N	AM	E.
14	VIV	L.

NO:

CLASS:

ADMIRALTY SECONDARY SCHOOL

MID-YEAR EXAMINATION 2016

SUBJECT

: Mathematics

PAPER

. 1

LEVEL/STREAM

: Secondary 2 Express

DATE

: 6 May 2016

TIME

: 0800h - 0900h

DURATION

: 1 hour

Instructions to candidates:

- 1. Write your name, class and index number.
- 2. Answer ALL questions.
- 3. Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

4. Essential workings must be shown. Omission of essential workings and illegible handwriting will result in loss of marks.

DO NOT TURN OVER THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

This question paper consists of 9 printed pages including this cover page.

2

Answer all the questions.

1	(a)	Expand	and	simplify	(3a-4)	11	(-a+6)	
1.	(a)	Lapand	and	Simping	(34 7	J١	(410)	

(b) Simplify
$$(-2z^2)(-2z)^2$$
.

2. Solve each of the following equations. Show your working clearly.

(a)
$$(x+3)(2x-4)=0$$

(b)
$$(x+8)^2 = 25$$

3

- 3. Simplify the following.
 - (a) $\frac{20s}{3q^2} \times \frac{9pq^3}{5r}$

(b)
$$\frac{20a}{x-y} \div \frac{5}{x^2-y^2}$$

- 4. A map is drawn to a scale of 1:75000.
 - (a) This scale can be expressed as 1 cm represents n km. Find n.
 - **(b)** The distance between two towns on the map is 25 cm. Find the actual distance, in kilometres, between the two towns.
 - (c) A lake has an actual area of 3.5 km². Find the area, in square centimetres, of the lake on the map. Give your answer correct to 3 significant figures.

Answer	(a)	<i>n</i> =	[1]
	(b)	km	[1]
	(c)	cm ²	[2]

5. In the diagram below, it is given that AB = DC = 8 cm, $\angle CBD = \angle ADB = 90^{\circ}$ and $\angle BAD = 65^{\circ}$. Given that $\triangle CBD$ and $\triangle ADB$ are congruent, find reflex $\angle ADC$.

Answer reflex
$$\angle ADC = \dots$$
 ° [3]

- 6. The volume of a ball, $V \, \mathrm{cm}^3$, is directly proportional to the cube of its radius, r. When r = 7.5, $V = 562.5\pi \, \mathrm{cm}^3$.
 - (a) Find the equation connecting V and r. Give the value of k, the constant, in terms of π .
 - (b) Calculate the value of V when r = 9, giving your answer in terms of π .

Answer	(a)	 [3]
	(h)	[2]

- 7. In the figure below, the two vases A and B are geometrically similar. The heights of vases A and B are 10 cm and 40 cm respectively.
 - (a) If the diameter of the base of vase B is 12.5 cm, calculate the diameter of the base of vase A.
 - (b) Another vase C has a base of 20 cm and height of 75 cm. Is vase C similar to vase B? Show your working clearly in the space below.

(b) Vase C is / is not (circle the right

answer) similar to Vase B [3]

- 8. The volume of a hemisphere is given as $V = \frac{2}{3}\pi r^3$.
 - (a) Express r as the subject of the formula.
 - **(b)** Hence, find the value of r when $V = 1152\pi$ cm³.

(b)
$$r = \dots$$
 cm [2]

- 9. Factorise the following expressions, showing all your working clearly.
 - (a) 21ax 35ab 9x + 15b
 - **(b)** $2x^2 7x 15$

10. (a) Expand $(2x-4z)^2$.

(b) Hence, given that $x^2 + 4z^2 = 12$ and xz = 7, find the value of $(2x - 4z)^2$.

10

- 11. (a) Factorise the expression $-x^2 + 3x + 10$.
 - **(b)** Find the value of y when x = 0 for the equation $y = -x^2 + 3x + 10$.
 - (c) State the roots of the graph $y = -x^2 + 3x + 10$.
 - (d) State the y-intercept of the graph $y = -x^2 + 3x + 10$.

Answer	(a)		[1]
	(b)		[1]
	(c)	The root(s) is/are	[2]
	(d)	v - intercent =	[1]

NAME:	NO:	CLASS:

ADMIRALTY SECONDARY SCHOOL

MID-YEAR EXAMINATION 2016

SUBJECT

: Mathematics

PAPER

: 2

LEVEL/STREAM

: Secondary 2 Express

DATE

: 12 May 2016

TIME

: 0800h - 0930h

DURATION

: 1 hour 30 minutes

Instructions to candidates:

- 1. Write your name, class and index number.
- 2. Answer ALL questions.
- 3. Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

4. Essential workings must be shown. Omission of essential workings and illegible handwriting will result in loss of marks.

DO NOT TURN OVER THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

This question paper consists of 8 printed pages including this cover page.

1.	(a) (i) Simplify $(a+2)(a-2)$.
	(ii) Hence, evaluate 38×42
	(b) (i) Simplify $(x-2)^2$.

Show your working clearly.

(ii) Hence, evaluate 78².

Answer	(a)	(i)	[1]
		(ii)	[2]
	(b)	(i)	[1]
		(ii)	[2]

- 2. a is directly proportional to b and inversely proportional to the square of c such that $a = \frac{kb}{c^2}$, where k is a constant.
 - (a) When a=3, b=1 and c=2. Find k.
 - (b) Find b when a = 4 and c = -2.

Answer (a)
$$k = \dots$$
 [2]

3. Expand and simplify the following.

(a)
$$(x-2)-3x(5x+3)$$

(b)
$$x(7x+2)+5(-x+5)$$

4. ABCD is a trapezium with height of 6 cm.

$$AB = \frac{x}{2}$$
 cm and $DC = (2x+5)$ cm.

Find the area of trapezium ABCD in terms of x.

5. A man is standing at a distance of 2.5 m away from a lamp post with a height of 6 m. The length of the man's shadow is 1.07 m. Using the concept of similar triangles, find the man's height, correct to 1 decimal place.

6. Three quantities a, b and c are related by the formulae

$$b = \frac{2a+3}{4-a}$$
 and $c = \sqrt[3]{3-\frac{a}{4}}$

- (a) Express a in terms of b.
- (b) Express a in terms of c.
- (c) Express b in terms of c.
- (d) Hence, find the value of b when c = 2.

Answer (a)
$$a =$$
 [3]

(d)
$$-b = \dots$$
 [2]

- 7. A wine barrel contains 240 litres of wine.
 - A large tap and a small tap are attached to the wine barrel.
 - (a) The small tap pours out x litres of wine per minute. Write down an expression, in terms of x, for the number of minutes it takes to empty the barrel using the small tap.
 - (b) The large tap pours out (x + 2) litres of wine per minute. Write down an expression, in terms of x, for the number of minutes it takes to empty the barrel using the large tap.
 - (c) It takes 10 minutes longer to empty the barrel using the small tap than using the large tap. Write an equation in x, and show that it simplifies to

$$x^2 + 2x - 48 = 0. ag{3}$$

- (d) Solve the equation $x^2 + 2x 48 = 0$.
- (e) From (d), which answer is rejected? Why?
- (f) Find the time taken, in minutes, to empty the barrel using the small tap.

Answer	(a)		[1]
	(b)		[1]
	(d)	<i>x</i> =	[2]
	(e)		
			[2]
	(f)	min	[1]

8. Answer the whole of this question on a piece of graph paper.

X	-2	0	-1	1	2	3	4
$y = -2x^2 + 5x + 7$	-11	7	0	p	9	· q	-5

- (a) Find the value of p and q from the table above. [2]
- (b) Using a scale of 2 cm to represent 1 unit on the horizontal x axis and 1 cm to represent 1 unit on the vertical y axis, draw the graph of $y = -2x^2 + 5x + 7$ for $-2 \le x \le 4$. [3]
- (c) Use your graph in (b) to estimate the value of x for which the value of y is maximum. [1]
- (d) Using the graph in (b), state the two roots of the equation $-2x^2 + 5x + 7 = 0$. [2]
- (e) Without the use of (b), give an alternative method to solve the equation $-2x^2 + 5x + 7 = 0$. Show all working clearly. [2]

End of Paper

ADSS 2E MYE 2016 P1 Marking Scheme

1	a) $(3a-4)(-a+6)$	
	$= -3a^2 + 18a + 4a - 24$	5.
	$= -3a^2 + 22a - 24$	BI
	b) $(-2z^2)(-2z)^2$	B1
	$= \left(-2z^2\right)\left(4z^2\right)$	BI
	$=-8z^4$	BI
2	a) $(x+3)(2x-4)=0$	
	x + 3 = 0 OR $2x - 4 = 0x = -3$ $2x = 4$	
	x = 2	B1 each (Final answers)
	$x = 2$ b) $(x+8)^2 = 25$	
	$x + 8 = \pm \sqrt{25}$	
	$x + 8 = \pm 5$	BI
	x + 8 = 5 $x + 8 = -5$	
	x = 5 - 8 OR $x = -5 - 8$	B2 (1 mark for each answer)
-	x = -3 $x = -13$	B2 (1 mark for each answer)
3	a) $\frac{20s}{3q^2} \times \frac{9pq^3}{5r}$,
	$=\frac{4s}{1}\times\frac{3pq}{r}$	
	5 5	BI
	$=\frac{12pqs}{}$	ВІ
	20a 5	В1 .
	$= \frac{12 pqs}{r}$ b) $\frac{20a}{x-y} \div \frac{5}{x^2-y^2}$	
	$=\frac{20a}{x-y}\times\frac{x^2-y^2}{5}$	M1 (Multiply by reciprocal)
	$= \frac{20a}{x - y} \times \frac{(x + y)(x - y)}{5}$	M1 (using algebraic rule)
	$=\frac{20a(x+y)}{5}$	×2
	=4a(x+y)	
	A lot of students did not simplify answers.	Al
	A VENTAGE A	

4	a) $n = 0.75$	BI
	b) Map: Actual	
	1 cm : 0.75 km	
	Actual distance between 2 towns	
	$= 25 \times 0.75 \text{ km}$	
	=18.75 km	BI
	c) Map : Actual	
	l cm : 0.75 km	1
	1 cm ² : 0.5625 km ²	
	$3.5 \text{ km}^2 \div 0.5625 \text{ km}^2$	1 M1
	$= 6.22 \text{ cm}^2$	
	0.22 (11)	Al
5	$\angle BDC = \angle ABD = 180^{\circ} - 90^{\circ} - 65^{\circ}$	B1
	$= 25^{\circ} \text{ (} \angle \text{s of congruent figures)}$	
	Reflex $\angle ADC' = 360^{\circ} - 90^{\circ} - 25^{\circ}$	
	= 245°	M1 .
		AI
6	a) $V = kr^3$	·
	When $r = 7.5$, $V = 562.5\pi$,	
	$562.5\pi = k(7.5)^3$	B1 (Substitution)
	562.5π	B1 (Substitution)
	$k = \frac{562.5\pi}{7.5^3}$	
	$k = \frac{4}{3}\pi$	B1 (Correct value of k)
	4	
	$V = \frac{4}{3}\pi r^3$	B1
	b) When $r = 9$,	
	$V = \frac{4}{3}\pi \left(9\right)^3$	*
	$r = \frac{1}{3}\pi(9)$	M1 (e.c.f. from (a); correct
	$=\frac{4}{3}\pi(729)$	substitution)
	3"(12)	
	$=972\pi \text{ cm}^3$	A1
7	a) $\frac{10}{10} = \frac{\text{diameter of base of vase } A}{100}$	
,	40 12.5	BI
	Diameter of base of vase $A = (10 \times 12.5) \div 40$	**
* *	= 3.125 cm	BI
	b) $\frac{12.5}{12.5} = \frac{5}{12.5}$	
	20 8	B1 (accept inverse)
	$\frac{40}{75} = \frac{8}{15}$	ВІ
	75 15	
	$\frac{5}{8} \neq \frac{8}{15}$	
	\therefore Vase C is not similar to vase B.	ВІ

_	T		
8	a)	$V = \frac{2}{3}\pi r^3$ $V \div \frac{2}{3}\pi = r^3$	M1 A1
		$V \div \frac{1}{3}\pi = r^3$ $r^3 = V \times \frac{3}{2\pi}$	
	1	$r^3 = \frac{3V}{2\pi}$	
		$r = \sqrt[3]{\frac{3V}{2\pi}}$	
	(b)	When $V = 1152\pi$.	
		$r = \sqrt[3]{\frac{3\left(1152\pi\right)}{2\pi}}$	BI
		$=\sqrt[3]{1728}$	
		= 12	ВІ
	-	=12	
9	a)	21ax - 35ab - 9x + 15b	
		=7a(3x-5h)+3(-3x+5h)	M1 (Taking out common factor)
		=7a(3x-5b)-3(3x-5b)	
			Al
		=(7a-3)(3x-5b)	
		OR $21ax - 35ab - 9x + 15b$	
		=21ax-9x-35ax+15b	
		=3x(7a-3)+5b(-7a+3)	M1 (Taking out common factor)
		=3x(7a-3)-5b(7a-3)	
		= (3x-5b)(7a-3)	Al
	b)	$2x^2 - 7x - 15$	
		$ \begin{array}{c cccc} x & -5 & -10x \\ 2x & 3 & 3x \\ \hline 2x^2 & -15 & -7x \end{array} $	B1 (Working)
			BI
		=(x-5)(2x+3)	
	1		

