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Mathematical Formulae 

 

1.    ALGEBRA 
 

Quadratic Equation 

For the quadratic equation  02  cbxax ,    

 

a

acbb
x

2

42 
   . 

 

Binomial Expansion 

 (𝑎 + 𝑏)𝑛 = 𝑎𝑛 + (𝑛1) 𝑎𝑛−1𝑏 + (𝑛2) 𝑎𝑛−2𝑏2 + ⋯ + (𝑛𝑟) 𝑎𝑛−𝑟𝑏𝑟 + ⋯ + 𝑏𝑛. 

 

where n is a positive integer and (𝑛𝑟) =  
𝑛!(𝑛−𝑟)!𝑟! = 𝑛(𝑛−1)⋯⋯(𝑛−𝑟+1)𝑟!   . 

 

 

 

2.    TRIGONOMETRY 

 

Identities                                  

1cossin 22  AA  

 AA
22 tan1sec   

Acot1Aeccos 22   

BABABA sincoscossin)sin(   cos(𝐴 ± 𝐵) = cos 𝐴 cos 𝐵 ∓ sin 𝐴 sin 𝐵 tan(𝐴 ± 𝐵) = 
tan 𝐴 ± tan 𝐵1∓ tan 𝐴 tan 𝐵 

AAA cossin22sin   

AAAAA
2222 sin211cos2sincos2cos   

A

A
A

2tan1

tan2
2tan


  

 

 

Formulae for   ABC 

C

c

B

b

A

a

sinsinsin
  

bccba 2222   Acos  

Area of bc
2

1
 Asin  
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1 Find the range of values of a for which x2 + ax + 2(a – 1) is always greater than 1.  

 

[4] 

2 Find the distance between the points of intersection of the line 2x + 3y = 8 and the curve   

y = 2x2, leaving your answer in 2 significant figures. 

 

[5] 

   

3 Express 
2

2

2 6

( 6)

x x

x x x

 
 

 as a sum of 3 partial fractions. [5] 

   

4 Triangle ABC is an right angled isosceles triangle with angle ABC as the right angle.   The 

height from point B to the base AC is 
3 2

3 6
.  Without using a calculator, express the 

area of the triangle ABC in the form a + b 2 , where a and b are integers. 

 

   

 

 

 

 

[5] 

   

5 (i) Given sin(A + B) + sin(A – B) = k sinA cosB, find k.  

        

(ii) Hence, find the exact value of 
4

0
sin 2 cos  dx x x



 .     

  

 

 

  

[2] 

 

[4] 

6 (a) State the values between which the principal value of tan1x must lie. [1] 

   

 (b) The function f is defined by f(x) = 3cos 1ax  , where a is a positive integer and 

 x    .       

 

(i) State the amplitude and the minimum value of f.    

   

(ii) Given that f(x) = 1 when x = 
4


, find the smallest possible value of a 

      

(iii) Using the value of a found in part (ii), state the period of f and sketch the 

graph of y = f(x).   

 

 

 

 

[2] 

 
 

[1] 

 

 
 

[4] 

A 

B 

C 

[Turn over 
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7 The function f is defined by f(x) = 6x3 – kx2 + 3x + 10, where k is a constant. 

 

(i) Given that 2x + 1 is a factor of f(x), find the value of k.    

  

(ii) Using the value of k found in part (i), solve the equation f(x) = 0.    

 

 

[2] 

 

[4] 

 

 

8 Solve the equation 

 

(i) 33log log 3 2xx   ,  

 

(ii) 2 22log (1 2 ) log (6 5 ) 0x x    .  

 

 

 

 

[5] 

 

[4] 

9 The equation of a curve is 
22

1

x
y

x



 ,  x > 1. 

 

 

 (i) Find the coordinates of the stationary point of the curve.    

  

(ii) Use the second derivative test to determine the nature of the point.  

 

[4] 

[3] 

   

 

10 The diagram shows part of the graph y c ax b    where a > 0.   The graph has a 

maximum point (12, 2) and passes through the point (18, 1). 

 

   

 (i) Determine the value of each of a, b and c.       

 

(ii) State the set of value(s) of m for which the line y = mx + 4 cuts the graph 

y c ax b    at exactly one point.        

[4] 

 

 

[3] 

  

 

 

 

 

 

y c ax b    

y 

x O 

 (18, 1) 

 (12, 2) 
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11  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The diagram shows a triangle ABC in where points B and C are on the y-axis.   The line AC 

cuts the x-axis at point D and the coordinates of point C and D are (0, 10) and (5, 0) 

respectively.   AD = 
2

7
 AC and points A, B and D are vertices of a rhombus ABDE.   

 

 

  (i) Show that the coordinates of A is (7, 4).      

  

(ii) Find the coordinates of B and E. 

 

(iii)   Calculate the area of the quadrilateral ABOD.      

[1] 

 

[5] 

 

[2] 

   

   

12  

 

 

 

 

 

 

 

 

 

The diagram above shows part of the curve y = x2 + 1.  P is the point on the curve where  

x = p, p > 0.   The tangent at P cuts the x-axis at point Q and the foot of the perpendicular 

from P to x-axis is R.  

 

 

 (i)  Show that the area A of the triangle PQR is given by 
3 1

4 2 4

p p
A

p
    .   

(ii)  Obtain an expression for
d

d

A

p
.         

 

(iii)  Find the least area of the triangle PQR, leaving your answer in 2 decimal places. 

 

[5] 

 

[1] 

 
 

[4] 

   

 

End of Paper 

  

y = x2 + 1 

y 

x O 

y 

A 
B 

x 
O 

D 

10 

5 

C 
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YISHUN TOWN SECONDARY SCHOOL 

2018 Preliminary Examination  
Secondary Four Express / Five Normal 

ADDITIONAL MATHEMATICS 4047/01 
                                        

  

 

Answer Scheme 

Qn Answer  

1 2 < a < 6  

2 2.8 units 

3 𝑥2 − 2𝑥 − 6𝑥(𝑥2 − 𝑥 − 6) = 1𝑥 − 15(𝑥 − 3) + 15(𝑥 + 2) 

4 18 − 12√2  

5(i) k = 2  5(ii) 4−√26   

6(a) − 𝜋2 < tan−1 𝑥 < 𝜋2 or −900 < tan−1 𝑥 < 900 

6(b)(i) Amplitude = 3, minimum value = − 2 6(ii)  a = 2 

(iii) 

 

 

 

 

 

 

 

Period =  

7(i) k = 31  7(ii) x = 5 or 
23 or − 12 

8(i) x = 0.693 or  3 

(ii) 𝑥 = − 54  

9(i) (2, 8) 

(ii) d2𝑦d𝑥2 = 4(𝑥−1)3 Min point 

10(i) 𝑎 = 12, b = –6, c = 2 

(ii) 𝑚 = − 16  or 𝑚 > 12 or 𝑚 ≤ 12 

11(i) (7, 4) 
(ii) B (0, 5), E(12, – 1) 

(iii) 27.5 units2 

12(ii) d𝐴d𝑝 = 34 𝑝2 + 12 − 14𝑝2  12(ii) 0.77 units2 

 

 

y 

x 
O 

4 

 𝜋2 − 𝜋2 

  

𝑦 = 3 cos 2𝑥 + 1 
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Mathematical Formulae 

 

1.    ALGEBRA 
 

Quadratic Equation 

For the quadratic equation  02  cbxax ,   

 

a

acbb
x

2

42 
   . 

