ţ

BEATTY SECONDARY SCHOOL END OF YEAR EXAMINATION 2015

SUBJECT: Mathematics

LEVEL

: Sec 2 Express

PAPER:1

DURATION: 1 hour 15 minutes

SETTER: Mr Lee Chau Loong

DATE

: 5 Oct 2015

	CLASS:	NAME:	REG NO:	
--	--------	-------	---------	--

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

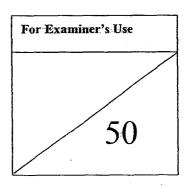
You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.


You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

Answer all the questions

	Expand and simplify $2(2-m)^2-m(5-4m)$.
	- ·
	Anaryan
	Answer:
2	The mean weight of 40 students in a class is 52.6 kilograms. After one student is
	removed from the class, the mean weight decreased to 52.2 kilograms. Find the weight of the student who was removed from the class.
	This is of the state of the sta
	·
	Ann
	. Answer:kş
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator,
3	
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator,
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator,
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator,
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator, the value of a^2+b^2 .
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator,
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator, the value of a^2+b^2 .
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator, the value of a^2+b^2 .
3	Given that $a-b=3$ and $ab=5$, find, without the use of a calculator, the value of a^2+b^2 .

For Examiner Use

8

4	y is inversely proportional	to the square of x .	When $x = 4$,	y = 0.25.
----------	-----------------------------	------------------------	----------------	-----------

(a) Find the values of x when y = 25.

 ϕ (b) Describe the change in y when x is halved.

Answer (b):

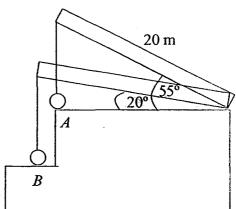
......[1

5 (a) Solve $3x^2 + 7x - 6 = 0$.

(b) Hence state the positive value of y for which $\frac{3}{y^2} + \frac{7}{y} - 6 = 0$.

For niner's Use

6 Factorise completely

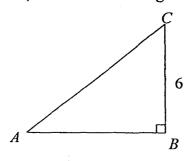

(a) $28x^2 - 343$

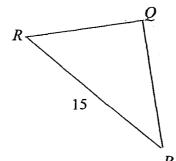
(b) $6a^2 - 3ay - 8y + 16a$

Answer (b): [2]

A crane arm 20 meters long lowers a parcel from A to B. When the parcel is at A, the crane arm makes an angle of 55° with the horizontal. When the parcel is at B, the crane arm makes an angle of 20° with the horizontal.

Find the vertical distance moved by the parcel.

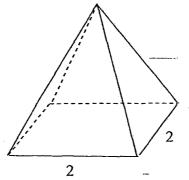

Answer: m [3]


Use

Ì

8

(a) Triangle ABC and triangle PQR are congruent. BC = 6 cm, PR = 15 cm and angle $ABC = 90^{\circ}$.



Find angle PRQ.

Answer (a): [2]

(b) A right pyramid with square base of side 2 cm has a volume of 20 cm³.

Calculate the height of the pyramid.

Answer (b): cm [2]

Turn over

9

or		_
чin	er	's
Ise		

The waiting times, to the nearest minute, of twelve customers queuing at the cashier of a supermarket are recorded as a list:

4, 3, 4, 2, 5, 3, 4, 1, 2, 6, 3, 4

(a) Complete the dot diagram.

Answer (a):

[1]

→time (minutes)

For Examiner

Use

5

3

2

(b) Find the median.

Answer (b): minutes [1]

(c) Find the mode.

Answer (c): minutes [1]

(d) The supermarket manager claims that the distribution of waiting times is evenly distributed. Do you agree with his claim? Give a reason for your answer.

Answer (d): I agree/disagree because

.....

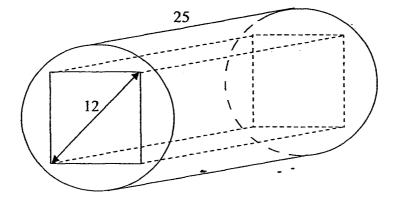
ţ

10	Each letter of the word "PIONEERS" is written on an identical card. The cards are then placed inside a box. Rainee picks a card at random from the box.	E
	Find the probability that	
	(a) the letter P is chosen,	
.*•	Answer (a):[1]	
	(b) the letter-A is chosen,	
	Answer (b):[1]	
	(c) the letter E or S is chosen,	
	Answer (c):[1]	
	(d) a letter with a horizontal line of symmetry is chosen.	
	•	
	Answer (d):[1]	
2.		

or viner's 'se

11 Solve the following equations.

(a)
$$\frac{x+3}{7} - \frac{4x-5}{6} = x$$


For Examiner Use

•

(b)
$$\frac{y-1}{y+2} = \frac{y}{3y+2}$$

ķ

A solid cylinder of base radius 8 cm and length 25 cm has a square cross section of diagonal 12 cm removed from the cylinder, as shown in the diagram.

Find the total surface area of the remaining solid.

Answer: cm² [5]

-or niner's 'Ise The Day Safari charges \$x for an adult ticket and \$y for a child ticket.

The Lee family consists of 2 adults and 3 children. They paid a total of \$49.

The Lim family consists of 3 adults and 1 child. They paid a total of \$56.

Write down two equations in terms of x and y.

Hence find the value of x and of y.

For Examiner Use

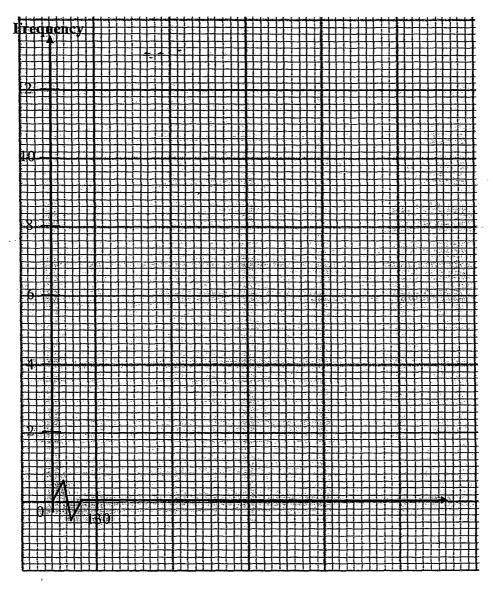
14 Thomas measured the heights of 30 students in his class. The table below shows the results.

Heights (cm)	Frequency
130 < h ≤140	6
140 < h ≤150	k
150 < h ≤ 160	8
160 < h ≤170	5

Examiner Use

or iner's 'se

14


(a) Find the value of k.

(b) On the grid below, draw the histogram representing the data. Use a scale of 2 cm to 10 cm on the horizontal h-axis.

Use a scale of 2 cm to 10 cm on the horizontal h-axis.