10	a) $(2x-4z)^2$	
	$=(2x)^2-2(2x)(4z)+(4z)^2$	MI
	$=4x^2-16xz+16z^2$	A.1
	b) $x^2 + 4z^2 = 12$	Al
	$4x^2 + 16z^2$	
	$=4\left(x^{2}+4z^{2}\right)$	
	= 4(12)	ВІ
	= 48	
	16x2	1
	$=16\times7$	Bl
	=112	
	$(2x-4z)^2$	
	$= 4x^2 + 16z^2 - 16xz$	(2)
	= 48 – 112	
	= -64	B1
11	a) $-x^2 + 3x + 10$	
''	a) $-x^{2} + 3x + 10$	
	-x 5 5x	
	$ \begin{array}{c cccc} -x & 5 & 5x \\ x & 2 & -2x \\ \hline -x^2 & 10 & 3x \end{array} $	
	$-x^2$ 10 3x	
	= (-x+5)(x+2)	BI
	b) When $x = 0$,	
	$y = -0^2 + 3(0) + 10$	
	= 10	B1
	c) The root(s) is/are 5 and -2.	B1 each
L	d) y - intercept = 10	BI

ADSS 2E MYE 2016 P2 Marking Scheme

ı	a) $(a+2)(a+2)=a^2+4$	
	i) $(a+2)(a-2) = a^2 - 4$	BI
	ii) $(40-2)(40+2)$	
	$= 40^2 - 2^2 \text{ OR } 40^2 - 4$	MI
	= 1600 - 4	
	= 1596 b)	Al
	i) $(x-2)^2 = x^2 - 4x + 4$	ВІ
	ii) 78 ²	
	$=(80-2)^2$	
	$= 80^{2} - 2(80)(2) + 2^{2} \text{ OR } 80^{2} - 4(80) + 4$	
		MI
	= 6400 - 320 + 4 $= 6084$	
<u> </u>	= 6084	Al
2	a) When $a = 3$, $b = 1$ and $c = 2$.	
	$3 = \frac{k(1)}{2^2}$	BI
	_	
	$k = 3 \times 4$	
	k = 12	ВІ
	b) When $a = 4$, $c = -2$,	
	$4 = \frac{12(b)}{(-2)^2}$	MI
	$4 \times 4 = 12b$	
	$b = \frac{16}{12} = \frac{4}{3}$	Al
-	12 3	
3	a) $(x-2)-15x^2-9x$	
	$=x-2-15x^2-9x$	
	$=-15x^2-9x+x-2$	B1 (2 nd and 3 rd step)
1	$= -15x^2 - 8x - 2$	ВІ
-	b) $x(7x+2)+5(-x+5)$	B1 (expansion)
	$=7x^2 + 2x - 5x + 25$	
	$=7x^2-3x+25$	BI
	<u></u>	

4	Area of trapezium = $\frac{1}{2} \times 6 \times \left[\frac{x}{2} + (2x + 5) \right]$	B1
	$=3\times\left[\frac{x}{2}+(2x+5)\right]$	
	$=\frac{3x}{2}+6x+15$	
	= 7.5x + 15 OR $\frac{15x}{2}$ + 15 OR $\frac{15x + 30}{2}$	B1

5	Let the height of the man be x . 2.5 $6-x$
	$\frac{2.3}{1.07 + 2.5} = \frac{6 - x}{6}$
	6(2.5) = (6-x)(3.57)
	21.42 - 3.57x = 15
	-3.57x = -6.42
	x = 1.8 (1 d.p.)
	The man's height is 1.8 m.

B1 (Final answer)

B1 (Correct ratio)

OR $\frac{1.07}{2.5 + 1.07} = \frac{CE}{6}$

 $CE = \frac{6(1.07)}{3.57}$

B1 (Correct ratio)

CE = 1.8 (1 d.p.)

B1 (Correct numerical manipulation to get $\ensuremath{\mathit{CE}}$)

B1 (Correct manipulation to linear form)

The man's height is 1.8 m.

B1 (Final answer)

OR

 $\frac{2.5}{2.5 + 1.07} = \frac{BE}{6}$ $BE = \frac{2.5}{3.57} \times 6$ BE = 4.201680672

B1 (Correct ratio)

 $6 - 4.401680672 = 1.798319328 \approx 1.8$

B1 (Subtracting from 6)

The man's height is 1.8 m.

6	a) $b = \frac{2a+3}{4-a}$	
		M1 (Multiplying)
	b(4-a) = 2a+3	(
	4a - ab = 2a + 3	
	-ab - 2a = 3 - 4b	
	$a\left(-b-2\right)=3-4b$	M1 (Isolating a)
	$a = \frac{3 - 4b}{-b - 2}$	Al
	$a = \frac{3 - 4b}{-b - 2}$ b) $c = \sqrt[3]{3 - \frac{a}{4}}$	
	$c^3 = 3 - \frac{a}{4}$	M1 (cube)
	$c^3 - 3 = -\frac{a}{4}$	
	$\frac{a}{4} = 3 - c^3$	M1 (Moving terms unrelated to α to one side)
	$a = 4\left(3 - c^3\right)$	Al
	c) $b = \frac{2[4(3-c^3)]+3}{4-4(3-c^3)}$	M1 (e.c.f. Substitution)
	$=\frac{8(3-c^3)+3}{4-12+4c^3}$	M1 (Correct BIDMAs)
	$=\frac{24-8c^3+3}{-8+4c^3}$	
	$=\frac{27-8c^3}{-8+4c^3}$.	A1 .
	d) When $c = 2$,	
	$b = \frac{27 - 8(2)^3}{-8 + 4(2)^3}$	M1 (e.c.f. Substitution)
	$=\frac{27-8(8)}{-8+4(8)}$	
	$=\frac{27-64}{-8+32}$	
	$=\frac{-37}{24}$	
	$=-1\frac{13}{24}$	Al

A1 for question 7 means that answer is not totally correct.

71 101	question / means that answer is not totally correct.	
7	240	
	(a) X	BI
	1	1
	$240 \div x \text{ and } 240 \times \frac{1}{x}$	
	Accepted this time round but will be wrong from next	
	assessment onwards.	
	240	
	(b) ——	B1
	x+2	
	$c) \frac{240}{x} - \frac{240}{x+2} = 10$	B1 (e.c.f.)
	x = x + 2	B1 (e.c.t.)
	240(x+2)-240x	B1 (combine fraction)
	$\frac{240(x+2)-240x}{x(x+2)} = 10$	
	$\frac{240x + 480 - 240x}{x^2 + 2x} = 10$	
	$x^2 + 2x$	
	$480 = 10(x^2 + 2x)$	D.
		BI
	$x^2 + 2x = 48$	
-	$x^2 + 2x - 48 = 0$	
	d) $x^2 + 2x - 48 = 0$	
	0 1 0	
	$ \begin{array}{c cccc} x & 8 & 8x \\ x & -6 & -6x \\ \hline x^2 & -48 & 2x \end{array} $	BI
	10 -0 -0x	
	x^{-} -48 $2x$	
	(x+8)(x-6)=0	
	x = -8 or x = 6	ВІ
	e) $x = -8$ is rejected.	BI
	Amount of water cannot be negative.	BI
	240	
	f) Time taken (min) to empty barrel = $\frac{240}{6}$	
	6	ВІ
	= 40	
8	n = 10	DI
0	(a) $p = 10$	BI
-	q = 4	BI .
	c) Value of x when y is maximum = 1.25 ± 0.1	BI
	d) Roots = 3.5 ± 0.1	BI
	and -1 ± 0.1	ВІ
	e) $-2x^2 + 5x + 7 = 0$	
	x 1 -2x	
	$\begin{vmatrix} x \\ -2x \end{vmatrix} = \begin{vmatrix} 1 \\ 7 \end{vmatrix} \begin{vmatrix} -2x \\ 7x \end{vmatrix}$	5.
	$ \begin{array}{c cccc} x & 1 & -2x \\ \hline -2x & 7 & 7x \\ \hline -2x^2 & 7 & 5x \end{array} $	B1
	$-2x^2$ / $3x$	
	(x+1)(-2x+7)=0	
	x = -1 or $x = 3.5$	В1
		15.

1

Class	Index Number	Candidate Name

ANG MO KIO SECONDARY SCHOOL MID-YEAR EXAMINATION 2016 SECONDARY TWO EXPRESS

MATHEMATICS

4048/01

Paper 1

Thursday

12 May 2016

1 hour 15 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 60.

This document consists of 11 printed pages and 1 blank page.

1	The temperature at 0800 is (a) Find the difference by	−6°C . It rises to 26°C between the two tempera			
		Answer	(a)	°C	[1]
	(b) Assuming that the te 8°C.	emperature rises at a stea	dy rate, find the time	when the temperature	e is
		Answer	(b)		[2]
2	13 students working 7 houstudents working 5 hours a			How many days will 8	
	ž.		•		
		Answer		days	[2]
3	Estimate the value of $\frac{270}{0.05}$	6.93 5039 to 1 significant fig	ure.		
		Annuau			[2]
	AMKSS 2E MYE	Answer 4048/01/201	6	ITurn Ove	

		ű .	
4	(a)	Express 250 g: 2 kg as a ratio in its simplest form.	
		Answer (a) : [2	2]
	(b)	A speedboat travels at an average speed of 114 km/h. Find, in metres, the distance travelled by the speedboat in 36 seconds.	
		*	
		Answer (b) metres [2	2]
5	Solve	the following simultaneous equations $2y - 3x = 5,$	
		5x - 6y = 21.	

Answer x = y = [3]

AMKSS 2E MYE

4048/01/2016

6		and and simplify $(2x^2 + x - 1)(3x + 5),$				
			Answer	(a)	-	[2]
	(b)	$x(3x-1)-(2x+3)^2$.				
			Answer	<i>(b)</i>		[3]
7		numbers 198 and 972, writter $2 \times 3^2 \times 11$ and $972 = 2^2 \times 3^5$.		their p	rime factors, are	
	(a)	the highest common factor	of 198 and 972,			
		** _E				
			Answer	(a)		[1]
	(b)	the smallest integer, k, such	n that 198k is a perfe	ect cub	ee,	
			Answer	<i>(b)</i>	k =	[1]
	(c)	the smallest positive intege	er value of n for whi	ch 198	3n is a multiple of 972.	
			Answer	(c)	n = .	[1]

AMKSS 2E MYE

4048/01/2016

	3		
8	y is inversely proportional to the square of x . Given that $y = 10$ for a particular value of x , find the value of y when this value of x is halved.		
	Answer $y = $ [2]		
9	Simplify (a) $\frac{4x^2y^3}{3z^4} \div \frac{2x^4y^2}{9yz^2}$,		
į	Answer (a) [2]		
	(b) $\frac{9m^2 - 1}{3m^2 - 5m - 2}.$		

Answer (b) [3]

The diagram below shows the graph of $y = 6x - x^2$. The graph passes through the origin and cuts AMKSS 2E MYE 4048/01/2016 [Turn Over

the x-axis again at point P.

	(2)	Write	down	the	coordinates	of P	
1	(a)	WITTE	uown	tile	Coordinates	017	

Answer (a) P = (,) [1]

(b) Write down the equation of the line of symmetry of the graph.

Answer (b) [1]

(c) Find the coordinates of the maximum point Q.

Answer (c) Q = (,) [1]

(d) Calculate the area of $\triangle OPQ$.

Answer (d) sq. units [1]

11 (a) The total cost of an advertisement in a newspaper is obtained by adding together a fixed charge of 50 cents and a charge of 12 cents per word.

AMKSS 2E MYE

4048/01/2016

If an advertisement containing n words costs (cents to	advertise,	write dow	n an	algebraic
expression for C in terms of n .					

••••••	Answer	(a)	. [1]

(b) Solve the equation 4x-3(x+1) = 2(x-1)-16.

Answer (b)
$$x =$$
 [2]

12 Factorise completely

(a)
$$3x^2 - 9xz + 9xy - 27yz$$
,

(b)
$$20x^3y - 5xy$$
.

Express $\frac{8}{(x-2)^2} + \frac{5}{4-2x}$ as a single fraction in its simplest form.

AMKSS 2E MYE

4048/01/2016

.....

Answer [3

A customer bought a LCD TV at \$4250 on hire purchase by paying a down payment of 10% of the selling price and the remaining to be paid in monthly installments over 2 years at a simple interest of 4.2% per annum. Calculate the monthly installment, giving your answer to the nearest 10-cents.

Answer \$ [3]

AMKSS 2E MYE 4048/01/2016

15 The diagram shows a spinner divided into 6 equal sectors.

When the pointer is spun, find the probability that the pointer will stop at the sector with

(a) a prime number,

Answer	(a)	[1]

(b) a single digit number.

Answer	<i>(b)</i>	[1]

16 Solve the following equations

(a)
$$3p^2 = 12p$$
,

Answer (a)
$$p =$$
 or [2]

(b)
$$4x^2 - 5 = x(x - 14)$$
.