 

Binomial Expansion 

  nrrnnnnn
bba

r

n
ba

n
ba

n
aba 


























  221

21
 ,   

where n is a positive integer and   
 

!

)1(1

!!

!

r

rnnn

rrn

n

r

n 











 
. 

 

 

 

2.    TRIGONOMETRY 

 

Identities                                  

1cossin 22  AA  

 AA 22 tan1sec   

Acot1Aeccos 22   

BABABA sincoscossin)sin(   

BABABA sinsincoscos)cos(   

BA

BA
BA

tantan1

tantan
)tan(




  

AAA cossin22sin   

AAAAA 2222 sin211cos2sincos2cos   

A

A
A

2tan1

tan2
2tan


  

 
 

Formulae for   ABC 

C

c

B

b

A

a

sinsinsin
  

bccba 2222   Acos  

Area of bc
2

1
 Asin  
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1. (a) Given that the roots of the equation 2 6 0x x k    differ by 2, find the value of k.  [3] 

(b) If   and   are the roots of the equation 2 1 0x bx   , where b is a non-zero constant,  

show that the equation with roots 



 and 



 is  2 2 2 1 0x b x    .   [4] 

 

2. If the first three terms in the expansion of 1
2

n
x  

 
 is 21 6x ax  , find the value of n and of a. [4] 

 

3. (a) Solve the equation 
3 1

4 2
x x

   .        [5] 

 (b) Given that  
2

2

2 2

4 2
3

9

n
m

x
n x x


   
 

, where 0x  , find the values of the constants m and n. [4] 

 

4. A precious stone was purchased by a jeweler in the beginning of January 2003. The expected    

value, $V, of the stone may be modelled by the equation    6000 4 1000 16t tV   , where t is   

the number of years since the time of purchase. Find 

 (i) the expected value of the stone when 
3

4
t  .       [1] 

 (ii) the value(s) of t for which the expected value of the stone is $8000.    [3] 

 (iii) the range of values of t for which the expected value of the stone exceeds $8000.  [1] 

 

5. The equation of a circle, C, is  2 2 24 2 5 20 0x y ux uy u       where u is a positive constant. 

(a) Given that 6u  , find the coordinates of the centre and the radius of the circle C.  [3] 

 (b) Determine the value of u for which 

  (i) the circle, C, passes through the point  4,4 ,     [2] 

  (ii) the line 2x   is a tangent to the circle, C.      [4] 

 

 

 

[Turn over 
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6. The variables x and y are related by the equation 3 0mx ny xy   , where m and n are non-zero 

constants. When 
1

y
 is plotted against 

1

x
, a straight line is obtained. Given that the line passes 

through the points  1,0  and  5,9 , find the values of m and of n.     [6] 

 

7. (i) Prove that 4 4 2sin cos 1 2cos     .       [3] 

 (ii) Hence solve 4 4sin cos 3cos 2      for 0 2   .     [4] 

 

8. In the diagram, 3 mOS  , 7 mOR   and oangle angle angle 90SOR SPO RQO   .   

 It is given that angle SOP  is a variable angle   where o o0 90  . The point T is on the  

 line RQ such that ST is parallel to PQ. 

 

 (i) Show that 7 sin 3cosPQ    .        [1] 

 (ii) Show that the area of triangle RST is 
21

cos 2 10sin 2
2

  .     [3] 

 (iii) Express the area of the triangle RST as  cos 2k   , where 0k   and o o0 90  . [4] 

 (iv) Hence find the maximum area of triangle RST and the corresponding value of  .  [3] 

 
 
 
 

 

O 

S P 

Q T R 

3 m 

7 m 

 3 m 
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9. The diagonals of a cyclic quadrilateral PQRS intersect at a point U. The circle’s tangent at R      
meets the line PS produced at T. 

 

 If QR RS , prove the following. 

(i) QS is parallel to RT.          [3] 

(ii) Triangles PUS and QUR are similar.        [3] 

(iii)    2 2PU QU PU PR QU QS     .       [3] 

 

10. It is given that 
22x xy xe e   . 

 (i) Find 
d

d

y

x
.           [2] 

 (ii) If x and y can vary with time and x increases at the rate of 1.5 units per second at the 
  instant when ln 2x  , find the exact value of the rate of increase of y at this instant. [3] 

  

11. A curve has the equation 
2

ln
2

x
y

x
  . 

 (i) Show that 
3

d 1 2 ln

d

y x

x x


 .         [2] 

 (ii) (a) The x-coordinate of a point P on the curve is 1. Find the equation of the tangent  
  to the curve at P.         [2] 

  (b) The tangent to the curve at the point P intersects the x-axis at Q and the y-axis  
  at R. Calculate the shortest distance from the origin O to the line QR.  [4] 

(iii) Given that another curve  fy x  passes through the point  1, 0.25  and is such that  

   3

ln
f '

x
x

x
 , find the function  f x .        [3] 

P

S

T 

Q 
U

R

U

[Turn over 
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12. The diagram shows the graphs of 1xy e   and y e x  . P is the point of intersection   

 of the two graphs. 

 

 (i) Show that 1  is a root to the equation  11 1 0e e     .    [1] 

 (ii) Hence, find the coordinates of P.        [2] 
 (iii) Find the area of region A, which is enclosed by the two graphs and the y-axis.  [4] 

 (iv) Find the exact value of 
area of region 

area of region 

A

B
, given that the area of region B is enclosed by  

  the two graphs and the x-axis.         [2] 

 

13. A particle moves pass a point A in a straight line with a displacement of 4 m  from a fixed        

point O. Its acceleration, a m/s2 , is given by 
2

t
a  , where t seconds is the time elapsed after  

passing through point A.  

