|-----------------------------------------------------|------------------------------------|
|                           | Ordinary Account (% of wage) | Special<br>Account<br>(% of wage)                   | Medisave<br>Account<br>(% of wage) |
| 35 and below              | 23                           | 6                                                   | 8                                  |
| Above 35 to 45            | <u> </u>                     | 7                                                   | 9                                  |
| Above 45 to 50            | 19                           | 8                                                   | 10                                 |
| Above 50 to 55            | 15                           | 11.5                                                | 10.5                               |
| Above 55 to 60            | 12                           | 3.5                                                 | 10.5                               |
| Above 60 to 65            | 3.5                          | 2 5                                                 | 10.5                               |
| Above 65                  | 1<br>Fi                      | 1<br>gure 4B                                        | 10.5                               |

**©YI THE FIRST PRESIDENT SCHOOL** 

MATHEMATICS P2
4 Express / 5 Normal Academic

[12]

In October 2016, Mr Ong who is 38 years old, earns \$3000 a month, while his wife, who is 34 years old, earns \$2000 a month.

(a) Calculate Mr Ong's contribution and his employer's contribution to his CPF account monthly. [2]

Both Mr Ong and his wife have just paid the 10% downpayment for their HDB flat which costs \$400 000. They intend to pay the rest over a period of 20 years.

(b) Calculate how much they will have to pay per month for the 20 years. [2]

For a part of the amount they have to pay, the Ongs will use the money from both their Ordinary Accounts, and they will borrow the balance from a bank.

- (c) Show that the amount from both their Ordinary Accounts to be used for the monthly payment of the flat is \$1090. [2]
- (d) Calculate the amount of money they have to borrow from the bank over the period of 20 years.

The Ongs have to pay a simple interest rate of 1.48% for Year 1 and 1.58% thereafter.

(e) Calculate the total amount they have to pay the bank after 20 years. [3]

-End of Paper-

MATHEMATICS P2 4 Express / 5 Normal Academic

YUSOF ISHAK SECONDARY SCHOOL PRELIMINARY EXAMINATION 2017 MATHEMATICS PAPER 1 SEC 4E/5N

#### MARKING SCHEME

| 1    | $\frac{-3.3^2 \times \sqrt{2^3}}{\left[1 - 8(7 + 7^{-1})\right]^5} \times \sin\frac{\pi}{3} = -0.0084628  \text{[sin } \frac{\pi}{3} \text{, radian mode]}$ $= -0.008463 \text{ (4 sig. figures)}$                | Do not accept<br>-0.0001785935<br>(Degree mode)<br>B1 [1] |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 2    | \$850000 × (100-14.3)%<br>= \$728450                                                                                                                                                                              | M1<br>A1 [2]                                              |
| 3    | 24×6<br>16 minutes                                                                                                                                                                                                | M1<br>A1 [2]                                              |
| 4    | 1 litre = 20 km<br>20 km will emit 115 × 20 = 2300 grams of CO <sub>2</sub><br>2.3 kg                                                                                                                             | M1<br>A1 [2]                                              |
| 5(2) | $50 p^{2} - 72q^{2}$ $2(25 p^{2} - 36q^{2})$ $2(5 p - 6q)(5 p + 6q)$                                                                                                                                              | MI<br>Al [2]                                              |
| 5(b) | $ \frac{x-2  x+1}{4} = 1 $ $ \frac{3(x-2)  4(x+1)}{12} = 1 $ $ \frac{3x-6-4x-4}{12} = 1 $ $ -x-10=12 $                                                                                                            | MI<br>A1 [2]                                              |
| 5(c) | $T = 2\pi \sqrt{\frac{h}{g}}$ $\left(\frac{T}{2\pi}\right)^2 = \frac{h}{g}$ $h = g\left(\frac{T}{2\pi}\right)^2 \text{ or } h = \frac{gT^2}{4\pi^2}$                                                              | M1                                                        |
| (2)  | As the two buckets are similar  Height of small bucket = $\frac{8}{16}$ Height of small bucket = $\frac{8}{16}$ Height of small bucket = $\frac{8}{16}$ Height of small bucket = $\frac{8}{16} \times 30 = 15$ cm | B1 [1]                                                    |
| (b)  | $\frac{\text{Volume of large bucket}}{\text{Volume of small bucket}} = \left(\frac{16}{8}\right)^2$ $\frac{\text{Volume of large bucket}}{850} = (2)^3$                                                           | MI                                                        |
|      | Makeuma of home bushes - 8, 050, coop 3                                                                                                                                                                           | A1 [2]                                                    |