AMKSS 2E MYE

4048/01/2016

The diagram shows the graph of the straight line x + y = 4.

Answer (a)(ii)

(a) The table below shows corresponding x and y values for the equation 2y - x = 2.

x	-2	0	4
у	m	1	3

(i) Find the value of m.

Answer (a)(i)
$$m =$$
 [1]

(ii) Draw and label the graph of 2y - x = 2 for $-2 \le x \le 4$ on the same axes above. [1]

(b) Use your graph to solve the simultaneous equations

$$x + y = 4$$
,

$$2y - x = 2$$
.

Answer (b)
$$x = y = [2]$$

AMKSS 2E MYE 4048/01/2016

[Turn Over

18 The bar graph below shows the survey result of a group of Secondary One Students on their preference of ice-cream flavour.

Favourite Ice-Cream Flavour

June observed the bar graph and claimed that the number of students who prefer Chocolate flavour is twice the number of students who prefer Vanilla flavour. State whether you agree or disagree with the statement. Explain clearly how you make your decision.

Answer	because		
		A	
••••••	 100	& Second Co.	7
		[-	

END OF PAPER

AMKSS 2E MYE

4048/01/2016

Class	Index Number	Name	

ANG MO KIO SECONDARY SCHOOL MID-YEAR EXAMINATION 2016 SECONDARY TWO EXPRESS

MATHEMATICS

4048/02

Paper 2

Tuesday

10 May 2016

1 hours 30 minutes

Additional Materials:

Answer Paper

Graph paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part

The total of the marks for this paper is 60.

This document consists of 6 printed pages.

Turn Over

Answer all the questions.

- The amount of fertilizer that is absorbed by a plant, *F*, is directly proportional to the square root of the height increment of the plant, *h*. When the plant absorbs 1 ml of the fertilizer, the height increment of the plant is 0.0625 cm.

 Calculate
 - (a) the amount of fertilizer needed for the plant to grow by 9 cm, [2]
 - (b) the height increment of the plant when 3 ml of fertilizer is absorbed. [2]
- A shop sold a LCD TV at \$5280 after offering a discount of 12%. Despite offering the discount, the shop is still able to make a profit of 5%.

 Calculate
 - (a) the price of the TV before discount, [2]
 - (b) the cost price of the TV. [2]
- 3 (a) Expand $\left(x + \frac{3}{x}\right)^2$. [2]
 - (b) Hence, find the value of $x^2 + \frac{9}{x^2}$ if $x + \frac{3}{x} = 4$. [2]
- 4 Given that $\sqrt{\frac{z-y}{y}} = \frac{1}{x}$.
 - (a) Express y in terms of x and z. [3]
 - (b) Hence, find the value of y if x = 1 and z = 2. [1]

5 The pie chart below shows the survey data of the favourite colours by a group of students.

- (a) If 90 students liked Blue more than Pink, find the total number of students who did the survey. [1]
- (b) If there were 1.5 times as many students who liked Orange as compared to Pink, express the number of students who chose Others as a ratio of the total number of students.
 [2]
- (c) If 20% of the students who liked Blue were females, how many male students liked Blue? [2]
- A box contains 30 balls, of which 12 are yellow and 18 are green. A ball is drawn at random from the box.
 - (a) Find the probability of drawing a yellow ball. [1]
 - (b) Find the number of yellow balls to be removed so that the probability of drawing a green ball from the remaining balls in the box is $\frac{3}{4}$. [2]

7	Gilbert cycled at a speed of $(x + 4)$ km/h for $2x$ hours. He then jogged at a speed of
	(x-7) km/h for x hours. The total distance travelled is 4 km.

- (a) Find an expression for the distance he cycled. [1]
- (b) Form an equation in x and shows that it reduces to $3x^2 + x 4 = 0$. [2]
- (c) Solve the equation $3x^2 + x 4 = 0$. [2]
- (d) Find the average speed for Gilbert's journey and state the reason why one of the values of x is rejected. [2]
- 8 The first three lines of a sequence are:

$$1^{2} - 0^{2} = 1 + .0 = 1$$

$$2^{2} - 1^{2} = 2 + 1 = 3$$

$$3^{2} - 2^{2} = 3 + 2 = 5$$

- (a) The tenth line is $a^2 b^2 = c + 9 = d$. Write down the values of a, b, c and d. [2]
- (b) Write down the n^{th} line, in terms of n. [1]
- (c) One of the lines is written as $M^2 N^2 = M + N = P$. (i) Explain why P cannot be 106. [1]
 - (ii) Find the value of M and the value of N when P = 109. [2]

- Given that x = -1 is one of the solutions to the equation $2x^2 + ax 4 = 0$, find
 - (a) the value of a, [2]
 - (b) the other solution to the equation. [2]

- Jessica decided to change S\$2500 for her holiday trip to Tokyo. The rate of exchange between the Singapore dollars and the Japanese Yen was S\$100 = \$8240.
 - (a) Calculate the amount that she has in Japanese Yen.

[1]

(b) If Jessica spent ¥145,000 in Tokyo and she decided to change the remaining amount of Japanese Yen back to Singapore dollars, how much will she get back if the exchange rate was ¥8150 = \$\$90.

[2]

[2]

(c) Calculate the amount of money lost in Singapore dollars (S\$) after the trip.

11 Answer the whole of this question on a piece of graph paper

The table below gives some values of x and the corresponding values of y, where $y = x^2 - 3x - 5$.

X	-2	-1	0	1	2	3	4	5
у	5	-1	-5	-7	b	-5	-1	5

(a) Calculate the value of b.

[1]

Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $-2 \le x \le 5$. Using a scale of 1 cm to 1 unit, draw a vertical y-axis for $-7 \le y \le 7$. On your axes, plot the points given in the table and join them with a smooth curve.

[3]

- (c) Use your graph to find
 - (i) the minimum value of y,

[1]

(ii) the values of x when y = 2,

[1]

(iii) the coordinates of the points where the graph of $y = x^2 - 3x - 5$ cuts the x-axis.

[2]

12 The diagram below shows the ticket prices of Luge & Skyride at Sentosa Island.

Luge & Skyride Combo

The Skyride transports you to the top of the luge tracks, where you jump onboard and ride to the bottom of the track. "Once is never enough"

 Luge & Skyride
 S\$18 / Person

 Three Luge & Skyrides
 S\$25 / Person

 Five Luge & Skyrides
 S\$38 / Person

 Seven Luge & Skyrides
 S\$41 / Person

Child Doubling

(children under 6 years or less then 110cm may ride in tandem with a full paying adult)

S§3 per ride

*Combo tickets are valid per person only, luge rides can not be shared. Per person rate applies to ages 6 years and taller then 110cm riding solo. Children under 110cm can ride tandem with a paying adult.

Family Combo Deals*

A family pass includes luge rides and skyrides to be shared amongst family members. *At least one family member must be aged 15 years or younger.

Four ride family pass
(Share 4 luge rides & 4 skyrides)

Eight ride family pass
(Share 8 luge rides & 8 skyrides)

Twelve ride family pass
(Share 12 luge rides & 12 skyrides)

Child Doubling

(children under 6 years or less than 110cm may ride in tandem with a full paying adult)

S\$3 per ride

(a) What is the cost of taking a luge and skyride for an adult and a child who is less than 110 cm?

- (b) Mr and Mrs Toh plan to bring their two children on a luge and skyride.
 - (i) Referring to the Luge & Skyride Combo, calculate the total cost for the family of four, given that the older child is 153 cm tall and the younger child is 105 cm.

[2]

(ii) Mr Toh wants each family member to ride the luge and skyride twice. Is it more worthwhile to buy the "Eight ride family pass" from the Family Combo Deals or to buy individual tickets from the Luge & Skyride Combo for each member? Explain your answer clearly.

[3]

END OF PAPER

2E EM P1 MYE 2016 Answer Scheme

Qn	Answers	Marking Scheme	Marker's Remark
1(a)	$26 - (-6) = 32^{\circ}C$	BI	
1(b)	Rate of temp increase = $\frac{32}{8} = 4^{\circ}C/h$	MI	
	Temp rise from $-6 \rightarrow 8^{\circ}C = 14^{\circ}C$		
	Time taken = $\frac{14}{4}$ = 3.5 hours		
	\Rightarrow Time = 1130	Al	
2	13 students \rightarrow 7 × 40 = 280 hours 1 student \rightarrow 280 × 13 hours	МІ	
	8 students \rightarrow (280 × 13) ÷ 8 = 455 hours No. of days = 455 ÷ 5 = 91 days	Al	
3	$\frac{276.93}{0.05020} \approx \frac{280}{0.050}$	MI	
	0.05039 0.050 = 5600		
	= 6000 (1 significan t figure)	AI	
4(a)	250 g : 2 kg 250 g : 2000 g	М1	
	5:40 1:8	- A1	. 7
4(b)	$114 \text{ km/h} = \frac{114 \times 1000}{60 \times 60} \text{ m/s}$	М1	
	Distance travelled = $\frac{114000}{3600} \times 36$		
	= 1140 m	Al	
5	2y-3x = 5(1) 5x-6y = 21(2)		
	$(1) \times 3: 6y - 9x = 15$ (3)		
	(2) + (3): -4x = 36	MI	
	x = -9	. A1	
	Subst into (1): $2y - 3(-9) = 5$		
	2y = 5 - 27 = -22 $y = -11$	Al	
QR	2y - 3x = 5(1)	AI	
(alternate	5x - 6y = 21(2)		
method)	From (1): $2y = 3x + 5$ substinto (2)		
culou)	5x-3(3x+5)=21 M1		
	-4x = 36		
	x = -9 A1		

	2y = 5 - 27 = -22		
	y = -11 A1		
6(a)	$(2x^2+x-1)(3x+5)$		
	$=6x^3 + 10x^2 + 3x^2 + 5x - 3x - 5$	MI	
	$=6x^3 + 13x^2 + 2x - 5$	Al	
6(b)	$x(3x-1)-(2x+3)^2$		
	$=3x^2-x-(4x^2+12x+9) - expand (2x+3)^2$	MI	
	$=3x^2-x-4x^2-12x-9$ - changing of signs	MI	
	$=-x^2-13x-9$	Αl	
7(a)	$HCF = 2 \times 3^2 = 18$. B1	
7(b)	$k = 2^2 \times 3 \times 11^2 = 1452$	BI	
7(c)	$n = 2 \times 3^3 = 54$	BI	
8	$y = \frac{k}{x^2}$		
	when $y = 10, 10 = \frac{k}{x^2}$		
	$\text{new } y = \frac{k}{\left(\frac{x}{2}\right)^2} = \frac{4k}{x^2}$	МІ	
	$= 4 \times 10 = 40$	·. A1	
OR	$y = \frac{k}{x^2}$		
	when $y = 10, k = 10x^2$		
*	$\text{new } y = \frac{k}{\left(\frac{x}{2}\right)^2} = \frac{4k}{x^2} \qquad MI$		
	$=\frac{4\times10x^2}{x^2}$		
	$= 4 \times 10 = 40$ A1		
9(a)	$\frac{4x^2y^3}{3z^4} \div \frac{2x^4y^2}{9yz^2}$		v
	$= \frac{4x^2y^3}{3z^4} \times \frac{9yz^2}{2x^4y^2}$	MI	
	$=\frac{6y^2}{x^2z^2}$	Al	
9(b)	$\frac{9m^2 - 1}{3m^2 - 5m - 2}$	1 24 dr +	
	$= \frac{(3m+1)(3m-1)}{(3m+1)(m-2)}$ - by difference of 2 squares - by cross method	MI	
	$-\frac{1}{(3m+1)(m-2)}$ - by cross method	M1	
	$=\frac{3m-1}{m-2}$	A1	

10(a)	1 2 2		
10(a)	$6x - x^2 = 0$		
	x(6-x)=0		
	x = 0 or $x = 6$		
	P = (6,0)	BI	
10(b)	x =3	BI	
10(c)	$y = 6(3) - (3)^2 = 9$		
	Q = (3. 9)	В1	
10(d)	1 (6)(0)		
	$\frac{1}{2}(6)(9)$		
	= 27 units ²	BI	
11(a)	C = 50 + 12n	B1	
11(b)	4x-3(x+1)=2(x-1)-16	-	
	4x-3x-3=2x-2-16	MI	
	-x = -15		
	x = 15	Al	
12(a)	$3x^2 - 9xz + 9xz - 27yz$		
	=3x(x-3z)+9y(x-3z)	MI	
	=(3x+9y)(x-3z)	M1	
	=3(x+3y)(x-3z)	AI	
12(b)	$20x^3y - 5xy$		
	$=5xy(4x^2-1)$	MI	e**
	=5xy(2x+1)(2x-1)	Al	
13	$\frac{8}{(x-2)^2} + \frac{5}{4-2x}$		
			•
	$=\frac{8}{(x-2)^2}+\frac{5}{-2(x-2)}$		
	$=\frac{8(2)-5(x-2)}{2(x-2)^2}$	MI	
		1011	
	$=\frac{16-5x+10}{2(x-2)^2}$	MI	
		1411	
	$=\frac{26-5x}{2(x-2)^2}$	Al	
14	Loan taken $up = 0.9 \times 4250 = 3825		
	Total interest for 2 years = $(3825 \times 0.042) \times 2$	MI	
	= \$321.30		
	Monthlyinstallment = $\frac{3825 + 321.30}{24}$	MI	
	24		
	= \$172.80	Al	