Answer (b):

[2]

(c) Give one reason	why a	histogram is	better	than a	pie	chart
---------------------	-------	--------------	--------	--------	-----	-------

Answer (c):	 •		• • • • • • •
. ,			

ķ

Answer Key

- 1. 14.4 km/h
- $2(a) 30^{\circ}$ (b) 20° (c) 130°
- 3(a) 120° (b) 13 cm
- 4(a) $x = \frac{y}{2}$ (b) m + n = 5q
- 5(a) a = -1 (b) c = -2
- 6. $x = 6\frac{2}{3}$ cm
- 7(a) 70°
- (b) 70°
- (c) 110°
- 8(a) 5x+5 (b) 6x-3 (c) $\frac{4x+3}{6}$
- 9(a) 13.3 cm (b) 11.9 cm
- 10(a) 14.7 km (b) 6.75 kg
- 11(a) a = 20 (b) b = 5.5 (c) c = 1
- 11(4) 4 20 (0)
- 12(a) 2x (b) x + 3 (c) x = 7
- 13(a) 4.47 m (b) 12 cm (c) 19.2 cm

Solution and Mark Scheme

1.	$2(2-m)^2-m(5-4m)$	
	$=2(4-4m+m^2)-5m+4m^2$	M1
	$=8-8m+2m^2-5m+4m^2$	
	$=6m^2-13m+8$	A1
2.	$40 \times 52.6 - 39 \times 52.2 = 2104 - 2035.8 = 68.2 \text{ kg}$	M1, A1
3.	$a^2 + b^2 = (a - b)^2 + 2ab$	
	$=3^2+2(5)$	M1
	= 19	A1
4(a)	$y = \frac{k}{x^2}$	
	, a	
	When $x = 4$ and $y = 0.25$,	
	$0.25 = \frac{k}{4^2}$	M1
	k=4	A 1
	Hence $y = \frac{4}{x^2}$ or $yx^2 = 4$	A1
	When $y = 25$,	
	$25 = \frac{4}{x^2}$ $x^2 = \frac{4}{25}$	
	$x^2 = \frac{4}{}$	
	25	
	$x = -\frac{2}{5} \text{ or } \frac{2}{5}$	A1
4(b)	When x is halved, the value of y is increased 4 times.	B1
	Also accept: the value of y is multiplied by 4.	
5(a)	$3x^2 + 7x - 6 = 0$	
	(3x-2)(x+3)=0	M1
	$x = \frac{2}{3}$ or $x = -3$	A. 1
4	3	A1
5(b)	$\frac{1}{y} = \frac{2}{3} \implies y = 1\frac{1}{2}$	
	$\frac{-3}{y}$ $\frac{y-1}{2}$	B1

6(a)	$28x^2 - 343 = 7(4x^2 - 49)$	M1
	=7(2x-7)(2x+7)	A1
6(b)	$6a^{2}-3ay-8y+16a=3a(2a-y)-8(y-2a)$	M1
	=3a(2a-y)+8(2a-y)	,
	=(3a+8)(2a-y)	A1
7	$\sin 55^{\circ} = \frac{x}{20} \implies x = 20\sin 55^{\circ} = 16.383$	M1
	$\sin 20^{\circ} = \frac{y}{20} \implies y = 20 \sin 20^{\circ} = 6.8404$	M1
• *	16.383 - 6.8404 = 9.54 m (3 sf)	A1
8(a)	$\cos \angle PRQ = \frac{6}{15}$	M1
	$\angle PRQ = \cos^{-1}\left(\frac{6}{15}\right) = 66.4^{\circ} \text{ (1 dp)}$	A1
8(b)	Set $\frac{1}{3}(2^2)h = 20$	M1
	$h = \frac{3 \times 20}{2^2} = 15 \text{ cm}$	A1
9(a)		B1 – all correct
	1 2 3 4 5 6	·
9(b)	$\frac{3+4}{2} = 3.5$	B1
9(c)	4	Bl
9(d)	Agree, because there are more dots from 1 to 3 minutes as compared to 5 to 6 minutes. Accept: The number of dots at 2 and 5 minutes are not equal. The number of dots at 3 and 4 minutes are not equal.	B1

à

Ì

10(a)	1	B1
	$\frac{1}{8}$	
10(1)		Di
10(b)	0	Bl
10(c)	3	B1
	$\frac{3}{8}$	
10(4)	The letters with horizontal line of grown stry are L.C.E.	B1
10(d)	The letters with horizontal line of symmetry are I, O, E	B1 •
	$\left \frac{4}{8}\right = \frac{1}{2}$	
11(a)	$\frac{x+3}{7} - \frac{4x-5}{6} = x$	
	$\frac{1}{6(x+3)-7(4x-5)}$	
	$\frac{6(x+3)-7(4x-5)}{42} = x$	
	6x + 18 - 28x + 35 = 42x	M1
	-22x+53=42x	
	64x = 53	
	$x = \frac{53}{64}$	A1
11(b)	· y-1 _ y	
	$\frac{y-1}{y+2} = \frac{y}{3y+2}$	
	(y-1)(3y+2) = y(y+2)	
	$3y^2 - y - 2 = y^2 + 2y$	M1
	$2y^2 - 3y - 2 = 0$	
हिल्लाक क्रान्त्र रहे	(2y+1)(y-2)=0	M1
	$y = -\frac{1}{2}$ or $y = 2$	Al
** Chestro	2	711
- Augusta		
自含要性		

12	Curved surface area = $2\pi (8)(25) = 400\pi$ or 1256.6 (5 sf)	B1
	Let side of square be x cm. $x^2 + x^2 = 12^2$	
	$2x^2 = 144$ $x^2 = 72$	
	$x = \sqrt{72}$ or 8.4853 (5 sf)	M1
	Two ends = $2\left[\pi(8)^2 - \left(\sqrt{72}\right)^2\right] = 2\left[64\pi - 72\right] = 128\pi - 144$ or 258.12 (5.sf)	M1(√)
	Four rectangles = $4\left[\sqrt{72} \times 25\right] = 100\sqrt{72}$ or 848.53 (5 sf)	M1(√)
	Total = $400\pi + 128\pi - 144 + 100\sqrt{72}$ = 2363.29 = $2360 \text{ cm}^2 (3 \text{ sf})$	A1
13	$2x+3y=49$ $3x+y=56 \implies y=56-3x$	B1 – for both equations
	Sub $y = 56 - 3x$ into $2x + 3y = 49$	
	2x+3(56-3x)=49 $2x+168-9x=49$	M1(√)
	-7x = -119 $ x = 17$	Al
	Then, $y = 56 - 3(17) = 5$	Al
14(a)	k = 30 - 6 - 8 - 5 = 11	B1

		
14(b)		B1 – horizontal axis scale correct, and labelled B1 – all bars correct height
	A CONTROL OF THE CONT	
14(c)	A histogram is better than a pie chart because the heights of	B1
`´	the histogram represents the frequencies and hence the	
	frequencies can be easily compared at a glance (while the	
	sectors of a pie chart are less easy to compare.)	
	occording to a pro-construction carry to compare.	

ì

ţ

ķ

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2015

SUBJECT: Mathematics

LEVEL

: Sec 2 Express

PAPER: 2

DURATION: 1 hour 30 minutes

SETTER: Mr Ng Choon Cheng

DATE

: 08 Oct 2015

CLASS: NAME: RE	G NO :
-----------------	--------

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

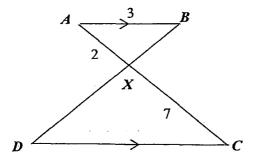
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to

three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50.


1 The masses, measured to the nearest kilogram, of 20 boys are given below.

57	45	42	48	58
51	45	50	52	57
57	45	46	57	53
44	48	46	43	41

- (a) Represent the above data in a split stem-and-leaf diagram. [3]
- (b) Find the mean mass. [2]
- 2 (a) An area of 4 cm² on a map represents an actual area of 0.36 km². Calculate
 - (i) the actual area in square kilometres represented by 80 cm² on the map, [1]
 - (ii) the scale of the map in the form 1:n, [2]
 - (iii) the distance on the map in centimetres which represents an actual distance of 6 km.

Š

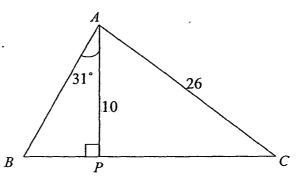
(b) In the diagram below, triangle ABX is similar to triangle CDX.