ON THE FRET IMPESSION SCHOOL

MATHEMATICS POPER \*

| 7(a)  | p+q                                                                     | B1 [1]       |
|-------|-------------------------------------------------------------------------|--------------|
| 7(b)  | $\frac{1}{2}(p-q)$                                                      | BI [1]       |
| 8     | LCM of 10, 20, 35 = $5 \times 2 \times 2 \times 7$                      | MI           |
|       | = 140<br>After 140 minutes                                              | A1 [2]       |
| 9(a)  | 40°                                                                     | B1 [1]       |
| 9(b)  | 9                                                                       | B1 [1]       |
| 9(c)  | 120*                                                                    | B1 [1]       |
| 10    | $P \alpha Q^2$ $P = k Q^2$ where k is a constant                        |              |
|       | New $P_{NEW} = k (3Q)^2$                                                | MI           |
|       | Percentage increase = $\frac{k(9Q^2 - Q^2)}{kQ^2} \times 100\% = 800\%$ | A1 [2]       |
| 11    | $\frac{10x+8}{3}+2<5+4x<8$                                              |              |
|       | $\frac{10x+8}{3} + 2 < 5 + 4x$ and $5 + 4x < 8$                         | MI           |
|       | 10x + 8 + 6 < 15 + 12x and $4x < 32x > -1 and x < \frac{3}{4}$          |              |
|       | $x > -\frac{1}{2}$                                                      |              |
|       | $\therefore -\frac{1}{2} < x < \frac{3}{4}$                             | Ai           |
|       | 4 + + + + + + + + + + + + + + + + + + +                                 | A1 [3]       |
| 12(a) | 2x-3 = x+3y-7  x-3y = -4  or $2x-3 = 15-x-y  3x+y=18$                   | мі           |
|       | x+3y-7=15-x-y                                                           | A1 [2]       |
|       | 2x + 4y = 22 (Any two of the equations)<br>x + 2y = 11                  |              |
| 12(b) | $x = 5 \qquad y = 3$                                                    | MI<br>A1 [2] |
|       |                                                                         |              |

| 13(a)     | The information did not specify the total of number of children surveyed/population. OR                                                                                                                                      | Any I<br>with explanation                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|           | The information did not specify the information was obtained in one hositpal/all hositpals in the USA. OR  BIG HEADLINE makes you think that 5.3% of children get spinal cord injuries a pretty scary statistic for parents: | B2 [2] To explain why is this important to mention the population of the |
| 13(b)     | For the record, the real figure should be based on the number of injuries per year out of a population of certain number in that country                                                                                     | children surveyed. B1 [1]                                                |
| 14(a)     | 1 . 50 000<br>1 cm represent 0.5 km<br>5 8 cm represent 0.5 x 5 8 = 2.9 km                                                                                                                                                   | B1 (1)                                                                   |
| 14(b)     | $\frac{6.5}{0.25} = 26 \text{ cm}^2$                                                                                                                                                                                         | MI<br>A1 [2]                                                             |
| 15(a)     |                                                                                                                                                                                                                              |                                                                          |
| 15(b)(i)  | $x^2 - 4x + 5 = (x - 2)^2 + 1$                                                                                                                                                                                               | B1 [1]                                                                   |
| 15(b)(ii) |                                                                                                                                                                                                                              | B1 - turning point<br>B1 - y intercept<br>[2]                            |
| 16(2)     | (1515 2610 1770)                                                                                                                                                                                                             | M1<br>A1[2]                                                              |
| 16(b)     | The total weekly costs for Raspberry, Orange and Lemon drinks are                                                                                                                                                            | B1[1]                                                                    |

