2015 Sec 4 Biology

Examguru

1	St. Margaret's Secondary School
2	Anglo-Chinese School (Barker Road)
3	Zhonghua Secondary School
4	First Toa Payoh Secondary School
5	Temasek Secondary School
6	Saint Patrick's School

schools bio 2015 UPDATED 1

ST. MARGARET'S SECONDARY SCHOOL Preliminary Examinations 2015

CANDIDATE NAME

CLASS

BIOLOGY

Secondary 4 Express

Paper 1 Multiple Choice

REGISTER NUMBER

2 Sep 2015

5158/01

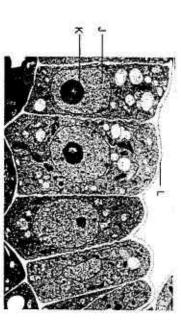
1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil

in the spaces provided. Do not use staples, paper clips, highlighters, glue or correction fluid.
Write your name, class and register number on the cover page and on the Answer Sheet

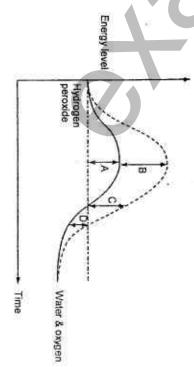

There are forty questions on this paper. Answer all questions. For each question, there are four possible answers A. B. C and D. Choose the one you consider correct and record your choice in soft pencil on the

separate Answer Sheet

Any rough working should be done in this bookiet Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

The use of an approved scientific calculator is expected, where appropriate

J, K and L are structures found in plant cells placed under an electron microscope.

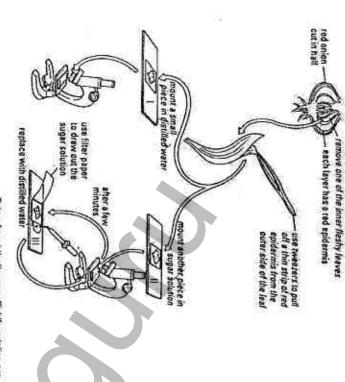


Adapted from http://www4.uwsp.edu

Which option identifies structures J, K and L correctly?

ь	c	œ	Þ	
Nucleoplasm	Nucleoplasm	Cytoplasm	Cytoplasm	
Nucleolus	Nucleolus	Nucleus	Nucleus	*
Upper Epidermis	Cell Wall	Upper Epidermis	Cell Wall	r

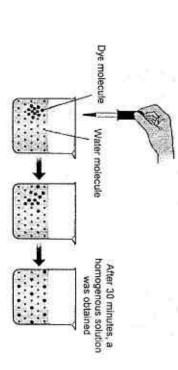
oxygen, in the presence and absence of enzyme catalase. The graph shows the energy level when hydrogen peroxide is broken down into water and



present and when it is absent? What is the difference in activation energy of the reaction when the catalase enzyme is

Sacchisellogye200g 5 WITHOUT SCHOOL

SMSS 2015


The diagram shows the procedure to prepare slides containing onlon epidermis soaked in different liquids. I, II and III represent the slides which were prepared and set aside for 10 min before being observed under the microscope.

Taken from http://www.nuffleidfoundation.org

Which option accurately describes the cells under slides I, II and III?

0	C	e)	>	
Plasmolysed	Plasmolysed	Plasma membrane not visible	Plasma membrane not visible	
Plasma membrane not visible	Plasma membrane not visible	Plasmolysed	Plasma membrane not visible	=
Plasmolysed	Plasma membrane not visible	Plasma membrane not visible	Plasmolysed	=

Students X, Y and Z made some comments about the observation.

Adapted from solarwiki ucdavis edu

- The change is due to water moving through osmosis
- The change can occur faster if the temperature is higher.
- than 30 minutes If two drops of dye were added, the homogenous solution would be obtained in less

Which students are correct?

- X and Y only X and Z only Y and Z only X, Y and Z

cow's milk and human milk For questions 5 & 6, refer to the table which compares the nutritional component between

Nutritional Component	cow's milk/ %	human milk/ %
Water	87.6	87.4
Protein	3.3	1.6
Carbohydrate	4.3	6.98
Fat	4.5	3.75
Vitamin A (IU/ 100 g)	180	189.9
Vitamin C (mg/ 100 g)	1.6	4
Niacin	0.1	0.2

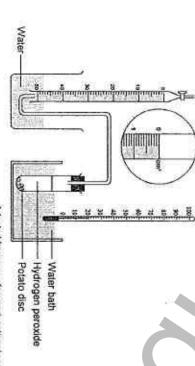
- Based on the data provided, which of the statements is correct?
- Cow's milk has about twice the amount of protein content compared to human milk
- Cow's milk has more Vitamins A and C than human milk.

000>

Human milk is more fattening than cow's milk Human milk is more diluted than cow's milk.

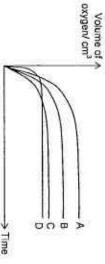
Researches have been carried out to determine if the type of milk provided to babies, human following is extracted from an article published by Brown University on June 6, 2013. milk (breast milk) or cow's milk (formula), will affect brain development of babies.

is good for babies" brains ... of formula and breast milk ... brain compared to children who were fed formula exclusively or who were fed a combination breastled exclusively for at least three months had enhanced development in key parts of the "A new study by researchers from Brown University finds more evidence that breastfeeding The research found that by age 2, babies who had been


explanation for the findings made? Based on the nutritional component of cow's milk and human milk, what is a reasonable

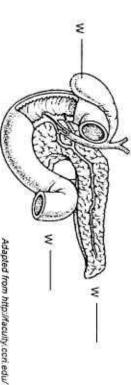
- components for brain development Addition of hot water to prepare formula milk for bables had destroyed the essentia
- OB Since there is less water present in human milk, there are more useful solutes for the Human milk has the right composition of nutrients for brain development in babies
- Vitamin A is the most essential component for brain development in babies

brain development


For questions 7 and 8, refer to the diagram which shows the experimental setup whereby oxygen gas, produced from the decomposition of hydrogen peroxide, is collected in an inverted burefle. Level of

oxygen gas

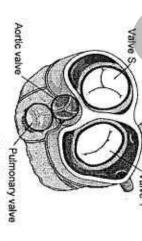
Adapted from www.focuseducational.com


The volume of oxygen produced at 20 °C, 30 °C, 40 °C and 50 °C was measured at every minute interval for five minutes. The results for each temperature are represented in the

Which of the graph (A, B, C or D) represents the results for the experiment at 50 °C?

- Which of the statements about the experiment is false?
- Oxygen gas is collected due to displacement of water.
- The surface area of the potato discs is a constant variable in the experiment. The rubber bung holding the delivery tube must be fixed tightly to the boiling tube containing hydrogen peroxide.
- The water bath is used to maintain the pH of the experiment

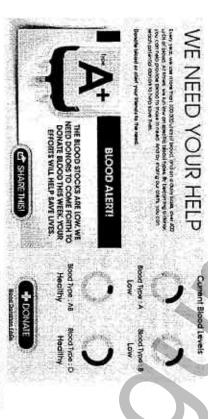
For questions 9 and 10, refer to the diagram which shows part of the digestive system.


The diagram shows that the

- gall bladder and pancreas share a common duct
- gall bladder releases bile into the small intestines
- parcreas is an endocrine and exocrine gland jejunum is a long, tubular structure.

Which of the options describes the structure(s) correctly?

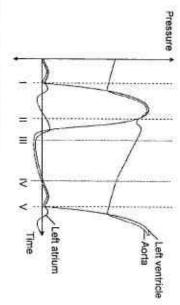
D Wand X Are	C Y Abs	8 X Able t	A W Pro	Structure(s) Desc
Are part of the digestive canal as they are involved in digestion	Absorbs mainly water from undigested food	e to detect changes in blood glucose concentration	Produces bile which emulsifies fats	scription


For questions 11 and 12, refer to the diagram which represents the cross-section of a human Valve 1

Adapted from http://www.heart-valve-surgery.com/

- = Both the pulmonary valve and aortic valve are semi-lunar valves which comprises of three cusps. Which of the following statements is correct?
- Aortic valve lies between the right ventricle and the pulmonary artery. Blood passing through the aortic valve is high in carbon dioxide level.
- Pulmonary valve prevents the backflow of blood into the atrium. Blood passing through the pulmonary valve is at a high pressure.
- 12 Valves S and T are atrioventricular valves. Which of the following identifies S and T correctly?

ដ The diagram shows an advertisement appealing for blood donation

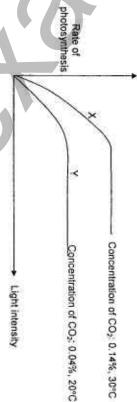


Taken from http://blog.vinova.sg/

explains why blood type A* can be donated to the group of recipients? The advertisement states that Type A* blood stocks are low in the blood bank. Which option

	of blood type A*	Reason
Þ	Α,	The recipients do not produce antibodies against the donated blood cells.
m	æ,	The recipients' red blood cells contain surface antigens A.
C	A ⁺ and B ⁺	The recipients do not produce antibodies against the donated blood cells.
O	A* and O*	The recipients' red blood cells contain surface antigens A.

The graph shows the change in the blood pressure observed in the left atrium, left ventricle and aorta.



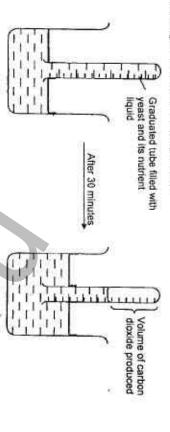
At which points are the bicuspid valve open?

0	O	8	>
III and IV	II and III	l and V	I and II

The graph shows how the rate of photosynthesis in a plant varies with light intensity at two different carbon dioxide concentrations and temperatures.

6

Based on the graph, what are the limiting factors at points X and Y?

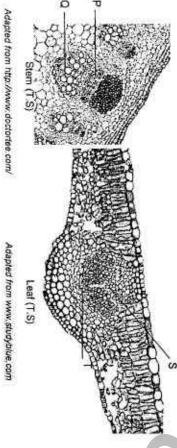

0	C	œ	Þ	
Temperature	Light Intensity	Light intensity	Concentration of CO ₂	×
Light intensity	Concentration of CO ₂	Chlorophyll availability	Temperature	4

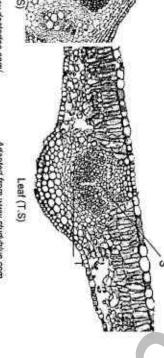
0000

P and S Q and S Sand T

Which option states the structures that contain relatively high mineral content on a sunny

6

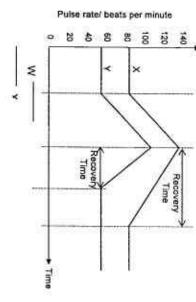



Which liquid nutrient will yield the highest volume of carbon dioxide?

0000 Egg albumin Glucose Coconut oil

Starch

4 The diagram shows two micrographs taken from the stem and leaf dicotyledonous plants. 9 OWI different



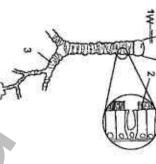
8 The table compares photosynthesis and anaerobic respiration in human. Which option (A, B, C or D) is incorrect?

0	c	0	Þ	100
Oxygen	Part involved	Occurs in	Carbon dioxide	Feature
Produced	Chloroplasts	Green Plants	Used	Photosynthesis
Not produced	Cytoplasm	All living things	Produced	Anaerobic Respiration

10 The graph represents the pulse rate of two men (X and Y) before, during and after exercise

Some comments were made about the graph.

X and Y had different pulse rate before exercise.

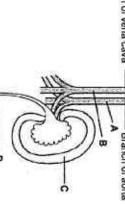

X is fitter than Y

takes a longer time to recover from the exercise.

The rate of increase in pulse rate in X and Y is the same during exercise This experiment aims to compare pulse rate of different individuals.

Which statements are incorrect? and II

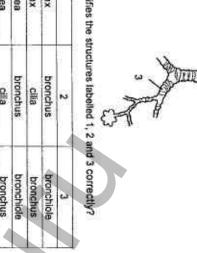
II, III and IV ll and III

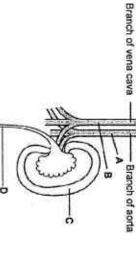


exercise Bunna

Which option identifies the structures labelled 1, 2 and 3 correctly

0	ဂ	B	>	
trachea	trachea	larynx	larynx	_
cilia	bronchus	cilia	bronchus	2
bronchus	bronchiole	bronchus	bronchiole	3


In which region (A, B, C or D) is urea is most concentrated?


22

The diagram represents a reflex arc in the nervous system of a mammal. Which region contains the axons of the motor neurones involved in the response?

Sense organ

Central nervous system

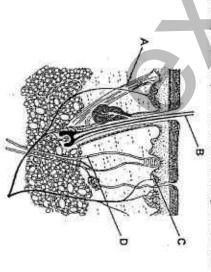
w Water reabsorbed here ADH controls water ADH controls salt reabsorption

Water reabsorbed here Water reabsorbed here

Salt reabsorbed here Salt not reabsorbed

here

Salt reabsorbed here Salt not reabsorbed here


ADH controls water ADH controls salt reabsorption

What option describes I, II and III correctly?

1		-71
2	₽	
王	돃	
旦	ガ	Г.
ģ	ő	
5	2	
ö	8	٠
答	9	
œ.	ĕ	
-	0	7
P	5	
8	ਰ	
L	D	
n	<	
9	9	
-	4	
3	Q	
us.	×	
5	cold r	
3	9	
¥	S	
œ.	7	
a	S	
5	north)	
=	읔	
ō	4	
are (A, B, C or D) is involved in the firs	ortly afterwards the hairs on his	
of.	₹	
60	3	
1	8	
œ.	8	
	S	
st stage of thi	=	
5	ā	
Ö	J	
S re	20	
š	69	
s reflex	0	
એ	9	
	五	
	Co.	
	쏫	
	3	
	5	
	co	
	8	
	were raised	
	岩	
	8	
	٩	

ADH: Antidiuretic hormone

Water reabsorbed here

SMSS 2015

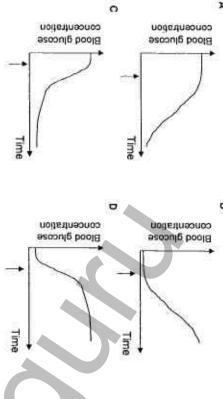
SMSS 2015

The diagram shows a nephron and the associated blood vessels

Which of the options is not an example of homeostasis?

29

The chart shows the inheritance of coat colour in mice. The allele for brown coat, B, is dominant to the allele for white coat, b.


25

- Blood pressure lowered when kidney excrete excess water
- Blood sugar concentration regulated by hormones Body cooling down to 36.9 °C after exercise

0000

- Lens changing in curvature when looking at objects

26 Which graph (A, B, C or D) represents the level of blood glucose concentration in response to insulin secretion (represented by 7)?

ended with a cross. The diagram shows a calendar where a woman marked the day when her menstruation March

27

Monday Tu

**	22	14 15 16	7 8 9	1 2	iesday Wednesday Thursday	
2	24 25	17 18	10	*3	riday Saturday	
	26	19	12	5	Sunday	

When will she most likely have her next menstruation?

27

- 7th March
- 26th March 27th March
- 31st March
- 28 produce a baby boy of blood type AB? What is the chance of a couple, who are both heterozygotes, of blood group A and B to

O O O P 0.125

> 30 What are the most likely genotypes of the individuals P and Q? n w 0 용 88 8 88 v BB

The micrograph shows Paramecium, a unicellular organism, undergoing cell division.

86

8 88 Ω

Adapted from www.nikonsmallworld.com

Paramecium undergoes cell division to form

- different gametes.
- new tissues new cells.
- 31 A mature cell is found to contain 20 chromatin threads in a non-dividing stage. Which of the following states the correct number in one call during the stated stage of mitosis?

0	c	B	Þ	
46	20	10	10	Number of pairs of homologous chromosomes during prophase
46	40	40	40	Number of chromatids during prophase
20	10	20	10	Number of daughter chromosomes after cytokinesis

White female White male Brown female Brown male

dapted from raieighncs.blogspot.com

Which option correctly identifies the stage of nuclear division in the cells?

0	C	8	>	
Metaphase	Metaphase	Anaphase	Anaphase	71
Telophase	Prophase	Prophase	Metaphase	G
Prophase	Telophase	Metaphase	Prophase	I

33 The following is extracted from "Molecular Biology of the Cell"

genes will have been optimized by random point mutation and selection. selection. Consequently, it can be expected that in any given species the functions of most a rare variant sequence is advantageous, however, it will be rapidly propagated by natural will be disadvantageous to the organism and will be selected against in the population. When span of time in relation to the evolution of species. Much of the variation created in this way have been "tried out" on about 50 occasions in the course of a million years, which is a short Even so, in a population of 10,000 individuals, every possible nucleotide substitution will Only about one nucleotide pair in a thousand is randomly changed every 200,000 years

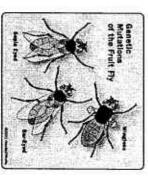
"Much of the variation created in this way" refers to

- breeding
- mutation. radiation.
- replication
- 34 A DNA molecule and a mRNA molecule both contain
- a nitrogenous base called uracil
- sequences of bases. double-stranded polymers.
- the same sugar.

SMSS 2015

35 The diagram shows two distinct forms of beetle. The difference between them is controlled by a single gene. The allele for the black form is dominant to the allele for red

with black spots


with red spots black form

What kind of variation is shown by the beetle? Why?

- Continuous variation because it is controlled by genes
- Continuous variation because there are two forms.
- Discontinuous variation because the two forms are distinct Discontinuous variation because it is controlled by genes
- The following is an extract from "Evolution" by Ruth Moore

36

eyes, purple, yellow and brown eyes. Some had curly bristles, some no bristles. unprecedented outburst of man-made mutations. There were flies with bulging eyes, flat were buzzing around The irradiated flies were then bred to univeated ones. In 10 days thousands of their offspring ... Muller put hundreds of fruit flies in gelatin capsules and bombarded them with X-rays. their banana-mash feed, and Muller was looking upon 9

Taken from http://science.howstuffworks.com/life

Which of the following statements about the observations made is correct?

- Files that are bred in an artificial environment will develop new traits
- Mutations fuel the process of evolution by providing new genes in the gene pool of a species.
- Radiation leads to the development of new phenotypes, hence leading to changes in the genotypes of flies
- Random changes in flies occur due to natural selection

37

newly formed take. This provides a separate resource for the two countries. above observation? phenotypically different from each other. Which of the following hypothesis best explains the After more than 40 years later, the Poecilia fish in the river and lake are found to be

- Mutations occurred in the fish found in both the river and lake due to the introduction of human elements.
- The dam resulted in different environmental conditions and the river fish mutated to adapt to the new environment in the lake.
- the river and natural selection selected the type of river fish best fit for the respective The dam resulted in different environmental conditions formed between the take and environments to survive.
- There is random mating between the river and take fish and natural selection selected for the best-fit organisms in both populations.

			_
	herbivores	different trophic levels in a food chain. Which po	ine table
	57	trophic	Shows
		evels	ine qu
		=	Jan.
		food	Ties o
		chain.	pestic
		Which	andes in
	2000	population (A, B, C or D) is most likely	the table shows the quantities of pesticides that accumulate in four populations, each at
		ň	MEIN
١	Ĩ	P	1
		B, C	inon
h		2	8
١	N	9	pula
4		60	100
		most	5, 6
		likel	acn a
		*	

38

			2
10 10	200	0.02	Quantity of pesticides per unit mass

39 Consider the food chain: Tree → caterpillar → birds → snakes

Which of the following correctly illustrates the pyramid of blomass and pyramid of numbers?

0	n	Ø	>	
				pyramid of biomass
The street of th			Communication of the control of the	pyramid of numbers

6 This following is extracted from "Overfishing 101: The Importance of Rebuilding Our Fish Populations Without Delay" by Lee Crockett, 2011.

so that they increase to a size that will support the largest sustainable catch — a goal that Fishery managers are required by law to prevent overfishing and to help populations recover 19 benefits everyone."

TIME TO SPAWN

Older fish are the best spawners. Since the 1960s, average weight, age, size and reproductive capacity of snapper have diminished. Although red snapper can live up to 54 years, today too few are older than 10.

A A A

= 100,000 eggs

Reward programme Group

Which of the following is the best way to restore the population of red snapper?

Control the mesh size of the net

Regulate the fishing period Control the size of fishing ships increase the price of red snapper

2181, pagund

ST. MARGARET'S SECONDARY SCHOOL Preliminary Examinations 2015

CANDIDATE NAME

CLASS

BIOLOGY

REGISTER NUMBER	

READ THESE INSTRUCTIONS FIRST

Candidates answer on the Question Paper

Secondary 4 Express

1 hour 45 minutes

21 Aug 2015

5158/02

You may use a soft pencil for any diagrams, graphs or rough working.

Write in dark blue or black pen on all pages of the paper.

Write your name, class and register number on all the work you hand in

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

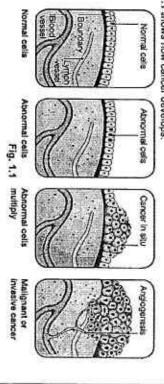
Answer all questions in the spaces provided

Section B

Write your answers on the lined paper provided and, if necessary, continue on separate writing Answer all three questions, the last question is in the form either/or.

The use of an approved scientific calculator is expected, where appropriate The number of marks is given in brackets [] at the end of each question or part question

Parents' Signature	Total	Paper 2: Section B 9 E / O (Circle one)	Paper 2: Section A	Paper 1	For Examiner's Use
	120	30	50	40	H's Use


This document consists of 16 printed pages

Section A

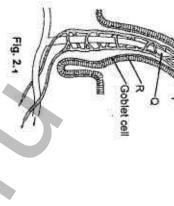
Answer all questions in this section in the spaces provided The total mark for this section is 50.

die the usual way. This may cause blood or lymph fluid in the body to become abnormal or form a lump called a tumour. constantly makes new cells to help us grow, replace worn-out tissue and heal injuries Normally, cells multiply and die in an orderly way. Sometimes cells don't grow, divide and "Cancer is a disease of the cells which are the body's basic building blocks. The body Cancer Council, Victoria

Fig. 1.1 shows how cancer develops.

Taken from http://www.cancervic.org.au/about-cancer/what-is-cancer

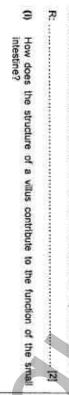
3


Name the structure which controls cell division

(a) 3 Which organelle contains the structure named in (I)? 3

0 Based on the text and Fig 1.1, suggest the effects of cancer on the liver

Total: [5]


W

Adapted from Higher Human Biology with Answers (2" Edition)

3

3

Identify Q and R.

a Red blood cell contains a chemical which allows it to transport oxygen. Name the Fig. 3.1

chemical

Capillary

Red

COS

anhydrase Carbonic

blood cell

Body cell

9 Name a cellular process occurring in mammalian tissues that produces carbon

Ξ

(c) Explain how this conversion of carbon dioxide to bicarbonate ions in red blood cells assists the removal of carbon dioxide from body cells

72

In mammalian blood, carbon dioxide (CO_2) is transported largely in the form of the bicarbonate ion (HCO_3^-) . CO_2 produced in cells moves into capillaries and then into red blood cells where it is converted to bicarbonate ions by the action of the enzyme carbonic anhydrase. The bicarbonate ions produced in the red blood cells move back into the plasma. These events are summarised in Fig. 3.1.

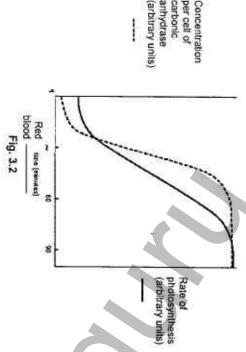
c

3

P contributes to the function stated in (i). Describe another function of P in the

3

Goblet cells secrete mucus. Explain the purpose of the mucus


Ξ

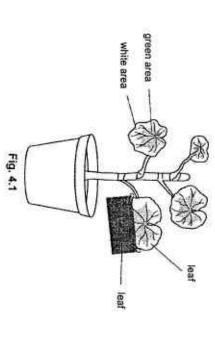
......[1]

Total: [7]

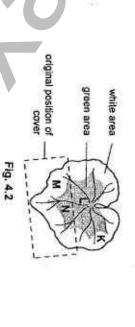
(a)

a high concentration of bicarbonate ions was provided. Fig. 3.2 is the graph that represents the results of the experiment. law concentration of carbon dioxide. Light and temperature were kept constant and transferred from water with a high concentration of carbon dioxide to water with a Chlorella is a type of alga found in fresh and salt water. In many of these environments, bicarbonate ions may be common. Chlorella photosynthesises to produce carbohydrates for energy. When carbon dioxide is in high concentration, Chlorella produces little carbonic anhydrase. In an experiment Chlorella cells were

3 Based on the above information, describe the effect of an increase in the carbonic anhydrase concentration have on the rate of photosynthesis and suggest an explanation for the constant rate of photosynthesis after 80


on the activity of this enzyme if the pH were reduced to 4.0. Carbonic anhydrase has an optimum pH of 8.5. Predict and explain the effect 23

Total: [8]


3

For Examiners' Use

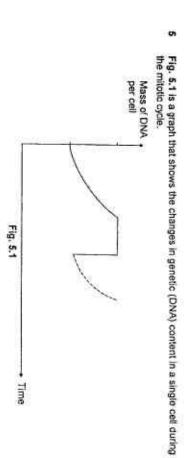
A student uses a plant with variegated leaves to investigate photosynthesis. She places shown in Fig. 4.1 the plant in a dark place for 24 hours. She attaches black paper to both sides of a leaf as

The plant was left in bright light for 24 hours and then the cover was removed from the leaf. The leaf shown in Fig. 4.2 was tested for the presence of starch.

(a) Write a word equation for photosynthesis

9 3 Name the pigment that is found in area L, but not in area K.

2


 \exists Name the organelle which contains the pigment named in (i)

Sacchisellogye200g 5 WITHOUT SCHOOL

3

Ξ

(d) (i) Which areas of the leaf, as shown in Fig. 4.2, would contain starch after 24 hours? Indicate 🗸 (for starch present) or 🛪 (for starch absent) in the table. Area Starch	Which areas of the leaf, as shown in Fig. 4.2, would contain starch after hours? Indicate 🗸 (for starch present) or 🗴 (for starch absent) in the table K L N Starch N Give reasons for your answer for area M.			[2]
Which areas of the leaf, as shown in Fig. 4.2, would contain starch after hours? Indicate 🗸 (for starch present) or 🗴 (for starch absent) in the table K L N N N	Which areas of the leaf, as shown in Fig. 4.2, would contain starch after hours? Indicate 🗸 (for starch present) or 🗴 (for starch absent) in the table Area Starch M N	tur answer for area M.	Give reasons for y	9
	<u> </u>		z	
	ĕ		Z	
- 31	ĕ		r	
	ĕ		7	
(d) (i) Which areas of the leaf, as shown in Fig. 4.2, would contain starch after 24 hours? Indicate ✓ (for starch present) or ✗ (for starch absent) in the table.	<u> </u>	Starch	Area	
10 martin 1 mm 1	experiment.	leaf, as shown in Fig. 4.2, would contain starch after (for starch present) or x (for starch absent) in the table	Which areas of th hours? Indicate <	9
	experiment.	\$24444440000000000000000000000000000000		
	Suggest why the student places the plant in the dark for 24 hours at the start of the	places the plant in the dark for 24 hours at the start of	gest why the studen	(c) Sugg

â Continuing from the end of the dotted line on Fig. 5.1, draw a line that represents clearly label the following processes on the horizontal axis. the cycle of meiosis which resulted in the formation of a zygote. On the graph, Explain your answer. Mark on Fig. 5.1, with the letter C, the point when cytokinesis is taking place 73

9

Mark on Fig. 5.1, with letter B, the point when mitosis begins. Explain your answer.

.....[2]

......[2]

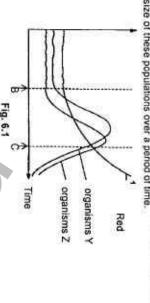
Û

taking place. Explain your answer.