Given that AB = 3 cm, AX = 2 cm and CX = 7 cm, find

(i) the length of CD, [2]

(ii) the ratio of DX:DB. [1]

Ì


3 (a) Simplify
$$\frac{25xz^2}{3y} \div \frac{5yz^2}{6y^2}$$
. [2]

(b) Express as a single fraction in its simplest form

$$\frac{6x}{4x^2 - 1} - \frac{3}{4x - 2}$$
 [3]

(c) Given that
$$\frac{p}{r} = \sqrt{\frac{q}{3} + p^2}$$
, express p in terms of q and r. [3]

- 4 (a) Using the second Causeway at Tuas, Mr Ng travelled a distance of 600 km from Singapore to Penang in a time of t hours. Write down the average speed of the journey, in km/h, in terms of t. [1]
 - (b) If Mr Ng reduced his average speed by 5 km/h, he will take 30 minutes more to complete the same journey.
 Form an equation in t and show that it reduces to 2t² + t 120 = 0.
 - (c) Solve the equation $2t^2 + t 120 = 0$. [2]
 - (d) Find the original average speed. [1]
- 5 In the diagram, AP is perpendicular to BC.

Given that AP = 10 cm, AC = 26 cm and $\angle BAP = 31^{\circ}$, calculate

(a)
$$\angle PAC$$
, [2]

(c)
$$PB$$
, [2]

(d) the shortest distance from P to the line AC. [2]

6 Diagram I shows a hollow cone partially filled with water to a height of 24 cm. The cone has a height of 30 cm and a radius of 5 cm.

Formula: Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

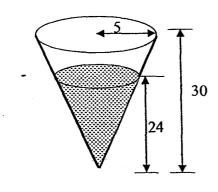


Diagram I

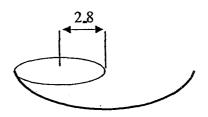


Diagram II

(a) Show that the radius of the water surface is 4 cm.

[1]

- (b) Find
 - (i) the volume of the water in the cone,

- [1]
- (ii) the area of the inner surface of the cone in contact with the water.
- [2]

The water is poured into hemispherical bowls of radius 2.8 cm as shown in Diagram II.

(c) Find the numbers of bowls that is completely filled with water.

[3]

•

7 Answer the whole of this question on a piece of graph paper.

The variables x and y are connected by the equation $y = 10 - x - x^2$. Some corresponding values of x and y are given in the table below.

х	-4	-3	-2	-1	0	1	2	- 3
у	-2	4	8 -	10	10	8	4	а

(a) Calculate the value of a.

[1]

[3]

- (b) Taking 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph of $y = 10 x x^2$ for $-4 \le x \le 3$.
- (c) Use your graph to find
 - (i) the values of x when y = 6.2,

[2]

(ii) the value of y when x = -1.2.

[1]

(d) Write down the equation of the line of symmetry.

[1]

Ĭ

© One page answer ©

7-2

Qn	Answer	Qn	Answer
		<u> </u>	
1a	ste leaf		
	m		
	4 1 2 3 4		
	4 5 5 5 6 6 8 8		
	5 0 1 2 3		
	5 77778		
~	Key: 4 1 means 41 kg		-
	Key. 4/1 means 41 kg		
1b	Mean = 49.25 kg	5a	$\angle PAC = 67.4^{\circ} \text{ (1 d.p.)}$
		5b	PC = 24 cm
2ai	Actual area = 7.2 km^2	5c	BP = 6.01 cm (3 s.f.)
2aii	1 : 30000	5d	Shortest distance = $9\frac{3}{10}$ cm
			Shortest distance = $9 - cm$
2aiii	Distance on map = 20 cm		
		6	
2bi	CD = 10.5 cm	6bi	volume of the water = 402 cm ²
2bii	7:9	6bii	inner surface in contact with the water
			$= 306 \text{ cm}^2 \qquad (3\text{sf})$
		6c	Number of hemisphere filled = 8
		 	
3a	10x	7a	a=-2
3b	3	7ci	x = -2.51, x = 1.51 (+-0.1)
	2(2x+1)		
3c	$r = + \left[-\frac{qr^2}{} \right]$	7cii	y = 9.8 (+-0.2).
	$p = \pm \sqrt{\frac{q'}{(a)(a-2)}}$, , , , , , , , , , , , , , , , , , , ,
	V (3)(1 - r ²)		
		7d	x = -0.5
4a	$\frac{600}{4}$ km/h		
s water	t. Killy ii		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4b	600 600 _		
v C+ 139	$\frac{600}{1} = \frac{600}{t} - 5 \dots$		
	$t+\frac{1}{2}$		
10	1-75 07 1- 0	 	
4c	t = 7.5 or $t = -8$	_	The parties are the parties and the parties are the parties ar
4d	80 km/h		+

ď

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2015

SUBJECT: Mathematics LEVEL : Sec 2 Express

PAPER : 2 DURATION: 1 hour 30 minutes

SETTER: Mr Ng Choon Cheng DATE: 08 Oct 2015

|--|

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to

three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

1 The masses, measured to the nearest kilogram, of 20 boys are given below.

57	45	42	48	58
51	45	50	52	57
57	45	46	57	53
44	48	46	43	41

(a) Represent the above data in a split stem-and-leaf diagram.

stem	leaf
4	T 2 3 4 5 5 5 6 6 8 8 0 1 2 3
4	5 5 5 6 6 8 8
5	0 1 2 3
5	77778

Key: 4|1 means 41 kg

M1 Correct labelling and Stem and Leaf.

[2m] Stem and leaf for correct splitting

[1m] for Not splitting or split wrongly

[0 out of 2m] for back to back or non logical stem and leaf

(b) Find the mean mass

M1

Mean =
$$985 / 20$$

= 49.25 kg

A1

2 (a) An area of 4 cm² on a map represents an actual area of 0.36 km². Calculate

1

[2]

[3]

(i) the actual area in square kilometres represented by 80 cm² on the map, [1]

Actual area = $0.36 \times 20 = 7.2 \text{ km}^2$

B1

(ii) the scale of the map in the form 1: n,

[2]

[1]

Map: actual

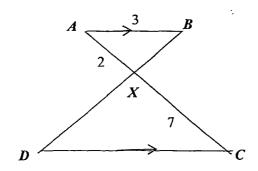
area 4 cm^2 : 0.36 km^2

dist 2 cm: 0.6 km

M1

1 cm: 0.3 km

1:30000


A1

(iii) the distance on the map in centimetres which represents an actual distance of 6 km.

Distance on map =
$$\frac{1}{0.3} \times 6$$

= 20 cm

B1

(b) In the diagram below, triangle ABX is similar to triangle CDX.

Given that AB = 3 cm, AX = 2 cm and CX = 7 cm, find

(i) the length of
$$CD$$
, [2]
$$\frac{2}{7} = \frac{3}{CD}$$

$$CD = \frac{21}{2}$$

$$CD = 10.5 \text{ cm}$$
A1

(ii) the ratio of
$$DX : DB$$
. [1] 7:9

3 (a) Simplify
$$\frac{25xz^2}{3y} \div \frac{5yz^2}{6y^2}$$
. [2]
$$\frac{25xz^2}{3y} \div \frac{5yz^2}{6y^2} = \frac{25xz^2}{3y} \times \frac{6y^2}{5yz^2}$$
 M1
$$= 10x$$
 A1

(b) Express as a single fraction in its simplest form

$$\frac{6x}{4x^{2}-1} - \frac{3}{4x-2}$$

$$\frac{6x}{4x^{2}-1} - \frac{3}{4x-2} = \frac{6x}{(2x-1)(2x+1)} - \frac{3}{2(2x-1)}$$

$$= \frac{2(6x)}{(2x-1)(2x+1)} - \frac{3(2x+1)}{2(2x-1)(2x+1)}$$

$$= \frac{12x-6x-3}{2(2x-1)(2x+1)}$$

$$= \frac{6x-3}{2(2x-1)(2x+1)}$$

$$= \frac{3(2x-1)}{2(2x-1)(2x+1)}$$

$$= \frac{3}{2(2x-1)(2x+1)}$$
A1

[3]

(c) Given that
$$\frac{p}{r} = \sqrt{\frac{q}{3} + p^2}$$
, express p in terms of q and r .

$$\frac{p}{r} = \sqrt{\frac{q}{3} + p^2}$$

$$\left(\frac{p}{r}\right)^2 = \frac{q}{3} + p^2$$
M1 (square)

$$\frac{p^2}{r^2} - p^2 = \frac{q}{3}$$

$$\frac{p^2 - r^2 p^2}{r^2} = \frac{q}{3}$$

$$\frac{p^2 (1 - r^2)}{r^2} = \frac{q}{3}$$
M1 (factorisation)

$$p^2 (1 - r^2) = \frac{qr^2}{3}$$

$$p^2 = \frac{qr^2}{(3)(1 - r^2)}$$
or $p = \pm \sqrt{\frac{qr^2}{(3)(1 - r^2)}}$ A1

Using the second Causeway at Tuas, Mr Ng travelled a distance of 600 km from 4 (a) Singapore to Penang in a time of t hours. Write down the average speed of the journey, in km/h in terms of t.