Prohibite restriction suggests strends

| 17        | E 1,4 7,11 2,13 2 5 2                                                                                                                                                                    | B2<br>B1<br>(one number wrong)                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 18(s)     | Length of $AB = \sqrt{4^2 + 3^2} = 5umits$                                                                                                                                               | B1 [1]                                                                                                                                    |
| 18(b)     | C(7,4)                                                                                                                                                                                   | B1 [1]                                                                                                                                    |
| 18(c)     | $50 = \frac{1}{2}(8+x) \times 4 \Rightarrow x = 17$                                                                                                                                      | MI                                                                                                                                        |
|           | D(13, 0)                                                                                                                                                                                 | A1 [2]                                                                                                                                    |
| 18(d)     | $\cos \angle ABC = -\frac{3}{5}$                                                                                                                                                         | B1 [1]                                                                                                                                    |
| 19(a)     | Mean mass of Line $P = 495.8 \text{ g}$                                                                                                                                                  | B1                                                                                                                                        |
|           | Mean mass of Line $Q = 494.6 \text{ g}$                                                                                                                                                  | B1 [2]                                                                                                                                    |
| 19(b)     | Standard deviation of Line $P = 707 \mathrm{g}$                                                                                                                                          | ВІ                                                                                                                                        |
|           | Standard deviation of Line $Q = 9.92 g$                                                                                                                                                  | B1 [2]                                                                                                                                    |
| 19(c)     | The lighter loaf is likely to come from Q where the mean is lower. The mass of line Q's products are also more varied from their mean value and hence, a higher chance of being lighter. | B1 [2]                                                                                                                                    |
| 20(z)     | $\frac{3}{9}, \frac{6}{9}, \frac{4}{9}, \frac{5}{9}$ oe                                                                                                                                  | B1 for all three correct [1]                                                                                                              |
| 20(b)(i)  | 12 90                                                                                                                                                                                    | FT from their tree<br>diagram<br>IFT [1]                                                                                                  |
| 20(b)(ii) | 48 90                                                                                                                                                                                    | FT from their tree diagram.  B1 for $\frac{24}{90}$ oe FT                                                                                 |
|           |                                                                                                                                                                                          | Seen<br>Or<br>M1 for<br>$\left(\frac{4}{10} \times \frac{6}{9}\right) + \left(\frac{6}{10} \times \frac{4}{9}\right)$<br>oe FT<br>2FT [2] |

| 21(x)                      | $(3x^2y)^4 \times (5x^{-3}y^4)^{-1}$                                                                                                                           |                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                            | $= 27x^6y^3 \times \frac{1}{5}x^3y^{-4}$                                                                                                                       |                                                                                        |
|                            | 10                                                                                                                                                             | MI                                                                                     |
|                            | $=\frac{27x^9}{5y}$                                                                                                                                            | A1 [2]                                                                                 |
| 21(b)                      | $\left(\frac{1}{8}\right)^{-\frac{1}{3}} \times 32^{\frac{1}{5}} = 2^{p-2} \div 2^{2}$                                                                         |                                                                                        |
|                            | 4 × 8 = 2 * 4                                                                                                                                                  | MI                                                                                     |
|                            | $2^{5} = 2^{p-4}$ $p = 9$                                                                                                                                      | A1 [2]                                                                                 |
| 21 (c)                     | $0.0040589 = 4.0589 \times 10^{-3}$                                                                                                                            | B1 [1]                                                                                 |
| 22(a)(i)                   | $ p  = \sqrt{(3)^2 + (4)^2}$                                                                                                                                   |                                                                                        |
|                            | p  = 5 units                                                                                                                                                   | B1 [1]                                                                                 |
| 22(a)(ii)                  | m = -3                                                                                                                                                         | B1[1]                                                                                  |
| 22(I)(b)(i)                | $\overrightarrow{OC} = 2\overrightarrow{AB} = 2\mathbf{b}$                                                                                                     | B1 [1]                                                                                 |
| 22(b)(ii)                  | $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AO} + \overrightarrow{OC}$ $= -\mathbf{b} - \mathbf{a} + 2\mathbf{b}$ $= \mathbf{b} - \mathbf{a}$ | B1 [1]                                                                                 |
| 22(b)(iii)                 | $\overline{AD} = \overline{AB} + \overline{BC} + \overline{CD}$ $= b + b - a - a$ $= 2b - 2a$                                                                  | B1[1]                                                                                  |
| 22(b)(II)                  | Since $\overrightarrow{AD} = 2\overrightarrow{BC}$ AD II BC  ABCD is a trapezium                                                                               | B1 [1]                                                                                 |
| 23(a)<br>(b)(i)<br>(b)(ii) | D 100°                                                                                                                                                         | (a)[2] (b)(i)[1] (b)(i)[1] 2 possible location of point D. But no effect on the answer |
| 23(c)                      | BP = 3.9 cm ± 0.1 cm                                                                                                                                           | B1 [1]                                                                                 |