Mark on the horizontal axis of Fig. 5.1, with letter A, the period when interphase is

- the period of melosis I the period of melosis II the point gametes are formed the point when a zygote is formed

2


Compare mitosis and meiosis

e

.....[3]

Total: [11]

Three populations, X, Y and Z, in a small take are linked in a food chain. Fig. 6.1 shows the changes in size of these populations over a period of time.

Using the information in Fig. 6.1, state

9

33

the trophic level of organisms Z in the food chain

N

9

If the producer is X, Y or Z; ... Fig. 6.1

Suggest what may have entered the take at time B. Explain your answ

Explain how the change in the size of the population of bacteria after time C is related to the size of the plant population 3

Ĉ

9

the same period shown in Fig 6.1

oxygen in the Concentration

Fig 6.2

(2-)

Time

Total: [9]

of dissolved

Fig 6.2 is a graph that shows the concentration of oxygen in the same take before

Œ

time B. Complete the graph to show how the oxygen concentration will change over the same period shown in Fig 6.1.

Using the data above, draw a graph on the grid provided to show how radioactivity of the air changes with time.

8

Ra 류

Te/ n	c		2	c	4	o	σ	7
ioactivity/ Bo	00	10.0	20.0	35.0	48 0	55.0	58.0	60.0

Section B

5

Question 9 is in the form of an Either / Or question. Only one part should be answered Answer three questions.

In an experimental set-up, a plant is watered with water radioactively labelled with isotope ¹⁸O. The plant is then placed in a sealed chamber and the radioactivity of the air in the chamber is measured over time. **Table 7.1** shows the data that was obtained from the

Table 7.1

experiment.

Ŧ

(b) Polydactyl is a rare condition that causes the development of extra fingers. The condition is caused by a dominant allele, Fig. 9.2 shows the inheritance of polydactyl in a family.

[Total: 10]

[Total: 10]

3

St. Margaret's Secondary School

Examinations: Preliminary Examinations

Level/ Stream:

Subject 4 Express Biology (5158)

Paper

				Fi					18
6	89	œ	7	ø	6	4	w	2	_
00	A	0	0	8	A	C	œ	8	C
20	19	18	17	16	15	14	13	12	=======================================
œ	C	Þ	n	C	ဂ	0	>	0	C
30	29	28	27	26	25	24	23	22	21
ဂ	В	A	C	A	0	C	C	D	0
40	39	38	37	36	35	34	33	32	31
œ	œ	O	C	œ	0	n	œ	8	œ

Paper 2

Section A (50 Marks

- Deoxyribonucieic Acid/ Chromatin/ Chromosomes [1] [A: "DNA"]
- Total: [3] Nucleus [1]

ö

- Blood or lymph fluid in the body become abnormal/ form lumps / tumours [1].
- cancer cells [1] Blood vessels grow towards the cancer cells. OR More blood is channelled towards the
- Liver cells receive less nutrients and oxygen OR remove more toxins produce by cancer cells [1]
- Q: Lacteal [1] [A: "lymphatic capillary"]
- Epithelial cell [1]
- [1] each. Any 3. Total: [3]
- elongated / finger-like structure of the villus. The (inner) surface area of the small intestine is increased for absorption by the
- of the villus. This surface area is further increased with the presence of microvilli on the epithelium
- nutrients into the bloodstream The thin/ one cell thick wall / epithelium of the villus allows for quick diffusion of
- Many capillaries are present in a villus to help carry away absorbed nutrients quickly/ to maintain concentration gradient for nutrients absorption. The epithelial cells contain numerous mitochondria to provide energy for active
- transport for absorption of nutrients [1] each. Any 1. Total: [1]
- Bloodstream at P provides the calls in the villus/ small intestine with oxygen
- Bloodstream at P removes carbon dioxide from the cells in the villus/ small intestine

20 [1] each. Any 1. Total: [1]

- Mucus lined the gut/ intestine to reduce friction as food travels through it.
- Mucus protects the intestinal wall against the acidic chyme
- Mucus protects the intestinal wall against the alkaline digestive juices.
- Mucus protects the intestinal wall against digestion of proteases (enzymes)
- Haemoglobin [1]
- Aerobic respiration [1]
- This reduces the concentration of carbon dioxide in the blood; [1]
- 8 In this way carbon dioxide can continually diffuse into the red blood cell/ blood plasma maintaining a concentration gradient for removal of carbon dioxide from body cells [1].
- Increase in carbonic anhydrase concentration increases the rate of photosynthesis [1] photosynthesis. Concentration of carbon dioxide continues to be a limiting that the concentration of carbon dioxide cannot increase further for a higher rate of After the 90 minutes, the concentration of carbonic anhydrase is a constant, indicating actor for photosynthesis [1]. (R. light or temperature becomes the limiting factor
- Enzyme activity will decrease/ reduce [1] as enzymes are denatured/ enzymes ose their active sites [1] in pH extreme to their optimum.

Chlorophyli glucose + oxygen (+water)

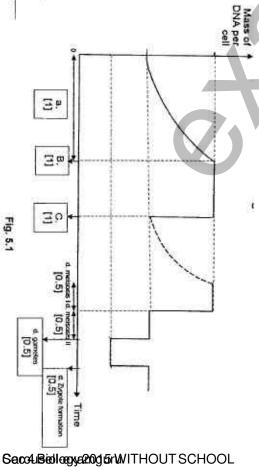
All substrates, products and conditions present [1]

Chlorophyll [1]

8

4a.

carbon dioxide + water


Chloroplast [1]

To destarch the plant/ to remove starch [1]

44 All correct: [2], 2 correct: [1

z	<	Ē	*	Area
×	×	`	×	Starch
*	×	`	×	

chiorophyll/chloroplast [1], it cannot photosynthesise and form starch As the area is not exposed to light [1] and does not possess

SMSS 2015

[1] each. Any 1. Max: [1]

58

Mass of genetic material/ DNA has doubled due to DNA replication There is a one fold increase in the mass of genetic material

Amount of genetic material is at the highest level [1] before dropping

[1] each. Any 1. Max: [1]

8

[R: "Mass of genetic material has increased" or "Mass of genetic material stays constant"] Mass of genetic material has doubled.

[1] each. Any 1. Max: [1]

50

Mass of genetic material has reduced. Mass of genetic material has returned to the original level [1].

Feature	Mitosis	Meiosis
Occurrence	Body cells/ Cells growth, repair and undergo replacement	Cells of gonads/ Formation of gametes
Daughter cells and parent cells	Identica)	Different from each other
No. of daughter cells formed	2	4
Amount of genetic material in daughter cells compared with that in parent cell	2n (Diploid)	n (Haploid)
Pairing of homologous chromosomes (Synapsis Formation)	Does not occur	Occurs
Crossing over	Does not occur	Occurs
No. of nuclear/ cytoplasmic division	One	Two

[1] each. Any 1. Max: [1]

Both require replication of genetic material (interphase) before occurring

Both allow for genetic information to be passed on to new cells

Both involve 4 stages prophase, metaphase, anaphase and telophase

Both refer to the process of nuclear division which occurs during cell division

68

Fertilisers/ nitrates [1] [P: Additional wrong answers]

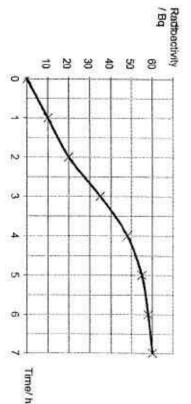
There are nutrients [1] that allow plants/ algae grow rapidly [1] Total:

90 69

Submerged plants die as they lack light to photosynthesize/ make food [0.5] This increases the population of decomposers/ bacteria and fungus [1]

in the water as decomposition occurs (0.5)

aquatic organisms/ plants are killed [0.5]


due to lack of oxygen for respiration [0.5]

60

orcaniato of descript or description [0.5] 7 [0.5]

Section B (30 Marks)

7a

[1] each. Total: [4]

Vertical axis labelled as "Radioactivity" & Horzontal axis labelled as "Time"

Units labelled on vertical axis: "Bq" & on Horzontal axis: "h"

All points plotted correctly

Smooth & best fit curve which occupies ≥1/2 of grid

3 [0.5] each. Max: [6]

Needs to be mentioned at least once. If not, minus [1]

Water, containing radioactively-labelled oxygen", enters root hair cells via osmosis

as water potential in the soil is higher than in the root hair cells

In the roots, water moves from one cell to the adjacent cell towards the xylem by osmosis (marks given once only)

In the stem, water is drawn up the xylem by root pressure, capillary action and

transpiration pull.

At the leaves, water enters the mesophyll cells by osmosis

Water evaporates into water vapour that accumulates in the intercellular air spaces Water leaves mesophyll cells to form a film of moisture outside the mesophyll cells

Water vapour, containing radioactively-labelled oxygen*, diffuses out of the leaves

to the atmosphere through stomata

producing exygen gas with radioactivit Water is used by mesophyll cells during photosynthesis

Radioactive oxygen gas diffuses out of the leaves

88 [1] each. Total: [5]

Light rays reflected from the tree enters the eye, through the pupi

Ciliary muscles relax,

causing the suspensory ligament to become taut.

This leads to the lens being pulled to become thin/ less convex

Light rays reflected from the tree will be focused on the retina to produce a clear image OR Clear image is formed on the reting. [R: "Refracted onto the retina"]

86

[0.5] each. Total: [5]

- photoreceptors/ light sensitive cells/ rods and cones are stimulated
- via the optic nerve. impulses travel through the sensory neurones,
- towards the relay neurones
- in the brain / optic centre the brain interprets the information
- After crossing synapses
- impulses are transmitted by motor neurones
- to the effector/ ciliary muscles

[0.5] each. Total: [4]

98

- X: <u>Viral</u> genome/ DNA/ chromatin thread/ chromosomes
 Y: mRNA (formed from viral genome) Z. Peptone/ polypeptide
- through replication. Upon entering the host cell, the virus formed new copies of its genome/ DNA/ X
- The virus formed components of its protein coat
- through transcription and translation
- then leave the cell. Viral genome and protein coat then assemble to form the virus particles which
- Virus pinches off the host cell/ forms a vesicle to leave the host cell

98

P: Dominant allele for polydactyly p: Recessive allele for normal fingers [0.5] œ Þ polydactyly and corresponding small letters for normal fingers. (A: Other letters used as long as big letters are used to represent allele for Person Genotype Explanation Pp [1] pp [1] B does not have polydactyly [0.5] A has polydactyly [0.5]. A has contributed allele p to for D to have normal fingers [0.5] OR B has normal fingers [0.5]

Pp [1] K has received allele p from G [0.5] K has polydactyly [0.5].

98 9

[0.5] each. Total: [3]

- When polination occurs,
- pollen produced by male flowers land on the stigma
- Through pollen tube formation, male gametes are guided to the female gametes
- in the ovule,
- found in the ovary
- where fertilisation occurs to produce seeds that are part of fruits

96 Papaya flowers are pollinated by insects [1]

- Funnel-like shape of flower forces insects to squeeze its way through it to collect 1] each. Any 3. Max; [3]
- Petals are (relatively) large to attract insects
- Stamens/ Filaments are not pendulous or Stamen does not protrude from the flower R: "Non pendulous anthers"
- Stigma does not protrude from the flower

[R: "Nectar guides" as they are not prominent in the drawing.)

[1] each. Total: [3]

90

- A is the female flower
- It bears an ovary. [R: "Ovule(s)"]
- It bears structure that resembles stigma. [R: "Lacks anther/ stamen"]

Anglo-Chinese School (Berker Road)

Anglo-Chinese School (Barker Road)

PRELIMINARY EXAMINATION 2015 SECONDARY FOUR EXPRESS

BIOLOGY PAPER 1

5158/1

TIME: 1 HOUR

INSTRUCTIONS TO CANDIDATES:

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name and index number on the answer sheet in the spaces provided.

Choose the one you consider correct and record your choice in soft pencil on the separate four possible answers A, B, C and D. There are forty questions on this paper. Answer all questions. For each question there are

Read the instructions on the Answer Sheet very carefully.

answer sheet

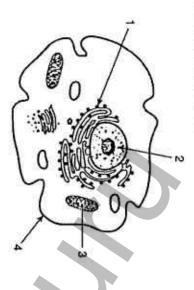
Any rough working should be done in this booklet. Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Additional Materials provided by the School:

Answer Sheet

Prefiminary Examination 2015

Secondary 4 Express Biology 5158/1

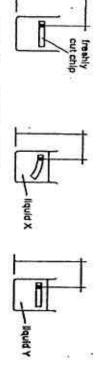

Preliminary Examination 2015

Which structures are found in human sperm cell?

ь	n	8	>	
<	*	1	`	nucleus
	`	*	•	mitochondria
	,	,	×	Hocean memorate

Which of the following statement is true?

N


- Structure 1 is most active in a growing child. Structure 2 is present throughout the life cycle of a cell.
- Structure 3 requires light to carry out its function.

0000

- Structures 2 and 4 control the movement of water into the cell

The diagram shows a freshly cut potato strip, a potato strip suspended in liquid X, and a potato strip suspended in liquid Y.

u

What are the identities of liquids X and Y?

dilute sugar solution	pure water	_
concentrated sugar solution	pure water	**
concentrated sugar solution	dilute sugar solution	_
dilute sugar solution	concentrated sugar solution	_
Y biupil	liquid X	

Secondary 4 Express Biology 5158/1

Preliminary Examination 2015

plant in the presence and absence of oxygen in one hour. The table shows the mass of four nutrients, P. Q. R and S, absorbed by the roots of a

s	20	٥	סר	Nutrient
4.8	3.6	2.5	0.7	Mass absorbed in the presence of oxygen / g h ⁻¹
0.8	3.2	1.2	0.6	Mass absorbed in the absence of oxygen / g h ⁻¹

Which of the following conclusion can be made from the data?

- Nutrients P and R are mainly absorbed by diffusion.

 Nutrients P, Q, R and S are absorbed through both diffusion and active transport.
- Nutrients Q and S are absorbed through active transport only Nutrients Q, R and S are mainly absorbed by active transport

00

- A molecule contains sulphur and phosphorus. Which of the following could it be?
- a carbohydrate

4

- DOBA a fatty acid
 - a protein
- a reducing sugar
- Some statements of water are listed below
- (i) Water cools the surface from which is ev
 (ii) Water is a solvent for many chemicals.
 (iii) Water is involved in metabolic reactions.
 (iv) Water is incompressible Water cools the surface from which is evaporates.

Which of the following statements above describe properties of water that make it suitable to use in the blood transport system?

- (i) and (ii) (ii) and (iii) (ii) and (iii) (ii) and (iv)

Secondary 4 Express Biology 51581 Four students were asked to design an investigation to determine the effect of pH on the activity of an enzyme.

Which table shows the most appropriate design?

test contents pH temp test tube 1	CONTIENTS PH temp E 7 20 E 12 20 S 7 20 S 7 20 C CONTIENTS PH temp C C C E+S 7 20 E+S 7 20 E+S 7 20 S 7 20 S 7 20 S 7 20 S 7 20
PH temp 3 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 13 3 10 14 20 15 20 16 20 17 20 18 30 19 30 10 30	pH temp test 1/°C tube 1 2 20 3 20 4 4 3 20 5 5 10 10 1 10 2 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10
30 20 20 20 20 20 20 20 20 20 20 20 20 20	temp test 1 20 20 20 20 20 20 20 20 20 20 20 20 20
	test tube 6 5 4 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
test tube 5 5 4 4 4 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	
	Contents E++S E++S DW+-S DW+-S DW+-S DW+-S DW+-S DW+-S DW+-S DW+-S DW+-S
7777 早 7273273 里	

A (i) and (ii) only
B (i), (ii) and (iii) only
C (ii) and (iii) only
D (iii) only

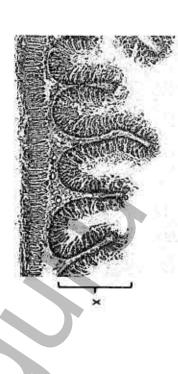
333

ability to catalyse reversible reactions presence of active site specificity

Which characteristic(s) of enzymes is/are displayed by the diagram above?

air balloon air balloon

Secondary 4 Express Biology 5158/1

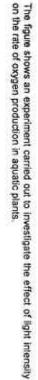

Preliminary Examination 2015

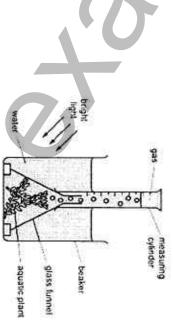
The diagram below shows a transverse section of a leaf

- reduced self control damage to liver faster reaction times
- slurred speech

6

The diagram below shows a photomicrograph which shows part of a section of the alimentary canal.

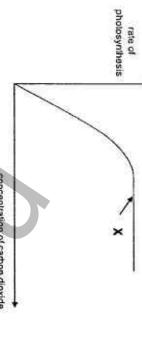



Which cells are directly affected by the presence of light?

4.0

3389 Which of the following are functions of structure X? absorb fatty acids and glycerol

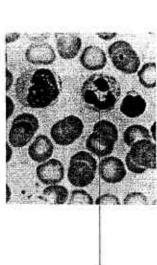
- sweep food along the alimentary canal absorb glucose and amino acids increase surface area for absorption
- 0000 (i) and (ii) only (i), (ii) and (iii) only (ii) and (iv) only (iii) and (iv) only


Which two factors must be kept constant during this investigation?

- the amount of water in the beaker and height of measuring cylinder the size of aquatic plant and duration of exposure to light the size of aquatic plant and the amount of gas in the measuring cylinder the size of beaker and funnel

13 dioxide concentration increases. The following graph shows the changes in photosynthetic rate of a plant when carbon

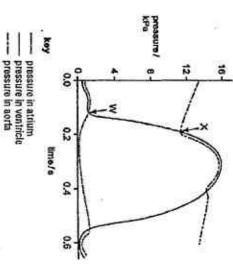
Anglo-Chinese School (Barker Road)


5

concentration of carbon dioxide

Which is not a limiting factor at X?

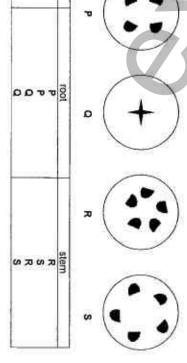
- amount of chlorophyll in the leaf
- light intensity
- concentration of carbon dioxide
- temperature
- 4 The photograph shows blood cells as seen under the microscope.



×

following would be the best explanation for this? Newly born babies generally have elevated levels of blood cell X. Which of the

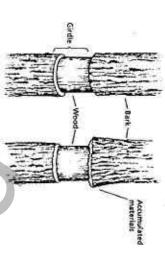
- Nitrogenous waste products need to be removed from their bodies at a faster rate.
- The blood needs to clot so that the point at which the umbilical cord is cut
- They are more susceptible to infections can heal quickly.
- breathe on their own. They require a greater ability to transport oxygen since now they have to


beat.

Between points W and X, are the following valves open or closed?

00	8	>	
open	closed	closed	atrio-ventricular
closed	ope	close	semi-lu

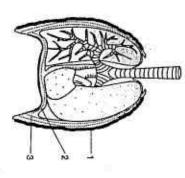
were cut across the stem and root and these sections were put on photographic films. Which of the following correctly represents the distribution of radioactivity in the stem and in the root? A dicetyledonous plant is exposed to radioactive "CO2 for 4 hours. Thin sections



Preliminary Examination 2015

ö

3


A ringing experiment was carried.

After a few weeks, a swelling formed above the ring. Which of the following is/are the explanation(s) for the appearance of such a swelling?

- The cut area absorbed moisture directly from the damp atmosphere that cause it to swell.
 The ringing action stimulated the active cell division around the cut area to
- repair the wounded tissues.

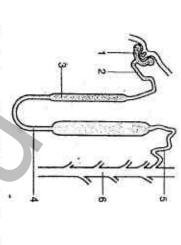
 (3) The removal of the phioem caused the downward translocated nutrients to be accumulated above the ringed region thus enhanced active growing of cells.
- A (1) only B (2) only C (2) and (3) only D (3) only

Which of the follow occurs so that inspiration can take place?

. Which of the following shows the end products of anaerobic respiration in yeast and in the muscles of man?

0	n	В	>	4	
ethanol and lactic acid	ethanol and lactic acid	carbon dioxide and ethanol	carbon dioxide and ethanol	yeast	
lactic acid and water	lactic acid	lactic acid and water	lactic acid	muscles in man	

Secondary 4 Express
Biology 5158/1


Preliminary Exemitation 2015

23

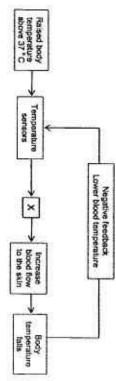
ä

Secondary 4 Express
Biology 5158/1

20. The diagram shows a nephrone.

In a healthy person, which structure would contain the most amino acids?

0	c	8
5 and	4 and	3 and
on	Ċ	4


1 and 2

21 harmone (ADH). Which raw is correct? The table gives the events involved in the secretion and action of anti-diuretic

0	n	œ	>	
1	£	•	*	water level in blood relative to normal
+		+	· C	amount of ADH produced relative to normal
	ı	٠	+	amount of water reabsorbed by kidneys

Key: + = increased; - = decreased

The diagram below shows a feedback loop to regulate our body temperature.

Which of the following structures constrict at point X?

- arterioles
- artery
- 00 shunt vessels capillaries near the skin

23.

Which of the following conclusions can be made?

this nerve, a person cannot feel pain or move his leg properly.

The femoral nerve in humans connects the brain with the tissues of the thigh and leg, including the muscles and skin. When a doctor injects a local anaesthetic that targets

- The femoral nerve contains only sensory neurones.
- The femoral nerve contains only motor neurones. The femoral nerve contains both sensory and motor neurones.
- The femoral nerve contains sensory, relay and motor neurones.

27.

Stage

Petals

Stigma

availability Pollen

partically open

not receptive

high

beginning to

receptive receptive

high nigh gh

available

partially hidden Nectary

hidden

droop

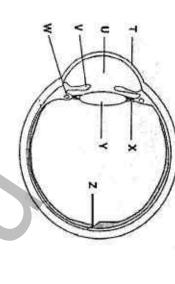
fully open

drooping

not receptive

W

available available


falling

not receptive

none

The table shows the various stages of a rapeseed flower, Brassica napus.

The diagram below shows the cross section of the human eye.

Which of the following structures are involved in changing the pupil size under bright

- T and V U and W V and Z X and Y
- 25 Which of the following is not a characteristic of adrenaline?
- It increases breakdown of glycogen to glucose. It decreases blood pressure.
- It increases rate of breathing
- It is produced when a person is frightened.
- 26 The following statements describe reproduction in plants
- 33333 Offspring are genetically different
 - Offspring are genetically identical Requires only one parent.
 - Requires two parents.
- Sex cells are fused together

colonization of a habitat? Which of the statements describe a method of reproduction in plants that allows rapid

- 0000 9999 933 333

Preliminary Examination 2015

Ġ

Which of the following is correct? place on the flower polimation can take stages 1, 2 and 3

stages 1, 2 and 3 stages 2 and 3 stages 2 and 3 bees are attracted to stages 1 & 2 stages 2, 3, 4 & 5 stages 2, 3, 4 & 5 stages 1 & 2 the flower likely time of day morning evening evening morning

28 insect-pollinated flower is correct? Which of the following regarding the functions of sepals, petals, and anthers in an

	sepals	petals	anthers
>	attraction	protection	storage
0	attraction	protection	support
n	protection	attraction	storage
0	protection	attraction	support

The diagram shows three consecutive months of a calendar, May, June and July.

8		24	17	10	3	27	20	13
BASE	動物	1						
9	200	25	18	=	4	28	21	14
	ない		4					
10	3	26	19	12	5	29	22	15
	100		Ì			N. STORY		
10 T 100	4	27	20	13	o	30	23	16
	意義							
12	5	28	21	7	7	31	24	17
発売の	200					No. of Lot		
13	6	29	22	15	00	-	. 25	18
September 1	182						RESERVED.	100
14	17	30	23	16	9	2	26	19
1000	世紀					COLUMN TO STATE OF THE PERSON NAMED IN COLUMN TO STATE OF	200	

If a woman first realizes that she is having her period on 29th of May, during which of the following times would she be most likely to conceive?

- 14th to 17th May 28th to 31th May 11th to 14th June 25th to 28th June

Presminary Examination 2015

6

7

Secondary 4 Express Biology 5158/1

30 deposited during intercourse? The diagram shows part of the female urino-genital system. Where are sperm

3 Which of the following correctly shows the events that occurs in the stages of a cell

DNA rep	ation Breakdown of nuclear membrane	Divis
A interphase	se prophase	anap
B interpt	hase prophase	metar
C prophase	e interphase	anaphase
D prophase	e interphase	metar

32 plant is 24. The flower colour in a plant is determined by a single gene. The diploid number of the

How many copies of this gene are present at each pole of the spindle in telophase I?

000> 272

Which of the following is the correct identity of the molecule represented?

- DNA molecule
- nucleotide
- sugar-phosphate backbone triglyceride

34. What percentage of the bases of guanine? DNA extracted from the nuclei of octopus cells is found to comprise 18% adenine.

O	n	w
2	36	32

8

35 Which of the following can result in an increase in the rate of mutation?

7	
□ ∩ □ >	333
(i) only (i) and (ii) only (i) and (iii) only (ii), (ii) and (iii)	ultra-violet rays radiation mustard gas

In a genetic experiment using smooth and wrinkled peas, results showed that the allele for smooth peas was dominant and that for wrinkled peas was recessive. 250 hybrid plants that were heterozygous were crossed and 6000 smooth peas were gathered in the F1 generation. What is the likely number of wrinkled peas gathered?

0	n	8	Þ
4500	3000	2000	1500
			7

Proliminary Examination 2015

8

黄

20

South Africa. For many generations, the farmers picked out the offspring with the Farmers crossed two breeds of cattle, the Jersey from Europe and the Sahiwal from highest milk yields to breed the next generation.

Angio-Chinese School (Barker Road)

6

stream?

graphs shows the likely changes in the population of algae and bacteria down the

37.

Which of the following best describes this process?

- artificial selection discontinuous variation
- evolution

OOBP

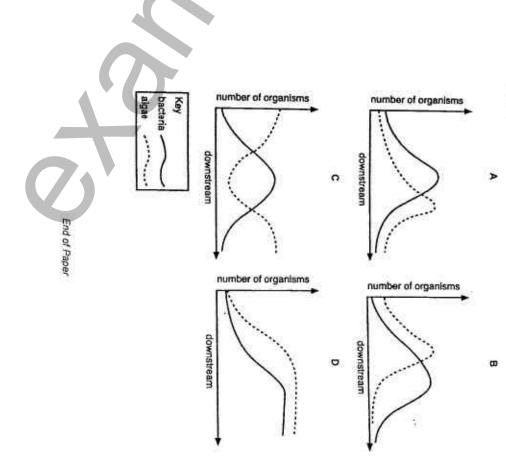
natural selection

38

- levels." Which of the following correctly explains this statement? "In the natural world, there are very few food chains that consist of many trophic
- OB predators therefore need to spend more energy to hunt for preys. As the trophic level increases, the number of organisms decreases. Top
- The biomass of preceding trophic level is insufficient to support the top Energy is lost at each transfer in a food chain.
- habitat cannot support too many trophic levels. predators. There is competition of space between the different populations, hence a

0

Why is energy flow through ecosystems non-cyclical in nature?


39

- Energy is locked in the higher trophic levels and cannot be returned to
- Some of the energy is broken down into other forms that cannot be re-Energy is lost to the surroundings as heat energy cannot be re-used the ecosystem

CB

O

The primary source of energy for most ecosystems is the sun.

Preliminary Examination 2015

Anglo-Chinese School

(Barker Road)

PRELIMINARY EXAMINATION 2015

SECONDARY FOUR EXPRESS **BIOLOGY PAPER 2**

5158/2

TIME: 1 Hour 45 Minutes

READ THESE INSTRUCTIONS FIRST

Write in dark blue or black pen. Write your index number on all the work you hand in.