15(a)	$\frac{2}{6} = \frac{1}{3}$	ВІ	
15(b)	0 -	ВІ	
16(a)	$3p^2 = 12p$		
	$3p^2 - 12p = 0$		
	3p(p-4)=0	MI	
	p = 0 or $p = 4$	ΑI	
16(b)	$4x^2 - 5 = x(x - 14)$		
	$4x^2 - 5 = x^2 - 14x$		
	$3x^2 + 14x - 5 = 0$	MI	
	(3x-1)(x+5)=0	MI	
	$x = \frac{1}{3}$ or $x = -5$	Al	
17(a)	m = 0	В1	
17(b) .	Correct graph drawn (see attached)	B1	<u> </u>
17(c)	x = 2	A1 · ·	,
	y=2	Al	
18	I disagree, because the vertical axis does not start at 0. Or	B1, B1	
	I disagree, because the number of students who preferred chocolate is 140 instead of 160.		28

17(b)

2E EM P2 MYE 2016 Answer Scheme

Qn	. Answers	Marking Scheme	Marker's Remark
1(a)	$F = k\sqrt{h}$		
	$1 = k\sqrt{0.0625}$		
	k = 4	MI	
	$\Rightarrow F = 4\sqrt{h}$		
	when $h = 9$		
	$F = 4\sqrt{9} = 12 \text{ ml}$	A1	
I(b)	$F = 4\sqrt{h}$		
	when $F = 3$		
	$3 = 4\sqrt{h}$		
	$h = (0.75)^2$	M1	
	= 0.5625 cm	Al	
2(a)	$\frac{5280}{88} \times 100$	МІ	
	88 = \$6000	AI	
2(b)	$\frac{5280}{105} \times 100$	M1	
	= \$5028.57	AI	
			. *
	* No A1 if answer is rounded off to \$5029 or \$5028.60		*
3(a)	$\left(x + \frac{3}{x}\right)^2 = x^2 + 2\left(x\right)\left(\frac{3}{x}\right) + \left(\frac{3}{x}\right)^2$ $= x^2 + 6 + \frac{9}{x^2}$	MI	
		A1 or B2	
3(b)	$\left(x + \frac{3}{x}\right)^2 = x^2 + 6 + \frac{9}{x^2}$ $4^2 = x^2 + \frac{9}{x^2} + 6$ $x^2 + \frac{9}{x^2} = 16 - 6 = 10$		
ű.	$4^2 = x^2 + \frac{9}{x^2} + 6$	МІ	, .*;
	$x^2 + \frac{9}{x^2} = 16 - 6 = 10$	AI	

4(a) $\sqrt{\frac{z-y}{y}} = \frac{1}{x}$ $\frac{z-y}{y} = \frac{1}{x^2}$ $y = x^2(z-y)$ $y = x^2z - x^2y$ $y(1+x^2) = x^2z$ $4(b) \qquad y = \frac{1(2)}{1+x} = 1$ $4(b) \qquad y = \frac{1(2)}{1+1} = 1$ $5(a) \qquad 60^{\circ} \rightarrow 90 \text{ students}$ $360^{\circ} \rightarrow \frac{90}{60} \times 360$ $= 540 \text{ students}$ 81 $5(b) \qquad \text{Students who chose Orange} \rightarrow 1.5 \times 50 = 75^{\circ}$ $Others: \text{Total}$ $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ $A1$ $5(c) \qquad 80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ 41 $6(a) \qquad \frac{12}{30} = \frac{2}{5}$ $6(b) \qquad \text{Let no. of yellow balls to be removed} = x$ $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed}.$ $A1$ $7(a) \qquad 2x(x+4) \text{ km}$ $B1$ $7(b) \qquad 2x(x+4) + x(x-7) = 4$ $2x^2 + 8x + x^2 - 7x - 4 = 0$ $M1$				
$\frac{z-y}{y} = \frac{1}{x^2}$ $y = x^2(z-y)$ $y = x^2z - x^3y$ $y(1+x^2) = x^2z$ $y = \frac{x^2z}{1+x^2}$ A1 4(b) $y = \frac{1(2)}{1+1} = 1$ B1 5(a) $60^\circ \to 90 \text{ students}$ $360^\circ \to \frac{90}{60} \times 360$ $= 540 \text{ students}$ B1 5(b) $5\text{tudents who chose Orange} \to 1.5 \times 50 = 75^\circ$ $Others: Total$ $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 5(c) $80\% \text{ of } 110 = 88^\circ$ $60^\circ \to 90 \text{ students}$ $88^\circ \to \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) $\frac{12}{30} = \frac{2}{30} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ A1 7(a) $2x(x+4)km$ B1 7(b) $2x(x+4)+x(x-7) = 4$ M1	4(a)	$\sqrt{\frac{z-y}{y}} = \frac{1}{x}$		
4(b) $y = \frac{1(2)}{1+1} = 1$ B1 5(a) $60^{\circ} \rightarrow 90 \text{ students}$ $360^{\circ} \rightarrow \frac{90}{60} \times 360$ $= 540 \text{ students}$ B1 5(b) Students who chose Orange $\rightarrow 1.5 \times 50 = 75^{\circ}$ Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 5(c) $80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed}$. A1 7(a) $2x(x + 4) \text{ km}$ B1 7(b) $2x(x + 4) + x(x - 7) = 4$ M1		$\frac{z-y}{y} = \frac{1}{x^2}$	МІ	
4(b) $y = \frac{1(2)}{1+1} = 1$ B1 5(a) $60^{\circ} \rightarrow 90 \text{ students}$ $360^{\circ} \rightarrow \frac{90}{60} \times 360$ $= 540 \text{ students}$ B1 5(b) Students who chose Orange $\rightarrow 1.5 \times 50 = 75^{\circ}$ Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 5(c) $80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed}$. A1 7(a) $2x(x + 4) \text{ km}$ B1 7(b) $2x(x + 4) + x(x - 7) = 4$ M1		$y = x^2(z - y)$		
4(b) $y = \frac{1(2)}{1+1} = 1$ B1 5(a) $60^{\circ} \rightarrow 90 \text{ students}$ $360^{\circ} \rightarrow \frac{90}{60} \times 360$ $= 540 \text{ students}$ B1 5(b) Students who chose Orange $\rightarrow 1.5 \times 50 = 75^{\circ}$ Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 5(c) $80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed}$. A1 7(a) $2x(x + 4) \text{ km}$ B1 7(b) $2x(x + 4) + x(x - 7) = 4$ M1		$y = x^2 z - x^2 y$ $y(1 + x^2) = x^2 - x^2 y$	MI	
4(b) $y = \frac{1(2)}{1+1} = 1$ B1 5(a) $60^{\circ} \rightarrow 90 \text{ students}$ $360^{\circ} \rightarrow \frac{90}{60} \times 360$ $= 540 \text{ students}$ B1 5(b) Students who chose Orange $\rightarrow 1.5 \times 50 = 75^{\circ}$ Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 5(c) $80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed}$. A1 7(a) $2x(x + 4) \text{ km}$ B1 7(b) $2x(x + 4) + x(x - 7) = 4$ M1		$y = \frac{x^2 z}{x^2}$		
			Al	
$360^{\circ} \rightarrow \frac{90}{60} \times 360$ $= 540 \text{ students}$ B1 $5(b)$ Students who chose Orange $\rightarrow 1.5 \times 50 = 75^{\circ}$ Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 $5(c)$ $80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 $6(a)$ $\frac{12}{30} = \frac{2}{5}$ B1 $6(b)$ Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ A1 $7(a)$ $2x(x + 4) + x(x - 7) = 4$ M1 $7(b)$ $2x(x + 4) + x(x - 7) = 4$ M1	4(b)	$y = \frac{1(2)}{1+1} = 1$	ВІ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5(a)	$60^{\circ} \rightarrow 90$ students		
5(b) Students who chose Orange $\rightarrow 1.5 \times 50 = 75^{\circ}$ Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 5(c) $80\% \text{ of } 110 = 88^{\circ}$ $60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed}$. A1 7(a) $2x(x + 4) \text{ km}$ B1 7(b) $2x(x + 4) + x(x - 7) = 4$ M1		$360^{\circ} \rightarrow \frac{90}{60} \times 360$		5-
Others: Total $360 - 110 - 50 - 75 : 360$ $125 : 360$ $25 : 72$ A1 $5(c) $		= 540 students	B1	N * *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5(b)			
125:360 25:72 A1 5(c) 80% of 110 = 88° 60° → 90 students $88° → \frac{90}{60} × 88$ =132 male students A1 6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ ⇒ 6 yellow balls to be removed. A1 7(a) $2x(x + 4) + x(x - 7) = 4$ M1				
5(c) 80% of 110 = 88° $60^{\circ} \rightarrow 90$ students $88^{\circ} \rightarrow \frac{90}{60} \times 88$ MI = 132 male students AI 6(a) $\frac{12}{30} = \frac{2}{5}$ BI 6(b) Let no. of yellow balls to be removed = x MI $\frac{18}{30 - x} = \frac{3}{4}$ MI 72 = 90 - 3x $3x = 18$ $x = 6$ ⇒ 6 yellow balls to be removed. AI $\frac{7(a)}{7(b)} = 2x(x+4) + x(x-7) = 4$ MI			MΙ	
$60^{\circ} \rightarrow 90 \text{ students}$ $88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ $6(a) \qquad \frac{12}{30} = \frac{2}{5}$ $B1$ $6(b) \qquad \text{Let no. of yellow balls to be removed} = x$ $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ $A1$ $7(a) \qquad 2x(x+4) \text{ km}$ $B1$ $7(b) \qquad 2x(x+4) + x(x-7) = 4$ $M1$		SWITTERS OF THE STATE OF THE ST	Al	***
$88^{\circ} \rightarrow \frac{90}{60} \times 88$ $= 132 \text{ male students}$ $6(a) \qquad \frac{12}{30} = \frac{2}{5}$ $B1$ $6(b) \qquad \text{Let no. of yellow balls to be removed} = x$ $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ $7(a) \qquad 2x(x+4) \text{ km}$ 81 $7(b) \qquad 2x(x+4) + x(x-7) = 4$ $M1$	5(c)	80% of 110 = 88°		
$= 132 \text{ male students}$ $6(a) \qquad \frac{12}{30} = \frac{2}{5}$ $B1$ $6(b) \qquad \text{Let no. of yellow balls to be removed} = x$ $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ $7(a) \qquad 2x(x+4) \text{ km}$ 81 $7(b) \qquad 2x(x+4) + x(x-7) = 4$ $M1$		$60^{\circ} \rightarrow 90 \text{ students}$		
6(a) $\frac{12}{30} = \frac{2}{5}$ B1 6(b) Let no. of yellow balls to be removed = x $\frac{18}{30 - x} = \frac{3}{4}$ $72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ A1 7(a) $2x(x+4)$ km B1 7(b) $2x(x+4) + x(x-7) = 4$ M1		$88^{\circ} \rightarrow \frac{90}{60} \times 88$	M1	
		= 132 male students	'A1	
$ \frac{18}{30-x} = \frac{3}{4} $ $ 72 = 90 - 3x $ $ 3x = 18 $ $ x = 6 $ $ \Rightarrow 6 \text{ yellow balls to be removed.} $ A1 $ 7(a) \qquad 2x(x+4) \text{ km} $ B1 $ 7(b) \qquad 2x(x+4) + x(x-7) = 4 $ M1	6(a)	$\frac{12}{30} = \frac{2}{5}$	В1	
$72 = 90 - 3x$ $3x = 18$ $x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ $7(a) \qquad 2x(x+4) \text{ km}$ 81 $7(b) \qquad 2x(x+4) + x(x-7) = 4$ $M1$	6(b)	Let no. of yellow balls to be removed = x 18 _ 3	MI	
$x = 6$ $\Rightarrow 6 \text{ yellow balls to be removed.}$ A1 $7(a) 2x(x+4) \text{ km}$ B1 $7(b) 2x(x+4) + x(x-7) = 4$ M1	. : '.	$\frac{30-x}{30-x} = \frac{4}{4}$ $72 = 90 - 3x$		
$\Rightarrow 6 \text{ yellow balls to be removed.} $ A1 $7(a) 2x(x+4) \text{km} $ B1 $7(b) 2x(x+4) + x(x-7) = 4 $ M1		3x = 18		
7(b) $2x(x+4)+x(x-7)=4$ M1			A1	
	7(a)		B1	
$2x^2 + 8x + x^2 - 7x - 4 = 0$ M1	7(b)		M1	
		$2x^2 + 8x + x^2 - 7x - 4 = 0$	MI	
$3x^2 + x - 4 = 0$ (shown)		$3x^2 + x - 4 = 0$ (shown)		