[13]

Yusof Ishak Secondary School Preliminary Examination 2017 Mathematics Paper 2

#### Marking Scheme

| ) (a) | $1+4x=\pm\sqrt{81}$                                                                             | MI     |
|-------|-------------------------------------------------------------------------------------------------|--------|
|       | 1+4x=9 or $1+4x=-94x=8$ or $4x=-10x=2$ or $x=-2.5$                                              | A1 [2] |
| 1 (b) |                                                                                                 | MI     |
|       | $(2x+3)(2x-1)$ $= \frac{2x-1+6x+9}{(2x+3)(2x-1)}$                                               |        |
|       | $=\frac{8x+8}{(2x+3)(2x-1)}$                                                                    | A1 [2] |
| (c)   | 2x+1<9  and  9<3x+1                                                                             | MI     |
|       | $\Rightarrow 2x < 8 \text{ and } 3x > 8$ $\Rightarrow x < 4 \text{ and } x > \frac{8}{3} x = 3$ | A1 [2] |
| (d)   | $a^{2} + 9b^{2} - 6ab - 2a + 6b$ $= (a^{2} + 9b^{2} - 6ab) - 2a + 6b$                           | Mi     |
|       | $= (a-3b)^2 - 2(a-3b)$<br>= (a-3b)(a-3b-2)                                                      | A1 [2] |

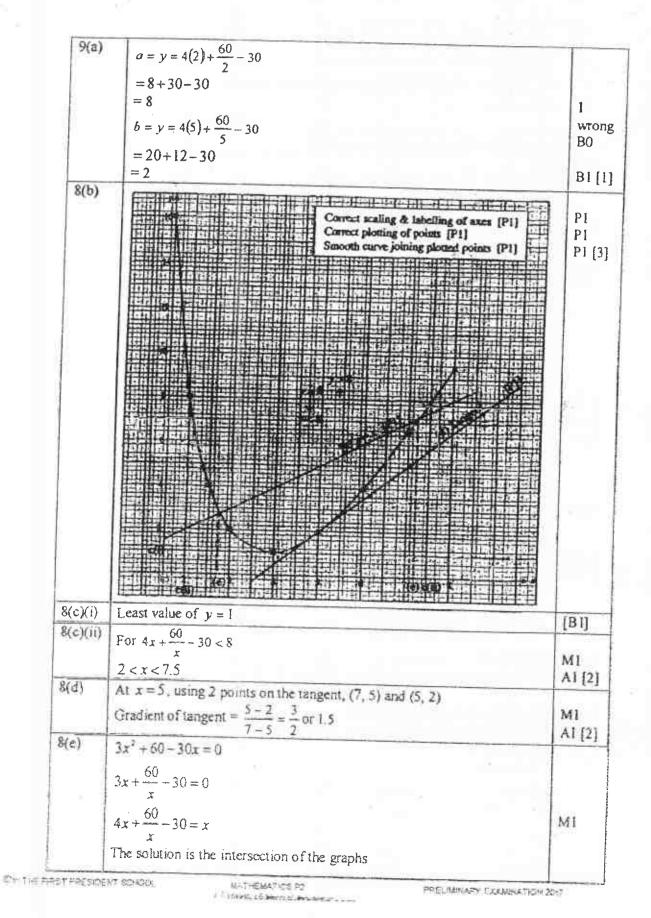
[14]