You may use a soft pencil for any diagrams, graphs or rough working Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions

Write your answer in the spaces provided on the question paper.

Write your answers on the separate answer paper provided Answer all questions including questions 8, 9 and 10 Either or 10 Or. At the end of the examination, Section B

fasten all your work securely together.

2. write an E (for Either) or an O (for Or) next to the number 10 in the grid to indicate which question you have answered

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

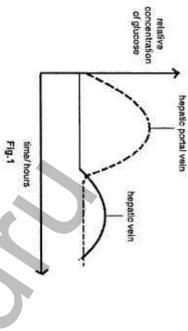
Preliminary Examination 2015

Secondary 4 Express
Biology 51582

Preliminary Examination 2015

N

Section B Section A 6 TOTAL 8 w Marks


> minutes on Section B. You are advised to spend no longer than one hour on Section A and no longer than 45

This question paper consists of 20 printed pages.

SECTION A (50 marks) Answer all questions in the spaces provided.

Angio-Chinese School (Barker Road)

Fig.1 below shows the relative concentrations of glucose in the hepatic portal vein and the hepatic vein over period of time.

e

to the

rise

5 The

(B)

concentration of glucose in the hepatic portal vein. Suggest a reason and explain what could have

9 With reference to part (a) above, explain why there was no similar rise in the concentration of glucose in the hepatic vein. Ξ

T With reference to Fig.1, explain the rise in concentration of glucose in the hepatic vein in the later hours.

₩.

Average hourly rate =

2

[Total: 5]

Ξ

Table 2 shows the clearance time of some substances for a patient undergoing kidney dialysis.

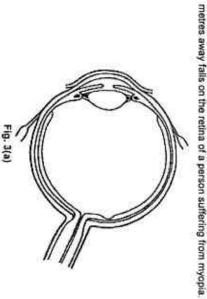
Table 2

Chloride	Sodium	Potassium	Glucose	Creatinine	Urea	in blood
ng/i	mg/i	mg/l	mg/l	mg/l	мgл	Units
108	143	4.3	134	3,4	176	Time = 0 h
	137	Ė	128	2.7	144	h Time = 0.5 h T
107	135	1	138	2.5	126	Time = 6 h

(e) Complete Table 2 to show the estimated concentration of chloride at time = 0.5 h.

0 Calculate the average hourly rate at which urea is removed from the blood of the kidney dialysis patient. Show your working.

Proliminary Examination 2015


Preliminary Esamination 2015

0

Explain the results when t = 6 h for polassium.

When looking at objects far away, people who are suffering from myopia (short-sightedness) will register a blurred image.

On Fig. 3(a), draw a simple ray diagram to show how light from an object 10

[2] Contact lenses are commonly used to improve vision for patients who are suffering from myopia. On Fig.3(b),

9

(e)

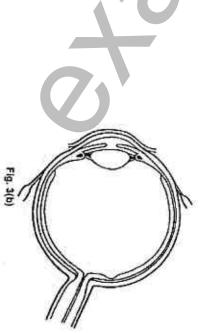
Suggest one way the time can be shortened. Explain your answer.

During each treatment, a patient has to undergo dislysis for a few hours.

3

â

your answer.


The table did not show the concentration of proteins in blood. Predict how the trend of proteins would look like between t=0 h to t=6 h. Give a reason for

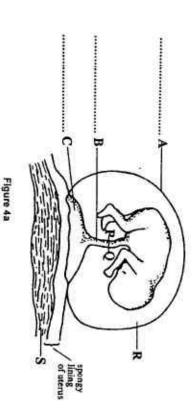
2

draw a simple contact lens at the correct position of the eye and

2

3 image with the aid of the contact lens. draw another ray diagram to show how the same object forms a sharp

0 and protein build up is prevented. When excess dirt and protein is built up in the tenses, the user might feel extreme pain and initiation in the eyes. Proper cleansing of the lenses have to be done regularly to ensure that dirt


Angio-Chinese School (Barker Road)

- and protein build up. Describe how the brain senses the pain and irritation caused by dirt
- 3 To ease the pain, one can wash the contact lens with cleansing solution. Suggest and explain one possible ingredient of contact lens cleansing solution.
- 4
- continuously for many hours, cells of the comea become damaged. The comea is not supplied with blood vessels. When contact lenses are worn

9

Suggest and explain why.

- [Total: 11]

[3]

On the diagram, label structures A, B and C.

(8)

- 9 State one function of R during pregnancy.
- 0 between the maternal blood and the fetal blood. State another function of structure C other than exchange of substances 3

 Ξ

Preliminary Examination 2015

Secondary 4 Express Biology 5158/2

Figure 4b shows a section through structure B taken at P - Q. Fig. 5 shows the inheritance of coat colour in a family of rats. Coat colour is determined by 2 alieles. The aliele that codes for black coat, represented by B, is completely dominant over the aliele that codes for white coat, represented by b.

Figure 4b

On the diagram, label W and X.

Ξ

9 (e)

nutrition, excretion and gas exchange of the fetus. You should leave the cell blank if the vessel does not play any role in any of the functions. Complete the table to describe how vessels W and X are involved in the

Nutrition Vessel W

[Total: 9] 3 exchange

Gas

Excretion

Secondary 4 Express Biology 5158/2

Presiminary Examination 2015

8

ω:

3

(8)

3

Explain your answer.

Determine the genotype of rat Q.

Fig. 5

Secondary 4 Express Biology 5158/2

key black male

Owhite female white male black female

Ξ.

 Ξ

3

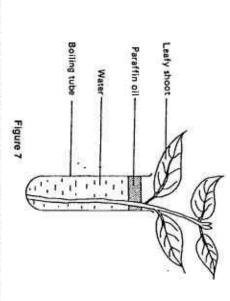
Figure 6 shows part of a food web that is found in the ocean.

Angio-Chinese School (Barker Road)

0

9

Anglo-Chinese School (Barker Road)


9

affected. Suggest a reason for this.

Lobsters were over-hunted by fishermen. Based on the food web, there should be less sardines. However, the population of sardines was not

Question 9 is in the form of an Either/Or question. Only one part should be answered

Figure 7 shows an experimental set-up where a cut leafy shoot was placed in a boiling tube of water and a layer of paraffin oil was added on the water surface.

3

reason for this conclusion.

Recent studies have suggested that sharks act as carbon sink. Suggest a

3

Ξ

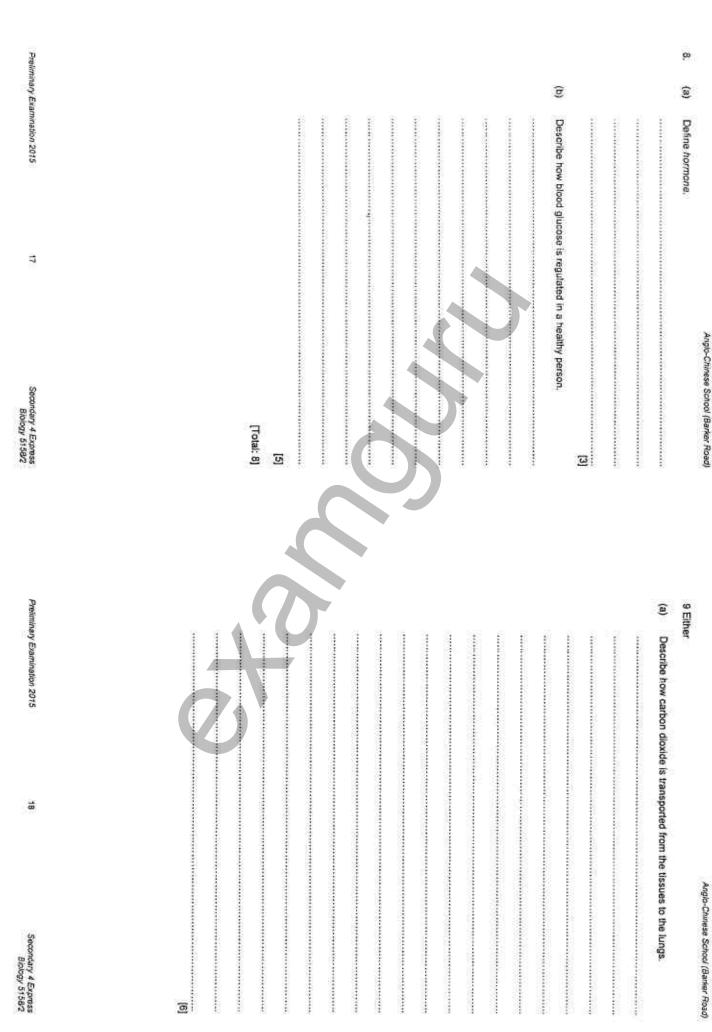
<u>(e)</u>

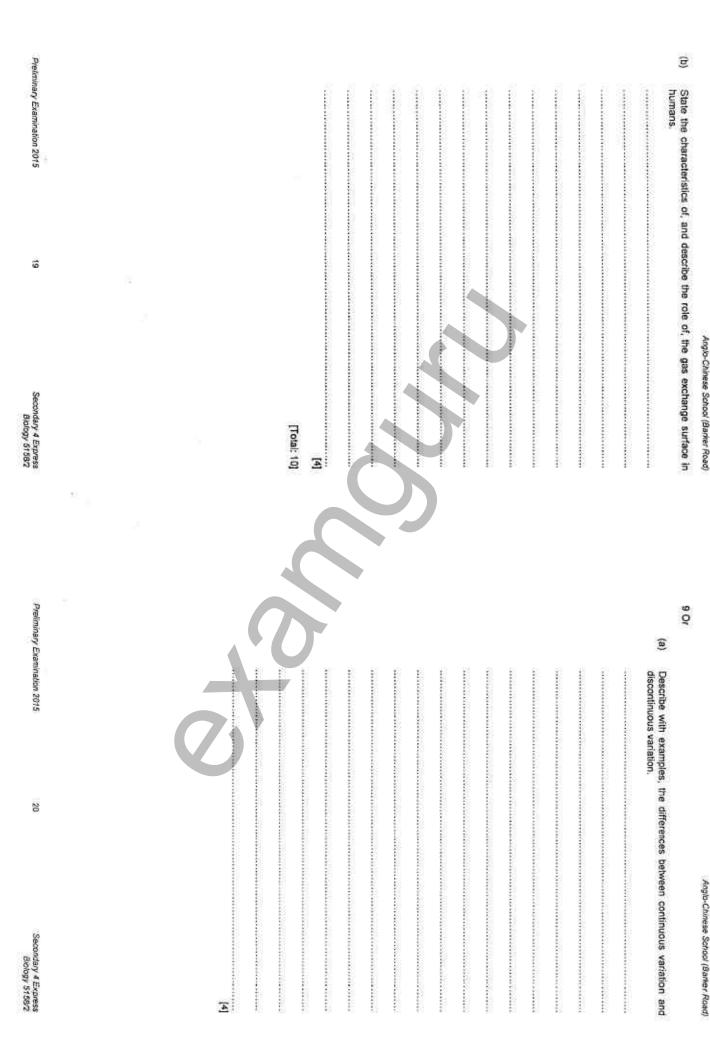
Describe how the ocean acts as a carbon sink

Ξ

The whole set-up (A) was weighed and left to stand in a windy place. The set-up was re-weighed every 4 hours thereafter over a 24 hour period.

differently. The following results were obtained. Another 3 similar set-ups (B to D) was prepared by using leafy shoots of similar size and same number of leaves as that of set-up A. However, the leaves were treated


Satur	Contract	> 2	B SI	c sn	, BC
Treatment on	leaves	No treatment	Upper leaf surface smeared with Vaseline	Lower leaf surface smeared with Vaseline	Both leaf surfaces smeared with
	140	60	82	62	62
	4 hr	56	60	61	20
Weigh	л 8	52	58	60	64
Weight of set-ups (g)	12 hr	48	56	59	2
ups (g)	16 hr	4	2	58	P
	20 hr	40	52	57	2
	24 hr	36	56	56	2

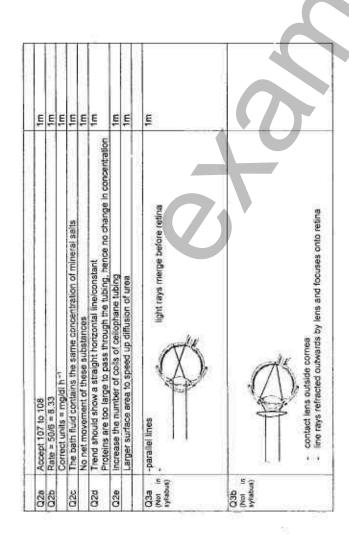

ü

Pretiminary Examination 2015

ž

Secondary 4 Express Biology 5158/2

End of Paper


[6]
and of the formation of the second of the se

At a later time, blood glucose in the converted to glucose and released fro hepatic vein.

Q1 a	016	-			Q1c		
Person could have just eaten a meal high in carbonydrates, so glucose was absorbed in the small intestine and transported away by the hepatic portal vein.	The hepatic portal vein leads to the liver,	where excess glucose is converted into glycogen for storage.	After blood has been processed by the liver, it is transported to the heart by the hepatic vein,	hence blood there contains less glucose and hence no similar rise in the concentration of glucose.	At a later time, the rest of the glucose that has not been converted to glycogen will leave the liver and enter the hepatic vein to cause concentration of glucose to rise.	Or .	At a later time, blood glucose in the body decreases, causing glycogen to be converted to glucose and released from the liver to the rest of the body via the hepatic vein.
ä	3	'n	ă		m		
46							

	9/6	The state of the s
	These impulses travel along the sensory neurone,	1m
	through relay/intermediate neurones	-tm
	and finally to the brain and pain is sensed.	1m max 3
0301	Protease to break down the proteins/ isotonic salt solution to wash away the dirt or build up of foreign particles, (similar to tear contents)	-tm
D3d	Contact lenses block of oxygen molecule from reaching and diffusing into the cells of the comes,	ŧ
	This leads to decreased respiration	1m
	And lack of energy	1m
	Becteria buildup in botween the cernes and lens could also damage the eye	1m max 3m
048	A.: Amnion/ Amniotic sac	tm.
	B. Umbilical cord C. Placenta	ĒĒ
OAD OAD	R is the amniotic fluid that protects the fetus against mechanical injury as it cannot be compressed	1m
	Supports and cushions the fetus	1m
	Acts as a shock absorber	TH.
	Buoys up the embryo to allow it to move freely	TE.
		Any one
240	Produces hormones (pestrogen and progesterone)	tm
D40	W. umbilical attery X. umbilical vein	ut.

		O5aii	05a			-	Qúe
O must also or something i the black m	one allele of b or O produced wh have inherited	Q has a wh	Bb /heterozygous	Gaseous exchange	Excretion	Nutrition	100000000000000000000000000000000000000
Q must also have the dominant allele B sin or or something like this was accepted the black male must be genetype 8b or 8B.	one allele of b. or Q produced white coat offspring v have inherited one allele b from Q	lite coat parent, which n	Adona	Transport oxygen from the mother's blood to the fetus' blood		Transports dissolved tood substances such as glucose from placents to fetus	Vessel W X
Q must also have the dominant allele B since it is black in colour or something like this was accepted: the black male must be genotype Bb or BB.	one allele of b. or Q produced white coat offspring which must have the genotype bb, which must have inherited one allele b from Q	Q has a white coat parent, which must have the genotype bb, thus Q must inherit		Transport carbon dioxide from the fetus' blood to the placenta	Carries metabolic waste such as urea from fetus' blood to placenta		Vessel X W
					2.00		
		im	ħ	ā	3	ä	

		Q5b(ii)			12				Q5b
Sample size too small	ò	The phenotypi on a mathemat	Phenotypic ratio	Offspring phenotypes	Offspring	Fertilisation	Gametes	Parental genotypes	Parental
o small		c ratio derived from t lical model but fertiliz	Black coat	Black coat	86 86	X		<u></u>	Black coat
	3	The phenotypic ratio derived from the genetic diagram is a theoretical ratio based on a mathematical model but fertilization is a random process affected by chance.	, 1 White coat	White coat	bb		, ,	× }~ g	x White coat
		1m							4m
								48	3

	Set-up D did not lose any mass and maintained at a mass of 64 g as water vapour cannot escape from the leaf surfaces as they are completely sealed by Vaseline	E
970	Lower surface loses more water than upper surface as the drop in weight in set-up B 1m is greater (12.9) than in set-up C (6.9)	1m
	Lower surface has more stomata/thinner cuticle/no stomatal hair (any one)	th.
170	Curves A, B and C will rise to be almost parallel with curve D.	E.
	In darkness, stomata closes as photosynthesis does not take place, hence no transpiration occurs which result in minimal water loss.	Ē
0.88	A hormone is a chemical substance that is produced in minute quantities by an 1m endocrine gland.	1m
	It is transported was the blood stream,	1m
	to target organ where it exerts its effects	TH.
080	When blood glucose concentration is too high, it is detected by the islets of Langerhans of the pancreas.	19
	causing it to release insulin into the blood stream	1m
	to convert excess glucose into glycogen	TT.
	to be stored in the liver.	TI.
	When blood glucose is too low, it is detected by the islets of Langerhans of the pancreas, causing it to release glucogon into the blood stream	1m
	to increase the conversion of glycogen into glucose.	1m
Q9Es	As tassue cells respire, carbon dioxide is evolved. Carbon dioxide diffuses into the 1m blood and into the red blood cells due to the presence of a concentration gradlent.	- tm
	Carbon dioxide dissolves in the water in the rad blood cells to form carbonic acid, and then dissociates to hydrogencarbonate/ bicarbonate ions	th.
	This is catalyzed by the enzyme carbonic anhydrase.	1m
	Most of the hydrogencarbonate/ bicarbonate ons will diffuse back into the plasma. Im	-tm

Q5b(III)	Q56(iii) Q5 '0.5 = 0.25	
Oga	Dolphins and sharks	1m
Geb	Correct labels for tropic levels of phytoplankton, zooplankton, sardines and tuna + 1m correct shape (pyramid with a slightly smaller base)	1m
Ogo	They scavenge/feed on decaying matters	1m
P90	Crabs feed on the surface of the seabed while sardines feed in the waters, so there is no direct competition for zooplankton. OR High replacement rate/reproduction rate of zooplankton, so competition for bod is not an issue.	E.
OSe	Oceans store carbon for an indefinite period.	1m
	Carbon dioxide dissolves in sea water.	tm.
	Carbon dioxide used by aquatic plants, algae, corais and phytopiankon in photosynthesis.	tm.
	Carbon compounds buried in sea bed in the form of fossiffuels like oil and ratural gas.	Ť.
		Max of 3
Oser	Sharks store huge amounts of carbon in their bodies. When they die, they sink to the bottom of the ocean and are consumed by scavengets.	tm.
670	Prevents loss of water from the leaves	-tm
970	Transpiration. Transpiration is the loss of water vapour from the serial parts of the plant.	tm
070	Scale (> half the page)	th.
	Axes with correct units	1e
	Plots and each graph labelled correctly	1m
2000	Lines of best fit	1m
P.40	Set-up A has the greatest drop from 60 g to 36 g as transpiration took place at both 1m upper and lower leaf surfaces.	1m

			909				Q9Eb					
Genes do not show Genes show additive additive effect effect	Not affected by changes Affected by changes in the environment the environment	Brought about by one or Brought about by the only a few genes combined effects of many genes	Discontinuous Variation Continuous Variation	There are numerous alveoli to provide a large surface area for a lot of oxygen to diffuse across at the same time	They are kept moist to stop the cells from drying up and to facilitate diffusion of gases.	Numerous capitaines are closely wrapped around outside of the alveoli/Close to an efficient transport system to facilitate gaseous exchange of oxygen and carbon dioxide	The alvedar walls are one-cell thick to allow gases to diffuse across them quickly		H ₂ O + CO ₂ ⇔ H ₂ CO ₃ ⇔H" + HCO ₃	Carbon dioxide will diffuse out of the blood into the siveol to be exhaled out to the external environment.	Cartonic anhydrase will catalyze the backward reaction and hydrogencarbonate/ bicartionate ions are converted to water and carbon dioxide in the red blood cells	and carned to the rungs
		for each pt.	ä	im	îm	1m	im	Max of 6	in	îm	ä	

9	ABO blood group in man Height, weight, skin and ability to roll tongue coloun; accept any other (accept any other correct answer) answer) Genetic variation causes phenotypes of individuals to be different.
906	Genetic variation causes phenotypes of individuals to be diff
	Some allele combinations are better suited to live in environment
	Higher success for these individuals in reproduction.
	Gives an example of an environmental factor that acts as a force for natural selection
	States that natural selection will select individuals with the best combination of genes.
	States that overtime, overall phenotype for groups can be very different, leading to them not being able to reproduce with each other.
	Example of answer: Variation results in individuals <u>displaying a wide range of phenotypes</u> in a population, these individuals therefore do not have equal chances of survival in their environment.
	Some individuals possess allele combinations that make them more suited to live in their environment.
	These individuals hence are more successful in reproduction, passing on their successful alleles to offspring.
	Sometimes, a single species separates into groups that occupy different nighes in the same environment. This means that each group is subjected to different prey, different predators, etc.

Overtane, the overall phenotype of one group would become very different from another.

Their genetic information might differ so much so that they cannot reproduce with each other, forming two separate species.

Different set of alleles would be successful under differing conditions and natural selection would select for individuals with the best phenotype for a particular

environment

Preliminary Examination 2015 ZHONGHUA SECONDARY SCHOOL

CLASS	CANDIDATE
	~

5158/01 16 September, 2015 4 Express 1 hr

2

READ THESE INSTRUCTIONS FIRST

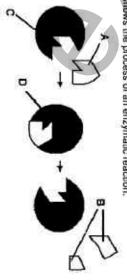
Vetted by: Mr Desmond Chong

Write in soft pencil

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, index number and class on the OTAS Answer Sheet in the spaces provided

possible answers A, B, C and D. There are forty questions on this paper. Answer all questions. For each question there are four


Choose the one you consider correct and record your choice in soft penal on the separate OTAS

Read the instructions on the Answer Sheet very carefully

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet

This document consists of 20 printed pages, including this cover page

- Which statement best describes the features of a root hair cell that aids in its function?
- It has many mitochondria to aid in active transport of water across the plasma
- It has chlorophyll to aid in release of energy for active transport of materials across the plasma membrane.
- It has a long projection to allow a larger surface area to volume ratio for exchange of materials.
- It has a selective permeable cell wall to maintain a concentration gradient
- A cell is found to contain a large amount of smooth endoplasmic reticulum. What is the cell producing in large amount?
- lipids
- proteins
- enzymes
- carbohydrates
- Which option is an example of active transport?
- movement of carbon dioxide into the mesophyll layers in the leaves of plants
- movement of glucose during absorption at villi of the intestine
- movement of ions in the xylem
- movement of water into root hair cells
- The diagram shows the process of an enzymatic reaction

Which structure (A, B, C or D) is an enzyme?

- A detergent company claims that its new range of clothes detergent is cost saving. The following are some of its claims.
- More effective at lower temperature
- Less detergent needed More effective against grease stains
- the new incredients added is the in

Among the new ingredients added is the introduction of a lipase and an emulsifier into the formulation.

Which option best describes the function of the lipase and emulsifier?

0	റ	0	>	
faster digestion of fats at lower temperature, destroyed at the end of reaction	dispersion of fats to increase its surface area	activation energy is raised so that the lipase and fats can collide with each other frequently	faster digestion of fats at lower temperature; recycled at the end of reaction	ilpase
dispersion of fats to increase its surface area	faster digestion of fats at lower temperature; recycled at the end of reaction	faster digestion of fats at lower temperature	dispersion of fats to increase its surface area	empisiner

Which of the following is least likely to increase rate of transpiration in a plant?

4

- increase air movement
- increase sunlight intensity

1

increase temperature

0 0

increase humidity

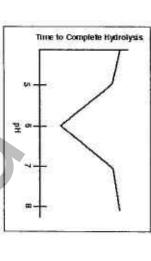
8 A study was done to study the density of stomata on the upper and lower surfaces of various plants from different environments. The results of the study are shown below.

2	~	×	Claim operate	niant enperior
14	14	34	upper surface of leaf	stomata inte
32	18	G.	lower surface of leaf	nsities / mm ⁻²

Which of the following best identifies the environment that plant X, Y and Z originates from?

0	റ	m	>	
desert environment	rainforest	floating aquatic environment	floating aquatic environment	×
rainforest	floating aquatic environment	rainforest	desert environment	Y
floating aquatic environment	desert environment	desert environment	rainforest	Z

An hour before his regular evening run Dave decided to consume a fully ripe banana which contains a high content of starch and simple sugars. Which statement best explains why Dave does so?

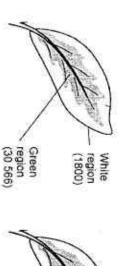


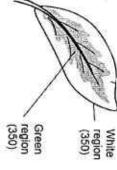
- The rapid absorption of starch and simple sugars allows for energy needs to be met rapidly.
- The slow absorption of starch and simple sugars allows for continual supply of source of energy during the run.
- C Digestion of simple sugars allows slow absorption of the simple sugars to provide energy during the run while direct absorption of starch provides an immediate source of energy.
- Digestion of starch allows slow absorption of glucose to provide energy during the run while direct absorption of simple sugars provides an immediate source of energy.

O

The graph shows the relative time taken for enzyme X to complete hydrotysis of a specific

5



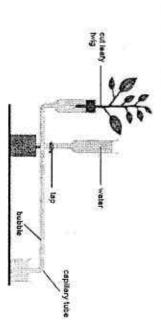

What could enzyme X be?

- trypsin
- salivary amylase
- pepsin
- pancreatic lipase

=

A plant with vareigated leaves was exposed to radioactive carbon dioxide (MCO₂). Leaf O is exposed to light and leaf P is kept in the dark. At the end of the experiments, radioactivity of the leaves tissues were measured (in arbitary units) and the results were shown below.

Leaf P (dark)


Leaf O (light)

Which statement best explains the results observed at the white region of the leaf 0?

- Photosynthesis accurs slowly in the white region due to the absence of chlorophyll
- Products of photosynthesis diffuse from the green region to the white region.
- Photosynthesis occurs rapidly in the white region causing the radioactivity to rise.
- Radioactive carbon dioxide diffuses and accumulates in the white region of the leaf.

0 0

The diagram shows a potometer.

Which conditions will show the fastest movement of the bubble in the capillary tube?

- low light intensity, still air, high humidity
- high light intensity, still air, low humidity
- high light intensity, windy, low humidity
- low light intensity, still air, low humidity

3

Blood pressure

Which option correctly identifies the blood vessels?

capillaries	veins	pulmonary artery	vena cava	arteries	0
veins	capillaries	vena cava	pulmonary	arteries	n
vena cava	veins	capillaries	pulmonary	arteries	8
pulmonary	vena cava	veins	capillaries	arteries	>
C)	4	ш	2	.4	

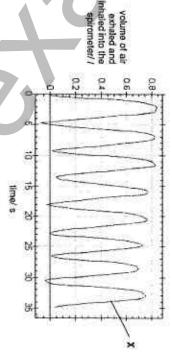
contracts? Which valve opens when the heart chamber that produces the highest blood pressure

7

- the right atrioventricular valve
- the left atrioventricular valve
- the pulmonary semi-lunar valve
- the aortic semi-lunar valve

O O w The graph shows the blood pressure in various blood vessels in the human circulatory 5

The diagram shows the bronchus lining of a smoker and non-smoker.


non-smoker

Why is it harder for the smoker to remove mucus from his respiratory tract?