(a)
$$\frac{600}{t} \text{ km/h}$$

B₁

A1

[1]

ķ

If Mr Ng reduced his average speed by 5 km/h, he will take 30 minutes more to **(b)** complete the same journey.

Form an equation in t and show that it reduces to $2t^2 + t - 120 = 0$. [3]

(b)
$$\frac{600}{t+\frac{1}{2}} = \frac{600}{t} - 5$$
 M1

$$\frac{600}{\left(\frac{2t+1}{2}\right)} = \frac{600-5t}{t}$$

$$\frac{1200}{2t+1} = \frac{600-5t}{t}$$
 M1

$$1200t = (600 - 5t)(2t + 1)$$

$$1200t = 1200t + 600 - 10t^2 - 5t$$

$$10t^2 + 5t - 600 = 0$$

$$2t^2 + t - 120 = 0$$
 A1

[2]

[1]

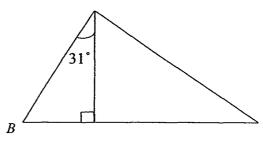
(c) Solve the equation
$$2t^2 + t - 120 = 0$$
.

$$2t^2 + t - 120 = 0$$

$$(2t-15)(t+8) = 0$$

$$t = 7.5$$
 or $t = -8$

When
$$t = 7.5 \, hrs$$


Original Speed =
$$\frac{600}{7.5}$$

$$= 80 \text{ km/h (Only)}$$

BI

5 In the diagram, AP is perpendicular to BC. Given that AP = 10 cm,

AC = 26 cm and $\angle BAP = 31^{\circ}$, calculate

(a)
$$\angle PAC$$
, [2]

$$\cos \angle PAC = \frac{10}{26}$$

M1

$$\angle PAC = 67.380^{\circ}$$

= 67.4° (1 d.p.)

A1

(b)
$$PC$$
, $\tan 67.380 = \frac{PC}{10}$ [2]

 $PC^2 = 26^2 - 10^2$ or $\tan 67.380 = \frac{PC}{10}$ or $\sin 67.380 = \frac{PC}{26}$

M1

$$PC=24$$
 cm

A1

(c)
$$PB$$
, [2]

$$\tan 31^\circ = \frac{BP}{10}$$

M1

$$BP = 6.0086$$

$$= 6.01 \text{ cm}$$
 (3 s.f.)

A1

(d) the shortest distance from
$$P$$
 to the line AC .

[2]

Ì

Area of triangle =
$$\frac{1}{2}$$
 × (24)(10)

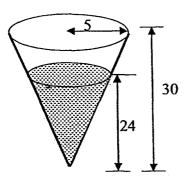
$$= 120$$

Shortest distance =
$$\frac{120 \times 2}{26}$$

M1

$$=9\frac{3}{13}$$
 or 9.230769

$$= 9\frac{3}{13}$$
 or 9.23 cm


A1

6 Diagram I shows a hollow cone partially filled with water to a height of 24 cm. The cone has a height of 30 cm and a radius of 5 cm.

Formula: Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

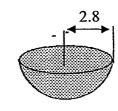


Diagram I

Diagram II

(a) Show that the radius of the water surface is 4 cm.

$$\frac{24}{30} = \frac{r}{5}$$
$$r = 4 \text{ cm}$$

B1

(b) Find

(i) the volume of the water in the container,

[1]

[1]

volume of the water =
$$\frac{1}{3}(\pi)(4^2)(24)$$

= 402.123
= 402 cm^2

B1

(ii) the area of the inner surface of the cone in contact with the water.

[2]

Slanted height =
$$\sqrt{4^2 + 24^2}$$

= $\sqrt{592}$ M1
= 24.331

inner surface in contact with the water

$$= \pi \times 4 \times \sqrt{592}$$

= 305.75
= 306 cm² (3sf)

A1

The water is poured into hemispherical bowls of radius 2.8 cm as shown in Diagram II.

(c) Find the numbers of bowls that is completely filled with water.

[3]

Volume of hemisphere =
$$\frac{2}{3} \times \pi \times 2.8^3$$
 M1
= 45.976

Number of hemisphere filled =
$$\frac{402.123}{45.976}$$
 M1(Follow thro from B(i) and vol)

Answer the whole of this question on a piece of graph paper.

The variables x and y are connected by the equation $y = 10 - x - x^2$. Some corresponding values of x and y are given in the table below.

(a) Given that $y = 10 - x - x^2$, calculate the values of a.

[1]

[1]

ţ

x	-4	-3	-2	-1	0	1	2	3
y	-2	4	8	10	10	8	4	a
	a = -2	2	B1					

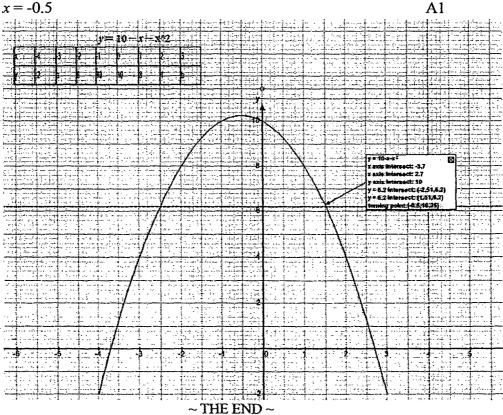
Taking 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 units on the y-axis, draw the graph of $y = 10 - x - x^2$ for $-4 \le x \le 3$. [3]

G1 Correct scale, G1 Correct plot, G1 Smooth graph

(c) Using your graph, find

(i) the value of x when
$$y = 6.2$$
. [2]

x = -2.51, x = 1.51 (+-0.1)


(ii) The value of y when
$$x = -1.2$$
. [1]

y = 9.8 (+-0.2)

44.5 46.4.5

Write down the equation of the line of symmetry of the graph. (d)

A1

Class	Register No	Name

Bukit Merah Secondary School End-of-Year Examination 2015 Secondary 2 Express

 \mathbf{E}

MATHEMATICS

1 Oct 2015

Paper 1

1 hour 15 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, register number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used when appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

**		TOI Examinact 5 CSC		
Calculator Model:	•			
		•		
		•		

For Evaminer's Use

2

Answer all the questions

For
:aminer's
use

1

Use a calculator to evaluate the following correct to the number of decimal places or significant figures required.

For Examiner use

Ĭ

(a)
$$\frac{\sqrt{778.2 + 568}}{\sqrt[3]{834.4}}$$
 [2 decimal places]

(b)
$$(0.14)^3 + \frac{(0.65)^2}{\sqrt{7-1\frac{4}{0}}}$$
 [4 significant figures]

Answer (a)[1]

(b)[1]

For

use

ţ

Given that $2016 = 2^5 \times 3^2 \times 7$ and $3240 = 2^3 \times 3^4 \times 5$, find miner's Examiner the smallest integer that is a multiple of both 2016 and 3240, (a) the smallest possible integer k such that 2016k is a perfect cube. (b) [1] [1] Joseph drives at (2x+5)km/h for 3 hours. He then rested for 1 hour. 3 If his average speed for the whole journey is $\frac{13}{8}x$ km/h, find the value of x. Answer [2]

For

use

4

For xaminer's

4 (a) Expand and simplify the following expression, $50a^2 - (7a - 4b)^2$ For Examiner use

- (b) Factorise the following expressions completely.
 - (i) $64c^2 25d^2$
 - (ii) 32pr 28qr + 21sq 24sp

For miner's use 5

Suppose that 6 cm on a map represents an actual distance of 15 km.