| 2(a)     | Number of sets of 2 white beads and 1 black bead                          |        |
|----------|---------------------------------------------------------------------------|--------|
|          | 14-1=13  Total number of white beads                                      |        |
|          | 13×2 = 26                                                                 | B3 [3] |
|          | 000                                                                       | D3 [3] |
|          | Disagree                                                                  |        |
|          | Students must be able to explain and show how they obtained the answer    |        |
| 2(b)(1)  | $3b = 4a \Rightarrow \frac{a}{b} = \frac{3}{4} \Rightarrow a : b = 3 : 4$ | Bi     |
|          | $2c = 5a \Rightarrow \frac{a}{c} = \frac{2}{5} \Rightarrow a : c = 2 : 5$ | B1 [2] |
|          | $\therefore a:b:c=6:8:15$                                                 |        |
| 2(b)(ii) |                                                                           |        |
|          | 6k + 8k + 15k = 10                                                        | MI     |
|          | $k = \frac{10}{29}$                                                       | A1     |
|          | $\therefore b = \frac{80}{29}$                                            | Ã1 [3] |

| 3 (a)    | x bulbs cost \$25                                           |        |
|----------|-------------------------------------------------------------|--------|
|          | 1 bulb cost \$ 25                                           | B1[1]  |
|          | x                                                           | 100    |
| 3 (b)    | Selling price for each light bulb = $$\frac{25}{4} + $0.50$ |        |
|          | <b>.</b>                                                    |        |
|          | $=$ $\frac{25 + \$0.50x}{}$                                 |        |
|          | $= s \frac{2(25 + 0.5x)}{2x}$                               |        |
|          | $=$ \$\frac{3\left(3\left(3\left(3\left))}{2x}              |        |
|          | $=$ \$\frac{50 + x}{2}.                                     |        |
|          | - LA                                                        | BI [1] |
| 3 (c)(i) | Total amount = $5\frac{50 + x}{2x} \times 8$                |        |
|          |                                                             |        |
|          | $= 5 \frac{4(50+x)}{}$                                      | B1[1]  |
| 3(c)(ii) | Market C. 115.1.1                                           |        |
| B(d)     | Number of unsold light bulbs = $x - 8$                      | B1 [1] |
| λ(α)     | Total amount = $\$2 \times (x-8)$<br>= $\$2(x-8)$           | Dittl  |
| 3(e)     |                                                             | B1[1]  |
| ,(0)     | $\frac{4(50+x)}{x} + 2(x-8) = 46$                           |        |
| - 1      | $\frac{200 + 4x}{2x - 16} + 2x - 16 = 46$                   | MI     |
|          | $\frac{1}{x} + 2x - 10 = 46$                                | 1      |
| - 1      | $\frac{200 + 4x + 2x^2 - 16x}{4x + 2x^2 - 16x} = 46$        |        |
|          | <u> </u>                                                    |        |
| i        | $2x^2 - 12x + 200 = 46x$                                    | A1     |
| ĺ        | $2x^2 - 58x + 200 = 0$                                      | 2.     |
|          | $x^2 - 29x + 100 = 0$ (Shown)                               | A1 [3] |
| (f)      | $-(-29)\pm\sqrt{(-29)^2-4(1)(100)}$                         |        |
|          | $x = \frac{-(-29) \pm \sqrt{(-29)^2 - 4(1)(100)}}{2(1)}$    |        |
| - 1      | $x = \frac{29 \pm \sqrt{441}}{3}$                           | WI     |
| - 1      | x =                                                         |        |
|          | $x = \frac{29 \pm 21}{2}$                                   |        |
| -        | 2                                                           | Al     |
|          | x = 25  or  x = 4                                           | A1[3]  |
| 1        | The number of light bulbs cannot be less than 8.            |        |
| 1        | T.x = 4 is not applicable                                   |        |
|          | The number of light bulbs, $x = 25$ .                       |        |