 Given that the initial velocity is 1  m/s, find, 

(i) the velocity when 2t  ,         [3] 

(ii) the distance travelled by the particle in the first 5 seconds.     [5] 

 

 

 

 

END OF PAPER 

y 

x 
O 

 

P 
A 

B 
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1(a) 8k   

1(b) Show  2 2 2 1 0x b x     

2 
12n  , 

33

2
a   

3(a) 1

4
x   

3(b) 
4n  , 

4

9
m   

4(i) $8970  

4(ii) 1
,1

2
t   

4(iii) 1
1

2
t   

5(i)  Centre is 12, 6

Radius = 10 units


 

5(ii)(a) 2u   

5(ii)(b) 6u   

6 2m  , 3n   

7(i) Show 4 4 2sin cos 1 2cos      

7(ii) 2 4
, ,

3 3

    

8(i) Show 7 sin 3cosPQ     

8(ii) 
Show Area = 

21
cos 2 10sin 2

2
   

8(iii) 
Area =  o29

cos 2 43.6
2

   

8(iv) 229
Max area of triangle  m

2
RST  , 

o21.8   

9(i) Show QS is parallel to RT 

9(ii) Show Triangles PUS and QUR are 
similar 

9(iii) Show

  2 2PU QU PU PR QU QS    
 

10(i)   21 4x xdy
x e e

dx

     

10(ii) 

ln 2

9 3
ln 2

4 4x

dy

dt 

   

11(i) 
3

1 2lndy x

dx x


  

11(ii)(a) 3y x 
11(ii)(b) 3 2

units
2

h   

11(iii)   2

1 2 ln
f 

4

x
x

x


   

12(ii)  1, 1P e  

12(iii) 23
Area of Region  units

2
A   

12(iv) 
2

Area of Region 3

Area of Region 3

A

B e



 

13(i) Velocity = 0 m/s  

13(ii) 1
Total distance travelled 8  m

12

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Mathematical Formulae 
 

1. ALGEBRA 
 
Quadratic Equation 

 For the equation 02  cbxax , 
 

a

acbb
x

2
42 

  

 
Binomial Theorem 

 
nrrnnnnn bba

r

n
ba

n
ba

n
aba 


























  221

21
)( , 

 

where n is a positive integer and 
   

!
11

!)!(
!

r

rnnn

rrn

n

r

n 











 
 

 
 

2. TRIGONOMETRY 
 
Identities 

1cossin 22  AA . 
AA 22 tan1sec  . 
AA 22 cot1cosec  . 

  BABABA sincoscossinsin   
  BABABA sinsincoscoscos   

 
BA

BA
BA

tantan1
tantantan




  

AAA cossin22sin   
AAAAA 2222 sin211cos2sincos2cos   

A

A
A 2tan1

tan22tan


  

 
 
 

Formulae for ABC 
 

C

c

B

b

A

a

sinsinsin
  

 

Abccba cos2222   

Cab sin
2
1


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Answer all the questions 
 

1.  

 

 

 

 

AB is parallel to EC and (1 3 5)AB   cm. E is a point on AD such that : 5 : 3AE ED  . 
Find   

 

(i) EC

AB
 in the form of 5a b , where a and b are rational numbers. [3] 

(ii) the length of EC in the form of 5c d , where c and d are integers.  [3] 
 

  
2. The equation of a curve is   22 10 2 1y k x x k     , where k is a constant.  

 
(i) In the case where 1k  , sketch the graph of   22 10 2 1y k x x k     , showing 

the x- and y- intercepts and its turning point clearly.   
 
[3] 

 (ii) Find the range of values of k for which the curve meets the line 32  xy . [5] 

   

3. (a) Express 
3

2
3 5

1
x

x




 in partial fractions. [5] 

 (b) Solve the equation 21 18 7 6 4 1x x x     .                                                  [4] 

 

4. The equation of a curve is 32 ( 1)y x x  .  

(i) Find the coordinates of the stationary points of the curve. [5] 

 
(ii) Determine the nature of each of these points using the first derivative test. [3] 

   

5.  (i) On the same diagrams, sketch the graphs 2
4

y
x

 , x > 0 and 
1
23y x , 0x  . [2] 

 (ii) Find the value of the constant k  for which the x coordinate of the point of 
intersection of your graphs is the solution to the equation x5  k . 

[2] 
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6. (i) Prove that 
2

2
1 cos

3tan 3 3






. [2] 

 (ii) Show that 
2

3
20

sec cos 2 3 d
3 tan 3 12

   



 . [4] 

    

7. Solutions to this question by accurate drawing will not be accepted. 
 

 

 

 

 

 

 

 

 

 

 

The diagram above shows a quadrilateral ABCD. Point B is (2, 8) and point C is (8, 6).  

The point D lies on the perpendicular bisector of BC and the point A lies on the y-axis.  

The equation of CD is 1443  xy  and angle ABC = 90o. Find 

 (i) the equation of AB, [2] 

 (ii) the coordinates of A, [1] 

 (iii) the equation of the perpendicular bisector of BC, [3] 

 (iv) the coordinates of D, [3] 

   

8. (i) Show that 2d ( ln 3 ) 2  ln 3
d

x x x x x x
x

    . [2] 

 (ii) Evaluate 
4

1
ln  dx x x . [4] 

   

9. A curve is such that the gradient function is 2
11

2x
 . The equation of the tangent at point P 

on the curve is 13  xy . Given that the x-coordinate of P is positive, find the equation of 
the curve. [7] 

   

A 3y = 4x 14

C (8, 6)

B (2, 8)

D

y 

x
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10.  

 

 

 

 

 

A right circular cone, ABC, is inscribed in a sphere of radius 10 cm and centre O.  

The perpendicular distance from O to the base of the cone is x cm. 

21Volume of cone
3

r h   
 

 

(i) Show that volume, V, of the cone is 21 (100 )(10 )
3

V x x   . [2] 

(ii) If x can vary, find the value of x for which V has a stationary value. [3] 

(iii) Find this stationary volume. [1] 

(iv) Determine whether the volume is a maximum or minimum. [2] 

   

11. (a) Find, in radians, the two principal values of y for which 22 tan tan 6 0y y   . [4] 

 (b) The height, h m, above the ground of a carriage on a carnival ferris wheel is modelled 

by the equation 7 5cos(8 )h t  , where t in the time in minutes after the wheel starts 

moving. 

 

  (i) State the initial height of the carriage above ground. [1] 

  (ii) Find the greatest height reached by the carriage. [1] 

  (iii) Calculate the duration of time when the carriage is 9 m above the ground. [3] 

     

END OF PAPER 

A 

C B 



                                                                                                                                                   

4E5N 2018 Prelim AMath paper 1 Marking Scheme 
 
1i 

  

2

 is similar to .

3                      [M1] ratio seen
3 5

3 3 5        [B1] correct conjugate surd
3 5 3 5
9 3 5
3 5

9 3 5                   [A1]
4

ABD ECD

CE DE

BA DA

CE

BA

 

 





 

 









 

 

ii  
   

 
 

9 3 5 1 3 5                        [M1]
4

1 9 1 3 5 3 5 1 3 5      
4
1 9 27 5 3 5 9 5             [M1] expansion seen
4
1 36 24 5
4
9 6 5                                       [A1]

EC


  

     

    

  

  

 

 

2i When k = 1,  
2

2

2 2

2

2

3 10 3
103 3
3

10 103 3
6 6

5 253 3
3 3

5 163
3 3

5 16Turning point ,  
3 3

1When  = 0, 3 or 
3

y x x

x

x

x

x

y x

  

    
 
           
     

     
 

    
 

  
 



 

[B1] y-intercept 

[B1] x-intercepts 

[B1] turning point 
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ii   2

2

2

2

2

2

2

2 10 2 1 2 3       [M1] substitution

( 2) 12 2 2 0
4 0              [B1]