7(c)	$3x^2 + x - 4 = 0$		
	(3x+4)(x-1)=0	MI	
	$x = -1\frac{1}{3} \text{or} x = 1$	Al	
		/ A1	
7(d)	Ave speed		
	$=\frac{4}{2(1)+1}=1.33 \text{ km/h}$	ВІ	
	$x = -1\frac{1}{3}$ is rejected		
	because time cannot be a negative value.	ВІ	
	* No B1 if speed is given as a fraction.		
8(a)	a = 10, b = 9	BI	
	c = 10, d = 19	BI	
8(b)	$n^{2} - (n-1)^{2} = n + (n-1) = 2n-1$	B1	
8c(i)	P must be odd and 106 is not an odd number	B1	
8c(ii)	2n-1=109		
	2n = 110	MI	
	n = 55	73.54, 24.55	
	$\Rightarrow M = 55, \qquad N = 54$	ΑÌ	
9(a)	x = -1,		
	$2(-1)^2 - a - 4 = 0$	MI	*1
	-a-2=0		
	a = -2	ΑI	
9(b)	$2x^2 - 2x - 4 = 0$		
	(x+1)(2x-4) = 0 x = -1 or $x = 2$		
	x = -1 or $x = 2$	MI	
	The other solution is $x = 2$	Al	
10(a)	S100 \rightarrow 240		
	S2500 \rightarrow \frac{8240}{100} \times 2500$		
		BI	
10(b)	= ¥206 000 Amount of ¥ to change back to S\$	DI	
	$= 206\ 000 - 145\ 000 = $61\ 000$		
	¥8150 → S\$90		
	A CONTRACTOR OF THE CONTRACTOR	MI	- N

10(c)	Using the original rate,		
	$461000 \rightarrow \frac{100}{8240} \times 61000$	MI	
	= S\$740.29		
	Amount lost = $740.29 - 673.62 = $\$66.67$	A1	

11(a)	b = -7	. B1	
11(b)	Refer to graph Correct scale and label – 1 mark Correct points plotted – 1 mark Smooth curve joining all points – 1 mark	M3	
11(c)(i)	Min $y = -7.3$ (accept -7.5 to -7.1)	B1	
11(c)(ii)	x = -1.65 (accept -1.75 to -1.55),		
	x = 4.5 (accept 4.4 to 4.6)	ВІ	-
11(c)(iii)	(-1.2, 0) and (4.2, 0)	B1, B1	Ţ.
	x -coordinate ± 0.1		
12(a)	18 + 3 =\$21	BI	
12(b)	3(18) + 3 = \$57	B2	
12(c)	Eight ride family pass: Total cost = \$68 Individual passes: Total cost = 2(57) = \$114	MI	
	It is more worthwhile to get a eight ride family	MI	
	pass as it is <u>cheaper</u> .	ΑI	
OR	Eight ride family pass (+ child doubling): Total cost = 68 + 6 = \$74 Individual passes: Total cost = 2(57) = \$114	MI	
	It is more worthwhile to get a eight ride family	MI	
	pass as it is <u>cheaper</u> .	A1	
OR	Eight ride family pass (+ child doubling): Total cost = 68 + 6 = \$74 Individual passes: Total cost = 2(57) = \$114	M1	
	It is more worthwhile to get a eight ride family pass as at least one of the adults gets to ride more than 2 times.	M1 A1	e *
		Д	

S

BEATTY SECONDARY SCHOOL **END OF YEAR EXAMINATION 2016**

SUBJECT: Mathematics

LEVEL

: Sec 2 Express

PAPER : 1

DURATION: 1 hour 15 minutes

DATE

: 12 Oct 2016

CLASS: NAME: REG NO:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to

three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50.

> For Examiner's Use 50

This paper consists of 11 printed pages (including this cover page)

[Turn Over

Answer ALL questions.

- 1 Expand and simplify the following expressions.
 - (a) 3a(4-2b)-b(a-3c)
 - (b) $3(1-2d)^2-d(d-3)$

- Answer (a)[2]
 - (b)[2]
- 2 Factorise the following expressions completely.
 - (a) $2x^2 9x + 9$
 - (b) $8y^2 18z^2$

Answer (a)

BU SHEEDERWARDENANDS

-[2]
- (b)[2]

- The kinetic energy of a moving car, E, is directly proportional to the square of its speed ν . Given that E = 324 when $\nu = 2$, find
 - (a) the equation connecting E and v,
 - (b) the value of ν when E = 1024.

Answer (a)[2]

(b) v = [2]

(a) Solve the following pair of simultaneous equations.

$$\frac{1}{2}x-y+5=0$$
$$2x-y-1=0$$

(b) State the coordinates of the point of intersection between the lines $\frac{1}{2}x-y+5=0$ and 7x-3y=3+x.

Answer (a) $x = \dots$

y=.....[3]

- (a) Solve the quadratic equation $3x^2 + 11x 20 = 0$.
- (b) Hence, solve the quadratic equation $3(y-1)^2 + 11(y-1) 20 = 0$.

6 Simplify each of the following.

(a)
$$\frac{4a^2+12a}{a^2-9}$$

(b)
$$\frac{4a^2b}{cd^3} \times \frac{c}{6ab}$$

Control of the State of the Sta

Answer (a)

[2]

(b)

[2]

The diagram above shows a kite ABCD. The straight lines AC and BD intersect at the point O.

Write down all the pairs of congruent triangles in the figure.

Answer	or meanway of the contract of

[2]

In the diagram above, triangle XYZ is similar to triangle XUV. Given that XV = 8 cm, VY = 4 cm, XU = 6 cm and UZ = x cm, find the value of x.

Answer

 $x = \dots$

[3]

Nine cards, numbered 1, 4, 4, 6, 6, 6, 8, 11, and 12 are well-shuffled and placed face down on a table.

One of the nine cards is drawn at random. Find

- (a) the probability of drawing an even number,
- (b) the probability of drawing a 3,
- (c) the number whose probability of being drawn is $\frac{1}{3}$,
- (d) the probability of drawing a number which is at least 6.

Answer	(a)	 [1]
BERTONISTING RESERVANCE BERTONISTING	(b)	 [1]
	(c)	 [1]
A CONTRACTOR	(d)	 [1]

In the diagram above, PQR is a right-angled triangle with angle $PRQ = 90^{\circ}$, QR = 8 cm and PQ = 10 cm. S is a point on the line QR such that angle $SPR = 50^{\circ}$. Find

- (a) the length of PR,
- (b) the length of SR,
- (c) angle SPQ.

	ATTENDED
cm [2]	Answer (a)
cm [1]	(b)
· [2]	(c)

- 11 (a) Simplify the expression $\frac{gh-2k}{4-2h} \div \frac{1+h}{2h^2-2h-4}$.
 - (b) Given that $s = \frac{2t-1}{t+4}$, express t in terms of s.

(b) *t* =......[2]

12 The stem-and-leaf diagram below shows the scores obtained in a science test by a group of Secondary Two students from class 2A.

Stem	Leaf					4
1	5					
6	5	7				
7	6	6	8			
8	3	3	5	5	5	7
9	4	4	8			

Key: 6 | 5 means 65 marks.

- (a) Find the median score of this group of students.
- (b) Find the mean score of this group of students, giving your answer correct to 1 decimal place.
- (c) Mr Sng claims that the mean score is a better guage of the performance of this group of students as compared to the median score. Do you agree with him? Explain your answer.
- (d) It was later discovered that the score of 1 student was accidentally omitted from the data above, and the actual median score was x. Write down the largest possible value of x.

,	Answer	(a)	 [1]
		(b)	 [2]
(c) Agree/Disagree, because			
4.7		every.	
	***********	?	 [2]
La management from the contract from the contrac	49 ¹	(d)	 [1]

END OF PAPER

Answer Key:

1(a)
$$12a - 7ab + 3bc$$
 (b) $3 - 9d + 11d^2$

(b)
$$3-9d+11d^{2}$$

$$2(a) (2x-3)(x-3)$$

2(a)
$$(2x-3)(x-3)$$
 (b) $2(2y+3z)(2y-3z)$

$$3(a) E = 81v$$

3(a)
$$E = 81v^2$$
 (b) $v = 3\frac{5}{9}$ or 3.56 (to 3 s.f.)

$$4(a) x = 4. y = 7$$

$$5(a) x = 5 \text{ or } 1\frac{1}{3}$$

(b)
$$y = -4$$
 or $2\frac{1}{3}$

6(a)
$$\frac{4a}{a-3}$$

(b)
$$\frac{2a}{3d^3}$$

$$8. x = 10$$

9(a)
$$\frac{7}{9}$$
 (b) 0 (c) 6

(d)
$$\frac{2}{3}$$

11(a)
$$2k - gh$$
 (b) $t = \frac{4s + 1}{2 - s}$

-							
Ca	CII	121	or	U V	00	0	-
Ca	lou	ıaı	U	IVI	UU		١.

Class Full Name Index Number

END OF YEAR EXAMINATION 2016

4048 /02

MATHEMATICS

Paper 2

Secondary 2 Express 10th October 2016

1 hour 15 min

50

Additional Materials: Writing Papers

Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces provided.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 50.

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO

For Examiner's Use

This document consists of 6 printed pages, including this cover page.

2 ANSWER ALL QUESTIONS

- 1 (a) Given that $\frac{p}{x} = 21 3p$, find the value of x when p = 4.
 - (b) Given that $S = \sqrt{M} + 5\pi$, express M in terms of π and S. [2]
- The bar chart below shows the revenue of a company in its first four years of operation.

Hazeeq concluded that the company's revenue in Year 2 is three times the revenue earned in Year 1. Do you agree? Justify your answer.

[2]

[2]

[3]

[1]

[1]

- The total cost of 7 pencils and 5 pens is \$10.85.

 The total cost of 9 pencils and 10 pens is \$18.95.
 - (a) Let the price of 1 pencil be \$ x and the price of 1 pen be \$ y.Write down two equations, in terms of x and y.
 - (b) Solve the simultaneous equations.
 - (c) Hence, find the total cost of 17 pencils and 23 pens, in dollars.

In the figure, $\triangle APQ$ is similar to $\triangle ACB$. AP = 5 cm, BC = 4 cm, AQ = 3.5 cm, QC = 6.5 cm and OC = 3 cm.

Find

- (a) the length of AB, [2]
- (b) angle CAB, [2]
- (c) shortest distance from B to AC. [2]

5 (a) Express
$$\frac{1}{x+2} + \frac{3x-2}{3x^2+4x-4} - \frac{3}{4-x^2}$$
 as a single fraction in its simplest form. [3]

- (b) The force, F, between two particles is inversely proportional to the square of the distance between them. The force is 36 units when the distance between the particles is r metres. Find the force when the distance is 2r metres. [2]
- 6 Some students were asked how long they spent on the internet every day. The table shows the result.

Number of hours	0	1	2	3	4	5
Number of students	7	6	11	13	7	x

- (a) It is given that the mode is 3. Write down the largest possible value of x. [1]
- (b) It is given that the median is 3. Write down the smallest possible value of x. [2]

7 The pie chart shows the number of different coloured balls in a bag.

(a) Find the value of y.

[2]

[1]

(b) Find the probability of choosing a ball, in random, which is neither blue nor yellow.

8 The weekly wages of 100 workers who work in a factory are given in the table below.

Weekly wage (\$x)	$180 < x \le 220$	$220 < x \le 260$	260 < x ≤ 300	$300 < x \le 340$
Number of workers	15	50	23	k

(a) Find the value of k.

- [1]
- (b) Find, from the distribution of weekly wages, an estimate of the mean wage.
- [2]
- (c) One worker is chosen at random from those who work in the factory.
 Expressing your answer as a fraction in its lowest terms, find the probability that the

A model consists of a solid hemisphere attached to a solid cylinder. Part of the cylinder in the shape of a cone is removed as shown in the diagram. The height of the cylinder is 20 cm and the area of its base is 201 cm².

(a) Find the radius of the cylinder.

[2]

[2]

- (b) Given that the volume of the cone removed is 662 cm³, calculate the height of the cone.
- (c) Given that the model is made from material of density 0.5g/cm³, calculate its mass correct to the nearest gram. [3]
- (d) Taking the area of the curved surface of the cone to be 251cm², calculate the total surface area of the model. Leave your answer correct to two decimal places. [3]

Answer the whole of this question on a sheet of graph paper.

A photo of area 96 cm² is placed on a photo frame of 18 cm by 14 cm with a border of uniform width as shown.

(a) Form an equation in x and show that it reduces to $x^2 - 16x + 39 = 0$. [3] The area of the photo is represented by $y = x^2 - 16x + 39$. Some corresponding values of x and y, are given in the table below.

x	0	2	4	6	8	10	12	14
у	39	11	-9	-21	p	-21	-9	11

[1]

[3]

[1]

- (b) Calculate the value of p.
- (c) Using a scale of 2 cm to represent 2 units, draw a horizontal x-axis for $2 \le x \le 16$.

Using a scale of 2 cm to represent 10 units, draw a vertical y-axis for $-30 \le y \le 40$.

On your axes, plot the points given in the table and join them with a smooth curve.

(d) From your graph, find the values of x when y = 0.

END OF PAPER

.