- The non-smoker produces more mucus than the smoker
- The non-smoker has a lot more epithelial cells than the smoker
- A significant number of citia are damaged in the smoker's epithelial cells
- The smoker's epithelial cells have burst

6

The diagram shows the results of an experiment of a man's inhalation and exhalation of a spirometer. A spirometer measures the volume of air moving into and out of the spirometer during inhalation and exhalation

What is happening to the diaphragm and external intercostal muscles at point X7

- Both the diaphragm and external intercostal muscles are contracting
- Both the diaphragm and external intercostal muscles are relaxing
- The diaphragm is relaxing and external intercostal muscles are contracting.
- The diaphragm is contracting and external intercostal muscles are relaxing

[Turn over

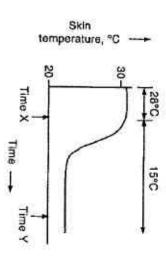
The table shows substances moving between tissues and their surrounding capitlaries.

17

		•	urea
	`		amino acids
/= does pass	8	۲,	carbon dioxide
Key	`		cellific
	out of the capitlaries into the tissues	into the capillaries from the tissues	substance

Which of the following part of the body does these tissues belong to?

ifeum


alveolus

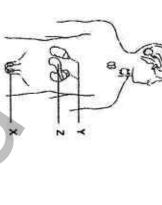
D liver

18 In an experiment, the relative concentration of various substances in urine and renal vein is measured. Which option shows the correct results?

	Þ	8	C	0
urea	high	high	low	low
glucose	low	high	wol	high
urea	low	nigh	low	high
glucose	high	high	high	woi
	glucose urea	high low low	high low low high high high high	high low low low low low low

19 The graph shows John walking from a place of 28°C to a place of 15°C.

Which statement is incorrect?

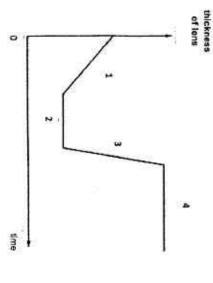

- The core body temperature will be the same as the skin temperature at time Y.
- The metabolism rate of John starts to increases at time X.

w

- C John experiences pale skin at time Y.
- D Shivering occurs at time Y.
- Which statement best describes a negative feedback?
- A lt always causes a further increase the change in body parameter.

 B It always causes a further decrease the change in body parameter.
- C It always maintains the change in body parameter
- It always revert the change in body parameter back to normal level

21 The diagram shows some of the major endocrine glands in a human male.


Which endocrine organ(s) secrete(s) hormone that affects blood glucose concentration?

Z only

X and Z only X and Y only

Y and Z only

22 The graph shows the changes in the thickness of the lens when a man looked at an object which remained stationary, moved towards or away from him.

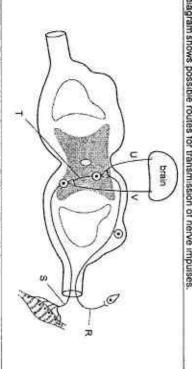
in which stage was the object moving away from the observer?

(c)

[Turn over

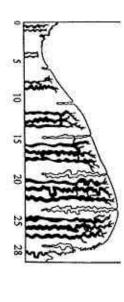
Which statement about the sperm is incorrect?

R + T + S


SITIR

V → S U + R

- Energy to move the flagellum originates in the middle piece. The cell can unite with an ovum resulting in the production of a new organism.
- The acrosome contains half the normal number of chromosomes.
- The head may contain mutated genes.



What is the route taken by an impulse during a spinal reflex action?

[Turn over

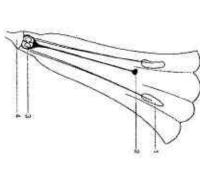
The diagram shows the variation in thickness of the endometrium throughout a menstrual cycle of a healthy female.

Which stage of the menstrual cycle would the levels of oestrogen and progesterone surge?

Which option shows the correct matching of the labelled structures?

structures

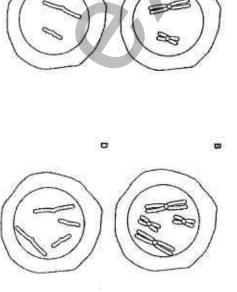
3 and 7 2 and 7 1 and 8


supply of food and oxygen to the embryo site where offspring is formed

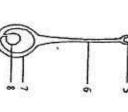
site of fertilization function

protection of male gamete

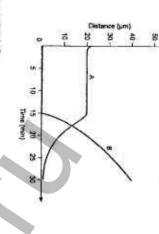
4 and 5


surge in destrogen	surge in progesterone
A days 1 to 5	days 15 to 20
B days 5 to 10	days 1 to 5
C days 5 to 15	days 15 to 25
D days 15 to 25	days 5 to 15

In which structures are haploid nuclei formed?


Q

A cell containing two sets of chromosomes divides by meiosis. Which diagram shows prophase II?



[Turn over

The diagram shows the human female reproductive system and the carpel of a flower.

chromosomes of the cell line up at the equator. its sister chromatid. On the time scale, zero (0) marks the beginning of the time when the The graph illustrates the movement of a chromatid within a cell during mitosis. Curve A approaching. Curve B shows the distance between the centromeres of this chromatid and shows the distance between the centromere of a chromatid and the pole that it was

At what time will anaphase begin?

- 1 min
- 15 min
- 20 min

17 min

30

engineering. The following list gives some features of the processes of artificial selection and genetic

- The organism's genotype is altered
- The new variety can make a substance previously only made by a different species.
- The process involves working with many generations of the organism over a long period of time.
- 2 The gene for the useful characteristic is transferred from one species to another.

Which of the above features refer to genetic engineering and artificial selection?

O	0	œ	>	
I, II, III and IV	II and IV	VI bne III ,I	I, II and IV	genetic engineering
I, II and III	and	l and II	=	artificial selection

မ္ polypeptide chain. Five different amino acids (numbered 1 to 5) form the following sequence in part of a

1+2+3+4+2+5+3

This is the list of messenger RNA codors with their corresponding amino acids

- amino acid 1 UGU amino acid 4 UAG
- amino acid 2 GAU amino acid 5 AAG
- amino acid 3 CAC

section of paypeptide? Which one of the following DNA base sequences could provide the code for the given

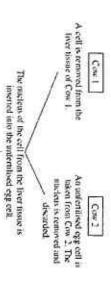
- ACACTTGTGATGCTATTCGTG
- ACACUAGUGAUGCUAUUCGUG
- ACACTAGTGATGCTAAACGTG

C 8

Ö ACACTAGTGATCCTATTCGTG

32 The table shows the results of mapping 100 nucleotides on a single strand of DNA

viosina 2	J. Comic
3	20


How many thymine nucleotides will there be on the strand of DNA that is complementary to this strand?

0 22

0 33

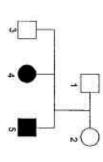
[Turn over

Turn over

The resulting cell is then implanted in the uterus of Cow 3.

Which cows are genetically identical?

- cow 1 and cow 3


8

cow 1 and cow 4

- cow 2 and cow 4
- cow 3 and cow 4

O

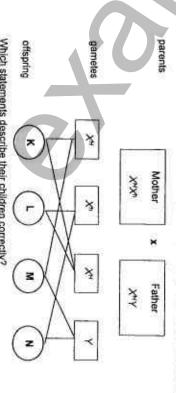
34 Hunter's deficiency is a rare autosomal recessive disorder presenting in infancy. 1 in 250,000 shows individual 4 affected with Hunter's deficiency at age of 6 months, Her newborn younger people is affected. A carrier is not affected and is observed to be normal. The pedigree diagram brother, 5, was also diagnosed with the same disease.

- 1 in 2
- В
- 1 in 4
- 2 in 3

What is the probability of her 15 year old brother (number 3) of being a carrier?

- 0 1 in 3
- b

35 The table shows the blood groups of 4 married couples


Constitution and Constitution of the Constitut	
blood group	name of couples

O and O	Mr and Mrs Yung
B and B	Mr and Mrs Kaur
AB and O	Mr and Mrs Rainer
A and B	Mr and Mrs Paulo
blood groups	name of couples

Each couple has a baby. One baby has type AB blood, one type A, one type B and one type O. Which couple are the parents of the baby with blood group A?

000

- Mr and Mrs Rainer Mr and Mrs Kaur Mr and Mrs Yung Mr and Mrs Paulo or Mr and Mrs Rainer
- Which statement is true when a phenotypic ratio of 3:1 is observed?
- 36
- other, are involved Two heterozygotes are mated and two co-dominant alleles are involved. Two heterozygotes are mated and two alleles, one completely dominant over the
- A homozygous recessive individual and a homozygous dominant individual are
- Two homozygous dominant individuals are mated
- A woman who does not have haemophilia but is a carrier marries an unaffected male.

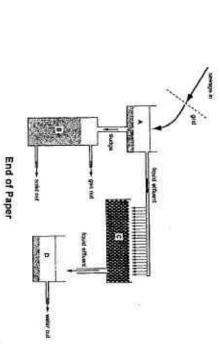
Which statements describe their children correctly?

- K is a normal female.
- L is a female haemophilia.
- M is a normal male.
- N is a male with haemophilia.
- I and IV only. O I, III and IV only.
- I, II and III only. O I, II, III and IV

œ Þ

Turn over

Which organisms occupy the same trophic level? 3 and 2 4 and 1 00 5 and 2 5 and 3


In the diagram below, arrows represent the movements of carbon compounds in the carbon cycle. The circles represent carbon compounds in animals, decomposers, plants and the atmosphere.

39

Which circle represents the producer?

The diagram shows a sewage treatment process. Which stage involves anaerobic bacteria?

6

[Turn over

Secolusied legyel200g tor WITHOUT SCHOOL

ZHONGHUA SECONDARY SCHOOL

This document consists of 18 printed pages, including this cover page.	Total	B12 E / O	810	Section A	For Examiner's Use	Answer all questions. Write your answers in the spaces provided on the question paper. The number of marks is given in brackets [] at the end of each question or part question. All essential working must be shown clearly.	Write your name, index number and class in the spaces at the top of this page and on all separate answer paper used. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.	BIOLOGY Paper 2 Theory 26 August, 2015 Secondary 4 Express Set by: Ms Rozianna / Mr Tan Li Chun Vetted by: Mr Desmond Chong Vetted by: Mr Desmond Chong	CANDIDATE NAME	ZHONGHUA SECONDARY SCHOOL Preliminary Examination 2015
/HS		######################################	1					€	9	
Total marks:	3 10 E			2				Describe how glucose is completely absorbed by the small intestine.	State the differences between active and diffusion.	Answer all the questions. Write your answers in the spaces provided on the question paper. Rapid absorption of nutrients occurs rapidly in the small intestine of the human alimentary canal.

[Total: 5]

62

[2]

The gel was poured into Petri dishes and allowed to set

Cavities were made in the get and various liquids were poured into the cavities as shown in Fig. 2.1

- cavity 1 contain lipase
- cavity 2 contain lipese with diluted sodium hydroxide
- cavity 3 contain amylase
- cavity 4 contain pepsin

transparent.

branch B

branch C

container

1

Using information from Fig. 3.1, state and explain the differences in transpiration rate of branch B and C during mid-day.

Fig. 3.1

(a)

After 24 hours, clear areas were observed around the cavities with enzymatic reactions. In Fig 2.2, draw the clear areas around the cavities.

2

0

Explain your answer for 2(a).

replaced with a black bag.

3

State and explain the difference in transpiration rate of branch B if the transparent bag is

Total marks:

Total marks:

[Total: 4]

N

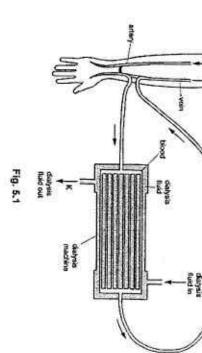
with an opening to collect water lost through transpiration. Fig 3.1 shows a desert bush that thrives in a warm dry climate. Branches 8 and C are of similar size and number of leaves, except that branch B is covered with a transparent bag

3

Total: 6

(ii) minimal blood left in the left ventricle (i) the left atrioventricular valve closes Using Fig. 4.1, identify at which point (A, B, C, D, E, F, G, or H) doe

Fig. 4.1


(a)

Describe how carbonic anhydrase helps in transport of carbon dioxide in the human circulatory system.

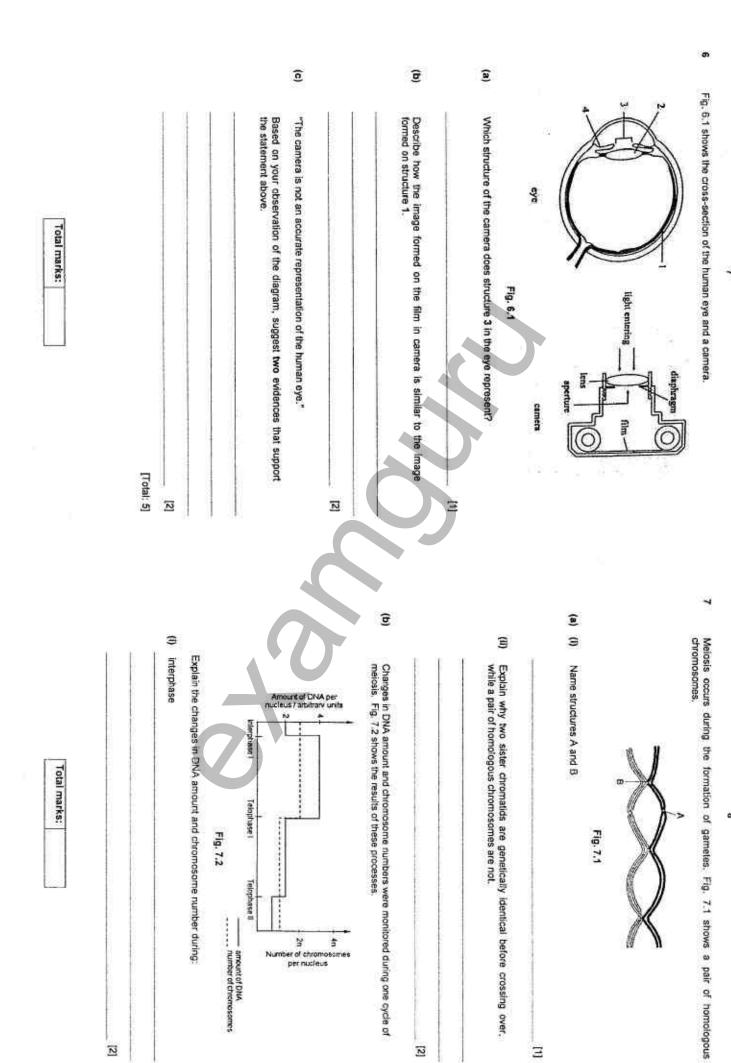
6

Name two substances that are removed via the dialysis fluid during dialysis.

0

Û ô State which hormone is responsible to enhance the retention of water by the kidney. Explain why glucose concentration in the dialysis fluid is at the same level as a healthy individual.

Fig. 5.1 shows a dialysis machine attached to the arm of a patient whose kidneys had stopped 6

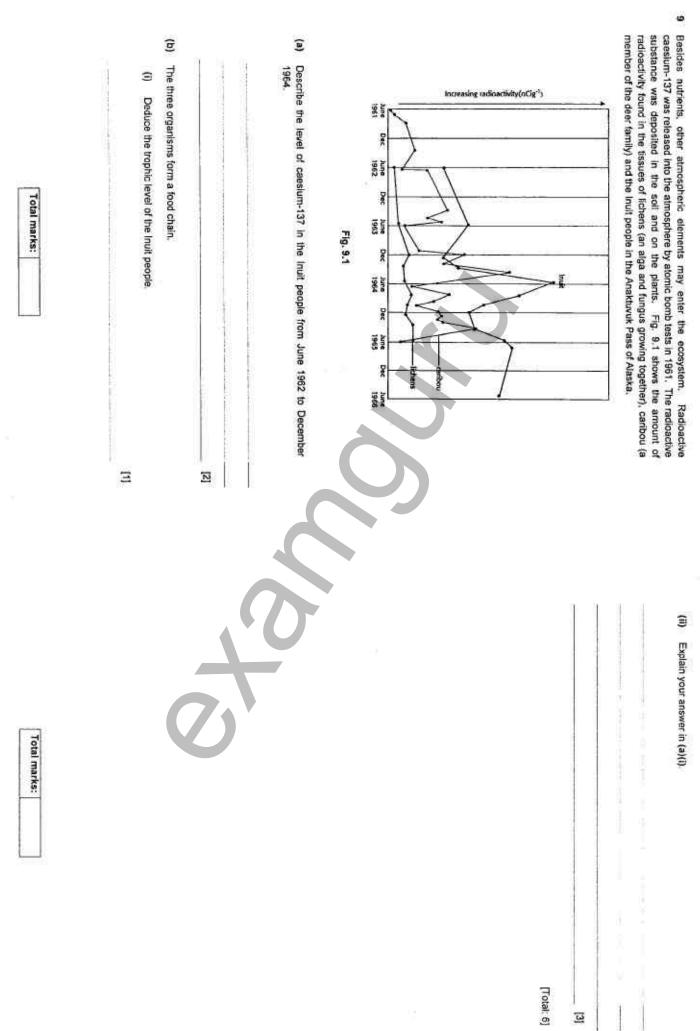

Sacol Bedieny 2200 5 WITHOUT SCHOOL

Total marks:

[Total: 6] Z

Total marks:

Ξ



0 (ii) telophase I The four o'clock plant, Mirabilis jalapa, can have flowers of three different colours shown in Explain why DNA amount and chromosome numbers remain constant during anaphase I and II in Fig. 7.2. crimson flower Total marks: Fig. 8.1 orange-red flower newer [Total: 9] 72 72 0 a You may use the space below for any working. Complete Table 8.1 by writing the genotypes of the offspring of crosses 2 and 3, using the same symbols as in the genetic diagram in 8 (a). In cross 1, student crossed some crimson-flowered plants with some yellow-flowered plants. She collected the seeds and all plants that grew from these seeds had orange red flowers. Use a genetic diagram to explain the results of cross 1. The student then carried out two more crosses shown in Table 8.1. 3 offspring of cross 1 x crimson-flowered plant 2 offspring of cross 1 x offspring of cross 1 cross Total marks: Table 8.1 genotypes of offspring [Total: 5]

Secolusied leggye2200g torWITHOUT SCHOOL

2

3

(a)

Plot the data for both plant A and plant B in the grid provided

were measured at various light intensities. The conditions for both setup is similar. The results are shown in table 10.1. In an experiment, the rate of oxygen production of two different potted plants, A and B

Table 10.1

60	50	40	30	20	10	0	units	light intensity / arbitrary
5.8	6.0	5.5	4.5	3.0			plant A	ģ
4.9	5.0	4.9	4.5	3.5	1.8	0.0	plant B	fuction / arbitrary units

arbitrary units. State a possible limiting factor of photosynthesis for plant B at light intensity of

8

2

Ξ

Seco4uBiedleegye220glbrWITHOUTSCHOOL

Total marks:

Total marks:

Ŧ

[Total: 10]

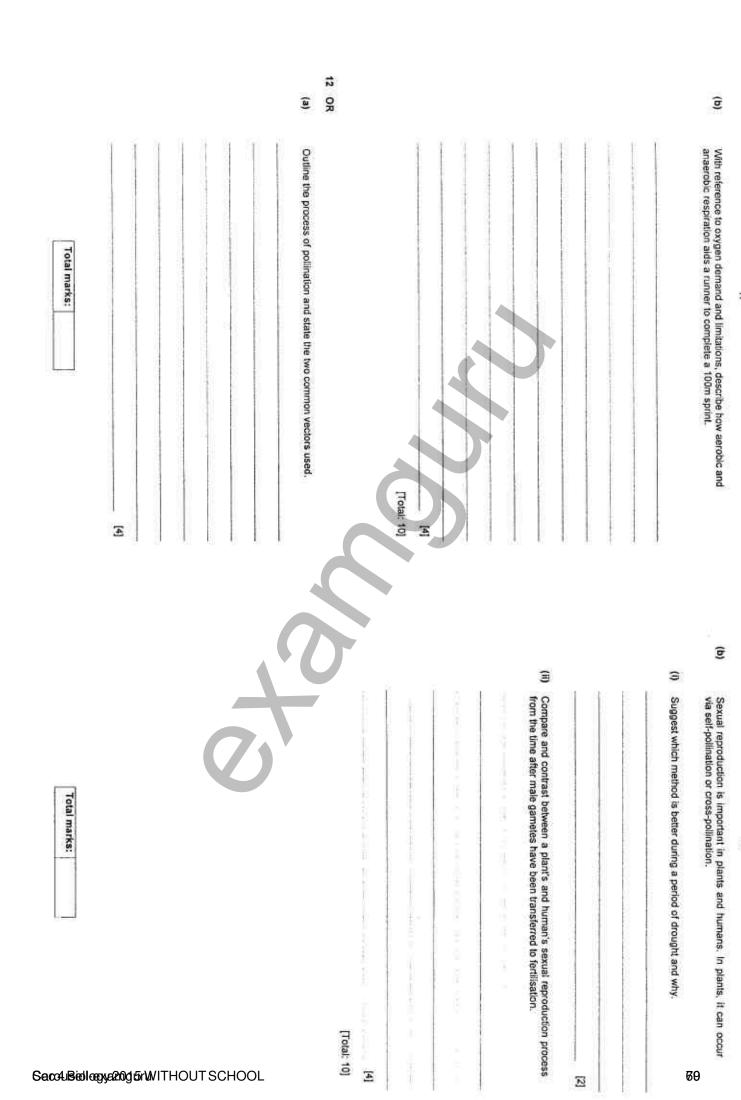
 $\overline{\omega}$

Write your answers in the spaces provided.

Section B

Answer all three questions, the last question is in the form EITHER / OR

Û


With reference to the data, compare and contrast the rate of oxygen production between plant A and B.

Which of the potted plants will you choose as an indoor decorative plant? State your

ô

6

3

ZHONGHUA SECONDARY SCHOOL 2015 PRELIMINARY EXAMINATION [Answer Key]

4E Biology

PAPER 1 [40 marks]

-	40	>	35	A	30	n	25	0	20	C	55	œ	5	o	5
	39.	Þ	34	ဂ	29.	C	24	Þ	19.	O	14	0	9.		
	38.	8	33.	œ	28.	0	23.	Þ	18	Þ	13	P	ço	œ	ω
	37.	c	32.	A	27	Þ	22	0	17.	c	12.	0	7.	Þ	2.
	36.	0	31.	œ	26.	0	21.	Þ	16.	8	7	Þ	6	C	-

PAPER 2 Section A [50 marks]

Q2a	QTA QTA	P
Circle around lipases 1 mark Larger circle around lipase with sodium hydroxide 1 mark	Active transport requires energy while diffusion do not. Active transport moves particles against the concentration gradient while diffusion moves particles down the concentration gradient (AW). Combination of both diffusion and active transport to transport glucose; Diffusion takes place till blood glucose concentration in the capilliaries is at equilibrium with concentration in small intestine; Active transport (alone) allows rest of glucose to be absorbed into the capillaries of the microvillus against the concentration gradient.	Solutions
each		Marks

7.	6(c)	6(b)	6(a)	C	0		58			P	7		9		Q4 a)				Q3B							Q3A			į
Light enters the camera through lens before passing through aperture while light enters the eye through the qual before the lens:	The human eye has a blind spot while the camera does not	Small/diminished; Laterally inverted image/ upside down	The aperture	Antiduretic hormone	Glucose is small enough to pass through the partially permeable tubing Concentration at equilibrium prevents lost of glucose through diffusion	Urea Excess glucose / excess amino acids / excess mineral salts/ excess water	Any two	cell nto the plasma	The bicarbonate ion/hydrogen carbonate ion diffuses out of the red blood	(H+) ions;	Carbonic acid dissociates into bicarbonate ions (HCO3-) and hydrogen	carbon dioxide and water into carbonic acid (H2CO3);	At the muscles, in the red blood cells, Carbonic anhydrase converts the	a) B	0 6	levels drop.	Causing the stomata to become smaller/close as glucoser potassium lons	Lack of sunlight in the black plastic bag results in photosynthesis to	The rate of transpiration will decrease:	Rate of diffusion of water vapour is faster at C than B	leaf and surrounding air is steeper at C than B.	Water vapour concentration gradient between intercellular air space of the	plastic bag	exposed to low humidity whereas B has exposed to high humidity in the	C is exposed windy conditions whereas B has little air movement OR C is	Branch C will have higher transpiration rate than B:	shows a larger clear area than lipase alone	Lipase optimal pH is alkaline therefore lipase with sodium hydroxide	areas are around cavities with lipases
points (1 m each)	Any 2		_	-			-	29	¥	5.50		-4			-	-		-	: 1			-		-	t i	-		**	

64/10				9(a)		0(0)	14/0				8(a)		7(c)		7(b)ii		7(b)i		7(a)ii	7(a)i		
T .	Ref. decrease from June 1964 to Dec 1964;	Ref. an increase from Dec 1963 to June 1964 (highest level of radioactivity).	Ref. a decrease in radioactivity from June 1963 to Dec 1963;	Ref. an increase in the radioactivity from June 1962 to June 1963,) of Sphing of cross 1 x crimson-flowered plant $A^{C}A^{C}:A^{C}A^{C}$	2 offspring of cross 1 x offspring of cross 1 $A^{0}A^{0} = A^{0}A^{0} = A^{0}A^{0}$. 11	offspring phenotype offspring phenotype offspring phenotype	gametes (perential genotypes AFAC × AFAC	parents) phenotypes crimson fowers x yellow fowers	During anaphase II, although the chromatids separate and move towards the opposite poles, nuclear envelope has not reformed, hence no reduction in the DNA amount and chromosome numbers.	During anaphase i, althought the homologous chromosomes separate and move towards the opposite poles, nuclear envelope has not reformed, hence there is no reduction in the DNA amount and chromosome numbers.	Chromosome number decreases from 2n to n; separation of hamologous chromosomes into 2 daughter cells:	DNA amount decreases from 4au to Zau; separation of homologous chromosomes into 2 daughter cells.	Chromosome number remains the same at 2n since there is no separation of homologous chromosomes.	DNA amount increases from 2au to 4au due to DNA replication.	Homologous chromosomes <u>are from each parent</u> . Although they have genes which determine the same characteristics, they <u>may code for different phenotypes</u> of the same characteristic / <u>contain different allele</u> of the same gene.	Sister chromatids are formed as a result of <u>DNA replication</u> , hence they are genetically identical.	A: centromere B: chiasma	The retina has a wider area of image as compared to the film of camera.	The thickness of the lens cannot be aftered in the lens unlike in the human eye by ciliary muscles;
100		Any 2			_	00.55				12	ŭ:				4	-	-	-	-	-		

11(c)		11(b)	11(a)	(b)	©	10(a)	(a)e
Ban harmful fishing technique: use of dynamite, cyanide, bottom trawling, drift nets Legislation and taxes: fishing output / fishing quota / vessel licensing / limit period of fishing	concentration of mercury in tung due to biomagnificative accumulation of pollutants in the body of animals with a we trophic levels) we trophic levels in higher trophic levels feed on many respectively with the pollutants in lower trophic level in ordering needs.	Mercury compounds are insoluble/ non-biodegradable/ not excreted out of the body ⇒ remain in body tissues/fats of animals Passed from algae ⇒ herbivorous fish ⇒ small carnivorous fish	Algae and plankton Able to make their own food via photosynthesize / trap light ⇒chemical energy → make food from inorganic compounds Provide energy in the form of food for all the organisms in the ecosystem	Carbon doxide / temperature	B; B has a higher rate of oxygen production at lower light intensity indicating that it can photsynthesize (linkage must be made) better at lower light intensity while indoors.	and passed to the Inult: As the radioactive caesium cannot be excreted, it was stored and accumulated in the tissues and passed along the food chain through feeding Scale - 1 Plot - 1 (allow 1 mistake) Lines - 1 (best fit curves, labelled correctly) Axes - Labelled correctly Below light intensity of 30, plant 8 shows a higher rate of oxygen production. At light intensity of 30, both plants shows the same rate of oxygen production. Above light intensity of 30, plant A shows a higher rate of oxygen production. Between light intensity of 50-60 the oxygen production of both plant A and B is relatively constant (stop increasing) with Plant A showing a higher rate of oxygen production.	Ker, lichens had me lowest level of radioactivity while the mut had me highest. The caesium entered the food chain when the caribou fed on the lichens.
* *		-		1	* *	4 total 1 mark each, Max 3	

ω

OR 12 (a)									В		=3300																			12 a	EITHER
Pollination is the transfer of pollen grains from anther to mature stigma of the same species vectors; Wind, insect / bae/ butterfly	aerobic respiration) to fufill the need for energy by the muscle tissues	aeroons respiration releases additional energy (on top of therefore anerobic respiration releases additional energy)	THE CASE OF THE PARTY OF THE PA	There is a local to be serviced	and the second	The oxygen demand increases for aerobic respiration to release the	contrations	There is a huge demand of energy by the muscle tissues for vigorous	in a sprint,	Must at leaset give similarity and differences or will only score 2 max	Total 3 strands.	1 mark for corresponding function	1 mark for correct comparision of contrasting characteristic or similarity +	photosynthesis)	(therefore	closing of stomata	effected by opening and	Gaseous exchange	leaf (via diffusion)	gases into and out of the	Passive exchange of	Differences		Moisture layer present		vascular bundle	Innvervated with	mesophyll layer	Air spaces in spongy	Leaf	Similarities
f pollen grains na of the same species of butterfly	the need for energy by	ion releases additional e	and regulated and more	and heart rate and inc.		ases for aerobic respirat		f energy by the muscle to		ty and differences or will		unction.	sion of contrasting chara	breathing permanently)	yourself to stop	reflex (cannot will	mainly automated	Breathing response is	(unforced)	passive exhalation	Active inhalation and		present	Moisture layer		capillaries	Richly supplied blood		Many small alveolus	Lung	
	the muscle tissues.	nergy (on top of	amended and Many and	ficiant owner for		on to release the		ssues for vigorous		only score 2 max			cteristic or similarity +				movement	Ability to control of	and out of the organ	movement of air in	Mechanism for		diffusion	To allow gases to	fro	substances to and	For fast transport of	gaseous exchange	Increase SA:V for	function	
2		13		3		3								Ĉ		}															6 marks

Q	OC:	e e e	M	the Po	Plant	Diff	zygote Both re Both h	12 (b)ii Sim Boti	12 (b)i Self Cro mig
Ovary	Many fertilizations can occur simultaneously	Double fertilization to form zygote and endosperm	Many ovules	Polen tube formed by enzyme digestion through style	an	Differences	ote. h requires male game h have large number o	Similarities Both requires the fusion of	Self-pollination uses less energy/ resou Cross-pollination gives greater genetic might be better adapted to the drought
Site of fertilisation	No. of fertilisations in an organism	Type of fertilisation	No. of female gamete	Method of movement	Factor		zygote. Both requires male gametes to move towards female gamete Both have large number of male gametes released.	Similarities Both requires the fusion of male and female gamete to form a dipioid	Self-pollination uses less energy/ resources to produce less pollen OR Cross-pollination gives greater genetic variation amongst offspring which might be better adapted to the drought
Oviduct / Fallopian	Naturally only 1 fertilisation	Single fertilization to form zygote	One egg every cycle	Sperms swim up vagina to oviduct	Human		ale gamete. d.	te to form a diploid	duce less pollen OR mongst offspring which
				2 210 2			(10)		
				·	_	_		7	3

FIRST TOA PAYOH SECONDARY SCHOOL O-LEVEL PRELIMINARY EXAMINATION 2015 Secondary Four Express

Biology (SPA)

24 August 2015

5158/02

1 hour 45 minutes

No Additional Materials are required.