|           | [16]                                                                                                                               |        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|--------|
| 4(a)(1)   | In $\triangle ABD$ ,                                                                                                               |        |
|           | Using Sine Rule,                                                                                                                   | 100    |
|           | sin118 sin∠ADB                                                                                                                     | MI     |
|           | 950 600                                                                                                                            |        |
|           | $\Rightarrow \sin \angle ADB = \frac{600 \times \sin 118}{950}$                                                                    | Al     |
|           | $\angle ADB = 33.89^{\circ}$                                                                                                       | Al     |
|           | ∠ADB = 33.9° (1 decimal place) -                                                                                                   | Ai     |
|           | $\angle ABD = 180^{\circ} - 118^{\circ} - 33.9^{\circ}$                                                                            |        |
|           | = 28.1*                                                                                                                            | A1 [4] |
| 4(a)(ii)  | in ABCD,                                                                                                                           |        |
| 1         | Using Cosine Rule,                                                                                                                 |        |
| 1         | $CD = \sqrt{950^2 + 1040^2 - 2(950)(1040)\cos 42^2}$                                                                               | M2     |
|           | CD=7181                                                                                                                            | Al     |
| ,         | CD=718m (3 sig. figures)                                                                                                           | A1 [4] |
| 4(a)(iii) | Let the required distance be h.                                                                                                    |        |
|           | Area of $\Delta BCD = \frac{1}{2} \times 950 \times 1040 \times \sin 42^{\circ}$                                                   |        |
|           | $\frac{1}{2} \times 950 \times 1040 \times \sin 42^\circ = \frac{1}{2} \times 950 \times h$                                        |        |
|           | $h = 1040 \times \sin 42^{\circ}$                                                                                                  | MI     |
|           | h = 695.9<br>h = 696  m (3 sig. figures)                                                                                           | A1 [2] |
| 4(b)      | The greatest angle of depression occurs when the eagle is directly above the point on BD such that it is nearest to C  Eagle  X  C |        |
|           | $tan\theta = \frac{500}{6959}$ $\theta = 35.7$                                                                                     | мі     |
|           | Greatest angle of depression is 35.7° (1 decimal place)                                                                            | A1 [2] |

| 5(a)(i)   | On Monday, volume = 7500 cm <sup>3</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| _ (-/( )  | On Tuesday, volume = 86% of 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |
|           | $=\frac{86}{100} \times 7500 = 6450$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|           | $\frac{-\frac{1}{100} \times 7500 = 6450}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ml       |
|           | On Wednesday, volume = 86% of 6450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |
|           | $=\frac{86}{100} \times 6450 = 5547$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |
|           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1 [2]   |
|           | $= 5547 \text{ cm}^3 (3 \text{ sig. figures})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 5(a)(ii)  | Let $x$ be the actual volume of Block $Q$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|           | the volume of Block Q has been reduced as 86% of its actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
|           | volume on Tuesday.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,,,     |
|           | $\Rightarrow 86\% \text{ of } x = 6450$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MI       |
|           | $x = 6450 \times \frac{100}{86} = 7500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        |
|           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1 [2]   |
|           | Actual volume of Block $Q$ on Monday = $7500 \text{cm}^3$ (3 sig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 71 (2) |
| 64 34113  | figures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        |
| 5(a)(iii) | Let v be the volume of Block R on Monday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        |
|           | On Tuesday, volume = $\frac{86}{100}v = 0.86v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|           | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|           | On Wednesday, volume = $\frac{86}{100}(0.86v) = 0.7396v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|           | 86 (2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|           | On Thursday, volume = $\frac{86}{100}$ (0.7396 v) = 0.6361 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |
|           | 86 (0.6361-) 0.642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|           | On Friday, volume = $\frac{86}{100}$ (0.6361 v) = 0.547 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |
|           | On Saturday, volume = $\frac{86}{100}$ (0.547 v) = 0.470 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | мі       |
|           | Volume reduces to half on Saturday.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 144.1    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 [2]   |
| (b)(i)    | 1(4 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|           | Volume of hemisphere = $\frac{1}{2} \left( \frac{4}{3} \pi r^3 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|           | AND THE RESERVE OF THE PERSON  |          |
|           | Volume of $S = \frac{1}{2} \left( \frac{4}{3} \pi (18)^3 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MI       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IVI I    |
|           | $=\frac{2}{3} \times 3.142 \times 5832$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| i i       | = 12216.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Í        |
| 1         | = 12200 cm <sup>3</sup> (3 sig. figures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1[2]    |
| (b)(ii)   | Total surface area of solid hemisphere S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| (0)(11)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | $=\frac{1}{2}(4\pi r^2)+\pi r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|           | $-\frac{1}{2}(s-60)^2$ , $-60)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|           | $=\frac{1}{2}(4\pi(18)^2)+\pi(18)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MI       |
|           | = 2036016+1018008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|           | = 3054,024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 1 541  |
|           | = 3050 cm² (3 sig. figures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1 [2]   |
| (c)       | Volume before height before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 7.1       | The state of the s |          |
|           | Volume after height after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | $\left(\frac{5000}{1080}\right) = \left(\frac{12}{h}\right)^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A TANOB  |