For Examiner use

- (a) Express the scale in the form 1:r.
- (b) The length of an underground tunnel measures 2.8 km.

 Calculate the length of the underground tunnel on the map in cm.
- (c) The area of a town measures 13.4 cm² on the map. Find the actual area of the town in km².

Answer	(a)	•••••	[1]
	(b)	cm	[1]
	(c)	km ²	[2]

For aminer's use

Solve each of the following equations.

For Examiner use

Ř

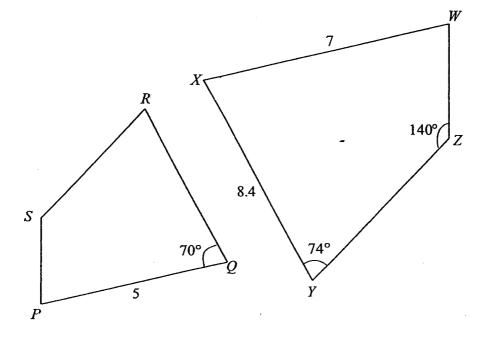
- (a) $6x^2 + 18x = 0$
- **(b)** $4x^2 24x + 35 = 0$

(b)
$$x = \dots or \dots [2]$$

7 Solve the following simultaneous equations.

$$4x + 5y = -9$$
$$-3x + 7y = 39$$

Answer


$$x =$$
 [3]

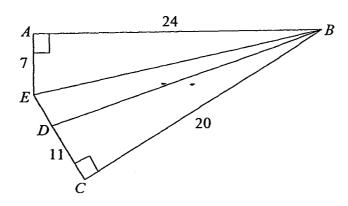
$$y = \dots$$

For miner's use In the diagram, PQRS is similar to WXYZ with PQ = 5 cm, WX = 7 cm, XY = 8.4 cm and $\angle PQR = 70^{\circ}$, $\angle XYZ = 74^{\circ}$ and $\angle YZW = 140^{\circ}$.

For Examiner use

Ì

Find


- (a) $\angle ZWX$,
- (b) QR.

Answer (a)[1]

(b)[2]

For aminer's use In the diagram below, ABE is a right-angled triangle with AB = 24 cm and AE = 7 cm. CBE is a right-angled triangle with a point D on EC such that DC = 11 cm and BC = 20 cm.

For Examiner use

(a) By finding the length of BE first, show that the length of DE = 4 cm

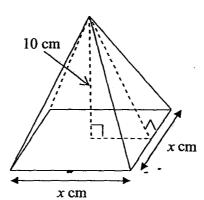
[2]

8

- (b) Write down the value of
 - (i) $\cos \angle ABE$,
- (ii) $\sin \angle BEC$,
- (iii) $\tan \angle DBC$.

(c) Find the shortest distance of C to BE.

Answer (b) (i)[1]


(ii)[1]

(iii)[1]

(c)cm [2]

Q

For uminer's use 10 The diagram below shows a right square pyramid with height 10 cm.

For Examiner s use

ţ

If it has a volume of 480 cm³, find

- (a) the value of x,
- (b) its total surface area.

For aminer's use

11

The table shows the record of scores by 19 students in a Mathematics test.

Examiner
s use

Ą

For

54	81	36	51	65	71	70	58	62	68
32	60	43	35	59	64	36	60	62	

The full score is 100 marks.

Mrs Lee tabulated the scores in the ordered stem-and-leaf diagram below.

Stem	Leaf
3	2 6 6 6
4	3
5	1 4 8 9
6	0 0 2 2 4 5 8
7	0 1
8	1

Key: 3 | 2 represents 32 marks

- (a) Write down the modal score of the 19 students.
- (b) Calculate the median score of the 19 students.
- (c) The top 6 students were selected to participate in a mathematics competition. What is the minimum mark a student needs to obtain to participate in the competition?
- (d) The passing mark for the test is 50. The scores of another 6 students were added to the record and the number of students who passed increase to 76%. How many new students passed the test?

Answer (a)[1]

(b)[1]

(c)[1]

(d)[1]

For miner's use

12

The time taken by 70 Secondary Two Express students to complete their mathematics homework is given in the table below.

For Examiner s use

Ì

Time in minutes (min)	Number of Students (f)	Mid-value (x)	fx
$28 < x \le 36$	17		
36 < x ≤ 44	24	40	960
44 < x ≤ 52 -	16		
52 < x ≤ 60	13		
Total	70	Total	

- (a) Complete the table above and hence calculate an estimate of the mean time taken.
- (b) If a student is chosen from the group, what is the probability that he/she completes homework within 44 minutes?

(b)[1]

For caminer's use

The mean of 5 numbers is $34\frac{3}{5}$.

For Examiner use

Š

(a) Find the sum of the 5 numbers.

3 of the numbers are 36.75, 87 and 9.25.

The remaining 2 numbers are in the ratio of 3:5.

(b) Find the smaller of the remaining 2 numbers.

Answer (a)[1]

(b)[2]

For

Examiner

ţ

use

For miner's

1.54

14 Consider the number pattern,

Line 1: $11-2=3^2$

Line 2: $1111-22=33^2$

Line 3: $1111111 - 222 = 333^2$

- (a) Write down Line 4 for the pattern above.
- (b) Find the number of '1' in x.

(b)[1]

End-of-Paper 1

ļ

Bukit Merah Secondary School End of Year Examination 2015 Secondary 2 Express (Mathematics Paper 1) – Marking Scheme

1		63.30	B1	T
1	b	0.1820	B1	
2	<u> </u>	90720	B1	-
	b	294 ·	B1	
3	 			
_		$\frac{-3(2x+5)}{4} = \frac{13}{8}x$	· M1	
		6(2x+5)=13x		
		12x + 30 = 13x		
	.]			
4	 	$\begin{array}{c} x = 30 \\ \end{array}$	Al	
4	a	$50a^2 - (49a^2 - 56ab + 16b^2)$	M1 A1	
		$=a^2+56ab-16b^2$	Ai	
	b(i)	(8c+5d)(8c-5d)	B1	
	b(ii)	32 pr - 28 qr + 21 sq - 24 sp		
		=4r(8p-7q)+3s(7q-8p)	M1	
		=4r(8p-7q)-3s(8p-7q)		
		=(8p-7q)(4r-3s)	Al	
5	a	1:250000	B1	
	b	1.12 cm	B1	
	С	$1cm^2:6.25km^2$	M1	
		$13.4cm^2:83.75km^2$	- A1	
6	а	6x(x+3) = 0	M1	1
		x = 0or -3	A1 for both	•
	b	(2x-7)(2x-5)=0	M1	
		x = 3.5 or 2.5	A1 for both	
7		43y = 129	M1	<u> </u>
		y=3	A1	
		x = -6	A1 .	
8	a	76_	B1	
٣	b		M1 aef	
		$\frac{QR}{8.4} = \frac{5}{7}$		
		QR = 6	A1	
9	a	BE = 25	M1	
,	-	DE = 4	Al	
	b(i)	24	B1	
		$\overline{25}$		
	(ii)		B1	
		$\left \frac{4}{5} \right $		