-

SEC 2 EXPRESS SA2 PAPER 2 (2016) MARKING SCHEME

1) (a) $\frac{P}{x} = 21 - 3p$ $\frac{4}{x} = 21 - 3(4)$ $4 = 9p$ $p = \frac{4}{9} =$				8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	(a)		$\frac{p}{x} = 21 - 3p$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$\frac{4}{-} = 21 - 3(4)$	
$p = \frac{4}{9}A1$ (b) $S = \sqrt{M} + 5\pi$ $S - 5\pi = \sqrt{M}M1$ $M = (S - 5\pi)^2A1$ No, 1 do not agreeA1 The revenue in year 2 is 4/3 times of the revenue earned in year 1A1 3) (a) The two equations are: $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ (b) $7x + 5y = 10.85(1)$ $Eqn(1) \times 2$, $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3)$, $5x = 2.75$ $x = 0.55A1$ $Subst. x = 0.55 \text{ into } (1)$, $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method)}$ (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AB} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$				-3	
(b) $S = \sqrt{M} - 5\pi$ $S - 5\pi = \sqrt{M}$ M 1 $M = (S - 5\pi)^2$ A 1 No, 1 do not agree. $-A$ 1 The revenue in year 2 is 4/3 times of the revenue earned in year 1A1 3) (a) The two equations are: $7x + 5y = 10.85A$ 1 9x + 10y = 18.95A1 (b) $7x + 5y = 10.85(1)Eqn(1) \times 2, 14x + 10y = 21.70(2)9x + 10y = 18.95(3)(2) - (3)$, $5x = 2.75x = 0.55A$ 1 Subst. x = 0.55 into (1), $7(0.55) + 5y = 10.85y = 1.40A$ 1 $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method})$ (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A$ 1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{AQ} = \frac{AC}{AP}$				· ·	
(b) $S = \sqrt{M} - 5\pi$ $S - 5\pi = \sqrt{M}$ M 1 $M = (S - 5\pi)^2$ A 1 No, 1 do not agree. $-A$ 1 The revenue in year 2 is 4/3 times of the revenue earned in year 1A1 3) (a) The two equations are: $7x + 5y = 10.85A$ 1 9x + 10y = 18.95A1 (b) $7x + 5y = 10.85(1)Eqn(1) \times 2, 14x + 10y = 21.70(2)9x + 10y = 18.95(3)(2) - (3)$, $5x = 2.75x = 0.55A$ 1 Subst. x = 0.55 into (1), $7(0.55) + 5y = 10.85y = 1.40A$ 1 $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method})$ (c) $Total \cos x = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A$ 1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{AQ} = \frac{AC}{AP}$				$p = \frac{4}{9} A1$	
2) No, I do not agreeA1 The revenue in year 2 is 4/3 times of the revenue earned in year 1A1 3) (a) The two equations are: $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ (b) $7x + 5y = 10.85(1)$ $Eqn(1) \times 2$, $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3)$, $5x = 2.75$ $x = 0.55A1$ $Subst. x = 0.55 into (1)$, $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ $(M1 for any correct part of workings, any method)$ (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$		(b)	1	$S = \sqrt{M} + 5\pi$	_
2) No, I do not agree. $-A1$ The revenue in year 2 is $4/3$ times of the revenue earned in year 1 $A1$ 3) (a) The two equations are: $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ (b) $7x + 5y = 10.85(1)$ $Eqn(1) \times 2$, $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3)$, $5x = 2.75$ $x = 0.55A1$ $Subst. x = 0.55$ into (1), $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55$, $y = 1.40$ $(M1 \text{ for any correct part of workings, any method)}$ (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$					
2) No, I do not agree. $-A1$ The revenue in year 2 is $4/3$ times of the revenue earned in year 1A1 3) (a) The two equations are: $7x + 5y = 10.85$					
The revenue in year 2 is 4/3 times of the revenue earned in year 1A1 (a) The two equations are: $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ (b) $7x + 5y = 10.85(1)$ $Eqn(1) \times 2$, $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3)$, $5x = 2.75$ $x = 0.55A1$ Subst. $x = 0.55$ into (1), $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method})$ (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$		-	-	$M = (S - S\pi)$ A	
The revenue in year 2 is 4/3 times of the revenue earned in year 1A1 (a) The two equations are: $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ (b) $7x + 5y = 10.85(1)$ $Eqn(1) \times 2$, $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3)$, $5x = 2.75$ $x = 0.55A1$ Subst. $x = 0.55$ into (1), $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method})$ (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$	2)	-	 	No. I do not agree -A1	
3) (a) The two equations are: $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ (b) $7x + 5y = 10.85(1)$ $Eqn(1) \times 2$, $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3)$, $5x = 2.75$ $x = 0.55A1$ $Subst. $					
(b) $7x + 5y = 10.85A1$ $9x + 10y = 18.95A1$ $Eqn(1) \times 2,$ $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3),$ $5x = 2.75$ $x = 0.55A1$ $Subst. $				7 - Marie 27 Wie Forende earned in year 1. Al	
(b) $7x + 5y = 10.85A1$ $Eqn(1) \times 2,$ $14x + 10y = 21.70(2)$ $9x + 10y = 18.95(3)$ $(2) - (3),$ $5x = 2.75$ $x = 0.55A1$ $Subst. x = 0.55 \text{ int } o(1),$ $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method})$ $(c) \qquad Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ $4) \qquad (a) \qquad \frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$	3)	(a)		The two equations are:	
(b) $7x+5y=10.85(1)$ $Eqn (1) \times 2,$ $14x+10y=21.70(2)$ $9x+10y=18.95(3)$ $(2)-(3),$ $5x=2.75$ $x=0.55A1$ $Subst. x=0.55 into (1),$ $7(0.55)+5y=10.85$ $y=1.40 A1$ $\therefore x=0.55, y=1.40$ $(M1 for any correct part of workings, any method)$ (c) $Total cost = 17($0.55)+23($1.40)$ $= $41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5+3.5}{5}M1$					
Eqn (1) × 2, 14x + 10y = 21.70(2) $9x + 10y = 18.95(3)$ $(2) - (3),$ $5x = 2.75$ $x = 0.55A1$ Subst. $x = 0.55$ into (1), $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$				9x + 10y = 18.95 A1	
Eqn (1) × 2, 14x + 10y = 21.70(2) $9x + 10y = 18.95(3)$ $(2) - (3),$ $5x = 2.75$ $x = 0.55A1$ Subst. $x = 0.55$ into (1), $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$		(b)		7x + 5y = 10.85(1)	
9x + 10y = 18.95 (3) (2) - (3), 5x = 2.75 x = 0.55 A1 Subst. $x = 0.55$ into (1), 7(0.55) + 5y = 10.85 y = 1.40 A1 $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) Total cost = 17(\$0.55) + 23(\$1.40) = \$41.55 A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$				$Eqn(1) \times 2$,	
9x + 10y = 18.95 (3) (2) - (3), 5x = 2.75 x = 0.55 A1 Subst. $x = 0.55$ into (1), 7(0.55) + 5y = 10.85 y = 1.40 A1 $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) Total cost = 17(\$0.55) + 23(\$1.40) = \$41.55 A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$				14x + 10y = 21.70 (2)	
(2) $-(3)$, 5x = 2.75 x = 0.55A1 Subst. $x = 0.55$ into (1), 7(0.55) + 5y = 10.85 y = 1.40A1 $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) Total cost = $17(\$0.55) + 23(\$1.40)$ = \$41.55A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$5x = 2.75$ $x = 0.55A1$ $Subst. x = 0.55 \text{ int } o (1),$ $7(0.55) + 5y = 10.85$ $y = 1.40A1$ $\therefore x = 0.55, y = 1.40$ $(M1 \text{ for any correct part of workings, any method})$ $\text{(c)} \qquad Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55A1$ $4) \qquad (a) \qquad \frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$					
Subst. $x = 0.55$ int $o(1)$, 7(0.55) + 5y = 10.85 y = 1.40A1 $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) Total cost = $17(\$0.55) + 23(\$1.40)$ = \$41.55A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$				(10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Subst. $x = 0.55$ int $o(1)$, 7(0.55) + 5y = 10.85 y = 1.40A1 $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) Total cost = $17(\$0.55) + 23(\$1.40)$ = \$41.55A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$				x = 0.55 A1	
7(0.55) + 5y = 10.85 y = 1.40A1 $\therefore x = 0.55, y = 1.40$ (M1 for any correct part of workings, any method) (c) Total cost = 17(\$0.55) + 23(\$1.40) = \$41.55A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$					
y = 1.40				Section with the section of the sect	
				3 tono 8	
(M) for any correct part of workings, any method) (c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ $= \$41.55 A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$				20 0000	
(c) $Total \cos t = 17(\$0.55) + 23(\$1.40)$ = \$41.55A1 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$					
$= \$41.55A1$ 4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5}M1$		(c)		Total $\cos t = 17(\$0.55) + 23(\$1.40)$	-
4) (a) $\frac{AB}{AQ} = \frac{AC}{AP}$ $\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$		(6)		10 m	
$\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$	-			- \$41.55 · A1	-
$\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$	4)	(a)		AB AC	-
$\frac{AB}{3.5} = \frac{6.5 + 3.5}{5} M1$				$\overline{AQ} = \overline{AP}$	
1 1 in a					
AB = /cm A				AB = 7 cm A1	

			9	
	(b)		$\sin \angle CAO = \frac{3}{10} M1$	
			∠CAO = 17.4576°	
			$\therefore \angle CAB = 17.5^{\circ} A1$	
	(c)	+	Let the shortest distance be BX.	+
			Method 1 Method 2	
			$\frac{1}{2} \times BX \times 10 = \frac{1}{2} \times 7 \times 3 M1$ $\sin 17.4576 = \frac{BX}{7} M1$	
	-		BX = 2.1 cm A1 $BX = 2.1 cm A1$	
5	(a)		$\begin{vmatrix} \frac{1}{x+2} + \frac{3x-2}{3x^2 + 4x - 4} - \frac{3}{4 - x^2} \\ = \frac{1}{x+2} + \frac{3x-2}{(3x-2)(x+2)} - \frac{3}{(2-x)(2+x)} M1 \end{vmatrix}$	
			$= \frac{1}{x+2} + \frac{1}{x+2} - \frac{3}{(2-x)(2+x)}$ $= \frac{2}{x+2} - \frac{3}{(2-x)(2+x)}$ $= \frac{2(2-x)-3}{(2-x)(2+x)}M1$	
			$= \frac{4 - 2x - 3}{(2 - x)(2 + x)}$ $= \frac{1 - 2x}{(2 - x)(2 + x)} A1$	
	(b)		$F = \frac{k}{d^2}$, where k is a constant	+
			$36 = \frac{k}{r^2}$ $k = 36r^2 M1$ $New F = \frac{36r^2}{(2r)^2}$	
			$= \frac{36r^2}{4r^2}$ $= 9 M1$	
6	(a)			+
	(b)		Largest possible value of $x = 12 - A1$ 7+6+11=12+7+ x MI	+
			x = 5 A1	

. .

	T.,	_	$\frac{10}{3y+15+4y+2y-20+y+15=360 M1}$
7	(a)		
			10y = 350
			y = 35 A1
	(b)		$Probability = \frac{5(35) + 15}{360}$
			360
			$=\frac{19}{36}$ 41
8	(2)		
0	(a)		k = 12 A1
	(b)		$Mean = \frac{200(15) + 240(50) + 280(23) + 320(12)}{100} M1$
			$=\frac{25280}{100}$
			=\$252.80 $A1$
	(c)		D 1 1 23 + 12
			$Probability = \frac{23+12}{100}$
			$=\frac{7}{20}A1$
9	(a)		$\pi^{-2} = 201 M1$
			r = 7.99877
			$\approx 8.00 cm A1$
	(b)		$\frac{1}{3}\pi(7.99877)^2h = 662 M1$
			h = 9.8806
			$\approx 9.88 cm M1$
	(c)		
	(0)		$Volume = \left(\frac{1}{2} \times \frac{4}{3} \times \pi \times 7.99877^{-3}\right) + \left(\pi \times 7.99877^{-2} \times 20\right) - 662 M1$
			= 4429.8379
			$\approx 4430cm^3$
			$Mass = 4429.8379 \times 0.5 M1$
			= 2214.91895
	10		$\approx 2215g A1$
	(d)		

	Slantheight of cone = $\sqrt{9.8806^2 - 7.99877^2}$ = 9.0345cmM1 Total surfacearea = 251 + $(2 \times \pi \times 7.99877 \times 20)$ + $(\pi \times 7.99877 \times 9.035)$ M1 = 1483.19cm ² A1
10	Graph

1 ÷ .

Name:	Index Number:	Class:

HUA YI SECONDARY SCHOOL

2E

End-of-Year Examination 2016

2E

Mathematics

Paper 1

10 October 2016

1 h 30 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to 1 decimal place. For , use either your calculator value or 3.142, unless the question requires the answer in terms of .

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 10 printed pages including the cover page.

© HYSS 2016

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

1. Solve the following simultaneous equations.

For Examiner's Use

$$3x - 4y = 30 --- (1)$$

$$7y = 2x - 33 - - (2)$$

Answer[3]

- 2. Given that m is inversely proportional to $(n-2)^2$, and that m=-2 when n=5. Find
 - (a) an equation involving m and n.
 - (b) the value(s) of *n* when $m = -4\frac{1}{2}$.