| [18]                                                                 |        |
|----------------------------------------------------------------------|--------|
| $\frac{125}{27} = \left(\frac{12}{h}\right)^{1}$ $(5)^{3}  (12)^{3}$ |        |
|                                                                      | MI     |
| 5h=36<br>h=7.2 cm                                                    | A1 [2] |

|           | [19]                                                                                                                                                                        |              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 6(a)(i)   | $OA^{2} = OX^{2} + AX^{2}$ $r^{2} = (16 - r)^{2} + 8^{3}$ $r^{2} = 256 - 32r + r^{2} + 8^{2}$                                                                               | MI           |
|           | 32r = 320<br>r=10                                                                                                                                                           | A1<br>A1 [3] |
| 6(a)(ii)  | $\sin \angle AOX = \frac{AX}{OA}$ $= \frac{8}{10}$                                                                                                                          |              |
|           | $\angle AOX = \sin^{-1}\left(\frac{8}{10}\right)$ $\angle AOX = 53.1^{\circ} \text{ (1 decimal place)}$                                                                     | B1 [1]       |
| 6(a)(iii) | $\angle AOB = 2(53.1^{\circ})$<br>Shaded region = $\frac{2(53.1^{\circ})}{360^{\circ}} \times \pi \times 10^{\circ} - \frac{1}{2} \times 10 \times 10 \sin 2(53.1^{\circ})$ | МІ           |
|           | =44.74 m <sup>2</sup> :: Volume of concrete used = 44.74×900                                                                                                                | Al           |
|           | = 40 266 m <sup>3</sup><br>= 40 300 m <sup>3</sup> (correct to 3 sig. figures)                                                                                              | A1 [3]       |
| 5 (b)     | Length of the model tunnel = $\frac{900}{10} \times 5$<br>= 450 m<br>Reflex $\angle AOB = 360^{\circ} - 2(53.1)^{\circ} = 253.74^{\circ}$                                   | ВІ           |
|           | Curved surface area = $\frac{253.74}{360} \times 2\pi \times 5 \times 450$ $= 9965.6 \text{ cm}^2$                                                                          | MI           |
|           | $= 9970 \text{ cm}^2 \text{ (3 sig. figures)}$                                                                                                                              | A1 [3]       |
| (c)       | Total distance the train has to travel = 900+130=1030m.                                                                                                                     | MI           |
|           | Time taken = $\frac{1030}{50000} \times 60 = 1.236$ minutes<br>1 minute 14 seconds                                                                                          | A1 [2]       |
|           | CHIMICIE LT SCOULLS                                                                                                                                                         |              |