( 12) 4( 2)(2 2) 0
144 8( 2) 0

8 8 160 0
20 0

( 5)( 4) 0              [M1] factorisation
5 4    a

k x x k x

k x x k

b ac

k k

k k

k k

k k

k k

k

     

    

 

    

   

   

  
  

   nd    2
[A1]                   [A1]

k  

 

 

 

3i By long division [M1] 
 

3

2 2
3 5 3 53                          [A1]

1 1
3 5

( 1)( 1) 1 1
           3 5 ( 1) ( 1)    [M1] any acceptable method to find  and 

1:    3(1) 5 2
                      1

1:    

x x
x

x x

x A B

x x x x

x A x B x A B

x B

B

x

 
 

 


 
   

    

  
 

  

3

2

3 5 2
                        4                        [A1] correct  and 

3 5 4 13             [A1]
1 1 1

A

A A B

x
x

x x x

  



   

  

 

 

 

ii 

3(7 6 ) 7 6 4 1        [B1] factorise 3

3 7 6 7 6 4 1

2 7 6 4 1
4 17 6

2

21 18 7 6 4 1
x x x

x x x

x x

x
x

x x x

    

    

  


 

    

 

4 1 4 17 6      or       7 6        [B1] either one seen
2 2

15 13           or              
16 8

[A1]                               [A1]

x x
x x

x x

  
   

   
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4i 

   

   
   
   

3

2 3

2 3

2

2

2 ( 1)

2 3 1 2 1       [M1] product rule

6 1 2 1             [A1] 

2 1 3 1

2 1 4 1

y x x

dy
x x x

dx

x x x

x x x

x x

 

     

   

   

  

 

   

 

2

For 0

2 1 4 1 0                    [M1]
11      or                          
4
270     or     

128
1 271,0     and    ,  
4 128

[A1]                    [A1]

dy

dx

x x

x x

y y



  

 

  

  
 

 

 

 

ii By first derivative test, [M1] 

 1,0  is a point of inflexion and 1 27,  
4 128

  
 

 is a min. point  [A1], [A1] 

 

5i  
 
 
 

1
23y x    [B1] 

 
 
 
 
 
 
 
 
 

2
4

y
x

       [B1] 
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ii 1
2

2

1
22

5
2

2
5

43             [M1] substitution

4. 
3
4
3
4         [M1] squaring
3

16
9

16       [A1]
9

x
x

x x

x

x

k







   
 



 

 

 

 

6i 

 

2

2

2

2

1LHS              [B1] apply correct identity
3tan 3

1
3 sec 1 3

1                   [B1] able to simplify
3sec
cos

3
RHS












 







 

 

 

ii 2 2
3 3

2 2 20 0

23
20

3

0

sec cos 2 cos 1 1 d cos 2  d      [M1] substitution of 
3 tan 3 3 cos 3tan 3

1 1cos 2  d                             [B1] sec
3 cos

1 sin 2                                
3 2

 





    
  

  




     

 

    

 



[B1] correct integration of cos 2

1 2sin sin 0
6 3
1 sin 0
6 3

1 3 3=                                       [B1] sin
6 2 3 2

3  (shown)
12









   
 
   
 
 

  
 


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7i Grad. BC 
8 6
2 8

1
3






 
 

Grad. AB = 3        [B1] 
Eqn AB is 

8    3
2

3 2          [B1]

y

x

y x





  

 

 

ii When x = 0, y = 2 
A (0, 2)                  [B1] 

 

iii Grad. of perpendicular bisector = 3 
2 8 8 6Midpt. ,             [M1] midpoint formula

2 2
(5,  7)

7Eqn is 3                                [M1]
5

3 8                         [A1]

BC

y

x

y x

    
 







 

 

 

iv 3 4 14
3(3 8) 4 14           [M1] substitution

9 24 4 14
5 10

2                     [A1] 
3(2) 8

2
 (2, 2)           [A1]

y x

x x

x x

x

x

y

D

 
  
  



 
 



 

 

8i 2 2d 1 1( ln 3 ) 2 ln 3     [B1]  seen
d

2 ln 3              [B1] product seen

x x x x x x
x x x

x x x

     
 

  
 

 

 

ii 4 42
11

4 4 2

1 1
42 24

1
1

2 ln 3 d ln 3                     [M1] reverse differentiation

3 d 2 ln  d 4 ln 4 3(4) (0 3)

3 2 ln  d 16ln 4 12 3                    [A1] 3  seen
2 2

2 ln

x x x x x x x

x x x x x

x x
x x x x x

x x

     

     

   
        

   


 


24

1

4 1d 16ln 4 9 3(4) 3    [A1] simplification 
2 2

1516ln 4  or 14.7 (3s.f.)        [A1]
2

x
 

      
 

  


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9 
2

2

2

1

2

2

2

11
2
11
2

11       [M1]
2

1
2 1
1              [A1]
2

 Since 3  

11 3                          [M1]
2
1 2

2
1
4

1 1 (reject )     [A1]
2 2

dy

dx x

x

y x dx

x
x c

x c
x

dy

dx

x

x

x

x







 

 

   
 

 
    

  



 





  



  

 
1When   ,
2

13 1
2

5                       [A1]
2

1 5 5 1 1At , ,       [M1] attempt to find 
2 2 2 2 2(0.5)

3
1 3         [A1]

2

x

y

c c

c

y x
x



   
 



     
 



  

 

 

 

10i Radius of cone = 2 210 x  

                         = 2100 x        [B1] 
Volume of cone  

= 21
3

r h  

   

  

2
2

2

1 100 10
3
1 100 10
3

x x

x x





  

  
       [B1] application of formula and substitution 
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ii  

 

2

2 2

2

1 2 10 100         [M1] product rule
3
1 20 2 100
3
1 3 20 100
3

dV
x x x

dx

x x x

x x







      

      

   

 

For stationary V, 0dV

dx
                       [M1] 

 21 3 20 100
3

x x    = 0 
23 20 100 0

( 10)(3 10) 0
x x

x x

  
  

 

1010 (rejected), 
3

x x                        [A1] 

 

 

iii 

3

1 100 10100 10
3 9 3
1241.123
1240 cm  (3s.f.)                 [B1]

V        
  





  

 

 

iv 2

2
1 ( 6 20)
3

d V
x

dx
                  [M1] 

Since 
2

2
d V

dx
 < 0, V is a maximum.    [A1]  

 

 

11a 

  

22 tan tan 6 0
2 tan 3 tan 2 0

y y

y y

  

  
                 [M1] factorisation 

 1 1

3tan           or         tan 2         [A1] either one
2

3tan                tan 2  
2

  0.9827                      = 1.1071
  0.983 (3s.f.)             1.11 (3s.f.) 
       [A1]       

y y

y y 

  

    
 

 
  

                      [A1]

 

 

 

bi Initial height = 2 m      [B1]  
 

 

ii Greatest height = 7 – 5(–1) 
                         = 12 m                      [A1] 
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iii 7 5cos8 9                          [M1]
2cos8
5

1.1592
8 1.9823,  4.300

0.2477,  0.5375          [A1]
Duration 0.5375 0.2477

0.2898
0.290 minutes (3s.f.)     [A1]

t

t

t

t



 

 




 


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Mathematical Formulae 

 
1. ALGEBRA 

 
Quadratic Equation 

 For the equation 02  cbxax , 
 

a

acbb
x

2
42 

  

 
Binomial Theorem 

 
 

nrrnnnnn bba
r

n
ba

n
ba

n
aba 


























  221

21
)( , 

 

where n is a positive integer and 
   

!
11

!)!(
!

r

rnnn

rrn

n

r

n 











 
 

 
 

2. TRIGONOMETRY 
 
Identities 

1cossin 22  AA . 
AA 22 tan1sec  . 
AA 22 cot1cosec  . 