- 3. Expand and simplify the following.
 - (a) (3p-7q)(2p+5q)
 - **(b)** $2(3m-4)^2$
 - (c) $(x-2)(x+2)(x^2+4)$

(a) [2]	(0)																			Г	7	٦
	(a)		•	•					•	•	•	•	•	•	•	•	•	•	•	L	4	J

- 4. Factorise the following completely.
 - (a) $2m^2 + 5mn 3n^2$
 - **(b)** px py + qy qx

- (a)[2]
- (b)[2]

5. In the figure shown below, AB // CD.

- (a) Name a pair of similar triangles.
- (b) Find the value of x and y.

(a)																1	1	L	

For Examiner's Use

- 6. Map A is drawn to a scale of 1:60 000.
 - (a) Find the distance between 2 towns on the map if the actual distance between the 2 towns is 12.6 km.
 - (b) A lake on the map has an area of 3.7 cm². Find the actual area of the lake in km².

(a)[1		
------	---	--	--

7. Given that $\sqrt{\frac{z-y}{y}} = \frac{1}{x}$, express y in terms of x and z.

Answer[3]

8. In triangle ABC, AB = 15 cm, BC = 8 cm and AC = 17 cm.

- (a) Explain why triangle ABC is a right angle triangle.
- (b) BA is produced to D and AD = 5 cm. Find the length of DC.
- (c) Find $\angle DAC$.

(a) [2] (b)[2] (c)[2]

9. The iron solid is made up of a hemisphere joined to a cylinder with a radius of 6 cm and a height of 10 cm.

Calculate

- (a) the volume of the solid,
- (b) the surface area of the solid.

(a)[3	3]
-------	----

- 10. A box contains 30 balls, of which 14 are yellow, 8 are green and the rest are blue. A ball is drawn at random from the box.
 - (a) Find the probability that the ball is yellow.
 - (b) Find the probability that the ball is either blue or green.
 - (c) Find the number of yellow balls that need to be removed so that the probability of drawing a yellow ball is $\frac{1}{3}$.

11. The dot diagram below shows the weight of 30 boxes.

- (a) Write down the modal weight.
- (b) Find the median weight.
- (c) If the standard weight of a box is between 3 kg to 7 kg, find the percentage of the boxes that have standard weight.

(a)[1	(a)																										•					1	
-------	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	---	--

For Examiner's Use

- 12. (a) Solve the inequality $4-3x \ge -15$ and represent its solution on a number line given.
 - (b) State the
 - (i) greatest rational number,
 - (ii) smallest prime number.

	(a))	٠	٠			٠		٠											[2]
<i>(b)</i>	(i)					•														[1]
(b)	(ii)			•						•										[1]]

13. In the diagram, the straight line ABC is parallel to EFG and DB is parallel to FC. It is given that $\angle ABD = 38^{\circ}$ and $\angle DFE = 62^{\circ}$.

Stating your reasons clearly, find

- (a) $\angle BDF$,
- (b) $\angle CFG$.

(a)	[2]
-----	-----

- 14. (a) Given that AD = 6.2 cm and BD = 10.4 cm, construct the quadrilateral ABCD.
 - (b) Construct a line which is equidistant from B and C.
 - (c) Construct another line which is equidistant from AB and BC.
 - (d) A point M is equidistant from B and C, but is nearer to AB than BC. Mark and label the point M.

For
Exammer's
1'sc

- 15. In 2014, the price of a television set is \$1000, which was an increase of 8% from 2013.
 - Find the price of the television set in 2013.
 - Ahmad bought the television set in 2014 and sold it in 2015 for a profit of 5%. Find (b) the selling price of the television.

(a)[2]

(b)[1]

---- END OF PAPER ---

Name:	Index Number:	Class:

HUA YI SECONDARY SCHOOL

2E

End-of-Year Examination 2016

2E

Mathematics

Paper 1

10 October 2016

1 h 30 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Marking Scheme

This document consists of 10 printed pages including the cover page.

© HYSS 2016

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

•

$$3x - 4y = 30 --- (1)$$

$$7v = 2x - 33 - (2)$$

$$3x = 30 + 4y$$

$$x = \frac{30 + 4y}{3}$$
 --- (1b)

Sub (1b) into (2).

[M1 any method]

$$7y = 2\left(\frac{30 + 4y}{3}\right) - 33$$

$$7y = \frac{8y}{3} - 13$$

$$v = -3$$

Sub
$$y = -3$$
 into (1b),

$$x = 6$$

Inswer[3]

- 2. Given that m is inversely proportional to $(n-2)^2$, and that m=-2 when n=5. Find
 - (a) an equation involving m and n.
 - (b) the value(s) of *n* when $m = -4\frac{1}{2}$.

(a)
$$m = \frac{k}{(n-2)^2}$$

$$-2 = \frac{k}{(5-2)^2}$$

$$k = -18$$

$$m = \frac{-18}{(n-2)^2}$$
 [A1]

(b)
$$-4\frac{1}{2} = \frac{-18}{(n-2)^2}$$

$$(n-2)^2 = 4$$
 [M1]

$$n-2 = -2$$
 or 2

$$n = 0$$
 or 4

- 3. Expand and simplify the following.
 - (a) (3p-7q)(2p+5q)
 - (b) $2(3m-4)^2$
 - (c) $(x-2)(x+2)(x^2+4)$
 - (a) $6p^2 + 15pq 14pq 35q^2$ [M1] = $6p^2 + pq - 35q^2$ [A1]
 - (b) $2(9m^2 24m + 16)$ [M1]
 - (b) $2(9m^2 24m + 16)$ [M1] = $18m^2 - 48m + 32$ [A1]
 - (c) $(x^2 4)(x^2 + 4)$ [M1] = $x^4 - 16$ [A1]

- (a)[2]
- (b)[2]
- (c)[2]

- 4. Factorise the following completely.
 - (a) $2m^2 + 5mn 3n^2$
 - (b) px py + qy qx
 - (a) $2m n \mid -mn$ $\frac{m + 3n \mid 6mn}{2m^2 - 3n^2 \mid 5mn}$ [M1]
 - (2m-n)(m+3n) [A1]
 - (b) p(x-y) + q(y-x)= p(x-y) - q(x-y) [M1] = (p-q)(x-y) [A1]

- (a)[2]
- (b)[2]

- (a) Name a pair of similar triangles.
- (b) Find the value of x and y.
- (a) $\triangle ECD$ and $\triangle EBA$ [A1]
- (b) x = 3, y = 15 [A1,A1]

(a)																1	1	ı
																٠.		,

- 6. Map A is drawn to a scale of 1:60 000.
 - (a) Find the distance between 2 towns on the map if the actual distance between the 2 towns is 12.6 km.
 - (b) A lake on the map has an area of 3.7 cm². Find the actual area of the lake in km².

(a) map distance =
$$\frac{1260000}{60000}$$

(b) Area scale =
$$1 \text{ cm}^2 : 0.36 \text{ km}^2$$
 [M1]

Actual area =
$$3.7 \times 0.36$$

= 1.332 km^2 [A

7. Given that $\sqrt{\frac{z-y}{y}} = \frac{1}{x}$, express y in terms of x and z.

$$\frac{z-y}{y} = \frac{1}{x^2}$$
 [M1]

$$y = x^2$$

$$zx^2 - yx^2 = y$$

$$zx^2 = yx^2 + y$$

$$y(x^2 + 1) = zx^2$$
 [M1]

$$y = \frac{zx^2}{x^2 + 1}$$
 [A1]

Answer[3]

8. In triangle ABC, AB = 15 cm, BC = 8 cm and AC = 17 cm.

- (a) Explain why triangle ABC is a right angle triangle.
- (b) BA is produced to D and AD = 5 cm. Find the length of DC.
- (c) Find $\angle DAC$.

(a)
$$AC^2 = 17^2 = 289$$

 $AB^2 + BC^2 = 15^2 + 8^2 = 289$

[M1]

Since $AC^2 = AB^2 + BC^2$, by pythagoras thereom, triangle ABC is a right angle triangle [A1]

(b)
$$DC^2 = 20^2 + 8^2$$
 [M1]
 $DC = 21.5$ cm [A1]

(c)
$$\angle CAB = \sin^{-1}(\frac{8}{17})$$

= 28.072° [M1]
 $\angle DAC = 180^{\circ} - 28.072^{\circ}$
= 151.9° [A1]

(a)	Answer	in	the	spaces	provided	[2]

9. The iron solid is made up of a hemisphere joined to a cylinder with a radius of 6 cm and a height of 10 cm.

Calculate

- (a) the volume of the solid,
- (b) the surface area of the solid.

(a) Vol =
$$\frac{2}{3}\pi(6^3) + \pi(6^2)(10)$$
 [M1,M1]
= 1580 cm³ (3sf) [A1]

(b) Surface area = $2\pi(6^2) + 2\pi(6)(10) + \pi(6^2)$ [M1 for hemisphere, M1 for curved = 716 cm² (3sf) [A1] surface]

For Examiner's Use

- 10. A box contains 30 balls, of which 14 are yellow, 8 are green and the rest are blue. A ball is drawn at random from the box.
 - (a) Find the probability that the ball is yellow.
 - (b) Find the probability that the ball is either blue or green.
 - (c) Find the number of yellow balls that need to be removed so that the probability of drawing a yellow ball is $\frac{1}{3}$.
 - (a) $\frac{7}{15}$ [B1]
 - (b) $\frac{8}{15}$ [B1]
 - (c) 2 units 16 balls 1 unit – 8 balls Number to be removed = 6 [B1]

11. The dot diagram below shows the weight of 30 boxes.

- (a) Write down the modal weight.
- (b) Find the median weight.
- (c) If the standard weight of a box is between 3 kg to 7 kg, find the percentage of the boxes that have standard weight.
- (a) 6 kg [B1]
- (b) 6 kg [B1]
- (c) $\frac{18}{30} \times 100 = 60\%$ [A1]

(a)																									ſ	1	1
1/	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	*	٠	•	*		•	٠		- 1		•	

- 12. (a) Solve the inequality $4-3x \ge -15$ and represent its solution on a number line given.
 - (b) State the
 - (i) greatest rational number.
 - (ii) smallest prime number.

- (b)(i) $\frac{19}{3}$ [B1]
 - (ii) 2 [B1]

13. In the diagram, the straight line ABC is parallel to EFG and DB is parallel to FC. It is given that $\angle ABD = 38^{\circ}$ and $\angle DFE = 62^{\circ}$.

Stating your reasons clearly, find

- (a) $\angle BDF$,
- (b) $\angle CFG$.

(a)
$$\angle BDF = 38^{\circ} + 62^{\circ}$$
 [M1]
= 100° [A1] (alt \angle)

(b)
$$\angle CFG = 38^{\circ}$$
 [B1] (corres. \angle)

- Given that AD = 6.2 cm and BD = 10.4 cm, construct the quadrilateral ABCD. 14. (a)
 - Construct a line which is equidistant from B and C. (b)
 - Construct another line which is equidistant from AB and BC. (c)
 - A point M is equidistant from B and C, but is nearer to AB than BC. Mark and label the (d) point M.

- (a) Answer in the spaces provided [2]
- (b) Answer in the spaces provided [1]
- (c) Answer in the spaces provided [1]
- (d) Answer in the spaces provided [1]

Fur Examiner

- 15. In 2014, the price of a television set is \$1000, which was an increase of 8% from 2013.
 - (a) Find the price of the television set in 2013.
 - (b) Ahmad bought the television set in 2014 and sold it in 2015 for a profit of 5%. Find the selling price of the television.

(a) price in
$$2013 = \frac{1000}{108} \times 100$$
 [M1]
= \$925.93 [A1]

(b) selling price =
$$\frac{1000}{100} \times 105$$

= \$1050 [A1].

(a)[2]	(a)							•																								[2	2	
--------	-----	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---	--

---- END OF PAPER ---

Marsiling Secondary School

End-of-Year Examination 2016

Subject:	Mathematics Paper 1	Level:	Sec 2	Stream:	Express
Date:	14 October 2016	Duration:	1 hour	30 minute	es
Name:		Index No:		Class:	
Additional Mate	erial: NIL				

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on the cover page.
Write in dark blue or black ink in the spaces provided on the Question Paper.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

Calculator should be used where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

Setter: Mr Phua Kian Wee

This question paper consists of 14 printed pages, including the cover page.

Mathematical Formulae

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3} \pi r^3$

Answer all the questions.

1	(a)	Calculate $\frac{5 + \sqrt{99 - 3 \times (-2)}}{3 + \pi}$. Write down the first five digits on your calculator display.
		Answer (a)[1]
	(b)	Write your answer to part (a) correct to 3 decimal places.
		Answer (b) [1]
2		number of students who sat for the Primary School Leaving Examination in 2014 42 300 when rounded off to the nearest hundred.
	Writ	e down
	(a)	the least possible value of the number of students,
		Answer (a)[1]
	(b)	the greatest possible value of the number of students.
		Answer (b) [1]
	exter	size of each interior angle of a regular polygon is three times the size of each nior angle. the number of sides that the polygon has.