Candidates to answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write in dark blue or black pen. Write your name, register number and class on all the work you hand in

Section A (50 marks) Do not use staples, paper clips, highlighters, glue or correction fluid You may use a soft pencil for any diagrams or graphs. Answer all questions.

Section B (30 marks)

Write your answers in the spaces provided on the Question Paper

Answer all the questions

Write your answers in the spaces provided on the Question Paper

You are advised to spend no longer than one hour on Section A and no longer than 45 minutes The use of an approved scientific calculator is expected, where appropriate

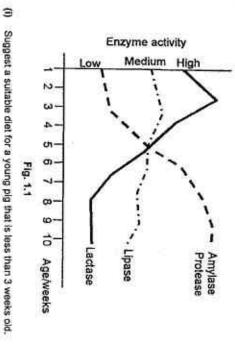
At the end of the examination, fasten all your work securely together.

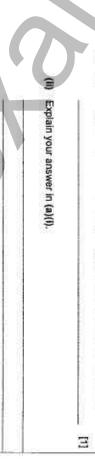
The number of marks is given in brackets [] at the end of each question or part question.

SECTION A SECTION B TOTAL For Examiner's Use 80

This question paper consists of 15 printed pages.

[Turn over


Sec 4E Biology (SPA) Preliminary Exam 2015


Section A

Write your answers in the spaces provided Answer all questions.

Fig. 1.1 Illustrates the relationship between the age of a pig and the activity of the enzymes in its digestive system.

As the pig grows older, its diet is gradually changed from milk to grains and soya bean

(B)

E

[Turn over

N

FTPSS

Z

[Turn over

(d In Fig. 1.2, label with (i), (ii), (iii) and (iv), where the following enzymes are likely to be found in the pig. Fig. 1.2

3333 amytase protease lipase

lactase

[Total: 10]

2

(c) Suggest why the activity of lipase does not decrease greatly over 10 weeks. 3 For Examiner's Use Fig. 2.1 shows a picture of a leaf attached to a plant throughout an experiment. leaf discs cut out at 10 a.m.

the steps taken in the experiment. respectively. The plant may have received some treatment before the discs were cut and likewise the discs too, before their total dry weight is measured. Table 2.2 shows Six discs were cut out from regions X, Y and Z of the leaf at 10 a.m., 4 p.m. and 10 p.m.

Table 2.2

198	none	kept in the dark for 6 hours	10 p.m.
209	none	exposed to sunlight	4 p.m.
186	killed in steam	exposed to sunlight	10 a.m.
dry weight of leaf discs (mg)	treatment of leaf	removing leaf discs	time

Explain the change in dry weight of leaf discs

(b) between 4 p.m. and 10 p.m.

[Total: 4] 2

For Examiner's Use

leaf discs cut out at 4 p.m.

leaf discs cut out at 10 p.m.

the vessel of the heart and explain how you derived at gan S and explain how you derived at svery low.	(d) Explain	explanation	(c) Name or organ S	vessel P explanation	(b) Identify	chamber X explanation	(a) Identify	Increase (relative u	100
urea concentration organ-S vessel-Toulation organ-S vessel-Toulation organ-S vessel-Toulation at your answer, derived at your answer.	Explain how vessel T ensures that blood pressure is very low.	ation	organ S and explain how you deri S	ation	vessel P and explain how you do	er X ation	Direction of the origin chamber X of the heart and expl		blood pressure concentration
	flows back to the heart though th		ved at your answer.		erived at your answer.		ation —— 3.1 ain how you derived at your answ		

 A by nerve impulses sent to the stomach when the food is tasted in the mouth,
 B by the stretching of the stomach when it is filled with food,
 C by a hormone produced when the food reaches the stomach. When food is eaten, gastric juice is released into the stomach. This is illustrated in Fig. 4.1 below. The volume of gastric juice released is controlled in the following three ways: yolume of gastric julce released meal time in hours

9 Use information from Fig. 4.1 to describe the differences between the action of nerves and hormones.

(a) Which of the ways, A, B or C, releases the smallest volume of gastric juice?

Ξ

Fig. 4.1

0 The release of gastric juice as a result of tasting food in the mouth is a reflex action. Describe how this reflex action takes place. 2 E

3

Mark with an X on Fig. 5.1 to show where meiosis occurs

Ξ

N

Fig. 5.1

3

Mitosis occurs at two phases in the yeast's life cycle. Mark with a Y on Fig. 5.1 to show where mitosis occurs.

The budding yeast, Seccharomyces cerevisiae, has both asexual and sexual reproductive cycles. However, the more common mode of reproduction is asexual by

For Examiner's Use

3

A spore contains 16 chromosomes.

How many chromosomes are there in

(I) a diploid cell

of the cell cycle. but if two cells of opposite mating types meet, they can fuse and enter the diploid phase two different mating types: a or a. Haptoid cells can live indefinitely in the haptoid state S. cerevisiae can live as either diploid cells or haploid cells. The haploid cells occur in Under harsh environmental conditions, haploid cells will generally die while diploid cells

germinate producing four haploid yeast cells; two a and two α . The life cycle of S. is a form of sexual reproduction. When conditions become favourable, the spores will undergo sporulation, producing four haploid spores in an ascus. Sporulation in yeast cerevisiae is summarized in Fig. 5.1.

0


3

a haptoid cell?

sexual reproduction.

Suggest why it is advantageous for an organism to be capable of both asexual and

Ξ

0

Equal numbers of both varieties were released into the woods made up of trees with One variety of the moth, Biston betularia, has pale, speckled wings. A second variety of the same species has black wings. There are no intermediate forms.

[Total: 7]

73

Examples of these are shown in Fig. 6.1

T.

2

N

3

3

Sec 4E Biology (SPA) Preiminary Exam 2015

FTPSS

[Turn over

Sec 4E Biology (SPA) Preliminary Exam 2015

FTPSS

[Total: 7]

Ξ

Saco4uBiedleegye2200gt5rWITHOUTSCHOOL

O-LEVEL PRELIMINARY EXAMINATION 2015 MARKING SCHEME SECONDARY 4 EXPRESS BIOLOGY (SPA) FIRST TOA PAYOH SECONDARY SCHOOL

PAPER 2 (80 marks)

á	Valves are present in vessel T to prevent backflow of blood.	•	
2m	Organ S- Liver: Blood urea concentration increased as a result of deamination of excess amino acids from the liver as the amino acids diffuse into the blood:	n	F
2m	Vessel P- Pulmonary artery: It contains blood at very high pressure as it carries blood away from the heart and deoxygenated blood leading to lungs for gaseous exchange to occur;	•	
2m	Chamber X - Left ventricle; It contains highly oxygenated blood & develops greatest / highest pressure to pump blood throughout the body.		u
Total: 4m			
2m	Dry weight of leaf discs decreases because Photosynthesis has stopped; Stored starch is being converted to glucose; which will be used in respiration	σ	
2m	Dry weight of leaf discs increases because Photosynthesis occurs / increase in the rate of photosynthesis; Production of more glucose which will eventually be stored as starch;		143
Total: 10m	77		W
2m	(I) mouth / small intestine (II) stomach / small intestine (III) small intestine (IV) small intestine	а	/
in	Initially lipase used to digest fats in milk, later on lipase digests fats in solid food / Amount of fats in diet remains constant	n	
2m	(ii) max 2 Protease and amylase activity increases to digest protein and starch respectively present in soyabean meal and grains / Lectase activity decreases indicating less ability to obtain nutrients from milk Pig is able to digest solid food (grains) and is less reliant on Equid food (milk):		113
2m	(ii) Lactase activity decreases: while protease and amylase activity ingreases:	•	ئے بال
2m	(II) The activity of lactase is high to break down the lactose which is found in great amount in the milk. The activity of lipese is medium to break down the fats in the milk;		
in	(i) milk / dairy products		•
Marks	Answer	Question	E

	4		OI OI				4	1
•		0			n	σ		Carried and
This organism will be able to multiply at a very fast rate, <u>reproducing offspring in large numbers</u> by asexual reproduction when conditions are favourable; When conditions become unfavourable, sexual reproduction occurs, allowing genetic variation, leading to species that are better adapted to changes in the anvironment;	(5) 18	(1) 32	Jusion of opposite making types Budding Budding		Food in mouth stimulates the tongue / taste buds to produce a nerve impulse; The nerve impulse was transmitted by the <u>sensory neurone</u> to the spinal cord; in the spinal cord, the nerve impulses are transmitted across a synapse to the <u>relay neurone</u> and then across another synapse to the <u>motor neurone</u> : The motor neurone transmits impulse out of spinal cord to <u>gastric plands in the stomach</u> to release gastric juice;	Nervous response takes a shorter time to reach its peak (0.5 hours), while hormonal response is slower to reach its peak (1.8 hours); Nervous response is short-lived (1.5 hours), but hormonal response issis longer (4 hours);	60	MISWE
2m Total: 7m	in	i	3m	Total: 7m	â	2m	ī	

a This is because the black moths are not able to camouflage / blend in with the tree bark. (ii) The tree were blackened with carbon dust from air politution; (iii) Both moths have a heterozygous genotype, Gg; (ii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg Gametes Gg Gg Gg Gfspring genotype pale speckled moth pale speckled moth Random fertilisation Gfspring genotype pale speckled pale speckled pale speckled black Proportion of black moth: 1/4 or 25% (ii) Species C (source of food) was not available for B; (iii) B; (iii) B; (iii) B; (iii) Species B will exist in the bottle, while species A, C and D will disappear as 1m	Total: 7m			-	
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bark. (ii) Both moths have a heterozygous genotype, Gg. (iii) Parental phenotype pale speckled moth pale speckled moth Parental genotype pale speckled moth pale speckled moth Parental genotype Gg Gg Gg Gg Gf Gfspring genotype pale speckled pale speckled pale speckled black Proportion of black moth; 1/4 or 25% (ii) A was eaten up by C; (ii) Species C (source of food) was not available for 8; (iii) Species C (source of food) was not available for 8; (iii) Species C (source of food) was not available for 8; (iii) Species C (source of food) was not available for 8; (iii) Species C (source of food) was not available for 8;	i	will exist in the bottle, while species A, C and D will disappear as ator for B present in the bottle;	Only species 8 there is no pred	U90057	
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air pollution; (i) Both moths have a heterozygous genotype, Gg. (ii) Parental phenotype pale speckled moth pale speckled pale speckled black. Gg Gffspring phenotype pale speckled pale speckled pale speckled black. Proportion of black moth: 1/4 or 25% (i) A was eaten up by C; (ii) Species C (source of food) was not available for 8.	27	energy is lost at every trophic level of the food chain / energy is transferred from one trophic level to another;	0.000		
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air pollution; (i) Both moths have a heteroxygous genotype, Gg; (ii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg	2m	4	I) D + A +		-
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air pollution; (i) Both moths have a heterozygous genotype, Gg. (ii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg Gg Gg Gg Gg Gg Gf Gg Gf	Ťm	source of food) was not available for 8;	(ii) Species C (_	-
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bark. (ii) The trees were blackened with carbon dust from air pollution; (ii) Both moths have a heterozygous genotype, Gg. (iii) Parental phenotype pale speckled moth pale speckled moth pale speckled moth Parental genotype Gg Gg Gg Offspring genotype pale speckled pale speckled black Proportion of black moth; 1/4 or 25%	im	r up by C;		-	-8
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bark. (ii) The trees were blackened with carbon dust from air pollution; (ii) Both moths have a heterozygous genotype, Gg; (iii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg Gg Gg Offspring genotype pale speckled pale speckled pale speckled black Proportion of black moth: 1/4 or 25%	otal: 8m				- 8
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air politution; (ii) Both moths have a heterozygous genotype, Gg. (iii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg Gg Gg Offspring genotype GG Gg Gg Offspring phenotype pale speckled pale speckled pale speckled black		of black moth: 1/4 or 25%	Proportion	=	-
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air pollution; (ii) Both moths have a heterozygous genotype, Gg; (iii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg Gg Gametes G G G		GG pale speckled	Offspring Offspring		-
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air pollution; (ii) Both moths have a heterozygous genotype, Gg. (iii) Parental phenotype pate speckled moth pale speckled moth Parental genotype Gg Gametes Gg Gg Gg Gg Gg Gg Gg Gg Gg G	â	entilisation	Random (1.500	_
(ii) More black moths are consumed by their predators; This is because the black moths are not able to camouflage / blend in with the tree bark. (ii) The trees were blackened with carbon dust from air pollution; (ii) Both moths have a heterozygous genotype, Gg: (iii) Parental phenotype pale speckled moth pale speckled moth Parental genotype Gg Gg Gg		70 *	Gametes		_
(i) More black moths are consumed by their predators; This is because the black moths are not able to camouflage / blend in with the tree bank. (ii) The trees were blackened with carbon dust from air pollution; (i) Both moths have a heterozygous genotype, Gg. (ii) Parental phenotype pale speckled moth pale speckled moth		>@	Parental		
(ii) More black moths are consumed by their predators; This is because the black moths are not able to camouflage / blend in with the tree bark. (ii) The trees were blackened with carbon dust from air pollution; (i) Both moths have a heteroxygous genotype, Gg.		pale speckled moth	吳雲	_	_
(ii) More black moths are consumed by their preclators; This is because the black moths are not able to camouflage / blend in with the tree bank. (iii) The trees were blackened with carbon dust from air pollution;	i	have a heterozygous genotype, Gg;			
(i) More black moths are consumed by their predators; This is because the black moths are not able to camouflage / blend in with the tree bank.	ij	vere blackened with carbon dust from air pollution;		_	-
	2m	moths are consumed by their predators; suse the black moths are not able to camouflage / blend in with			

n .	•			* ******		(ii)	3	n	a.<	* > 0 > 0
Loop of Henie is longer in camel. Camet is a desert animal, thus it needs to conserve water. A longer loop of Henie allows a greater proportion of water to be reabsorbed into the bloodstream.	Less ADH to be released into the blood stream from pituitary gland. Wats of collecting duct are less permeable to water: leafing to less water being reabsorbed by the kidney tubules. As a result, more urine is produced and individual becomes dehydrated overtime.	Endothelium wall of capillaries are only one-cell thick to provide a shorter diffusion distance and to facilitate efficient transport of mineral salts and urea to the glomenulus; Extensive branching of capillaries increases surface area for ultra-filtration of blood to occur effectively; Partially permeable membrane of glomerulus allows diffusion of mineral salts and nitrogenous wastes to occur quickly; High pressure of glomerulus due to lumen of afferent artericle being wider in than lumen of efferent arteriole, leading to faster rate of ultrafiltration.	T.	Adrenatine causes arterioles in the skin to constrict, thus channeling less blood to the skin and hence prevent loss of blood due to bleeding from the cut arterioles. Adrenatine also increases the rate of blood clotting to prevent excessive loss of blood.	Rate of respiration increases; The diameter of the arteries increase, causing an increase in blood flow through the arteries to the muscles + oxygen and glucose are transported at a faster rate;	i) Skin temperature will increase; The arterioles in the skin constrict and shunt vessels dilate, causing less bood flow through blood capillaries in the skin, causing the reduction in heat loss by conduction, convection and radiation;	As the adrenatine level decreases from 130 to 115μm, the diameter of the anery increases from 120 to 225μm. And the diameter of the arteriole decreases from 60 to 35 μm.	maximum change in diameter of artery = 225 - 110 = 115 j.m	When a person is afraid / angry / anxious / stressed, adrenaline will be secreted by the edrenal glands.	gland situated above the kidney. Adrenaline is transported in the bloodstream to the liver where it converts glycogen to glucose so that more glucose is available for muscle contraction; Adrenaline is destroyed in the liver and excreted in the kidney. *accopt any other possible target organs it is transported to and its effect.
2	Ë	3	Total: 12m	2m	2m	2m	2m	ä	i	2m max 2

d through base lated with help of and pair with the he ribosome. he crossing over phase I. such homologous er pairs to form other and overy. sale nuclei further	 Random fettiligation between directal happon male and terrare more more generates greater genetic variability in the zygotes formed. 		
	 In the generation of the haploid nucleus, melosis occurs where grossing over of the chromatids between homologous chromosomes in Prophase I. Independent assortment of the Individual chromosomes of each homologous pair in combination with individual chromosomes of other pairs to form genetically varied haploid make and female nuclei within the anther and overy. 	es .	
age over to an	 During transcription in the nucleus, the DNA strands unzips and one of the DNA strand serves as a template for copying the message over to an messanger RNA mRNA molecule. The mRNA is synthesised from the DNA template/ strand through base pairing. The mRNA is then carried to the cytoplasm, where it is translated with help of the ribosome and transfer RNA. The tRNA carrying specific amino acids is able to recognise and pair with the codons on the mRNA by complementary base pairing within the ribosome. 	a	
rands of le helix structure. ptide/ which amound tightly les a	 DNA is the chemical/ macromolecule that is made up of two strands of deoxyribonucies; acid wound/ twisted together to form a double helix structure. Segments of DNA makes up a gene which codes for a polypeptide/ which carries information for making a polypeptide. The whole DNA strand, coding for thousands of genes, are wound tightly together with proteins like histones to a condense form known as a chromosome. 	6	OR B16
Total: 10m			
but it enters the any 3 max 6 m ax 6 m toxygen is toxygen binds	 Oxygen enters the air spaces in the leaf through the stomata, but it enters the lungs and the aireoil through the nostries. Oxygen moves from cell to cell through diffusion in the leaf, but oxygen is transported by red blood cells to all parts of the body. There is no specialised chemical to carry oxygen in plants, but oxygen binds with haemoglobin in the red blood cells. 	σ	
the air spaces	 Oxygen from the air diffuses from the outside aimosphere into the air spaces in the leaf, but for human, oxygen from the air enters the lungs through inhalation and is due to the contraction of muscles in the lungs. 	7	
mong them to ey are richty gradient of	 Both contain large air spaces near the gaseous exchange surfaces. In plants, there are numerous large intercellular air spaces among them to allow rapid diffusion of gases through the leaf. In humans, the alveoli contain air spaces within them, and they are richly supplied with blood capillaries, maintaining the concentration gradient of gases. 		
g its surface of the leaf + area for moisture. any 2 any 2 max 4m	of gases can take place more efficiently. In gases, and the place more efficiently. In plants, the <u>lamina of the teaves</u> is thin and wide, increasing its surface in plants, the <u>lamina of the teaves</u> is thin and wide, increasing its surface area, so that carbon dioxide can rapidly reach the inner cells of the leaf + in humans, there are <u>many alveols</u> , which increases surface area for gaseous exchange to occur. Both gaseous exchange surfaces are lined with a <u>thin layer of moisture</u> . The thin layer of moisture in the <u>alveols and mesophyli cells</u> allows gases to dissolve quickly before diffusing into or out of the cells.		(E) 810
o that diffusion		io	Question

Paper 1

Question Booklet Additional Material:

READ THESE INSTRUCTIONS FIRST

Optical Answer Sheet

You are not required to hand in this booklet

Write your name, index number and class on the Optical Answer Shee

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Optical Answer Sheet

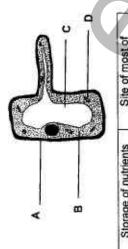
Each correct answer will score one mark. A mark will not be deducted for a wrong Read the Instructions on the Optical Answer Sheet very carefully.

Any rough working should be done in this booklet

1 hour

Choose the most appropriate answer and shade the corresponding letter on the separate Attempt ALL questions in this section.

The electron micrograph below shows part of a cell. Given the appearance of the cell, what is the likely identity of the cell and appropriate reason for the given identity?



of Agrico come and for barronage of white
contains a large nucleus that contain a large number
contains large amounts of endoplasmic reticulum for synthesis of ADH
contains large amounts of endoplasmic reticulum for synthesis of pancreatic enzymes
contains a large nucleus that can carry out DNA replication quickly in preparation for cell division
Reason

- Individual cells are usually very small because
- there is a greater concentration of enzymes in smaller cells than in larger cells
- materials move more efficiently in and out of smaller cells than larger cells.
- the cell membrane encloses the cell and prevents it from increasing in size
- by osmosis, water enters smaller cells more slowly than it enters larger cells
- Which of the following combinations of a type of macromolecule, its function and a component found in the type of macromolecule is incorrect?

i	Type of macromolecule	Function	Component found in the type of macromolecule
>	Lipid	Controls cellular metabolism	-
8	Protein	Regulates cellular reactions	4.
C	Nuclei acid	Stores information	5
0	Polysaccharide	Forms plant cell walls	_

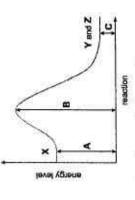
The diagram below shows a specialised cell. Which of the labelled structures carry out the following functions below?

	Storage of nutrients and inorganic lons	Site of most of cellular activities
	ပ	O
	ပ	8
o	Q	ပ
	٨	ပ

The table below shows the ratios of initial mass to final mass of three fresh potato cylinders which have been immersed in sucrose solutions of three different concentrations for 30 minutes:

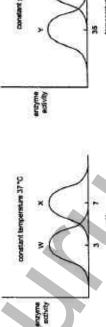
40

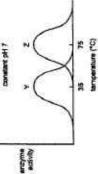
	Solution P	Solution Q	Solution R
Ratio of initial mass to final	6.0	1.4	1.2


Which of the following can be deduced from the results?

- The water potential of the potato cylinders is higher than that of solution P.
 - There is a net movement of water from the potato cylinders to solution Q.
 - Solution Q has a higher sucrose concentration than solution R.

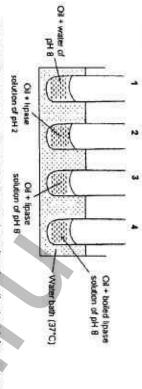
C4 (2)


- 8
- 1 and 3 O
- 2 and 3


The graph below shows the energy changes that occur in the reaction in which molecule X breaks down into molecules Y and Z in the presence of an enzyme. 9

The activation energy for this reaction is equal to

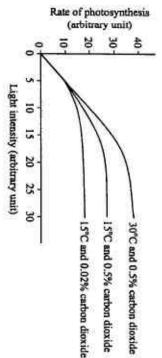
- 8-A O
- B-C
- The following graphs show the way four enzymes, W. X. Y and Z. change their activity in different pH and temperature situations.



Which one of the following statements about the activity of the four enzymes is true?

- At pH 7, enzyme Y is denatured at temperatures below 20 °C.
 - Enzyme Z could be an intracellular human enzyme. 8
- At pH 3 and a temperature of 37 °C, the active site of enzyme W binds well with U
- At pH 3 and a temperature of 37 °C, enzyme X functions at its optimum. 0

hour. oil and solution are added to each test tube. The test tubes were incubated for one Four test tubes, 1 to 4, were set up in an experiment shown below. Equal volumes of

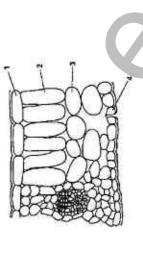

to the ethanol emulsion test? Which of the following shows the expected results when the test tubes are subjected

D Clou	C Cloudy	B Clou	A Clear	
	dy Cloudy	dy Clear	ar Clear	•
Clear	Cloudy	Clear	Cloudy	
Cloudy	Clear	Cloudy	Clear	

- stages. What does the light-dependent stage involve? Photosynthesis occurs in two stages: the light-dependent and light-independent
- synthesis of glucose molecules using light energy from the sun
- splitting of carbon dioxide into carbon and oxygen using light energy
- splitting of water into hydrogen and oxygen using light energy
- synthesis of glucose molecules using chemical energy from the light-dependent

O 0 w >

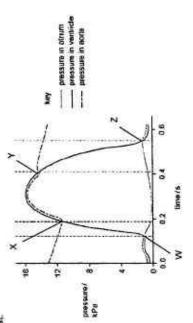
> 6 The graph below shows the rate of photosynthesis of a plant at different temperatures and carbon dioxide concentrations when light intensity increases


be deduced from the graph? Which of the following descriptions about the rate of photosynthesis of this plant can

- Below 3 units of light intensity, light intensity is the factor limiting this plant's pholosynthetic rate
- At 25 units of light intensity and 0.02% carbon dioxide, temperature is the factor limiting this plant's photosynthetic rate
- longer a factor limiting this plant's photosynthetic rate. At 15 units of light intensity, 15°C and 0.5% carbon dioxide, light intensity is no
- o photosynthetic rate doubles when the temperature is doubled At 25 units of light intensity, 15°C and 0.5% carbon dioxide, this plant's
- = statements describe(s) why transpiration is useful for plants? Transpiration is the loss of water from aerial parts of a plant. Which of the following
- It gets rid of excess water, protecting cells from bursting.
 It cools plants down, preventing overheating on sunny days
- It enables the mass flow of inorganic nutrients and water up the plant body.