  BABABA sincoscossinsin   
  BABABA sinsincoscoscos   

 
BA

BA
BA

tantan1
tantantan




  

AAA cossin22sin   
AAAAA 2222 sin211cos2sincos2cos   

A

A
A 2tan1

tan22tan


  

 
 
 

Formulae for ABC 
 

C

c

B

b

A

a

sinsinsin
  

 

Abccba cos2222   

Cab sin
2
1


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1. (i) Given that   ݑ ൌ 	4௫,  express  4௫ ൌ 9 െ 5 ൈ 4ଵି௫  as a quadratic equation in u. [2] 

(ii) Hence find the values of x for which   4௫ ൌ 9 െ 5 ൈ 4ଵି௫,  giving your answer, 

where appropriate, to 1 decimal place. [4] 

 (iii) Determine the values of k for which   4௫ ൌ ݇ െ 5 ൈ 4ଵି௫  has no solution. [3] 

    

2. (i) By using long division, divide   2ݔସ ൅ ଷݔ5 െ ଶݔ8 െ ݔ8 ൅ 3   by  	ݔଶ ൅ ݔ3 െ 1. [2] 
 (ii)  Factorise  2ݔସ ൅ ଷݔ5 െ ଶݔ8 െ ݔ8 ൅ 3   completely. [2] 

 
(iii) Hence find the exact solutions to the equation  

ସ݌32                       ൅ ଷ݌40 െ ଶ݌32 െ ݌16 ൅ 3 ൌ 0.    [4] 

    

3.      The roots of the quadratic equation   8ݔଶ െ ݔ4 ൅ 1 ൌ 0   are 
ଵఈమఉ  and  

ଵఈఉమ.  Find a   
       quadratic equation with roots 3  and 3  .  

 

[7] 

   

4.       (i)      Write down the general term in the binomial expansion of    

                    
10

22 p
x

x

  
 

, where p is a constant. 

.         

 

 

[1] 

  

 

 

 

(ii) Given that the coefficient of  8x   in the expansion of 
10

22 p
x

x

  
 

 is  

negative 10
3

  times the coefficient of 5x  .  Show that the value of p is 1
2

. 

 

 

[5] 

    

 

(iii) Showing all your working, use the value of ݌ in part (ii), to find the constant term in 

the expansion of  
10

22 1 2 p
x x

x

   
 

. 

 

 

 [5] 

   

 
 

5. (a) (i)   Show that   sin ݔ3 ൌ sin ሺ4ݔ cosଶ ݔ െ 1ሻ  [3] 

  (ii)  Solve the equation   3 sin ݔ3 ൌ 16 cos ݔ sin for 0  ݔ ൑ ݔ ൑  [5] ߨ2

    

 
 

(b)    Differentiate  cos ݔ2 ሺtanଶݔ െ 1ሻ  with respect to  x.  No simplification is  required.    [3] 
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6 The equation of a curve is  		ݕ ൌ ଷݔ െ ଶݔ4 ൅ ݔ݌ ൅ ݍ where p and q are constants.  The   

 equation of the tangent to the curve at the point ܣሺെ1, 5ሻ is   15ݔ െ ݕ ൅ 20 ൌ 0.  

 (i) Find the values of p and of q. [4] 

 (ii) Determine the values of x for which y is an increasing function. [3] 

 (iii) Find the range of values of x for which the gradient is decreasing.   [2] 

 (iv)  A point P moves along the curve in such a way that the x-coordinate of P increases   

 
 at a constant rate of 0.02 units per second.  Find the possible x-coordinates of P at 

the instant that the y-coordinate of P is increasing at 1.9 units per second. 

 

[4] 

    

 

7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The diagram shows two intersecting circles, ܥଵ and ܥଶ.  ܥଵ passes through the vertices of the  

triangle ܦܤܣ.  The tangents to ܥଵ at A and B intersect at the point Q on ܥଶ.  A line is drawn  

from Q to intersect the line AD at E on ܥଶ.   

Prove that  

 
(i) 

(ii) 

QE bisects angle AEB,                                         

EB = ED, 

[4] 

[2] 

 
(iii) BD is parallel to QE. [2] 
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8. The number, N, of E. Coli bacteria increases with time, t minutes.  Measured values of N   

 and t are given in the following table.  

 
t 2 4 6 8 10 

N 3215 3446 3693 3959 4243 
 

 

 It is known that N and t are related by the equation   ܰ ൌ ௢ܰ ሺ2ሻ௞௧ , where ௢ܰ	and k   

 are constants.  

 (i) Plot lg ܰ against t and draw a straight line graph.  The vertical lg N axis should start [3] 

  at 3.40 and have a scale of 2 cm to 0.02.  

 (ii) Use your graph to estimate the values of ௢ܰ and k. [4] 

 (iii) Estimate the time taken for the number of bacteria to increase by 25%. [2] 

   

   

9. A man was driving along a straight road, towards a traffic light junction.  When he saw 

that the traffic light had turned amber, he applied the brakes to his car and it came to a stop 

just before the traffic light junction.  The velocity, v m/s, of the car after he applied the 

brakes is given by  
1 
340  15

t

v e


   ,  where t , the time after he applied the brakes, is 

measured in seconds.  

 (i) Calculate the initial acceleration of the car. [2] 

 (ii) Calculate the time taken to stop the car. [2] 

 (iii) Obtain an expression, in terms of t , for the displacement of the car, t seconds after 

the brakes has been applied. 

 

[3] 

 (iv)  Calculate the braking distance. [1] 

    

    

10. The points ܲሺ4, 6ሻ, ܳሺെ3, 5ሻ and ܴሺ4,െ2ሻ lie on a circle.  

 (i) Find the equation of the perpendicular bisector of PQ. [3] 

 (ii) Show that the centre of the circle is ሺ1, 2ሻ and find the radius of the circle. [3] 

 (iii) State the equation of the circle. [1] 

 (iv) Find the equation of the tangent to the circle at R. [3] 
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11. The diagram shows part of the curve  ݕ ൌ ݔ ቀ ଵଵ଺ ଶݔ െ 1ቁ.  The curve cuts the x-axis at     

P(4, 0).  The tangent to the curve at P meets the vertical line  x= 6 at  T(6 , 4).     