	(iii)	11	B1	
		$\overline{20}$		
	С		M1	
		$\frac{1}{2} \times 15 \times 20 = 150$		
		h = 12	A1	
10	а		Ml	
		$\frac{1}{3}x^2(10) = 480$		
		$x^2 = 144$		
-				4
		x = 12	A1	ļ
	b	12×12 = 144	M1	
		$4(\frac{1}{2}\times12\times\sqrt{136})$	2.61	
		$\frac{\sqrt{2}}{2}$	M1	
		424	Al	
11	a	36	B1	
	b	60	B1	
	c	64	B1	
	d	5	B1	
12	a	32, 544	M1 ecf	
		48, 768		
		56, 728		
		544 + 960 + 768 + 728	M1 ecf	
'		Mean score = 70		
		Wedn Score		
		$=42\frac{6}{7}$	A1	
	b	41		
		70		
13	а	173		1
	b .	$40 \div 8 = 5$	M1	
		5×3=15	A1	
14	a	11111111-2222=3333 ²	B1	-
	b	24	B1	

Class	Register No	Name	•

Bukit Merah Secondary School End-of-Year Examination 2015 Secondary 2 Express

 \mathbf{E}

MATHEMATICS

8 Oct 2015

Paper 2

wants for some and

1 hour 30 minutes

Candidates answer on foolscap and graph papers

READ THESE INSTRUCTIONS FIRST

Write your class, register number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

FARRE

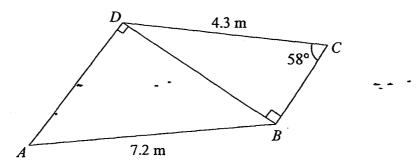
If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used when appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.


The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

	For Examiner's Use
Calculator Model:	

Answer all the questions

In the figure below, CD = 4.3 m, AB = 7.2 m and $\angle BCD = 58^{\circ}$.

Find

(a)
$$BD$$
,

(b) $\angle ABD$.

2 (a) Simplify each of the following algebraic fractions.

$$(i) \quad \frac{35b^2}{2y} \times \frac{y^2}{7ab^3}$$

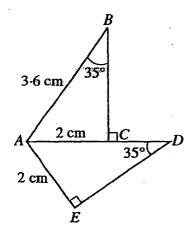
(ii)
$$\frac{6}{8x^2 - 6xy} \div \frac{9}{3y - 4x}$$

(b) Express
$$\frac{5}{x^2 + 3x - 4} - \frac{2}{x - 1}$$
 as a single-fraction in its simplest form. [3]

- 3 (a) Given that y is inversely proportional to the cube root of x, and that x = 64 when y = 12.75.
 - (i) Find the equation connecting x and y. [2]
 - (ii) Find the value of x when y = 3. [1]
 - (iii) Find the change in the value of y when the value of x is divided by 125. [2]

(b) A formula is given as
$$\sqrt{\frac{x-2p}{9w+5x}} = y$$
.

Make x the subject of the formula.


4 Mrs Lee bought some crabs and fish.

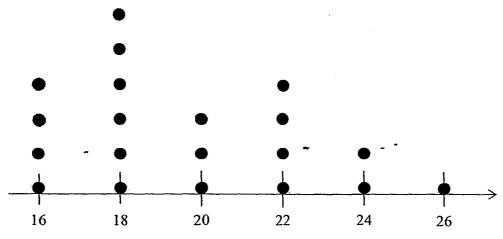
- (a) She bought x kg of crabs for \$140.

 Write down an expression, in terms of x for the cost of 1 kg of crabs.
- (b) She bought some fish with \$140. She received 3 kg more fish than crabs. [1] Write down an expression, in terms of x for the cost of 1 kg of fish.
- (c) The cost of 1 kg of fish is \$15 less than the cost of 1 kg of crab.

 Write down an equation in terms of x and show that it reduces to $3x^2 + 9x 84 = 0$.
- (d) Solve the equation $3x^2 + 9x 84 = 0$. [2]
- (e) How many kilograms of fish and crabs did she buy? [1]

The two triangles shown below are congruent to each other.

- (a) Name the triangle that is congruent to $\triangle ABC$. [1]
- (b) Find $\angle BAC$. [1]
- (c) Find the length of CD. [1]


ķ

6	(a)	A card is drawn at random from a pack of 25 cards, numbered 1 to 25. Find the probability that the number on the card is,	
		(i) a multiple of 6,	
		(ii) not more than 13,	[1]
		(iii) a prime number.	[1]
	~ ^(b)	Jim is equally interested in buying rabbits named A , B , C , D and E . He bought two of them at random because of the budget.	
		(i) List down the sample space of his possible purchases.	[2]
		(ii) Find the probability that rabbit C is bought.	[1]

(iii) Find the probability that rabbit B is bought but rabbit D is not bought.

[1]

(a) The time in minutes taken by 20 patrons at a food court A to finish their meal is represented by the dot diagram below.

Time taken in minutes

(i) Find the mean, median and mode of the data.

7

[3]

(ii) The management of the food court A says that the average time taken by a patron to finish a meal is 22 minutes. Does your data prove or disprove this statement? Explain briefly.

[1]

(b) The time in minutes taken by another 20 patrons at a food court B to finish their meal is represented by the frequency table below.

Time	16	18	20	22	24	26	28
(minutes)		_					
Number	1	3	4	2	7	2	1
of patrons					,		

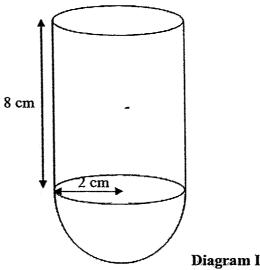
This distribution is to be shown in a pie chart.

(i) Calculate the angle representing the patrons who spent more than 24 minutes.

[1]

Ì

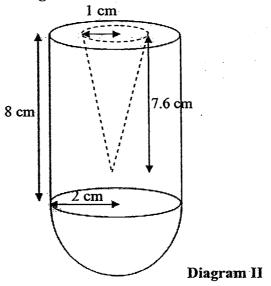
(ii) Calculate the median time taken by the patron in food court B.


[1]

(iii) State, with a reason, which food court has their patrons leaving earlier after their meal.

[1]

6


Diagram I below shows a solid balancing toy made up of a hemisphere attached to the bottom of the cylinder. The radius of the hemisphere is 2 cm and the height of the cylinder is 8 cm.

(a) Find the volume of the toy.

[3]

(b) To lighten its weight, a cone with radius 1 cm and height 7.6 cm is sawed away from the toy as shown in **Diagram II** below.

(i) Find the total surface area of the newly created toy in Diagram II.

4

ď

(ii) Given that the newly created toy (in **Diagram II**) is melted to form a cube, what is the largest possible integer length of the cube?

[3]

Volume of Cone =
$$\frac{1}{3}\pi r^2 h$$
; Volume of Sphere = $\frac{4}{3}\pi r^3$,
Curved Surface Area of Cone = $\pi r l$; Surface Area of Sphere = $4\pi r^2$

Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = 2x^2 - 6x + 11$. The table of values is as shown below.

х	-2	-1	0	1	2	3
у	31	p	11	7	7	q

(a) Find the values of p and q.

[1]

[3]

- (b) Using 2 cm to represent 1 unit along the horizontal x-axis and 2 cm to represent 5 units along the vertical y-axis, draw the graph of $y = 2x^2 6x + 11$ for $-2 \le x \le 3$.
- (c) From your graph,

9

(i) find the value of y when x = -0.5

[1]

(ii) write the coordinates of the minimum point.

[1]

(iii) write the equation of the line of symmetry.