#### [20]

| 7(a)      | $\angle BSQ = 90$ (rt. $\angle$ in a semicircle)                                                      | BI             |
|-----------|-------------------------------------------------------------------------------------------------------|----------------|
|           | $\angle BAQ = 90$ (n. $\angle$ in a semicircle)                                                       | B1 [3]         |
|           | ∠OST or ∠OQT=90 (tangent perp. radius at point of contact)                                            | 5, (5)         |
| 7(b)(i)   | $\angle SQB=32$ ( $\angle s$ in the same segment)                                                     | B1[1]          |
| 7(b)(ii)  | $\angle OTQ = \frac{64^{\circ}}{2} = 32^{\circ} (OT \text{ bisects } \angle QTS)$                     | M1<br>A1 [2]   |
|           | $\angle TOQ = 180 - 32 - 90^{\circ} = 58 (\angle sum of \Delta)$                                      | (2)            |
| 7(b)(iii) | $\angle ACB = 180^{\circ} - 73^{\circ} = 107^{\circ} \text{ (adj. } \angle S \text{ on a str. line)}$ | MI             |
|           | $\angle ABQ = 180 - 32 - 107 = 4\Gamma(\angle sum \text{ of } \triangle)$                             | A1 [2]         |
| 7(b)(iv)  | QT = ST (tangents drawn to circle form ext. point are equal)                                          | SOFT           |
|           | $\angle DST = \frac{180^{\circ} - 64^{\circ}}{2}$ (base $\angle$ s of isosceles $\triangle$ )         | MJ             |
|           | $\angle BSR = 180^{\circ} - 90^{\circ} - 58^{\circ} \text{ (adj. } \angle S \text{ on a straine)}$    | Arright<br>Sin |
|           | = 32 *                                                                                                | AI [2]         |
|           | OR Significant                                                                                        |                |
|           | ∠BSR=32 (alternate segment theorem)                                                                   | B1, B1 [2]     |

| 8(a)     | Volume of wood in the block = $(20 \times 7 \times 4) - 3\left(\frac{1}{2} \times \frac{4}{3} \times \pi \times 1.5^{3}\right)$          | MI -   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          | = 560-21 2085<br>= 538.7915<br>= 539 cm <sup>3</sup> (3 significant figures)                                                             | A1 [2] |
| 8(b)     | Total area that is painted pink = $2(7 \times 4) + 2(20 \times 4) = 56 + 160$<br>= 216 cm <sup>2</sup>                                   | B1 [1] |
| 8(c)(i)  | Total area that is painted white = $2 \times \pi \times (1.5)^2 \times 3$<br>= $42.417$<br>= $42.4 \text{ cm}^2$ (3 significant figures) | B1[1]  |
| 8(c)(ii) | Total area that is painted green = $(20 \times 7) - 3(\pi \times 1.5^2)$<br>= 118.7915<br>= 119 cm <sup>2</sup>                          | B1[1]  |



| $y = 4x + \frac{60}{30} - 30$ and $y = x$ | The state of the s |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x 8                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| i.e. when $x = 2.75$ or $x = 7.2$         | A1 [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 10(a) | Mr Ong's monthly contribution = $\frac{20}{100} \times $3000 = $600$ .                                                                                   | Bi           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|       | His employer's monthly contribution = $\frac{17}{100} \times $3000 = $510$                                                                               | B1 [2]       |
| 0(b)  | They have to pay $\frac{90}{100} \times $400000 = $360000$ over 20 years                                                                                 | MI           |
|       | Each month, they have to pay $\frac{$360000}{20 \times 12} = $1500$                                                                                      | A1 [2]       |
| 10(c) | Amount to be used for monthly payment $= \left(\frac{21}{100} \times \$3000\right) + \left(\frac{23}{100} \times \$2000\right) = \$1090 \text{ (Shown)}$ | MI<br>A1 [2] |
| 10(d) | They have to borrow (\$1500 - \$1090) x 20 x 12 = \$98400                                                                                                | B1 [1]       |
| 10(e) | They have to pay $\left(\frac{1.48}{100} \times 98400 \times 1\right) = $1456.32 \text{ Year I Interest}$                                                | MI           |
|       | $\left(\frac{1.58}{100} \times 98400 \times 19\right)$ Year 2 onwards                                                                                    | MI           |
|       | \$29539.68                                                                                                                                               |              |
|       | \$98400+\$145632+\$2953968<br>=\$129396                                                                                                                  | [A1]         |