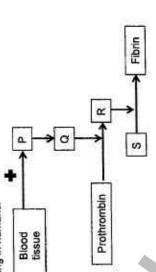
1 only

all of the above 2 and 3 only 1 and 3 only 00


12 The diagram below shows a transverse section of a leaf.

Which layer(s) of cells would turn blue-black in an iodine test after several hours of sunfight?

- A 1 only
- B 2 and 3 only
- C 2,3 and 4 only
- D all of the above


13 The graph shows pressure changes in the left side of the heart, during a single heartbeat.

At which points will the 'lub' and 'dub' sounds be produced?

- Wand X
- 3 Wand Y
- C X and Y
- all of the above

- 14 When the legs are not moved for an extended period of time, the rate of blood flow through the veins is reduced. Which of the following statements best explains this?
- The muscular wall of the veins have to be contracted together with the muscles of the leg to aid in the movement of blood.
 - B The semi-lunar valves that prevent the backflow of blood are opened by the contraction of leg muscles.
- The thin muscular walls of the veins are unable to withstand high blood pressure and the leg muscles help to prevent them from bursting.
 - D The veins are located between muscles and the contraction of muscles helps to push blood along.
- 15 The diagram below illustrates a simple flowchart showing the mechanism of blood clotting in humans.

Name P, Q, R and S.

7		3	4	9
H	Thrombin	Platelet	Thrombokinase	Fibrinogen
-	Platelet	Thrombokinase	Thrombin	Fibrinogen
+	Thrombin	Thrombokinase	Fibrinogen	Platelet
+	Thrombokinase	Fibrinogen	Thrombin	Platelet

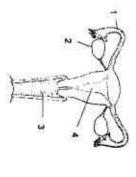
- 16 Which of the following statements about lactic acid is incorrect?
- A After exercise, lactic acid is removed from the muscles and brought to the liver.
- B Anaerobic respiration always produces lactic acid.
- C An oxygen debt is incurred when lactic acid accumulates in the muscles.
 - The build-up of lactic acid in the muscles causes fatigue.

At which point does the diaphragm muscles begin to contract?

The table shows the results taken from the analysis of a sample of almospheric

18

How would the results change if a 100 cm3 sample of exhaled air was analysed


- The volume of air sample with carbon dioxide removed would be lower.
- The volume of air sample with carbon dioxide removed would remain the same.
- The volume of air sample with oxygen removed would be lower.
- The volume of air sample with oxygen removed would remain the same
- 19 What would be a likely consequence if progesterone is lacking in a particular adult
- Levels of the cestrogen would be higher than normal
- Luteinising Hormone may not be secreted to initiate ovulation

8

- The uterine lining might not be sufficiently stable to support an implanted
- D progesterone overlap. There would be no significant effect since the functions of both oestrogen and

The diagrams show a human female reproductive system and the carpel of a flower.

8

Which of the following statements about the identified parts is true?

- Parts 1 and 6 have ciliated lining to assist the movement of male gametes.
- Parts 2 and 8 are sites where meiosis takes place
- Parts 4 and 7 provide nourishment during embryonic development
- 0 Tissues in 3 and 6 will be digested to allow male gametes to enter
- 2 A student decides to study the impact of removing certain flower parts on fruit formation in species X.

He chooses three separate plants that are growing in the same plot under uniform conditions. The data is shown in the table below.

3 Petal	2 Stigm	1 Anth	Plant Part removed
al	TIA	er	noved
No significant impact	No fruit formed	30% less fuit formed than average plant in the plot	Impact on fruit formation

Which of the following conclusions is not consistent with the above data?

- Anthers and stigmas are crucial in sexual reproduction in species X.
- Pollen grains are probably unable to germinate if they land on other parts of the carpel besides the stigma.
- Species X relies completely on cross-pollination
- Species X is likely to be wind-pollinated

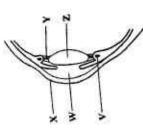
0

F

The table shows the results of some tests on body fluids P, Q and R. 22

Chloride	oride		
	2000	Reducing Sugar	Protein
<u>+</u>		+	
o o		•	1
*			3

Where are P, Q and R taken from?


	œ	Collecting duct	Collecting duct	Distal convoluted tubule	Collecting duct
1		3	S	Dista	S
	σ	Loop of Henle	Loop of Henie	Bowman's capsule	Distal convoluted tubule
	۵	Glomerulus	Bowman's capsule	Glomerulus	Loop of Henle
		¥	6	o	٥

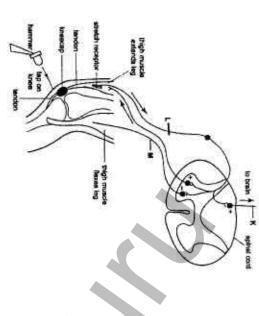
Which of the following examples of negative feedback is incorrect? 23

- A cessation of shivering when body temperature has increased back to normal. 4
 - A decrease in the production of sweat when body temperature has decreased back to normal. 8
- A reduction in the secretion of antidiuretic hormone when the water potential in blood has increased back to normal. O
 - A reduction in the secretion of insulin when blood glucose concentrations have increased back to normal. ۵

12

The diagram shows a section of a human eye focused on a near object. 24

Which part(s) will change such that light falls onto the fovea sharply when the person looks at a distant object?


- Zonly
- V. Y and Z

m

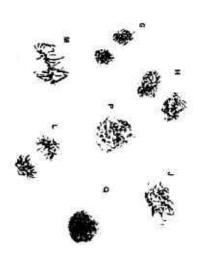
- X, and Y
- X, Y and Z 0 0
- Adrenatine is sometimes given to patients. In which of the following conditions would the administration of adrenatine be useful? 25
- low heart rate low blood sugar low water potential
- 1 and 2 only m
- 2 and 3 only 0 0
- All of the abov

26 When muscle fibres are stimulated, the muscle contracts. The gentle tapping of a tendon stimulates stretch receptors. The response to this stimulation is a 'knee jerk' reflex action. That is, the leg suddenly straightens.

The pathway involved is shown in the diagram below

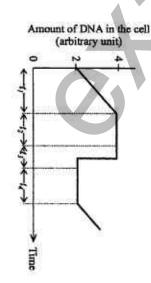
Examination of this pathway reveals that

- Inhibition of neurone M will allow the leg to bend
- Injury to neurone L is unlikely to affect the knee jerk response.
- Cutting the neurone at point L has no effect on the knee jerk response.
- Stretching of the tendon in one knee initiates the response in the other knee
- Which one of the following diagrams represents a cell that has a diploid number of 4 and is undergoing mitosis?


8

D

27


28 The following images show plant cells from a tissue that is undergoing mitosis.

7

The order of the cells in a single mitotic phase would be

- QHJPLGM
- QPJMLGH.
- PQMGJLH.
- PGLMJQH.
- 29 Which of the following statements correctly describes the event that is taking place in the respective time period?

- During t₁, the nuclear membrane disappears
- During (2, the homologous chromosomes pair up.

008>

- During (3, the homologous chromosomes separate.
- During t4, the synthesis of cell organelles takes place

The ABO blood group system of humans is an autosomal trait that has three alleles as follows.

39

: protein A on red blood cells

: protein B on red blood cells <u>m</u>_

no protein on red blood cells 0

In this system, four different blood groups exist. They are groups A, B, AB and O. In a family of four children, each child has a different blood group with respect to this gene. The phenotypes of the parents must be

A and B.

AB and O.

B and AB.

O and B.

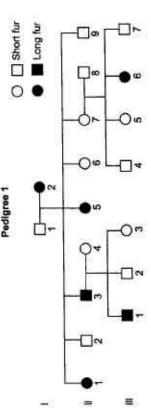
Flamingos are birds that live by lakes. The feather colour of flamingos may vary from white to pink to red. To investigate the inheritance of feather colour, a scientist performed the following crosses and recorded the feather colour of all the offspring when one year old. The diet of the offspring was also recorded. 3

Cross	Feather colour of parents	Feather colour of all one-year-old offspring	Dict of offspring
	white × white	white	aquatic plants
0.1	red × white	white	aquatic plans
	white × white	pink	algae and crustaceans
	red × white	pink	algae and crustuceans

Based on this information, a correct conclusion would be that

white feather colour is recessive to red feather colour.

both the parents in cross 1 must be homozygous for white feather colour. 8


the feather colour of flamingos is influenced by their environment. O

two parents, both with pink feather colour, would produce one-year-old offspring with only pink feather colour.

Questions 32 and 33 relate to the following information.

18

Fur length in rabbits is controlled by a single autosomal gene, where a dominant allele causes short fur and a recessive allele causes long fur. Pedigree 1 below shows the inheritance of fur length in a family of rabbits.

What is the probability that Individual II-4 is a heterozygote for short fur? 32

0.50 8

Which one of the following individuals could be used to conduct a test cross with individual III-57

₹

7

9

4

7

Which one of the following combinations identifies the symbols shown in the diagram

cytosine	thymine	guanine	adenine	sugar .	phosphate	0
adenine	guanine	thymine	cytosine	phosphate	sugar	c
guanine	cytosine	adenine	thymine	phosphate	sugar	œ
thymine	adenine	cytosine	guanine	sugar	phosphate	>
	0	*	0	Δ	⊹	

Maize plants have been genetically modified to contain a gene which produces toxins to kill pests of plants. Which of the following arguments is not a valid reason for opposing the widespread use of this genetically modified plant?

35

chromosome. The inserted gene could cause mutations to occur in other parts of the plant The inserted gene could become incorporated into the genome of weeds

8

- growing nearby. the cells of the consumers' body to mutate. There is a risk that the modified chromosomes could cause the chromosomes in
- Beneficial insects may inadvertently get killed

0

36 Refer to the following table, which shows mRNA codons for amino acids:

8

First base in	-	c	n	>	٥
	c	phenylalanina phenylalanina bucha leucina	bodine bodine bodine bodine	lableucine lableucine lableucine melhionine	veline veline veline
Second ber	o	sarina sarina	proine proine proine proine	threonine threcoine threcoine threcoine	siantina alamina alamina alamina
Second base in sequence	>	lyrosine lyrosine	halisine halisine gulambe gulambe	asperagine esperagine lysine lysine	espartic acid aspartic acid glutamic acid glutamic acid
	0	cysteine cysteine systeme	arginina arginina arginina arginina	serine serine arginine	glyche glyche glyche
Third base in	-	o>∩∈	0> 0∈	0> 0⊂	e>n∈

The base sequence U A U on

- A DNA codes for tyrosine.
- tRNA codes for tyrosine.
- mRNA codes for isoleucine.
- D tRNA codes for isoleucine
- Which of the following are possible advantages to using bacteria in sewage treatment?
- enzymes Bacteria multiply quickly, thus producing a cheap and abundant source of
- Only one type of bacteria is required to provide the necessary enzymes for different kinds of waste.
- It is possible to find bacteria that can break down waste under anaerobic or aerobic conditions.
- A 1 only
- B 2 only
- 0 1 and 3 only
- D All of the above

Inorganic fertiliser is applied each year to fields bordering a lake. The fertiliser runs off into the lake and causes six changes which together make the fish die.

4

Aerobic bacteria feed on dead plants.

Light cannot penetrate the water.

Water becomes green.

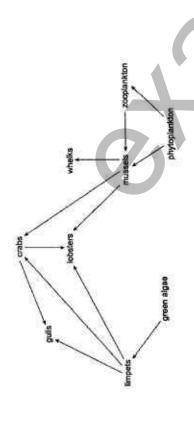
Oxygen levels fall.

Underwater plants die

Algae reproduce faster.

In which order do the changes take place?

29591969493


2→5→3→6→1→4

3 → 6 → 1 → 4 → 2 → 5

O m

4-6-1-2-5-3

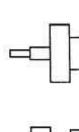
The diagram shows a food web in a marine ecosystem. The arrows represent the flow of energy. Use the diagram to answer questions 38 and 39. 19

Which one of the following statements is Incorrect? 38

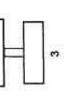
Crabs belong only to the third trophic level.

Lobsters belong to both the third and fourth trophic levels.

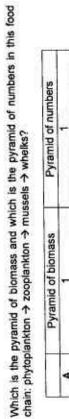
8


Limpets and zooplankton belong to the same trophic level.

Whelks and gulls both belong to one trophic level.


seaeccogosessessessesses OF PAPEResessessessessessessesses

The diagram shows four ecological pyramids.


39

	Pyramid of biomass	Pyramid of numbers
-		-
	-	4
-	6	2
	4	-

Name:	 Index Number:	Class:	
V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

TEMASEK SECONDARY SCHOOL O Level Preliminary Examination 2015 Secondary 4 Express

BIOLOGY

5158/02

Paper 2

1 hour 45 minutes

Question and Answer Booklet

Additional Material:

Ni

READ THESE INSTRUCTIONS FIRST

Do not open the booklet until you are told to do so.

You are required to **submit this booklet** at the end of the examination.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Answer all questions in this section.

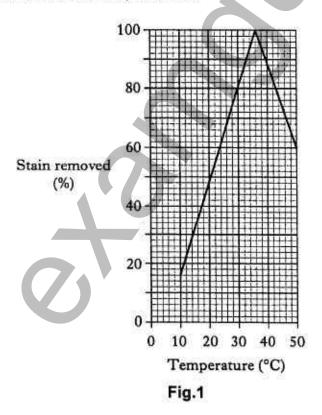
Write your answers in the spaces provided.

You are advised to spend no longer than one hour for Section A and no longer than 45 minutes for Section B. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner	's Use
Section A	/50
Section B	/30
Total	/80

This document consists of 19 printed pages.

SECTION A (50 MARKS)


Answer ALL the questions in this section.

- 1 A student carried out an investigation on the effect of soaking time on the cleaning ability of a biological detergent.
 - (a) Which of the following would be part of his procedure for this investigation? [1]

Tick $(\sqrt{})$ the correct boxes.

He used different types of cloths.
He used a range of different temperatures.
He used a biological detergent only.
He used a non-biological detergent only.
He used a range of soaking times.
He used same type of stains.
He used different volumes of stain.

(b) Fig.1 shows the results of an investigation into the effectiveness of a detergent at different temperatures.

(1)	detergent.	or temperature	on stain	removal	wnen	using	[2]

	(ii)	The wa	ashing mach	ine has fo	ur tei	mperature	settir	ngs:			
		10°C	20°C	30°C	4	0°C					
			the setting ent. Explain			produce	the I	oest r	esults	using	this
	(iii)	deterg	reference to ent more e o 30°C? [Sh	ffective w	hen	the temp					
		*********			••••••		· · · · ·				
									[I Ota	al: 5 ma	агкѕј
ig.	2.1 sl	nows th	e blood pres	ssure meas	surec	at differe	nt poi	nts of	one bl	ood ve	ssel.
		Blo	16 15 14 sod 13 ssure / kPa 12 11		Distance g.2.1	ce along bloc	od vesse		(
a)	(i)	Name	the type of b	olood vess	el.						[1]
) 									
	(ii)	Explai	n the differe	nce in bloc	d pre	essure be	tween	point	s X and	iΥ.	[2]

Fig. 2.2 shows the external view of a human heart.

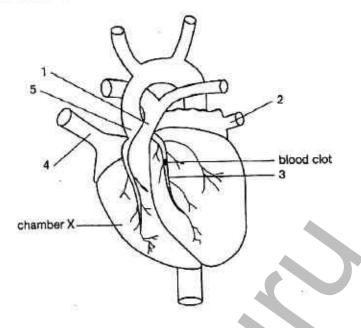


Fig. 2.2

D)	cell to travel from chamber X to blood vessel 3.
	Include the heart chambers and major organs that the red blood cell has to pass through. [1]
(c)	Explain the possible effect of the blood clot in blood vessel 3 on the heart. [2]
(d)	Explain why a person who has lost a lot of blood in a car accident may suffer from kidney failure. [2]

[Total: 8 marks]

- 3 In an investigation of the transport of organic nutrients in plants, one leaf on each of two similar plants was supplied with a jar containing radioactive carbon dioxide, 14CO₂.
 - Fig. 3.1 shows the set up. The stem of plant B was ringed below the treated leaf by removing the bark while stem of plant A was not ringed. The plants were allowed to carry out photosynthesis in sunlight for 2 hours.

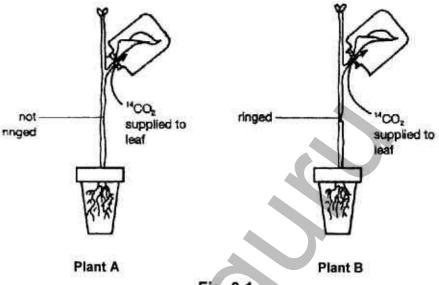


Fig. 3.1

Table 3.2 shows the radioactivity in the treated leaf and in the roots of the two plants after 2 hours in sunlight.

	Radioactivity (ppm)					
Plant	Leaf	Root				
A	0.15	0.12				
В	0.15	0.00				

Table 3.2

a)	Explain why the plants were allowed to photosynthesise for 2 hours.							
		•••••						
b)	Name the major compound transported in the plants that contains radioactive carbon.	the [1]						

						•							
(c)	Explain	why	there	is	no	radioactivi	ity	in	the	roots	of	plant	B. [2]

(d)		e the				g the tran Shade							
									4				

[Total: 7 marks]

4 Fig. 4.1 shows some of the amniotic fluid surrounding a fetus being withdrawn using a syringe.

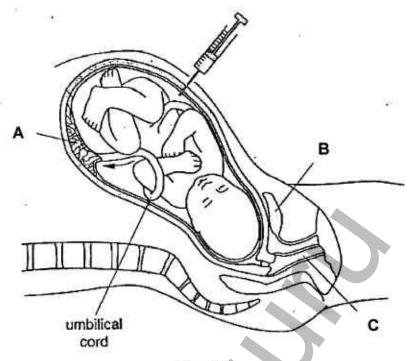


Fig. 4.1

(a)	Nan	ne structures B and C.	[1]
	B: .	C:	
(b)	With	h reference to the direction of the arrow in Fig.4.1,	
	(i)	state a substance which is carried by the blood in the umbilical cord. substance:	
	(ii)	name the blood vessel which carries the substance mentioned in (b)(i blood vessel:).
(c)	Exp	plain why the blood vessels between the fetus and the mother are not ect contact in part labelled A.	t in [2]
	den		

Fetal cells collected from the amniotic fluid may be analyzed to determine if the fetus suffers from any genetic diseases. Fig. 4.2 shows the karyotype – a photomicrograph of the entire collection of chromosomes - obtained from one of these cells.

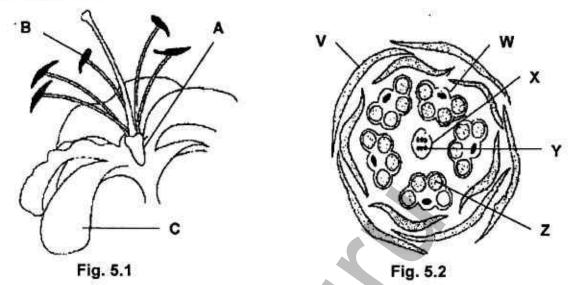


Fig. 4.2

It was diagnosed that the fetus has inherited a genetic disorder.	
State the condition and explain how this condition arose.	[3]

TT.	otal: 8 marks

(d)

5 Fig. 5.1 shows the longitudinal section of an insect-pollinated flower and Fig. 5.2 shows the transverse section of the flower bud of the same species of insect-pollinated flower.

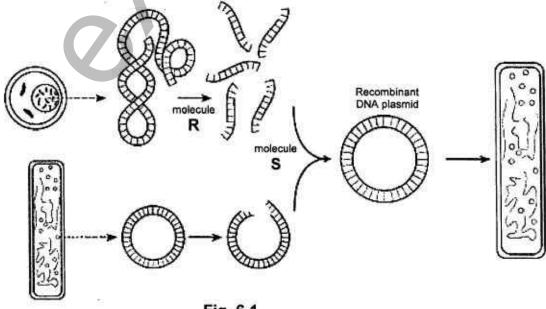
(a)	Suggest two possible methods that may be used by this flower to avoid self-pollination. [2]
(b)	State and explain one disadvantage of self-pollination. [1]
(c)	With reference to Fig. 5.1 only, state one feature that shows the flower is pollinated by insects. [1]

Identify the labelled parts in Fig. 5.2, which are equivalent to parts A, B and C

Parts	Equivalent Parts from Fig. 5.2
Α	
В	
С	

(d)

in the Fig. 5.1 respectively.


[2]

	(e)	Describe how the number of chromosomes in Y and Z differ from the number of chromosomes in cells of structure V. [1]		
			[Total: 7 marks]	
6	(a)	Two students, Daniel and Laura are revising the topic o Engineering. Laura argued that, "DNA and genes are the Daniel disagreed.		
		Who would you agree with? Explain your answer.	[2]	

(b) Genetically modified organisms (GMO) are organisms whose genetic materials have been altered by human. The most commonly used technology is recombinant DNA technology. The foods produced from genetically modified organisms are called genetically modified foods (GM foods).

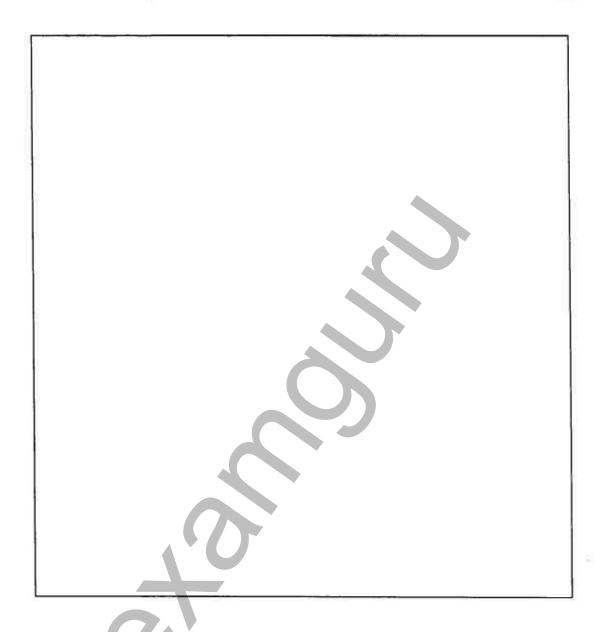

Golden rice is one of the GM foods. Betacarotene biosynthesis (BB) genes were inserted into rice genome using recombinant DNA technology. After modification, golden rice can naturally produce beta-carotene, which can be converted into vitamin A later on.

Fig. 6.1 shows the stages involved in the insertion of a BB gene into a bacterium.

		(i)	Identify molecules R and S.
			R: S: [2]
		(ii)	Explain why the same molecule R is be used to obtain the Betacarotene biosynthesis gene. [2]
		(iii)	Give two disadvantages of developing golden rice. [2]

			[Total: 8 marks]
7	Rea	d the	passage below and answer the questions that follow:
	Affe pign the be fo	cted nents passi ound	is a genetic disorder, which can affect all vertebrates, including humans. Individuals will appear white since they cannot produce enough melaning in their skin. Albinism occurs when there is a mutation and thus result in the sum of recessive mutated gene to their offsprings. Albinism can also in animals such as birds and reptiles. The survival rate of the animals with a usually very low in nature.
	(a)	Defi	ne the term <i>Mutation</i> . [1]
		99000	
	(b)	Sug natu	gest why is the survival rate of animals with albinism is usually very low in ire.

(c) (i) With the help of a genetic diagram, explain how parents who are normal are able to produce an albino child. [4]

(ii) What is the probability of the parents having a first child who is normal and a second child affected by Albinism? [1]

[Total: 7 marks]

SECTION B (30 MARKS)

Answer THREE questions in this section.

Question 10 is in the format of an EITHER / OR question. Only one part should be answered.

8 Two athletes, R and S, carried out a six-month training programme in preparation for the 2015 SEA games. The fitness of the two athletes was tested on the first day of each month by measuring their rate of oxygen absorption. An increase in fitness is shown by an increase in the rate of oxygen absorption.

The rate of oxygen absorption was measured for each athlete during exercise. Table 8.1 shows the results of these fitness tests.

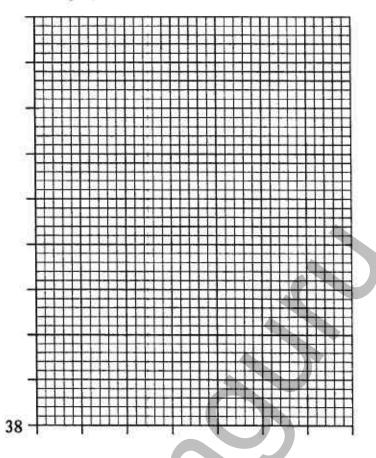

Month of training programme	Rate of oxygen absorpt	ion (cm³ per kg per min)
	Athlete R	Athlete S
1	39.0	59.0
2	45.0	62.5
3	50.0	67.5
4	53.0	70.7
5	53.0	70.8
6	53.0	70.8

Table 8.1

(a)	your answer. [1]
(b)	Calculate the volume of oxygen absorbed per minute by athlete R when tested in the 6 th month. Athlete R had a mass of 60 kg. [Show your working]
	Volume of oxygen absorbed per minute:

(c) Construct a line graph to show the results for athlete R.

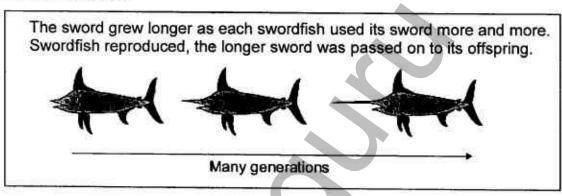
[3]

(d) From the results, it was concluded that fitness levels improve in the first months of training and then remain constant.

Suggest one way in which the reliability of this conclusion could be improved.
[1]

(e) Runners who smoke are advised to quit smoking when they train for marathons. Explain the impact of smoking on running. [3]

......


[Total: 10 marks]

9 The picture shows a modern swordfish.

Ancestors of swordfish had short swords. Modern swordfish have long swords. Swordfish use their swords to injure prey. The injured prey is easier to catch.

The information below shows one theory of how the length of the sword of swordfish changed.

(a)	Darwin suggested that evolution is a result of natural selection. Describe how natural selection could result in modern swordfish with long
	swords developing from ancestors with short swords. [4]

(b) Predatory ocean fish such as tuna and swordfish are common examples of mercury bioaccumulation.