[1]

ķ

ź

Bukit Merah Secondary School End of Year Examination 2015 Secondary 2 Express (Mathematics Paper 2) – Marking Scheme

1	a	$\sin 58^\circ = \frac{BD}{\cos 2\pi B}$	M1
		$\sin 58^\circ = \frac{BD}{4.3}$	
		BD = 3.646606813	
		BD = 3.65	A1 -
		$\cos \angle ABD = \frac{3.646606813}{7.2}$	MI ECF
	,	7.2	IVII LCI
	,	$\angle ABD = 59.57080651^{\circ}$	
2	(i)	= 59.6°	Al Bl
2	a(i)	$\frac{5y}{2ab}$	
	(ii)	6 9	
		$\frac{6}{2x(4x-3y)} \div \frac{9}{3y-4x}$	Ml
		$=\frac{6}{2x(4x-3y)}\times\frac{-(4x-3y)}{9}$	
		$-\frac{2x(4x-3y)}{9}$	
		$=$ $-\frac{1}{2}$	A1
-	b	3x	Al
	D	$\frac{5}{x^2 + 3x - 4} - \frac{2}{x - 1}$	
		5 2	
		$=\frac{5}{(x+4)(x-1)}-\frac{2}{x-1}$	M1
		1	*
		$= \frac{5 - 2(x+4)}{(x+4)(x-1)}$	MI
		$= \frac{-2x-3}{(x+4)(x-1)}$	
		(x+4)(x-1)	Al
3	a(i)	$y = \frac{k}{\sqrt[3]{x}}$	
		•	
		$12.75 = \frac{k}{\sqrt[3]{64}}$	M1
		k = 51	
		$y = \frac{51}{\sqrt[3]{x}}$	A1
_		· · · · · · · · · · · · · · · · · · ·	
	(ii)	$3\sqrt[3]{x} = 51$	
		$3\sqrt[3]{x} = 17$	
		x = 4913	B1 follow
L	1		through

(iii)	51		
(111)	$newy = \frac{1}{\sqrt{1 - \frac{1}{2}}}$		1
	$\sqrt[3]{\frac{x}{100}}$	M1 ECF	
Į	V125		
1	$=5(\frac{51}{6})$		
	New y is 5 times of old y.	Al	
b	$v^2 = \frac{x - 2p}{}$		
	9w+5x		
	$y^2(9w+5x) = x-2p$	MI	
		1411	
		M1 for take	
		out factor	
	$y = 9y^2w + 2p$		
	$\frac{x-\sqrt{1-5y^2}}{1-y^2}$	AI	
a	g 140	B1	
	$\frac{5}{x}$		
b	g 140	B1	·
	$\sqrt[3]{x+3}$		
С	140 140	Ml	
	$\frac{1}{x+3}+15=\frac{1}{x}$		
	ŧ	Ml	•
	· ·		
		Δ1	
a		1	•
ļ	· • · · · · · · · · · · · · · · · · · ·		
e			
 			
	4		
-(*)	25		
(ii)		B1	
()	25		
(iii)		RI	
\	$\frac{1}{25}$	<i>D</i> 1	
b(i)		B1 for first	
(1)			·
	·	1	
(ii)	2	Bl	
	$\sqrt{5}$		
(iii)	3	B1	
1 '	l	,	1
	10	1	
	a b c d e a b c a(i) (ii) (iii) (iii)	$newy = \frac{1}{\sqrt[3]{125}}$ $= 5(\frac{51}{\sqrt[3]{x}})$ New y is 5 times of old y. $y^2 = \frac{x - 2p}{9w + 5x}$ $y^2 (9w + 5x) = x - 2p$ $9y^2w + 5xp^2 = x - 2p$ $9y^2w + 2p = x - 5xy^2$ $x(1 - 5y^2) = 9y^2w + 2p$ $x = \frac{9y^2w + 2p}{1 - 5y^2}$ a $\frac{140}{x}$ b $\frac{140}{x}$ c $\frac{140}{x + 3} + 15 = \frac{140}{x}$ $140x + 15x^2 + 45x = 140x + 420$ $15x^2 + 45x - 420 = 0$ $3x^2 + 9x - 84 = 0$ d $(3x - 12)(x + 7) = 0$ $x = 40r - 7$ e $4 \text{ kg of crabs and 7 kg of fish}$ a $AdDE$ b $55^{\circ} \text{ or 56.3 (error)}$ c $1.6 \text{ cm or } 1.49 \text{ (error)}$ a(i) $\frac{4}{25}$ (iii) $\frac{9}{25}$ b(ii) $\frac{9}{25}$ b(ii) $\frac{9}{25}$ (iii) $\frac{9}{25}$ (iii) $\frac{9}{25}$ (iii) $\frac{9}{25}$ (iii) $\frac{9}{25}$ (iii) $\frac{9}{25}$	

	(ii)	Disprove, all the averages are not 22.	B1 with	
	(11)	Displove, an the averages are not 22.	reason	
	b(i)	54°	B1	
	(ii)	23 min	B1	
	(iii)	Food court A, because median time is lower	B1 with	
	(111)	1 vod comern, occurso median imie is iower	reason	
8	a	$volume = (\pi \times 2^2 \times 8) + (\frac{2}{3} \times \pi \times 2^3)$	MI MI	
5-T-1861		=117.2861257		
		$=117cm^3$	Al	
	b(i)	$curvedSA = (2\pi \times 2^2) + (2\pi \times 2 \times 8)$	M1	-
		=125.6637061		
		$topbasearea = \pi(2^2) - \pi(1)^2$	MI	
		= 9.424777961	1411	
, "		slantedheight = $\sqrt{1^2 + 7.6^2}$		
		$=\sqrt{58.76}$		
		$\pi \times 1 \times \sqrt{58.76}$	La Por	
		= 24.08190098	M1 ECF	
		1		
		totalSA = 125.6637061 + 9.424777961 + 24.08190098		
		=159.170385		
		=159	A1	
	(ii)	$117.2861257 - (\frac{1}{3} \times \pi \times 1^2 \times 7.6)$	M1 ECF	
		=109.3274243		
		$\sqrt[3]{109.3274243}$	MI ECF	
		= 4.781634454		š
		l arg estpossiblelength = 4cm		
	Ì	l algestpossibletength – 4cm	B1 based on	
			answer	
9.	a	p = 19, q = 11	B1 for both	
4	b	Plotting	P1	
		Scaling	SI CI	
-	(E)	Curve (smooth)	C1	
-	c(i)	14.5 (plus minus 0.5) (1.5, 6.5) x coordinate plus minus 0.1, y coordinate plus minus	B1 B1	
sp	(11)	0.5	ומו	
	(iii)	x = 1.5 plus minus 0.1	B1	
saro in				
	ļ			
	ļ			
-	 			
	1			

		······································
 -		-
		<u> </u>
 	l	l

Ì

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2015 SECONDARY 2 EXPRESS

MATHEMATICS

Paper 1

Date: 07 October 2015 Duration: 1 hour 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

For Examine	For Examiner's Use			
Paper 1	/ 60			
Paper 2	. / 60			
Total	%			

Setter: Miss Germaine J Peter

This question paper consists of <u>15</u> printed pages including the cover page.

Answer all the questions.

1 Arrange the following numbers in ascending order.

$$\frac{1}{3}$$

40%

$$\sqrt[3]{-8}$$

 $\frac{2}{7}$

Answer, [1

2 Estimate the value of $\frac{11.835 \times 6.051}{\sqrt{17}}$, without the use of a calculator.

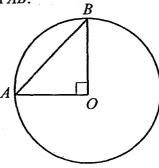
Answer [2]

ď

3 The length of each side of a square, of length x cm, is increased by 20%. Find the percentage increase in the area of the square.

4	(a)	Express 1008 as a product of its prime factors, giving your answer in index notation.					
	(b)	Answer (a)					
e de la companya de l							
•.							
, saj		Answer (b)[1]					
: : : : : : : : : : : : : : : : : : :	(c)	Given that $\frac{1350}{k}$ is a square number, write down the smallest possible integer					
		value of k.					