4 (a) Express 504 as the product of its prime factors.

Answer (a) ..

[1]

(b) Find the greatest integer that will divide both 504 and 630 exactly.

Answer (b)

[1]

(c) Find the smallest positive integer k such that $\frac{504}{k}$ is a square number.

NG MORROSCO KANDAGAN NG GRANDON AND RESERVOICES

Answer (c) k

[1]

5 Write as a single fraction in its simplest form

(a)
$$\frac{5x-1}{4} + \frac{x+2}{3}$$
,

Answer (a)

(b)
$$\frac{7x}{x^2-9} + \frac{4}{x+3}$$
.

- A metal pipe is 35 cm long.

 Nigel cuts the pipe into two parts so that the ratio of the lengths is 5:2.
 - (a) Calculate the difference in length between the two parts of the pipe.

Answer	(a)	 cm	[2]
	,		

Nigel cuts a certain length of pipe, x cm, from each of the two parts on the pipe. The ratio of the remaining lengths is 6:1.

Calculate the value of x.

Answer (b)
$$x = \dots$$
 [2]

Joseph bought an oil painting for \$950.

He sold it five years later for a profit of 120% of the cost price.

Calculate the selling price.

8 The fastest speed attained by a car powered by biogas was 364.6 km/h.

Convert 364.6 km/h into m/s.
Give your answer correct to three significant figures.

Answer	 	m/s	[2]
11110 11 01	 ** *** *** *** ***		[-]

9 It is given that $y = \frac{x-2}{x}$

Express x in terms of y.

Expand and simplify $(5x-3)^2$.

Answer [2]

11 (a) Factorise 6a + 3ay - 4b - 2by.

Answer (a) ... [2]

(b) Factorise fully $6x^3 - 27x^2 + 30x$.

Answer (b)

[2]

12 Triangle PQR is isoscèles with PQ = PR. The angles are as shown on the diagram.

Write down two simultaneous equations, in terms of x and y, to represent this information

Answer (a) ...

.. [2]

(b) Solve these two equations to find the value of x and the value of y.

examples $Answer(b) x = \dots$

 $y = \dots \dots \dots \dots \dots [3]$

- 13 f is directly proportional to the square root of T. When f = 8, T = 16.
 - (a) Find an equation connecting f and T.

Answer (a) [2]

(b) Find the value of f when this value of T is halved.

Answer (b) [2]

50 workers took 6 hours to clean up the National Stadium after the National Day Parade.

How many more workers are needed if they need to clean up the stadium in 4 hours?

- 15 $\xi = \{ \text{ integers } x : 0 \le x < 10 \} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$ $A = \{ \text{ prime numbers } \} = \{ 2^{3}, 5 \}$ multiples of $\{ 3 \}$
 - (a) List all the elements in $A \cap B$.

Answer (a) [1]

(b) Find $n(A' \cup B)$.

Answer (b) [1]

(16) On the Venn diagram, shade the region which represents $(P \cup Q)'$.

[1]

A class of 14 girls and 26 boys took a quiz.
The mean mark for the girls was 27.
The mean mark for the boys was 26.5.

Find the mean mark for the whole class.

Answer

[2]

18	Oı	ne solution	of the equation x^2 +	bx - 6 = 0), where	bisac	onstant,	is $x = -2$.	
	(a)	Find the	value of b.						
	(b)	Hence	, find the second solut					**********************	. [1]
			ė.	Answer (b) x		*******	[1]]
19	Th	e table-bel	low summarises the nu	ımber of t	watches	that a gr	oup of s	students have	
			Number of watches	0	1	2	3]	
			Frequency	2	7	х	5		
	(a)	Write o	down the largest possib	ole value (of x if th	e mode	is 1.		
			×	Answe	er (a) x	=			[1]
. ((b) W	rite down	the value of x if the n	nedian is	1.5.			2.	
				Answe	er (b) x ₌				[1]

Marsiling Secondary School

End-of-Year Examination 2016

Subject:

Mathematics Paper 1

Levei:

Sec 2 S

Stream: E

Express

Date:

14 October 2016

Duration:

1 hour 30 minutes

Name:

MARKING. S.CH.EME

Index No:

Class:

Additional Material: NIL

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on the cover page.

Write in dark blue or black ink in the spaces provided on the Question Paper.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

Calculator should be used where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

TOTAL 60

Setter: Mr Phua Kian Wee

This question paper consists of 14 printed pages, including the cover page.

.

.

Mathematical Formulae

Mensuration

Curved surface area of a cone = $\pi r!$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

BI

Answer all the questions.

1	(a)	Calculate	$5+\sqrt{99-3\times(-2)}$
1	(4)	Cajourate	$3+\pi$

Write down the first five digits on your calculator display.

Write your answer to part (a) correct to 3 decimal places.

The number of students who sat for the Primary School Leaving Examination in 2014 2 was 42 300 when rounded off to the nearest hundred.

Write down

the least possible value of the number of students,

the greatest possible value of the number of students.

The size of each interior angle of a regular polygon is three times the size of each exterior angle.

Find the number of sides that the polygon has.

$$\frac{(n-2)\times 180^{\circ}}{n}=3\left(\frac{360^{\circ}}{n}\right)$$

et
$$x$$
 be the size of each ext. \angle or $(n-2) \times 180^\circ = 1080^\circ$
 $3x + x = |80^\circ| [Mi]$
 $n-2 = \frac{1080^\circ}{180^\circ}$

$$3x + x = 180^{\circ}$$
 [MI]

$$N-5 = \frac{180_{\circ}}{1080}$$

$$=\frac{360^{\circ}}{45^{\circ}}$$

Accept gress-and-chicale

4 (a) Express 504 as the product of its prime factors.

Answer (a)
$$2^3 \times 3^2 \times 7$$
 [1]

[BI]

(b) Find the greatest integer that will divide both 504 and 630 exactly.

$$HCF = 2 \times 3 \times 3 \times 7$$

= 126

Answer (b) 26

[31]

(c) Find the smallest positive integer k such that $\frac{504}{k}$ is a square number.

$$\frac{2^{3} \times 3^{2} \times 7}{k} = 2^{2} \times 3^{2}$$

$$K = 2 \times 7$$

$$= 14$$

Answer (c)
$$k = \dots$$
 [1]

[BI]

Write as a single fraction in its simplest form

(a)
$$\frac{5x-1}{4} + \frac{x+2}{3}$$
,
 $\frac{3(5x-1)+4(x+2)}{12}$ [M]
$$= \frac{15x-3+4x+8}{12}$$

$$= \frac{19x+5}{12}$$

$$Answer (a) \qquad (2) \qquad (3)$$

$$(b) \frac{7x}{x^{2}-9} + \frac{4}{x+3} \qquad (3) \qquad (2) \qquad$$

Turn Over

- 6 A metal pipe is 35 cm long Nigel cuts the pipe into two parts so that the ratio of the lengths is 5:2.
 - Calculate the difference in length between the two parts of the pipe.

Difference =
$$\frac{35}{7}$$
 $\bar{\chi}$ (5-2) [MI] = 15

TAI

Nigel cuts a certain length of pipe, x cm. from each of the two parts on the pipe. The ratio of the remaining lengths is 6:1.

Calculate the value of
$$x$$
.

Length of langer pipe =
$$\frac{35}{7} \times 5 = 25$$

Length of langer pipe = $\frac{35}{7} \times 1 = 10$
Length of Shorter pipe = $\frac{35}{7} \times 1 = 10$
 $\frac{25-x}{10-x} = \frac{6}{1} \quad \text{[Mi]} \quad 5x = 60-25$
 $= 35$
 $25-x = 6(10-x) = -35$
 $= 60-6x$
Answer (b) $x = \frac{7}{1} =$

TAC !

Joseph bought an oil painting for \$950. He sold it five years later for a profit of 120% of the cost price.

Calculate the selling price.

Profit =
$$\frac{120}{100} \times $950$$
 or $\frac{220}{100} \times 950 [M]

= \$1140 = \$2090

8 The fastest speed attained by a car powered by biogas was 364.6 km/h.

Convert 364.6 km/h into m/s.

Give your answer correct to three significant figures.

9 It is given that $y = \frac{x-2}{x}$.

Express x in terms of y.

$$xy = x - 2 \quad \text{EMIJ}$$

$$xy - x = -2 \quad \text{or} \quad 2 = x - xy$$

$$x(y - i) = -2 \quad 2 = x(1 - y)$$

$$x = \frac{-2}{y - i} \quad \text{EAIJ}$$

$$x = \frac{2}{1 - y} \quad \text{EAIJ}$$

Answer
$$x = \frac{2}{1-y}$$
 [2]

$$\alpha = \frac{-2}{9-1}$$
 [Turn Over

[AL]

10 Expand and simplify
$$(5x-3)^2$$
.
 $(5x-3)(5x-3)$ or
 $= 25x^2 - 15x - 15x + 9$ [MI] $(5x)^2 - 1(5x)(3) + 3^2$ [AI]
 $= 25x^2 - 30x + 9$

Answer
$$25x^2 - 30x + 9$$
 [2] [AC]

11 (a) Factorise
$$6a + 3ay - 4b - 2by$$
.

$$6a - 4b + 3ay - 2by$$

$$= 2(3a - 2b) + y(3a - 2b) TMI]$$

$$= (3a - 2b)(2+y)$$

Answer (a)
$$(3a-26)(2+y)$$
 [2]

(b) Factorise fully
$$6x^3 - 27x^2 + 30x$$
.

$$3x(2x^{2}-9x+10) \quad \text{Imi}) \quad \sim x(6x-15)(x-3)$$

$$= 3x(2x-5)(x-2) \quad \text{or} \quad x(2x-5)(3x-3)$$

Answer (b)
$$3 \times (2x-5)(x-2)$$
 [2] [A1]

12 Triangle PQR is isosceles with PQ = PR. The angles are as shown on the diagram.

Write down two simultaneous equations, in terms of x and y, to represent this information.

$$y-x = 2x - 80$$
, $y+35+y-x+2x-80 = 180$
 $y = 3x - 80$ $2y+x-45 = 180$
 $2y = 225 - x$

Answer (a)
$$y = 3x - 80$$

 $2y = 225 - x$ [2]

(b) Solve these two equations to find the value of x and the value of y.

$$y = 3x - 80$$

 $2y = 6x - 160$, $2y = 225 - x$
 $6x - 160 = 225 - x$ [m]
 $7x = 385$
 $x = 55$
 $y = 3(55) - 80$

[A]

[BI

CBI

[AI]

- 13 f is directly proportional to the square root of T. When f = 8, T = 16.
 - (a) Find an equation connecting f and T.

$$f = k\sqrt{T}$$

$$8 = k\sqrt{16} \quad [MI]$$

$$= 4k$$

$$k = \frac{e}{4}$$

$$= 1$$

Answer (a) $f = 2\sqrt{T}$

CAU

(b) Find the value of f when this value of T is halved.

New
$$f = 218$$

 ≈ 5.6569 (t. 4d.p.)

Answer (b) 5.6569 (to 4d.p.)

ov 5.66 (to 3s.f.)

50 workers took 6 hours to clean up the National Stadium after the National Day Parade.

How many more workers are needed if they need to clean up the stadium in 4 hours?

Workers hours
$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$50$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

$$75$$

[AI]

15
$$\xi = \{\text{ integers } x : 0 \le x < 10\} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A = \{\text{ prime numbers }\} = \{2, 3, 5, 7\}$$

$$B = \{\text{ multiples of 3}\}$$

$$= \{3, 6, 9\}$$

(a) List all the elements in $A \cap B$.

[81]

(b) Find $n(A \cup B)$. $A' = \{0, 1, 4, 6, 8, 9\}$ $A' \cup B = \{0, 1, 3, 4, 6, 8, 9\}$

Answer (b) [1]

[BI]

[BI]

On the Venn diagram, shade the region which represents $(P \cup Q)^n$.

[1]

A class of 14 girls and 26 boys took a quiz.
The mean mark for the girls was 27.
The mean mark for the boys was 26.5.

Find the mean mark for the whole class.

mean =
$$\frac{27 \times 14 + 26 \times 26.5}{14 + 26}$$
 [m.]
= $\frac{1067}{40}$

26.675

[AI]

26.7 [AO]

or 26 40

Turn Over

- One solution of the equation $x^2 + bx 6 = 0$, where b is a constant, is x = -2.
 - (a) Find the value of b. $(-2)^2 + b(-2) 6 = 0$ -2b - 2 = 0 -2 = 2b b = -1
 - Answer (a) b =
- [B]

(b) Hence, find the second solution of the equation.

$$x^{2}-x-6=0$$
 $(x+2)(x-3)=0$
 $x-3=0$

- Answer (b) x = 3 [1]
- [BJ]
- 19 The table below summarises the number of watches that a group of students have.

Number of watches	0	1	2	3
Frequency	2	7	x	5

(a) Write down the largest possible value of x if the mode is 1.

Answer (a)
$$x = \dots$$
 [1]

[BU]

(b) Write down the value of x if the median is 1.5.

Answer (b)
$$x = ...$$
 [1]

CBIJ