With reference to the food chain shown below,

Phytoplankton → K	√ Iliπ	Pollock →	Tuna -	Shark
-------------------	--------	-----------	--------	-------

	explain how bioaccumulation arises and why it is detrimental to the organisms on the higher trophic level and its environment. [3]

(c)	Explain why the ocean gives out less carbon than it takes. [3]

10 EITHER

(a)	Explain why blood must always be screened for blood types before transfusions.
(b)	With reference to the skin, blood and epithelial cells of the body, outline how the body is protected from invasion by foreign particles. [7

[Total: 10 marks]

14	-	-	-
1	n	•	۱D
- 4	u		m

(a)	Explain why it is important to drink water daily.	[3]
(b)	Blood is an important part of the body's internal environment.	
U. Western Ex	Outline the homeostatic mechanisms that regulate blood in glucose level and water potential.	terms of its

	3	*************

······································
[Total: 10 marks]

TEMASEK SECONDARY SCHOOL Preliminary Examinations 2015 Secondary 4 Express Biology

					K				V
O	٥	U	8	4	۵	U	4	٥	60
3	32	83	34	35	38	37	88	39	4
U	ပ	۵	m	8	A	m	m	٥	4
21	22	23	54	52	56	27	28	53	30
ပ	o	8	۵	80	8	o	¥	o	8
=	12	13	4	5	16	17	18	19	20
m	0	4	B	۵	ပ	o	٥	O	4
-	2	60	4	10	9	7	80	00	9

Paper 2 Section A (50 marks)

8

1(a)			
	Ė	He used different types of cloths.	-2
	_	He used a range of different temperatures.	5
	^	He used a biological detergent only.	ŝ
		He used a non-biological detergent only.	
	>	He used a range of soaking times.	
	>	He used same types of stains.	
	_	He used different volumes of stain.	
1(b)(0)	As tempera 36 °C is the As tempera	As temperature rises from 10 °C to 36 °C, % of stained removed increases. 36 °C is the <u>optimal temperature</u> for stain removal. As temperature increases further, less stain gets removed.	
1(b)(ii)	40°C The % of s	40°C The % of stain removed is highest at 40°C	aer.
1(b)(iii)	(80 - 16)/ 16 = 4x	16 = 4x	
2(a)(i)	artery		-
2(a)(ii)	blood press heart musc whereas At point Y.	blood pressure is higher at point X due to the forceful contractions of the heart muscles which send blood out into the artery at high pressure. whereas At point Y, blood pressure is lower due to stretching of the arterial walls by the elastic flares when blood passes through	
2(b)	X, 1, lung.	1, lung, 2, left atrium, left ventricle, 5, 3	1 (1 or
2(c)	Reduced by the heart in resulting in	Reduced blood flow to heart muscles will send less oxygen and glucose to the heart muscles to provide energy for muscular contractions resulting in heart failure.	0.5
2(d)	Kidney req pressure to this may re products/ re	Kidney requires a consistent flow of blood to maintain a constant blood pressure to enable ultraflitation. When there is an excessive loss of blood, this may results in a drop in pressure, thus affecting the removal of waste products/ requiatory function of kidneys.	
3(a)	To allow plants time photosynthesis and t throughout the plant.	To allow plants time to <u>absorb ¹⁴CO₂ into the leaves to form glucose</u> via photosynthesis and to <u>spread/transport</u> the radioactive compounds throughout the plant.	8
3(b)	Sucrose		•
3(c)	Radioactive blocked by	Radioactive compounds are transported along phloem tissues, which is blocked by the ringed section.	

Paper 1 Answers

ap districts contex contex contex prices contex prices contex prices contex prices contex prices combium. Combi	5(a) • Stigmas an stigmas may stigma is sit	When this e chromsome	This results	4(d) • Down syndr • Non-separa	A non-continuous si passed to the fetus.	Different blood gro the mother's blood	So that the high ble mother's blood will	4(c) Any 2 of the 3 answers:	4(b) Substances: Urea or carbon dioxide: (Waste products is given 0.5m) Blood vesset: Umbilical artery (Artery is given 0m)	4(a) B: urinary bladder C: vagina	Black shaded part - re Drawing: 1m (need to	3(d)
	anthers mature at the different times be situated some distance away from the anthers/ ated higher than the anthers.	g <u>s fertilised,</u> it results in a <u>zygote with 47</u> g sopies of chromosome 21.	auon or egg (gamete) in the overly. n one of the eggs having 24 chromosomes/ extra copy	on of chromosome number 21 occurred during	ystem will reduce the chance for toxic substances to be	p of mother and fetus; if allowed to mix, antibodies in may cause fetal blood cells to agglutinate.	od pressure / sudden surge in blood pressure of not affect the fetus.	ers:	or carbon dioxide; given 0.5m) lical artery		pith a substances she vascular bundle: phinem, cambium, xylem)	ng a

6(b)(iii)	6(b)(ii)	g(p)(i)	6(a)	5(e)	5(d)	5(c)	9(0)	
Disadvantages: Super-weed The new golden rice crops may interbreed with weeds around the fields, and pass on resistance to herbicides and become a superweed. Allergies New proteins in GM food may cause allergies in humans that consume them. Toxic/ cancer-causing to people consuming them. This is due to modifying a single gene which could result in alternation of metabolic processes, resulting in the production of toxins not usually found within these plants.	The same enzyme produces the same <u>sticky ends</u> . <u>Complementary sticky ends</u> on donor gene <u>bind</u> with sticky ends of the plasmid.	R: restriction enzyme S: DNA ligase	Laura is wrong: DNA and genes are different DNA contains <u>chains of nucleotides</u> linked together that <u>carries genetic information about an organism</u> , whereas genes are <u>specific sections</u> of a DNA molecule, that codes for <u>specific protein</u> / trait.	Y and Z is haploid while V is diploid/ Y and Z have half the number of chromosomes compared to V.	© ₩ X	Large and conspicuous petals; Small and compact stigma; Stigma that do not protrude out of the flower; Non-pendulous stamens/ Stamens that do not protrude out of the flower	thus they will be less adapted to changes in the environment. OR Probability of harmful recessive alleles being expressed in the offspring is higher, offspring becomes weaker/less resistant to diseases.	• open flowers
2	2			14	N		0.5	

m Smoking also causes chronic swelling of the mucous membranes of Carbon monoxide competes with oxygen/ Lowers absorption of oxygen/ Allow a few more athletes to take part in the fitness programme and then take the average irreversibly with Haemoglobin, this reduces the oxygen carried to resulting in the absorption of less oxygen into the bloodstream. Tar coats the lungs, reducing the elasticity of the air sacs and less oxygen is taken into the lungs, which increases airways This may then reduce the maximal oxygen uptake capability This Lowers lung capacity and results in shallow breathing Carbon monoxide in smoke competes with oxygen to bind resistance; reduces maximum oxygen uptake capacity. the body cells, which is needed for aerobic respiration. ncreases airway resistance reduced physical endurance Axis/ Labelled - 1
All points correct - 1
Smooth curve - 1 Rade of Cross-7 the airways, 3 5 3 4 \$ lead ŏ 8(c) (p)g 8(e)

		-	- 0	4							_		-	2
Cost of seeds Engineered crop plants produce seeds that cannot germinate. Farmers have to buy special seeds every year. This poses a serious problem to poorer societies, where farmers are struggling to make a living.	Reject answers that states bioethics concerns/social classes (eg gclden rice will be sold at a very high price).	Mutation is the spontaneous/sudden change in gene structure/ chromosome or chromosome number.	Animals with albinism may lose their protective camouflage in the wild/ nature and are therefore unable to hide from their predators/ prey.	Let A be allete for normal , a be allete for albinism	henotype Normal x Normal	enotype Aa x Aa		AA Aa AA ag	ype normal normal albino	c ratio 3 normal : 1 albino	Probability of 1* child normal and 2^{nc} child albino is $\%$ X $\%$ = 3/16 = 18.75% (or 0.1875)	SECTION B (30 MARKS)	Athlete R Has Greater gain in rate of oxygen absorption of 14cm ³ /kg/min than Athlete S with 11 8cm ³ /kg/min	53 cm² x 60 kg x 1 min = 3180 cm²/ min
Cost of seeds Engineered cro have to buy sp poorer societie	Reject an rice will b	Mutation gene stru	Animals v	Let A be a	Parents Phenotype	Parents Genotype	Gametes	F1 Genotype	F1 Phenotype	Phenotypic ratio	Probability of 1* chi 18.75% (or 0.1875)	SECTION	Athlete R Has Great	53 cm³ x 60
		7(a)	7(b)	7(c)						19	(p) ₂		8(a)	8(p)

9

ean wat	Source, Transfer, Impact • Mercury is found naturally at very low levels in ocean waters./ It is introduced into the environment by natural events such as volcanic	Sour	9(b)
the predo	offsprings while the weaker individuals die off (survival of the fittest) Over time, the swordfish with long swords become the <u>predominant</u> ones in their environment, resulting in evolution of a species <u>over many generations</u> .		
and repr	change, some varieties may be better adapted and are able to survive. Thus those with longer swords survived, live longer and reproduce to pass on their favourable genes with long swords to their		
ntal condi	shorter swords, while others have longer. When there is a struggle for existence / environmental conditions		
ons. Som	Genetic variation exists with the swordfish populations. Some had		9(a)
ke.	Any point [how tar, carbon monoxide affect oxygen uptake]	Any	
diminish	developed during exercise training. With less oxygen to meet the energy demands, this diminishes performance, adds fatigue and reduces endurance		

		developed during exercise training. With less oxygen to meet the energy demands, this diminishes performance, adds fatigue and reduces endurance	
	Any	Any point [how tar, carbon monoxide affect oxygen uptake]	
9(a)		Some had	4
		When there is a struggle for existence / environmental conditions change, some varieties may be better adapted and are able to	
		survive	
	-	Thus those with longer swords survived, live longer and reproduce to pass on their favourable genes with long swords to their	
		offsprings while the weaker individuals die off (survival of the fittest)	
		Over time, the swordfish with long swords become the <u>predominant</u>	
		many generations.	
9(b)	Sourc	Source, Transfer, Impact	3
	-	introduced into the environment by natural events such as volcanic	
		Mercury is not soluble in water	
		It tends to build up over time in organisms that are continually	
		exposed.	
	(14)	E.g. Organisms like phytoplankton first absorbs mercury in ocean waters.	
		When krill and Pollock eat contaminated organisms, they take in the	
	-	mercury their prey contained as it is non-biodegradable; and cannot be excreted.	
	¥!	Tuna farther up the food chain are exposed to higher and higher	W.
		concentrations which becomes toxic and can cause death. When	
		top predators are killed, this upsets the ecological balance.	
9(c)		Atmospheric carbon dioxide readily dissolves in water and the	ω
		oceans provide a huge reservoir of carbon/ acts as a carbon sink	
	:	Dissolved carbon dioxide is used by phytoplanktons and algae for photosynthesis.	
		Carbonates are formed when carbon dioxide reacts with seawater	

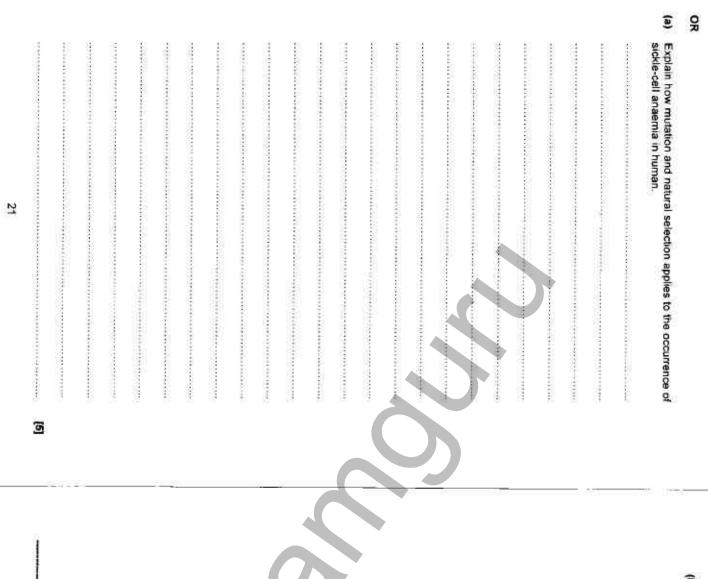
Or 10(a)	10(b)	Either 10(a)	
 Essential component of protoplasm, lubricants, digestive juices and blood As a solvent/ transport medium in plasma Maintains water potential in blood plasma, prevents cells from being crenated Keeps cells hydrated Water is essential to activate many enzymatic reactions in cells Hebs to regulate body temperature when sweat forms evaporates off, removing latent heat from body. 	Skin – largest protective organ made of multiple layers of tissue, infact, prevents foreign invades from entering into blood stream easily Blood – white blood cells (phagocytes and lymphocytes) Lymphocytes – secretes antibodies to clump bacteria together (agglutination), to enable phagocytes to carry out phagocytosis by engulfing, ingesting and digesting bacteria. Platelets – presence of platelets help to trigger a series of reaction to active enzymes (thrombokinase) when there are damaged tissues. This allows insoluble fibrin threads to form, which forms a mesh to trap blood cells, plug wounds and prevent entry of bacteria/ and excessive loss of blood. Ciliated epithelial cells on respiratory tract, traps dust/ mucous secreted traps bacteria, which can be coughed out to rid off bacteria. Slits on epithelial cells allow phagocytes to migrate to site of infection to	Blood compatibility Each blood type carries different surface antigens and antibodies. If 2 different types of blood type are mixed, agglutination occurs. This results in blood clots, reduces transport of oxygen to body cells for cellular respiration, may result in death. To check for viruses carried / transmitted by blood e.g. HIV that may infect the recipient	it is readily absorbed by aquatic plants/ phytoplanktons for photosynthesis • Carbon compounds are also buried in seabed as fossil fuels. Only when fossil fuels / oil are tapped from the seabed, carbon compounds will not be released. [Any 3]
ω	7	ω	

Although underwater organisms respire and give off carbon dioxide,

When blood glucose level is low, glucagon is secreted from islets of
Langerhans in pancreas, stimulates liver to convert stored glycogen to
glucose. More glucose is made available to tissues.

When blood glucose level is high, this stimulates the islets of Langerhans
in pancreas to secrete insulin, which increases permeability of cells to
absorb glucose. Liver then converts excess glucose to glycogen and
stored it. Thus restores the blood glucose level.

When water potential is low in blood plasma, it stimulates the
hypothalamus, which in turn stimulates the pituitary gland to secrete more
ADH to into blood stream, allows more reabsorption of water at the kidney
tubules (collecting duct). This allows water potential in blood plasma to be
restored back to normal.


When water potential in blood plasma is high (due to a cold day, less water
is lost through sweating), this stimulates the hypothalamus, which then
stimulates the pituitary gland to secrete less ADH, less water is reabsorbed
at the kidney tubules, allowing more urine to be produced and release from
the body. This helps to restore the water potential in blood plasma.

6

10(b)

(b) A variety of rice plant has developed pestresistance through the procedure of transferring a gene from a fungus to a rice plant. The gene allows the plant to produce a toxin that kills grasshoppers.

Outline the steps necessary to transfer the gene from the fungus to the rice plant.

END OF PAPER ...

3

מוחבא

State a circumstance under which adrenaline may be secreted and the main effects it has on the body:

[5]

19

The human body is controlled by both the nervous system and the endocrine (hormonal) system. Outline the main differences between these two systems.

9

œ

A student investigated the flow of biomass and energy on a farm in a country where winters are very cold. The farm grows barley to feed the animals, which are kept in sheds where they are not allowed to move very much.

3

Using relevant data provided, explain why it is more efficient for humans to gain their food from the first trophic level rather than from the second

The student investigated the efficiency of this method of producing food for humans.

The student found that an area of $150~\text{m}^2$ of bariey provided 70~kg of animal feed from the barley crop.

Table 8.1 shows the results of the investigation

190 000	energy in 25 kg meat that is available to humans / kJ
25	increase in mass of animals fed 70 kg feed / kg
1 000 000	energy in 70 kg of animal feed / kJ
70	blomass of animal feed from the harvested barley crop / kg
45 000 000	energy from the Sun that is available to the barley crop /kJ
150	area of barley field / m²

able 8.1

(a) Table 8.1 shows how much energy the barley crop receives from the Sun while it is growing in the field

Suggest a reason why only a small proportion of that energy is available in the animal feed from the harvested barley.

Ξ

3

Calculate the energy in the meat that is available to humans, as

percentage of the energy in the animal feed. Show your working

Synthetic nitrogen fertilisers are often used by farmers to improve their barley yield. Explain what may happen if an excess of these fertilisers run into water bodies.

â

8

17

%

72

E

(b) Which two crop plants show the greatest difference between rate X and rate Y?

and
(c) The measurements of the rate of photosynthesis (X) of the plants when grown outside are means of 10 readings.

Suggest a reason why mean measurements were used

(d) Suggest two factors that were changed when the plants were grown in controlled optimum conditions.

1.
2.
(e) The rate of photosynthesis can be measured by:

• calculating the rate per unit area of the leaf or

• calculating the rate per unit mass of the leaf Suggest why these measurements may give different results.

			<u>a</u>		0				
S 9	The The	dem yield resis	A	2512	The diss			3	
of this question.) (i) State the possible genotypes of the parent boes used in the breeding programme.	The allele for mite-resistance, B, is dominant over the allele conferring mite-susceptibility b. (Assume both sexes are diploid for the purposes	of mite-resistant bees. He acquires some Russian bees that demonstrate mite-resistance and allows them to cross-breed with a pure-bred strain of local mite-susceptible bees that produce high honey yield. Among the offspring produced, 52% demonstrated mite-resistance while the remaining 48% were mite-susceptible.	A bee breeder is keen to use artificial selection to develop a local colony		The male drones produced from the same queen bee are genetically dissimilar to one another. Explain how the cell division process gives rise to such drones.	Q.	•	P and Q are all nuclear division processes. State whether each process represents mitosis or meiosis.	
			R	2		N			

SECTION B (30 marks)

Answer THREE questions from this section

Question 9 is the form of an EITHER I OR QUESTION ONLY ONE PART SHOULD BE ANSWERED.

The rate of photosynthesis in six tropical crop plants was measured when the plants were growing outside normal conditions (rate X).

7.

The measurements were repeated again when the plants were grown under controlled optimum conditions in a glasshouse (rate Y).

The results are shown in Table 7.1.

	sunflower	sugar cane	soya bean	maize	eucalyptus	Cassava	crop plant
150	24.3	24.0	18.3	23.4	18.4	13.7	rate of photosynthesis (X) /µmol per m² per second
	31.7	26.8	25.1	26.0	26.0	23.1	rate of photosynthesis (Y) /jumol per m² per second
	7.4	2.8	8.8	2.6	7.6	9.4	difference in rate of photosynthesis (Y - X) /µmol per m² per second

Table 7.1

9 Draw a bar chart of the difference (Y - X) in the rate of photosynthesis of each plant on the grid found on the next page.

3

3

Local bees:

2

Russian bees:

generation. generation.

The breeder selected the mite-resistant bees among the F1 progeny and allowed them to breed to produce the next generation. State the expected phenotypic ratio of the F2

(a) Describe the pathway of nerve impulses, including references to F and G, to explain how John is able to see the approaching ball.

E

identify the type of response made by John, when he moves his arm to 3 catch the approaching ball 3 Add arrows to Fig. 5.1 to show the pathway of nerve impulses to bring about John's response. Complete Fig. 5.1 by drawing, in their correct positions and labelling, the structures involved to bring about John's response. 3 3 3

E

Explain what is meant by the term 'haploid'

Fig. 6.1

n - number of chromosomes

3

3

3

Identify neurone H

Ξ

3

Explain your answer to (b)(i)

9

Ξ

3

In Fig. 6.1

3

state the number of chromosomes (n) in completing the blanks.

the life cycle by

2

Female worker bee (n =) (n = Zygote Fertilised Queen bee (n = 32)(n = 16)Eggs Genetically identical Unfertilised eggs developed into (n =) Male drones (n = sperms

=

3

6

Within the honey bee population, male drones are haploid while the female worker bees are diploid. Haploid drones produce haploid gametes. The

function of the male drones is simply to mate with the queen bee to produce

Fig. 6.1 summarises how the male and female bees are produced

millions of worker bees.

(c) Table 4.3 compares the concentration of urea found in the renal artery and in the ureter of 2 persons, Q and R.

Person		Q	20
Concentration 100c	Renal artery	0.04	0.07
of urea/ g per	Ureter	1.90	2.30
Total volume of urine formed	(cm²	250	220
Total amount of urea present in	urine/g	4.75	

Table 4.3

(i) Complete Table 4.3 for the total amount of urea present in Person R's urine.

3

(ii) State one difference in urine composition between Person Q and Person R and suggest an explanation for this

.

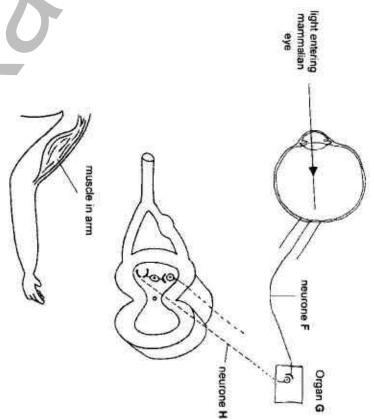
2

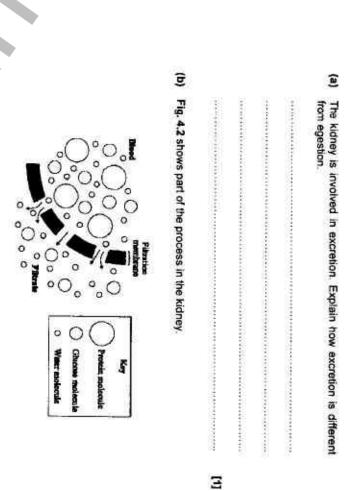
 $\overline{\omega}$

3

State two general characteristics of the type of chemical substance produced by X

Fig. 5.1 shows a section through a mammalian eye, an organ G in the nervous system and part of the spinal cord and arm in John.

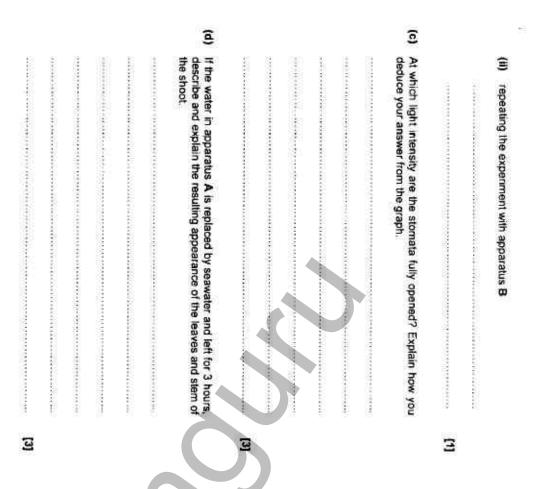


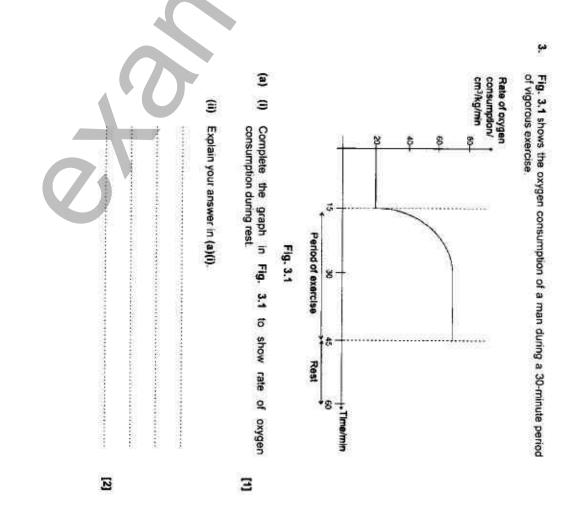

Fig. 5.1

Tom and John were playing a ball. Tom threw a ball towards John, who responded by moving his arm to catch it.

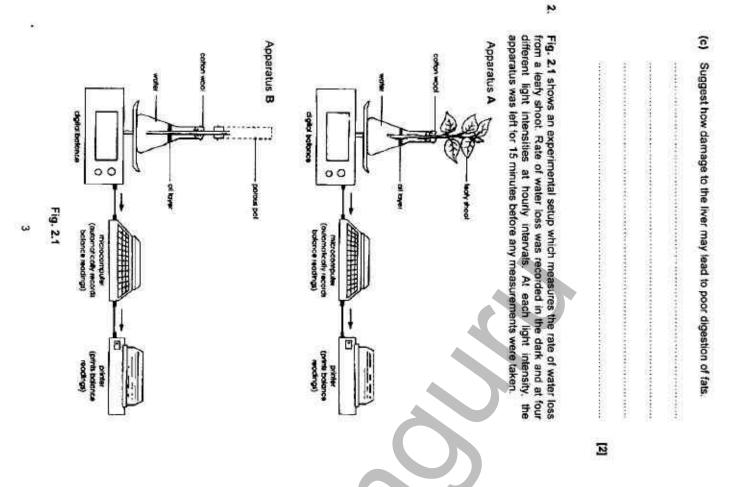
6

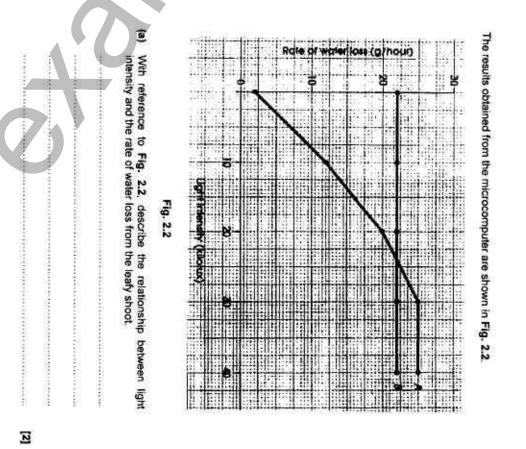
(b) The man who is a smoker noticed that he has been feeling breathless, wheezing and coughing more violently. Explain how a named component in tobacco smoke may cause these symptoms.


Fig. 4.1 shows the kidney and some associated structures.



Use information in Fig. 4.2 and your own knowledge of how the kidney


Fig. 4.2


Fig. 4.1

Ch

3

0

3

adding a layer of oil to the water in the flasks

Suggest the purpose of

NAME CLASS INDEX NO.

PRELIMINARY EXAMINATIONS 2015 ST. PATRICK'S SCHOOL

BIOLOGY (5158) PAPER 2

SUBJECT :

SECONDARY 4 EXPRESS

LEVEL

DATE

DURATION

1 HR 45 MINS

26 AUG 2015

INSTRUCTIONS TO CANDIDATES

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- This paper consists of Two (2) Sections: Section A and Section B
- Section A: Answer ALL questions. Write your answers in the spaces provided
- Question 9 is an EITHER / OR QUESTION SELECT ONLY ONE PART OF THIS Section B: Answer ALL questions
- DO NOT DETACH any sections from this paper.

INFORMATION FOR CANDIDATES:

The number of marks is given in brackets [] at the end of each question.

You are advised to spend no longer than one hour on Section A and no longer than 45 minutes on Section B.

L!						0		
GRADE	TOTAL	Question 9 E/O	Question 8	Question 7	SECTION B:	SECTION A:	PAPER 2	PAPER 1
	/ 120	/ 10	/ 10	/ 10		/ 50		/ 40

This paper consists of 22 printed pages, including the cover page.