Showing all your workings, find the total area of the shaded regions. [6] 

    
                   

 
           
 
 
 
 

   
   
   
   

 
 
 
 
 
 
 
 
 

End of paper 
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1 (i)   ݑଶ െ ݑ9 ൅ 20 ൌ 0 

 (ii)   x = 1  

 `1.2 = ݔ		   

 (iii)   െ√80 ൏ ݇ ൏ 	√80                           

2 (i)   2࢞૛ 	െ ࢞	 െ ૜   

 (ii)     2 3 1 2 3 1x x x x     

 (iii) 
  3 13

4
p

 
   M1      

3 1or 
4 2

p p      

3    2 4 8 0x x    

4 (i)   10210
2

r
r p

x
r x

      
  

   

 (ii) 
 

6

5

10
2

4 3
10 10

2
5

p

 
 
   
 
 
 

     

   1
2

p     AG 

 (iii)   -15 

5a (ii) 0,  ,  2   or    1.74     or     4.54x x    

5b   2 22cos 2 tan sec 2sin 2 tan 1x x x x x   

6 (i) 4        p       14 q   

 (ii) ݔ ൏ ଶଷ         or  ݔ ൐ 2 

 (iii) ݔ ൏ ସଷ  
 (iv) 

13  or 7 
3

x x    
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8 (ii) 
2992 accept also 2990

                
 0.05

oN

k




 

 (iii) time taken= 6.4 mins  

9 (i) 240 m/s
3

  

 (ii) 2.94s  

 (iii) 
1
3 =  120 15 120

t

s e t


    

 (iv) 30.9m  

10 (i) 7 9y x    

 (ii)  = 5 unitsr  

 (iii)    2 21 + 2 25x y    

 (iv) 
3 5
4

y x   

11  225  units
4
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Mathematical Formulae 

 
1. ALGEBRA 

 
Quadratic Equation 

 For the equation 02  cbxax , 
 

a

acbb
x

2
42 

  

 
Binomial Theorem 

 
 

nrrnnnnn bba
r

n
ba

n
ba

n
aba 


























  221

21
)( , 

 

where n is a positive integer and 
   

!
11

!)!(
!

r

rnnn

rrn

n

r

n 











 
 

 
 

2. TRIGONOMETRY 
 
Identities 

1cossin 22  AA . 
AA 22 tan1sec  . 
AA 22 cot1cosec  . 

  BABABA sincoscossinsin   
  BABABA sinsincoscoscos   

 
BA

BA
BA

tantan1
tantantan




  

AAA cossin22sin   
AAAAA 2222 sin211cos2sincos2cos   

A

A
A 2tan1

tan22tan


  

 
 
 

Formulae for ABC 
 

C

c

B

b

A

a

sinsinsin
  

 

Abccba cos2222   

Cab sin
2
1


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Answer all the questions 
 

Given that  

1. (i) Given that   ݑ ൌ 	4௫,  express  4௫ ൌ 9 െ 5 ൈ 4ଵି௫  as a quadratic equation in u. [2] 

(ii) Hence find the values of x for which   4௫ ൌ 9 െ 5 ൈ 4ଵି௫,  giving your answer, 

where appropriate, to 1 decimal place. [4] 

 (iii) Determine the values of k for which   4௫ ൌ ݇ െ 5 ൈ 4ଵି௫  has no solution. [3] 

 
1 Solutions Remarks 

(i) (i)  ݑ ൌ 9 െ 5 ൈ ସ௨  M1 

ଶݑ                    [2] െ ݑ9 ൅ 20 ൌ 0 A1 

   

(ii) (ii)  ሺݑ െ 4ሻሺݑ െ 5ሻ ൌ 0 M1 

[4]                     u = 4  or  u = 5  

                    4௫ ൌ 4     or   4௫ ൌ 5       

                    x = 1   A1       or  ݔlg 4 ൌ lg 5    M1 taking lg 

ݔ                                                  ൌ ୪୥ ହ୪୥ ସ = 1.16 A1 

   

(iii) (iii)  ݑ ൌ ݇ െ	ହൈସ௨   

ଶݑ                    [3] െ ݑ݇ ൅ 20 ൌ 0  

                   For no real roots,  ሺെ݇ሻଶ െ 4ሺ1ሻሺ20ሻ ൏ 0 B1 

                 ൫݇ െ √80൯൫݇ ൅ √80൯ ൏ 0 M1 

                  െ√80 ൏ ݇	 ൏ 	√80 A1 
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2. (i) By using long division, divide   2ݔସ ൅ ଷݔ5 െ ଶݔ8 െ ݔ8 ൅ 3   by  	ݔଶ ൅ ݔ3 െ 1. [2] 
    

 
2 (i)                                                   2ݔଶ െ ݔ െ 3   M1 A1 
ଶݔ [2]  ൅ ݔ3 െ ସݔ2       1 ൅ ଷݔ5	 െ ଶݔ8 െ ݔ8 ൅ 3             
  																				 	െ				ሺ2ݔସ ൅ ଷݔ6 െ   ଶሻݔ2
                                     			െ ଷݔ െ ଶݔ6 െ   ݔ8
                                  		െሺെ ଷݔ െ ଶݔ3 ൅ ݔ ሻ   
                                                  െ3ݔଶ െ ݔ9 ൅ 3  
                                                െሺെ3ݔଶ െ ݔ9 ൅ 3ሻ    
                                                                             0  

 
 (ii) Factorise  2ݔସ ൅ ଷݔ5 െ ଶݔ8 െ ݔ8 ൅ 3   completely. [2] 

 
       

2 (ii) 2ݔସ ൅ ଷݔ5 െ 	ଶݔ8 െ ݔ8 ൅ 3   =   2 23 1 2 3x x x x      B1 

[2]                                                  =     2 3 1 2 3 1x x x x      A1 

    
    

 
 

 
(iii) Hence find the exact solutions to the equation  

ସ݌32                       ൅ ଷ݌40 െ ଶ݌32 െ ݌16 ൅ 3 ൌ 0.    [4] 

 
2 (iii) Let x = 2p  

[4]         4 3 22 2 5 2 8 2 8 2 3 0p p p p        

          22 3 2 1 2 2 3 2 1 0p p p p                 either       B1  

     24 6 1 4 3 2 1 0p p p p                                 or  

       24 6 1 0 or 4 3 0 or 2 1 0p p p p         

 
 6 36 4(4)( 1)

2(4)
p

   
   M1      3 1or 

4 2
p p     [A1 for both ans] 

 

 
 

   3 13
4

 
    A1 
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3.      The roots of the quadratic equation   8ݔଶ െ ݔ4 ൅ 1 ൌ 0   are 
ଵఈమఉ  and  

ଵఈఉమ.  Find a   
       quadratic equation with roots 3  and 3  . 