N

Parent's Signature:

SECTION A (50 marks)

Answer ALL questions in the spaces provided

Fig. 1.1 shows part of a circulatory system in the abdominal cavity of humans. The arrows indicate the direction of blood flow

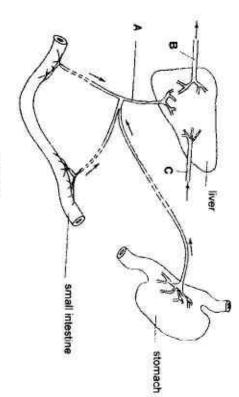


Fig. 1.1

Name the blood vessel A

9 A man has recently eaten a meal containing protein and carbohydrates

Using only the letters in the diagram, state which of the blood vessels will contain the highest percentage of:

3 glucose

3 oxygen;

3 urea

[01]

- (Concept of Normal Allele N is mutated to recessive n) causes red blood cells to become sickle shaped [1/2] and in not efficient in the transport of oxygen.
- individuals who are homozygous recessive for the mutant All the individual's haemoglobin become sickle shaped [1/2] and this condition would result in the early death of such allele (nn) are said to suffer from sickle cell anaemia [1/2].

individuals [1/2]

- Individuals who are Heterozygous state (Nn) are carrier or have the sickle cell trait [1/2] The sickle cell trait gives a selective advantage They are naturally resistance to malaria disease [1/2] said to be ő
- By natural selection, they are the ones who could better [1/2] individuals. [1/2] SURVIVE
- identify and isolate the toxin-producing gene on the DNA of the and multiple in region with malaria disease. [1/2]

0

Insert the toxin-producing gene into the DNA plasmid [1/2] isolate a circular DNA, a plasmid, from a bacterial cell (1/2)

[5]

to join the sticky ends to form a recombinant DNA plasmid. [1/2] Treat the recombinant DNA plasmid into the rice plant cell. [1/2]

The transgenic rice plant cells multiply [1/2]

using a DNA ligase enzyme [1/2]

and cut it with the same restriction enzyme [1/2]

using a suitable restriction enzyme [1/2]

fungus [1/2]

Ø

	8		# 					-
	3		6 5		9	6	10 -0 35 53-0	8. (a)
		. 9	. S	Data • •	Max	Perce		Any
	Nax: 4 marks Nitragen-containing fertiliser provides nutrient for profuse growth of algae [1/2] This prevents light from reaching bottom of water [1/2]. Submerged water plants living deep in water cannot carry out photosynthesis [1/2] due to lack of sunlight and die [1/2]. Bacteria grow and multiply rapidly [1/2], using up oxygen [1/2] as it decomposes the dead plants [1/2]. Other marine organisms such as fish die [1/2] due to a lack of oxygen [1/2].	meat to humans [1] 81 % of energy or 810000 kJ is lost during transfer from animal to humans. [1]	1 000 000 kJ passed down from 1st trophic level (barley), but only 190 000 kJ passed down from 2nd trophic level (animal meat). [1] Only 19% of energy or 190 000 kJ is transferred from animal	 Energy is increasingly lost between the trophic levels [1] Energy is lost through animal respiration / movement / heat / excrebon / unne / faeces / egestion. [1] Data Quoted	Max: 3 marks Barley = producers /1st trophic level Animal = primary consumer/ 2nd trophic level	Percentage of energy available = 190 000/1 000 000 [1] = 19 % [1]	Not all parts of the plant can be used in the animal feed [1] Light transmitted is not absorbed by plants / get reflected [1] Plants lose energy through respiration / transpiration / metabolism [1] Some of the wheat are diseased / eaten by insects and pests [1] When leaves or roots of plant die energy is passed on to decomposers [1]	(a) Any one of the following:
	<u>e</u>				3	12	5-50	3
Ř								[01]

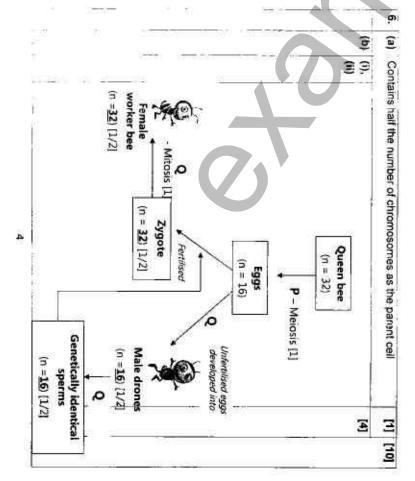
Usually localized	Nay be vol involuntary	Respons	Quick response	• Impulses	• Involves impulses signals)	Nervou	(b) [1] for each correct comparison	Constricts Constricts more blod Increase Cause pu Contract	pressure [1/2] so to muscles [1/2]	issue res	 Main effects to in by speeding up the and muscle [1/2] 	 Adrenalir anger [1] 	(a) Max o marks
ocalized	May be voluntary or involuntary	Response short-lived	sponse	Impulses transmitted by neurons	Involves nervous Impulses (electrical signals)	Nervous System	ect comparison	Increase rate and depth of breathing [1/2] Constricts arterioles in skin [1/2] causing pa more blood to muscles [1/2] Increase rate of blood coagulation [1/2] Cause pupil to dilate [1/2] to enhance vision Contract hair muscles [1/2]	rate of heartbeat [1/2] so that glucose is [1/2]	increase metabolic rate [1/2] tissue respiration [1/2]	cts: to increase the ing up the breakdow de [1/2]	ne is secreted during	
May affect more than one target organ	 Always involuntary 	Response may be short-lived or long- lived	Slow response	 Hormones transported by blood 	 Involves harmones (chemical substances) 	Endocrine System		increase rate and depth of breathing [1/2] Constricts arterioles in skin [1/2] causing paleness, channel more blood to muscles [1/2] increase rate of blood coagulation [1/2] Cause pupil to dilate [1/2] to enhance vision Contract hair muscles [1/2]	increase rate of heartbeat [1/2] and causes a rise in blood pressure [1/2] so that glucose and oxygen are carried faster to muscles [1/2]	increase metabolic rate [1/2] to release more energy during tissue respiration [1/2]	Main effects: to increase the amount of blood glucose [1/2] by speeding up the breakdown of glycogen to glucose in liver and muscle [1/2]	Adrenaline is secreted during: excitement / fear / worry / enger [1]	

		Ĉ.
	۰	•
merosis [1]	independent assortment of chromosomes during Metaphase I	crossing over of chromatids of homologous chromosomes [2]
		70

â

Russian bees - Bb [1]

Local bees - bb [1]


3 mite-resistant 1 mite-susceptible [1]

1	(e)		â	6	(b)	3
Leaf thickness varies [1] Lack of proportionality between area and mass [1]	(e) Any 1	Carbon dioxide concentration [1] Temperature [1] Light intensity [1] Volume of water [1]	(d) Any 2:	(c) Taking the average of several measurements would improve overall accuracy. [1]	(b) Cassava [1] and eucalyptus [1]	 Y axis labelled difference (Y - X) in the rate of photosynthesis [1] Appropriately numbered scale [1] All values accurately plotted [1]
	3		[2]	3	[2]	

 Weaken and burst partition walls of alveoli [1/2] Decrease surface area of alveoli [1/2] Reduced gaseous exchange in lungs (breathlessness) [1/2] Lungs lose elasticity / become inflated with air (wheezing) [1/2] 	
 Weaken and burst partition walls of alveoli [1/2] Decrease surface area of alveoli [1/2] Reduced gaseous exchange in lungs (breathlessness) 	Lungs lose elasticity / become inflated with air (wheezi
Weaken and burst partition walls of alveoli [1/2] Decrease surface area of alveoli [1/2]	reduced gaseous exchange in lungs (preamessness)
 Weaken and burst partition walls of alveoli [1/2] Decrease surface area of alveoli [1/2] 	Data and account outstance in large (broad)
 Weaken and burst partition walls of alveoli [1/2] 	Decrease surface area of alveoli [1/2]
	Weaken and burst partition walls of alveoli [1/2]

9	(b)	2.33	(c					G.		=	
 Excretion refers to the removal of metabolic wastes produced [1] in body cells Egestion refers to the removal of undigested matter from the digestive system 	a) (i) Protein molecule is too big to pass through by ultrafiltration. [1]	(ii) All glucose molecules are selectively reabsorbed into bloodstream [1]	(c) (i) 5.06 g [1]	R produced 220 cm ³ of urine, R has 2.30 g of urea per 100 cm3 of urine. Total amount of urea = 220 x 2.30 / 100 = 5.06 g.	 Urine of person R contain more urea than person Q. [1] Person R has eaten a meal higher in protein content than person Q. [1] Excess amino acids deaminated in liver to form urea. [1] 	Volume of unne formed in person R is lower than in person Q [1]. Person R is more dehydrated than person Q [1], more selective reshortion of water person R is his person R in the selective reshortion of water person R in the selective reshortion of water person R in the selective reshortion of water person R is not a selective reshort.	kidneys tubules [1], resulting in less water excreted. / Person Q ingested more fluids [1], less selective reabsorption of water occurred in his kidneys tubules [1], resulting in more water excreted.	(d) Any 2:	 Produced by endocrine (ductless) gland 	Secreted directed into bloodstream	 Destroyed by liver when no longer required.
3	Ξ	3	3		<u>a</u>	, cp	00 C	[2]			
<u> </u>			0000								

9 9 9	6			901 # 1	1	
5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.⇒ <		6	3	3	
	tary action	Correct Direction of arrows: [1] sensory neurone ⇒ relay neurone along spinal cord ⇒ motor neurone to arm muscle	Correct Drawing: [1] Motor neurone along ventral root to muscle + cell body of motor neurone in spinal cord + label Motor neurone	Transmits nerve impulses within the central nervous system [1]	Relay neurone [1]	detected by the photoreceptors [1/2]. Merve impulses generated [1/2]. Nerve impulses generated [1/2] and travels along the sensory neurone (F) [1/2] through optic fibre [1/2] and then to the relay neurone [1/2] in the brain (G) [1/2] the brain interprets the nerve impulses to see the ball [1/2]

ω

PRELIMINARY EXAMINATIONS 2015 ST. PATRICK'S SCHOOL

SUBJECT BIOLOGY (5158) DATE 26 AUG, 28 AUG 2015

ANSWER SCHEME

PAPER 1: MULTIPLE-CHOICE QUESTIONS (40 MARKS)

LEVEL

SECONDARY 4 EXPRESS

1 HR 45 MINS, 1 HR

DURATION :

B 7 0:00 D 0 % 8 3

w :

02

03

01

O is

0.6

() W

ID 4

DO

0 6

PAPER 2 SECTION A: STRUCTURED QUESTIONS (50 MARKS)

0 4

03

8 3

B 3

CS

8 8

UN

B 22

0 23

B 2

03

A 26

(E) (E)	
Þ	
apatic portal vein [1] All correct [2] Only 2 correct [1]	
	5
300	
į	
2 3	1
3	6

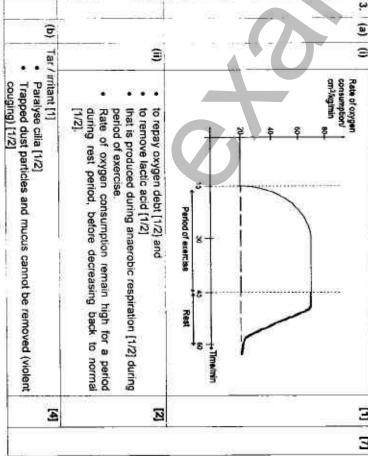
(c)

Damage to the liver may reduce / stop the production of bile.

[2]

This slows down the digestion of fats by lipases As a result, the ingested fats are not emulsified. [1]

(ii) (iii) B

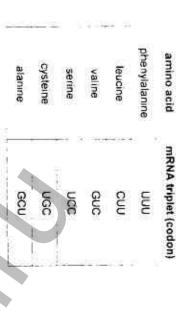

3

Þ

Only 2 correct [1] Only 1 correct [0]

		3. (a)
2 S	\$	Rate of oxygen consumptions on a Maginian 80
	/	******

3	The leaves and stem of the shoot will will and droop. [1] Seawater has a lower water potential than the cell sap in the cells of the shoot. [1] Therefore, water will move from the shoot into the seawater by osmosis [1] causing the shoot to will and droop.		9
9	The stomata are fully opened at 30 kilotux. [1] As water escapes from the leafy shoot through the stomata in the leaves. [1] the rate of water loss from the stomata is the maximum at 30 kilotux [1]. thus indicating that all the stomata are fully opened.		0
Ξ	(ii) To serve as a control. [1]	3	
3	To prevent evaporation of water in the flask which will affect the accuracy of the results. [1]	3	(b) (d)
	As light intensity increases from a kiloux to 36 kiloux, the rate of water loss increases from 2 g/hr to 25 g/hr. [1] When the light intensity increases further from 30 kilolux to 40 kilolux, the rate of water loss remains constant at 25 g/hr. [1]		3



(codons) The table shows some amino acids and their corresponding mRNA triplets

6

The diagram shows a sewage treatment plant

Which DNA sequence of the template strand would be needed to produce the polypeptide sequence alanine - leucine - valine - phonylalanine?

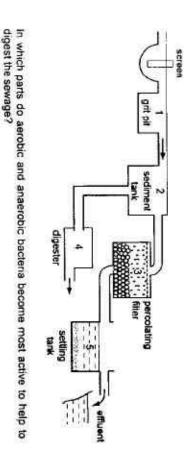
GCA CGA CGA GAA GAA CAG CAG GTC GTC B = ∄ Š

winter spring summer umujue

The graph shows the annual changes in a lake of the following factors:

number of primary consumers number of producers

39.


- quantity of nutrients
- intensity of light

8

aerobic bacteria

anaerobic bacteria

--- END OF PAPER ----

22

Which curve represents the number of primary consumers?

21

time of the year

36.

The following statements are parts of the theory of evolution by natural selection

Only the best adapted individuals survive and pass on their

genes.

support

250 hybrid plants were crossed and 6000 smooth peas were

What is the likely number of wrinkled peas gathered in the F2 generation?

The diagram shows two distinct forms of beetle. The difference between them is controlled by a single gene. The allele for the black form is dominant to the allele. for red

What is the correct sequence of statements?

2

There is a struggle for survival in which some individuals

are more successful than others

the species gradually change

As one generation follows another, the characteristics of

More offspring are produced than the environment can

35

II. IV. I III - - II V

Red form with black spots

with red spots Black form

What kind of variation is shown by the beetle?

- Discontinuous variation because it is controlled by genes
- Continuous variation because it is controlled by genes.
- Discontinuous variation because the two forms are distinct
- Continuous variation because there are two forms

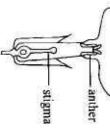
0 0 00

A gene contains 900 deoxyribose sugar which is transcribed and translated to produce a functional protein in a cell.

Which of the following shows the correct combination of numbers and structures present in the gene or formed during protein synthesis?

450	450	900	900	nucleotides
	900		900	rof
450	900	300	900	number of codons on the mRNA
•	900			number of polypeptide formed

0 O


8

- 30 Which statement correctly describes advantages or disadvantages of self-
- polimation to a plant?
- B
- It needs little pollen but there is a high chance of pollination
- It needs no agent to transfer pollen but pollination is unlikely
- It needs a lot of pollen but can happen when a plant is on its own
- It needs two plants of the same species but there is little variation in the

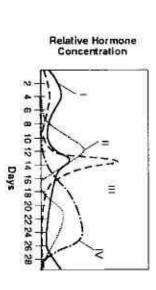
0 0

3.

- It shows adaptations for
- insect pollination and cross fertilisation

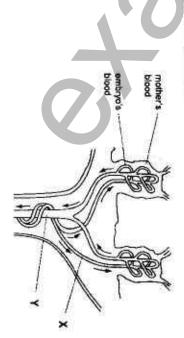
wind pollination and cross fertilisation

wind pollination and self fertilisation


0 8

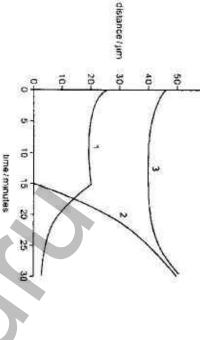
0


insect pollination and self fertilisation


32. the human menstrual cycle. The graph below plots the rise and fall of pituitary and ovarian hormones during

Which of the following represents oestrogen and progesterone?

blood in the placenta. The diagram shows how the blood of a human embryo flows close to the mother's


Which substances are present at X in higher concentrations than at Y?

- Carbon dioxide and urea Carbon dioxide and glucose
- Glucose and oxygen
- Glucose and urea

29.

The diagram shows two homologous chromosomes in early prophase I of meiosis in an animal cell. Two genes, A/a and B/b, whose loci occur on the homologous

Which of the following measurements do the curves represent?

centromeres and poles of the spindle		-i-	u	ເມ
•		=	4	
centromeres of the sister chromatids	ယ	N		2
poles of the spindle	N	ω	2	*

28

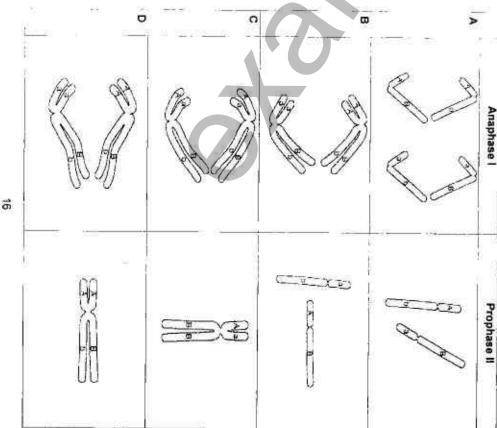
How does mitosis contribute in each of the following processes stated below?

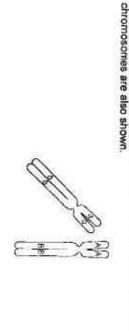
contributes to process

= does not contribute to process

Genetic variation

Increase in cell


Replacement of damaged cells


0 00 >

O

Which row of diagrams is a possible representation of these chromosomes as they progress from anaphase I to prophase II?

6

5

Secolusied legyel200g t5rWITHOUT SCHOOL

The diagram represents a central nervous system, \mathbf{X} , \mathbf{Y} , and \mathbf{Z} show possible sites where the system can be blocked by a local anaesthetic.

26.

The figure shows the changes that occur in the curvature of Mr Cheng's eye lens

sensory nerve spinal cord

motor nerve

Of four men, one had no anaesthetic block and the other three had only one anaesthetic block at X. Y or Z.

One of the men can feel a pinprick on his leg but cannot move it.

Where is the anaesthetic block?

What describes the cone cells of the retina?

25.

0 0

distance (arbitrary units)

distance

(arbitrary units)

time (seconds)

time (seconds)

50

0

block is at X
block is at Y
block is at Z
no block

ā	bright	dim	bright	Light intensity required for stimulation
no	yes	no	yes	Responds to colour

distance (arbitrary units)

distance

(arbitrary units)

time (seconds)

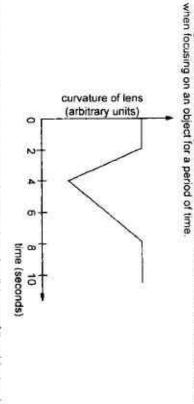
time (seconds)

6

0 0

D

Region of the retina where most cones are

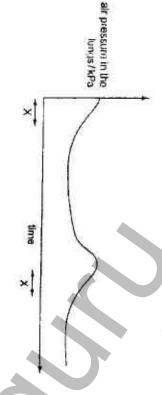

found

O

yellow spot yellow spot

Which of the following graphs correctly shows how the distance of the object varies with time?

8


4

- 18. A person holds his breath for as long as possible but is then forced to breathe out because
- intercostal muscles become tired
- muscles of the diaphragm become tired
- concentration of oxygen in the blood has decreased
- concentration of carbon dioxide in the blood has increased

0 0 8

The graph shows changes in air pressure in the lungs during breathing.

19.

What causes the change in air pressure during period X?

- decrease in volume of the lungs
- movement of the ribs downwards
- contraction of the diaphragm muscles
- relaxation of the external intercostal muscles

000

In the human excretory system, urea is produced in one organ, filtered from the blood by a second organ and stored inside a third organ before being expelled out from the body. Which organs carry out these three functions?

20.

0	c	œ	Þ	8 9 8
liver	bladder	kidney	Kidney	Production
kidney	bladder	bladder	liver	Filtration
bladder	kidney	ureter	bladder	Storage

- 21. Which of these statements correctly describe control by negative feedback?
- A An injury to body tissue activates platelets in the blood and these activated platelets release chemicals which activate more platelets.
 B During the menstrual cycle, luteinising hormone stimulates the release of
- During the menstrual cycle, luternising hormone stimulates the release of oestrogen which in turn stimulates the release of more luternising hormone. The onset of contractions during childbirth causes the release of a hormone,

0

- which stimulates further contractions.

 D. When blood pressure is high, nerve impulses from the brain cause the blood vessels to dilate and blood pressure is reduced.
- During osmoregulation, which one of the following correctly describes the body's homeostatic response to a large intake of water?

22.

Organ/ Region stimulated	secreted	Action	Water absorption
Hypothalamus	Less adrenaline	Absorb	
Hypothalamus	Less ADH	Reabsorb	į
Kidney	More ADH	Reabsorb	More
Kidney	More adrenatine	Absorb	

Which of the following comparisons about voluntary actions and reflex actions is incorrect?

0	ဂ	В	Þ	1
the same stimulus may lead to the different responses	we are aware of the action	may involve a stimulus	not inborn	Voluntary Action
the same stimulus leads to the same response	we are not aware of the action	involves a stimulus	inborn	Reflex Action

=

The following live events occur during one cardiac cycle in humans

6

The same plant was then placed in a bell jar and a chemical placed in the bell jar to absorb all the oxygen present. The rate of transport in the phioem decreased

What is the reason for this?

and then stopped.

An experiment was performed on a young plant using an aphid stylet to measure the rate of translocation in the phloem.

7

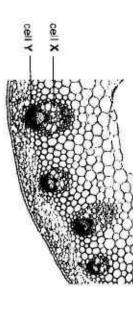
- ventricular diastole
- bicuspid and tricuspid valve forced open
- blood forced back against bicuspid and tricuspid
- blood forced back against semi-lunar valve
- arrial systole

<

What is the correct sequence of these events?

|| → || → || → || → ||

A - 11 - 11 - A


 $\lor \lor = \lor = \lor = \lor \lor$

O

V ← I ← II ← I ← V

The photomicrograph shows part of a section through a stem

5

lodine solution Key + = positive result cell Y = negative result

What results are expected from the tests?

The contents of cell X and cell Y are each tested with Benedict's reagent and with

Benedict's reagent lodine solution

Benedict's reagent

D

9

0 8

The diagram shows two shoots at the start of an experiment on transpiration.

Companion cells no longer produce sufficient energy

Mitechondria in the xylem vessels cease to function.

Photosynthesis cannot occur in the bell jar

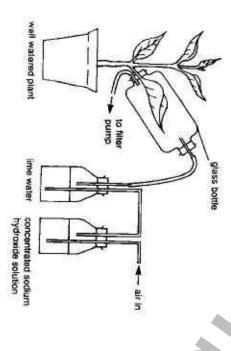
Translocation occurs only by diffusion

17

shoot X shoot Y

What are the likely readings on the spring balances after three days?

- ō The stomach wall produces mucus to cover its inner surface. Which of the following correctly describes the function of the mucus?
- It reduces friction between the food and stomach wall during It protects the stomach wall from the action of the stomach churning of food
- Ξ It kills harmful bacteria in the food
- 0 0 I, II and III II and III only

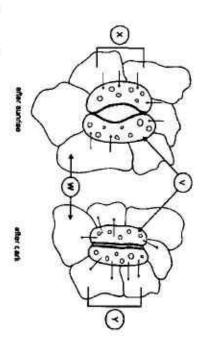

œ

I and II only

I only

The setup below under sunlight to show that a certain condition is necessar photosynthesis

=


Which of the following states the objective of the experiment?

- To show that water and carbon dioxide are necessary for photosynthesis
- To show that carbon dioxide is necessary for photosynthesis

8 Þ

- To show that water and sunlight are necessary for photosynthesis
- 0 0 photosynthesis To show that water, carbon dioxide and sunlight are necessary for

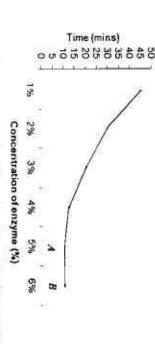
12. The following diagram shows a portion of the under-surface of a leaf at two different times of the day.

In the diagram, the arrows indicated by

- label V, point to the non-respiring cells
- label W, point to photosynthetic cells
- label X, show the direction of movement of water molecules
- label Y, show the direction of movement of starch molecules
- Which of the following explains why a person with blood type A cannot donate blood to a person with blood type O?
- antigens in the blood plasma of blood type O. The antibodies in the blood plasma of blood type A would react with the
- antibodies on the red blood cells of blood type O The antigens in the blood plasma of blood type A would react with the
- antibodies in the blood plasma of blood type O The antigens on the red blood cells of blood type A would react with the
- antigens on the red blood cells in blood type O The antigens on the red blood cells in blood type A would react with the

O

Four sugar solutions were tested with a standard Benedict's solution. The table shows the colour of the solutions after testing.


7

What is the best interpretation of the results?

sugar	sugar	reducing sugar	reducing sugar	
1.0% reducing	1.5% reducing	0.01% non-	0.05% non-	
sugar	sugar	sugar	sugar	
0.1% reducing	0.05% reducing	0.5% reducing	1.0% reducing	
sugar	sugar	reducing sugar	sugar	200
1.0% reducing	1.5% reducing	0.05% non-	0.5% reducing	Φ.
sugar	reducing sugar	reducing sugar	reducing sugar	
0.5% non-reducing	1.0% non-	0.1% non-	0.05% non-	955 H=
Solution 4	Solution 3	Solution 2	Solution 1	

taken for reaction to complete. The graph shows the relationship between concentration of enzyme and time

œ

Which of the following statements is not true about the region between Points A

1, 2 and 3 2 and 3 only 1 and 3 only 1 and 2 only

- Enzyme concentration is the limiting factor.
- Substrate concentration is the limiting factor.

O

9

U

C B D and B? pH of the solution is the limiting factor. Temperature is the limiting factor

reaction The diagram shows an example of a biological model used to illustrate enzymatic needie needle

a

9

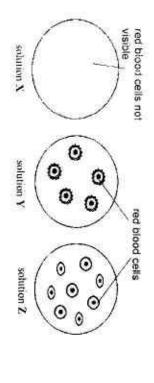
needle

balloon

balloon

A few leaves of purple cabbage were placed in a beaker of water for 10 minutes. The water remained colourless after the 10 minutes. The beaker was then heated to 100°C for 5 minutes. After the boiling, the water turned purple.

Which of the following best explains this observation?


- A The pigments gained more kinetic energy upon heating and were able to diffuse out of the leaves quickly, hence the coloured water in just 5 minutes.
- The cell walls were denatured upon heating, allowing the pigment to diffuse into the water.

w

- C During the boiling, the cell membranes were damaged, hence allowing the pigment to diffuse into the water.
- D Heating increases the solubility of the pigment, thus colouring the water purple.

Jia placed some red blood cells on three different slides containing salt solutions of different concentrations, 0.01 g/dm³, 1.0 g/dm³ and 10.0 g/dm³ respectively. A ter ten minutes, she observed them under the microscope. This is what she saw

4

What is the correct concentration of solution X, Y and Z respectively?

concentration of concentration of solution X (g/dm²) solution Y (g/dm²) 0.01 1.0 1.0 1.0 1.0 0.01 0.01 0.01
concentration of solution Y (g/dm³) 1.0 10.0 10.0 0.01

w

5. Some blocks of agar blocks were prepared and immersed in beakers filled with 100cm³ of methylene blue solution. Which of the following blocks would take the shortest time to be stained completely blue?

Transferror.	C 20 × 20 × 20	B 10×10×10	A 10×10×10	dimension of agar block/mm
20 × 20 × 20	20	10	10	r block/mm mett
56	38	50	30	temperature of lylene blue solution/°C

The figure shows the chemical reactions in the human body involved in different types of sugar:

ø

Reaction I: glucose + Q → sucrose + water Reaction II: lactose + water → R + glucose

Which of the following correctly identifies substances ${\bf Q}$ or ${\bf R}$ and the respective reaction that takes place?

hydrolytic	fructose	20
hydrolytic	galactose	٥
condensati	galactose	מ
condensation	fructose	۵
reaction	name	substance

PRELIMINARY EXAMINATIONS 2015 St. Patrick's School

SUBJECT : BIOLOGY (5158) PAPER 1

LEVEL

SECONDARY 4 EXPRESS

DURATION

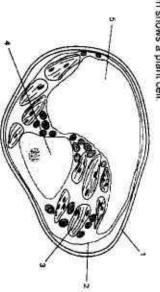
28 AUG 2015

DATE

INSTRUCTIONS TO CANDIDATES:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

There are forty questions in this paper. Answer all questions. For each question, there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate OPTICAL ANSWER


INFORMATION FOR CANDIDATES.

number of correct answers given Any rough working should be done in this booklet. Your total score for Paper 1 will be the Each correct answer will score one mark. Marks will not be deducted for wrong answers.

Answer ALL questions.

Choose the most appropriate answer and shade the corresponding letter on the separate OAS provided.

The diagram shows a plant cell

Which features are not found in animal cells?

- 1, 2 and 3
- 2, 3 and 4

- 1, 3 and 5
- 2, 4 and 5

The diagram is a photomicrograph which shows some human blood cells dye

magnification = × 900

Which of the following is an adaptation of these cells?

- The cells are flattened and biconcave to increase surface area to volume ratio for absorption and release of oxygen at a faster rate
- The cells are anucleated and elastic to increase surface area to volume ratio for absorption of oxygen at a faster rate
- absorption of oxygen at a faster rate The cells contain haemoglobin to increase surface area to volume ratio for

O

Œ

surface area to volume ratio for absorption of oxygen at a faster rate The cells are produced in large numbers in the bone marrow to increase

This paper consists of 22 printed pages, including the cover page.