 

[7] 

 
    3. [7]                

ଵఈమఉ ൅	 ଵఈఉమ ൌ	 ଵଶ   ---- (1)             

                          ଵఈయఉయ ൌ	 ଵ଼           --------(2)                      

                       From (2),  3 8 2      B1 

       From (1),  2 2
1
2

 
 


   

                      1 4
2

      

                                 = 2       B1 

      3 3 2 2( )( )                 B1 

                 = 
2( ) ( ) 3 )

                         B1

          

                  

                 =  22 2 3 2)     

=   4        B1 

        3 3 8     

        Equation is  2 4 8 0x x                    A1        
 

 

 
4.       (i)      Write down the general term in the in the binomial expansion of    

                    ቀ2ݔଶ െ ௣௫ቁଵ଴. 
.         

 

 

[1] 

 

  4  [ 1]         (i)   General term  =   10210
2

r
r p

x
r x

      
  

     A1 

 

 

 
 
 
 
 

B1 
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(ii) 
Given that the coefficient of  8x   in the expansion of 

10
22 p

x
x

  
 

 is  

negative 10
3

  times the coefficient of 5x  .  Show that the value of p is 1
2

. 

[5] 

 
 4 (ii)         For 8x ,  20 2 8r rx x   ,  

    [5]                       20 3 8r    

                                4r                                      20 3rx      seen or any method (M1) 

                  For 5x ,  20 2 5r rx x   ,  

                               20 3 5r    

                                5r                     A1 for any correct value of r 

                       
4

10 410 12
4 2

      
  

  =  10
3

   
5

10 510 12
5 2

      
  

 

                                     B1                                         B1 

                          

6

5

10
2

4 3
10 10

2
5

p

 
 
   
 
 
 

    M1 

                             1
2

p     AG 
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4 

(iii) Showing all your working, use the value of ݌ found in part (i), find the constant 

term in the expansion of ሺ2ݔ െ 1ሻ ቀ2ݔଶ െ ௣௫ቁଵ଴. 

 

 

 [5] 

 

4 (iii) [5]     
10

2 12
2

x
x

  
 

  

             For 0x ,   20 3 0r    

                              20
3

r    (not an integer) 

                No constant term in 
10

2 12
2

x
x

  
 

 

     4(ii)    For 1x ,   20 3 1r       

                                  7r   

                  
7

3210 12 1 2 ......
7 2

                            B1

x x
x

                 

               constant term =   
7

3210 12 2
7 2

x x
x

      
  

       M1 

                                      =   15              A1 

 
5.(a) (i) Show that   sin ݔ3 ൌ 		 sin ሺ4ݔ cosଶ ݔ െ 1ሻ  [3] 

 
5 (a) (i)    [3]    LHS =  sin( 2 )x x                Addition formula   M1 

                            
 

2

2 2

2

sin cos 2 cos sin 2
sin (2cos 1) cos 2sin cos

sin 2cos 1 2cos

sin 4cos 1

x x x x

x x x x x

x x x

x x

 

   

  

 

  

 
 
 
 
 
 
 
 
 

B1 

M1

using cos2x = 2ܿݏ݋ଶݔ െ 1 
or sin 2x = 2 sinx cosx       B1 

Factorisation     B1
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 (ii) Solve the equation   3 sin ݔ3 ൌ 16 cos ݔ sin for 0  ݔ ൑ ݔ ൑  [5] ߨ2

 
5(a)  (ii) [5]      3 sin ݔ3 ൌ 16 cos ݔ sin    ݔ

                         

 
 
  

2

2

3sin 4cos 1 16cos sin

sin 12cos 16cos 3 0    factorisation with sin  seen M1

sin 6cos 1 2cos 3 0   correct factorisation of quad exp B1
1 3sin 0 or            cos  or               cos (reje
6 2

x x x x

x x x x

x x x

x x x

 

  

  

    cted) A1

0,  ,  2   or    1.40335,  1.40335
                                 =  1.74     or     4.54
          A1                                  A1

x x      

  

 

 
 
 
 
 
 
 
 
 

5(b) Differentiate  cos ݔ2 ሺtanଶݔ െ 	1ሻ  with respect to  x.  No simplification is  required [3] 

 

 
    

2

2 2

d5(b) [3]         cos 2 tan 1
d

                  cos 2 2 tan sec tan 1 2sin 2   M1 product rule       

                                        B1                           B1

                  =

x x
x

x x x x x

  

   

 2 2  2cos 2 tan sec 2sin 2 tan 1x x x x x 
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6 The equation of a curve is  		ݕ ൌ ଷݔ െ ଶݔ4 ൅ ݔ݌ ൅ ݍ where p and q are constants.  The   

 equation of the tangent to the curve at the point ܣሺെ1, 5ሻ is   15ݔ െ ݕ ൅ 20 ൌ 0.  

 (i) Find the values of p and of q. [4] 

 

6 (i) [4]    2d 3 8
d
y

x x p
x
                            B1 

               At ܣሺെ1, 5ሻ, equation of the tangent is ݕ ൌ ݔ15	 ൅ 20 

               gradient = 15 

               
   23 1 8 1 15    M1

11+ 15
4           A1

p

p

p

    




  

               substitute   4p  , 1,  5x y    into equation of curve 

              
5 1 4 4

14      A1
q

q

    


  

 
 (ii) Determine the values of x for which y is an increasing function. [3] 

 
6(ii)     [3]            For y to be an increasing function, 

                            d
d

y

x
 ൐ 0 

                            23 8 4x x   ൐ 0           B1(with value of  p substituted) 

                             ሺ3ݔ െ 2ሻሺݔ െ 2ሻ ൐ 0     M1 

                               

 
                                         

ݔ                                         ൏ ଶଷ         or  ݔ ൐ 2            A1 

 

6 (iii) Find range of values of x for which the gradient is decreasing.    [2] 

 
6(iii)   [2]      For decreasing gradient, 

                       ௗమ௬ௗ௫మ ൏ 0                          either  

                                                                or     M1 

ݔ6                       െ 8 ൏ 0 

ݔ                       ൏ ସଷ           A1 

 

23 2 
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6 (iv)  A point P moves along the curve in such a way that the x-coordinate of P increases   

 
 at a constant rate of 0.02 units per second.  Find the possible x-coordinates of P at 

the instant that the y-coordinate of  P is increasing at 1.9 units per second. 

 

[4] 

 

 

2

dy d d6( )  [4]         =
dt d d

d                         1.9 0.02       M1
d

d 1.9                         
d 0.02

                               =  95
                           3 8  + 4 95        

y x
iv

x t

y

x

y

x

x x



 



 

  

2

  M1 (quadratic equation in )
                           3 8  91 0
                          3 13 7 0

13                             or 7     A2
3

x

x x

x x

x x

  

  

  
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7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The diagram shows two intersecting circles, ܥଵ and ܥଶ.  ܥଵ passes through the vertices of the  

triangle ܦܤܣ.  The tangents to ܥଵ at A and B intersect at the point Q on ܥଶ.  A line is drawn  

from Q to intersect the line AD at E on ܥଶ. 

Prove that  

 (i) QE bisects angle AEB [4] 

 (i)  ܤܧ ൌ  [2] .ܦܧ

 
(ii) BD is parallel to QE. [2] 

 

 

2

1

7.( )[4]        
                (angles in same segment in C ) B1
                         
                (tangents to C  from external point Q) B1
               (b

i Let QEA x

QBA QEA

x

QB QA

QAB QBA

 
  




  





2

ase angles of isosceles triangle) B1
                          = 
               (angles in the same segment in C )
                          =  
              
               Hence 

x

QEB QAB

x

QEB QEA

  

  





QE bisects angle .AEB

  

B1 
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1

7( )    (from (i)) 
          (angles in alternate segment in C )  either 
                    
          2  (from (i))
          (exterior angle of triangle ) o

ii QBA x

ADB QBA

x

AEB x

DBE AEB ADB BDE

 
  



 
   







r B1
                     =   2
                     =  
        (base angles of isosceles triangle BDE) B1
        Hence 

   (iii) [2]    From (i)        B1
      

x x

x

ADB EDB DBE x

EB ED

EBD QEB x



      


   

 







        and  are alternate angles of parallel lines. (alternate angles are equal) B1
             BD is parallel to QE

            

EBD QEB  
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8. The number, N, of E. Coli bacteria increases with time, t minutes.  Measured values of N   

 and t are given in the following table.  

 
t 2 4 6 8 10 

N 3215 3446 3693 3959 4243 
 

 

 It is known that N and t are related by the equation   ܰ ൌ ௢ܰ ሺ2ሻ௞௧ , where ௢ܰ	and k   

 are constants.  

 (i) Plot lg ܰ against t and draw a straight line graph.  The vertical lg N axis should start [3] 

  at 3.40 and have a scale of 2 cm to 0.02.  

 (ii) Use your graph to estimate the values of ௢ܰ and k. [4] 

 (iii) Estimate the time taken for the number of bacteria to increase by 25%. [2] 

 
8.  (i)  [3]  On graph paper 

 

 8(ii)  [4]    2
                lg lg lg 2
                lg -intercept = 3.476        M1    
                lg 3.476
                2992 accept also 2990   A1

                gradient = 

kt

o

o

o

o

N N

N N kt

N

N

N



 




3552 3476     M1(with points used to find gradient labelled on graph)

5 0
                              =  0.0152
               lg 2 0.0152

0.0152              
lg 2

                 =  0.05     A1

(iii)  

k

k








 [2]     when 125% of 2992
                                = 3740 (to 4 sf)
                    lg lg3740
                             =  3.573(M1)
                     From  graph, time taken= 6.4 min

N

N





s    A1
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9. A man was driving along a straight road, towards a traffic light junction.  When he saw 

that the traffic light had turned amber, he applied the brakes to his car and it came to a stop 

just before the traffic light junction.  The velocity, v m/s, of the car after he applied the 

brakes is given by  ݒ ൌ 40݁ିభయ௧ െ 15,  where t is the time after he applied the 

brakes, is measured in seconds.  

 (i) Calculate the initial acceleration of the car. [2] 

 (ii) Calculate the time taken to stop the car. [3] 

 (iii) Obtain an expression, in term of t , for the displacement of the car, t seconds after 

the brakes has been applied. 

 

[3] 

 (iv)  Calculate the braking distance. [1] 

 
9    [9]    

1
3

1
3

2

1
3

1
3

 (i)  40 15
d 40            B1
d 3

40         Initial acceleration = m/s   A1
3

   (ii)  when  = 0

          40 15 0          M1
3            
8

3           ln    (M1 taking lo
3 8

t

t

t

t

v e

v
a e

t

v

e

e

t









 

  



 



 

1
3

1
3

garithm)

3             3ln
8

               =  2.94s  (A1)

    (iii)  40 15 d        M1

              =  120 15      B1
             when  = 0,  = 0, where s is the displacement fr

t

t

t

s e t

e t c

t s





 

 
  

 

  



1
3

om the point where the brakes was applied.
               120

               =  120 15 120     A1
3 3 3     (iv)   Substitute 3ln ,  Braking distance = 120 15 3ln 120
8 8 8

            

t

c

s e t

t





  

           
   

                                                                =   30.9m (to 3 sf)     A1
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10. The points ܲሺ4, 6ሻ, ܳሺെ3, 5ሻ and ܴሺ4,െ2ሻ lie on a circle.  

 (i) Find the equation of the perpendicular bisector of PQ. [3] 

 (ii) Show that the centre of the circle is ሺ1, 2ሻ and find the radius of the circle. [3] 

 (iii) State the equation of the circle. [1] 

 (iv) Find the equation of the tangent to the circle at R. [3] 

 
1 1110.  [10]  (i)   midpoint of  ,        B1
2 2

1                     gradient of  = 
7

                    gradient of perpendicular bisector of  = 7      B1
                   Equation of pe

PQ

PQ

PQ

   
 


rpendicular bisector of  is 

11 1                               7
2 2

                               7 9       A1
      (ii)   Equation of perpendicular bisector of  is  2
             

PQ

y x

y x

PR y

     
 

  


                                      B1
              Alternatively use :Equation of perpendicular bisector of  is  1
              Since perpendicular bisector of chords passes through centre of

QR y x 
circle,

              for centre of circle, substitute 2 into 7 9
                          2 7 9         M1 solving simultaneous equations
                          7  = 7
                      

y y x

x

x

   
  

     1
                           centre = (1, 2)  AG
               Alternative method : centre = ( ,  7 9)  B1              
                      M1 forming an equation in 
                  

x

a a

RC PC a

r



 


   

   

2 2

2 2

= distance between centre and 

                    = 4 1 + 6 2

                    =  5 units               A1

             (iii)   Equation of circle is  1 + 2 25       A1

             (iv)    gra

P

x y

 

  

 

 

2 2 4dient of normal at  =     M1
1 4 3

3                       gradient of tangent at  =       M1
4

3                       Equation of tangent at  is    +2 = 4
4

                                   

R

R

R y x

 
 





3                                 5       A1
4

y x 
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11. The diagram shows part of the curve  ݕ ൌ ݔ ቀ ଵଵ଺ ଶݔ െ 1ቁ.  The curve cuts the x-axis at     

P(4, 0).  The tangent to the curve at P meets the vertical line  x= 6 at  T(6 , 4).     

Showing all your workings, find the total area of the shaded regions. [6] 

    
                   

 
          

3 34 6

0 4

1Area of total shaded regions =  d  +  d   2 4
16 16 2

                                                              B1                      B1                     B1

         

x x
x x x x

   
        

   
 

4 64 2 4 2

0 4

1 1                                    =     4  M1 correct integration
16 4 2 16 4 2

                                     

1                                             =    
64

x x x x   
         
   


4 2 4 2

4 2

2

1 6 6 4 44  + 4 4
2 64 2 64 2

                                                  M1 correct substitution of upper and lower limits
25                                            =    units
4

   
         

   

       A1

 

                                                                       End of paper 
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