š


244	Nan	ne:	() Class:
	5	the sq It is gi	orce of attraction, F newtons, between two magnets is inversely proportional to uare of the distance, x centimetres, between them. iven that when the magnets are 4 centimetres apart, the force is 3 newtons. Find an equation connecting F and x .
			Answer (a)[1]
		(b)	Find the force when the magnets are 2 centimetres apart.
			Answer (b)newtons [1]
		(c)	When the magnets are a certain distance apart, the force is 1.25 newtons. Write down the force when the distance is halved.

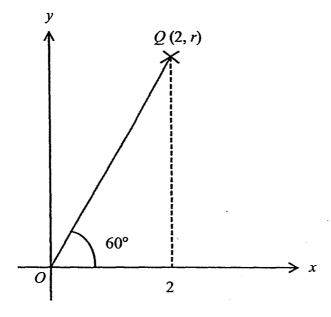
ž

The diagram shows a right-angled triangle in a circle, with centre O. 6

Given that the diameter of the circle is 14 cm, find the length of AB.

A closed cylindrical container has a radius of 6.8 cm and a volume of 1500 cm³. [Take π to be 3.142]

Show that the height of the cylindrical container is 10.3 cm. (a)


Answer (a)

[2]

ţ

Find the surface area of the cylindrical container. (b)

8 The diagram below shows a point Q with coordinates (2, r).

(i) Find the length of OQ.

ķ

(ii) Find the value of r.

- 9 Simplify the following expressions.
 - (a) $\frac{3a^2}{7bc} \div \frac{9a}{14b}$

Answer (a)[2]

(b) $\frac{2x}{x^2-25}-\frac{1}{x-5}$

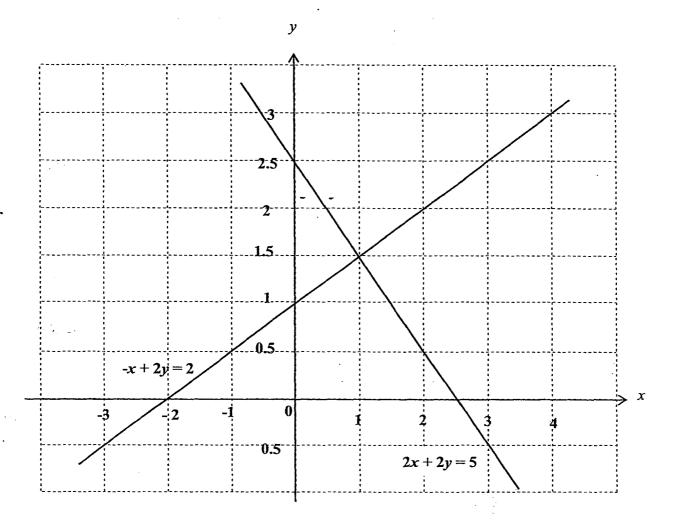
Answer (b)[3]

ķ

				-
248	Namo:	(1	Class:
	Name:	. ()	Class:

Petrol costs x cents per litre. John intends to take a road trip during the holidays. Find an expression for the number of litres of petrol that can be bought for y dollars.

11 A sum of money is divided between Alice, Betty and Charlie in the ratio 2:3:4 respectively. If, instead, this money had been divided equally between them, Alice would have received an extra \$20.

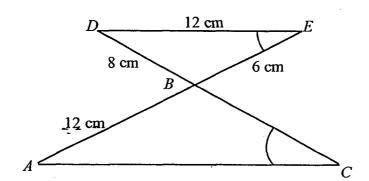

What was the total sum of money given to Alice, Betty and Charlie?

Ì

ķ

9

12 The graph below shows the lines -x+2y=2 and 2x+2y=5.



(a) State the solution of the simultaneous equations -x+2y=2 and 2x+2y=5.

- (b) On the same grid above, draw and label clearly the line x = 3. [1]
- (c) Find the area of the polygon enclosed by the 3 lines, -x+2y=2, 2x+2y=5 and x=3. Leave your answer in square units.

Answer (c) units² [1]

13 In the figure, ABC and DBE are similar triangles, where $\angle ACB = \angle DEB$.

Find

(a) the length of AC,

Answer (a)cm [2]

ğ

(b) the length of CD.

- 14 Factorise fully each of the following expressions completely.
 - (a) $3p^2 3pq 5ap + 5aq$

Answer (a)[2]

(b) $6x^2 + 14x - 12$

Answer (b)[2]

- 15 A bag contains 10 red marbles, 5 blue marbles and 3 yellow marbles.
 - (a) Find the probability that the marble is red.

Answer (a)[1]

(b) How many more blue marbles must be placed in the bag so that the probability of choosing a blue marble would be $\frac{1}{2}$?

Answer (b)blue marbles [1]

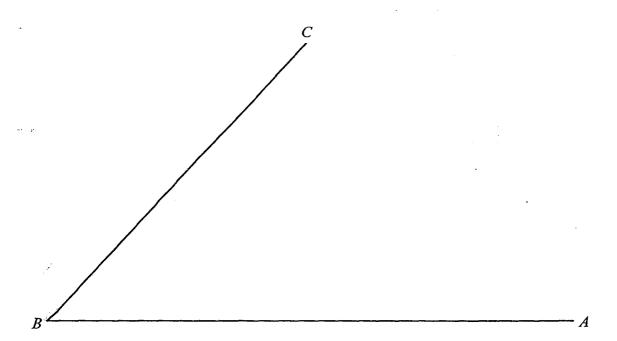
ķ

252	Name:			(
	Maine.			1

Solve the equation $\frac{5}{y-3} + \frac{10}{3(3-y)} = 3.$

16

Class:


17	Solve the	following	simultaneous	equations
1/	POLAC MIC	lonowing	Simultancous	equations.

$$4a+15b=15$$

 $7a-30b=15$

18	ne:	
	10 girls in a Mathematics test.	
	Boys	Girls
	4 2 0	5 8 9
	9 5 1 1	6 4 7 8
	7 5	7 1 3 5 6
	Boys 4 2 0 9 5 1 1 7 5	8 0
	Key (Boys): 2 5 means 52	Key (Girls): 5 8 means 5
	From the data above, find (a) (i) the mode of the boys' marks,	••
		Answer (a)(i)marks
	(ii) the median of the girls' marks,	
		nswer (a)(ii)marks
	(iii) the mean of the boys' marks.	(7)
	()	
	· A	nswer (a)(iii)marks
	(b) Given that the mean of the girls' mar or girls performed better in the test.	cs is 69.1, explain briefly whether the

Construct the perpendicular bisector of BC. [1] 19 (a) Construct the bisector of $\angle ABC$. [1] **(b)** The point D is such that $\angle BCD = 130^{\circ}$ and AD = 7.5 cm. (c) Find the two possible positions of D and label them D_1 and D_2 . [2] It is given that the two bisectors in (a) and (b) meet at P. [2] (d) Complete the statement below. The point P is equidistant from the lines and and equidistant from the points and

Answer (a), (b), (c)

~ End of Paper ~

Š

255

256

Name:			(

Class:

ķ

Fairfield Methodist School (Secondary) Sec 2 Express 2015 EOY Examination Mathematics Paper 1 Answer Key

Answer a=3

61 marks

69.5 marks

64.4 marks

BA, BC; B,C

Refer to M.S Refer to M.S Refer to M.S

No.	Answer	No.
1	$\sqrt[3]{-8}$, $\frac{2}{7}$, 0.3, $\frac{1}{3}$, 40%	17
	$\frac{1}{7}$, $\frac{1}{7}$, 0.3, $\frac{1}{3}$, 40%	
2	18	18ai
3	44%	18aii
4a	$1008 = 2^4 \times 3^2 \times 7$	18aiii
4b	$LCM = 2^4 \times 3^3 \times 5^2 \times 7$	19a
4c	k=6	19b
5a	$F = \frac{48}{x^2}$ $F = 12 \text{ newtons}$	19c
5h	X	104
5b	F – 12 newtons	19d
5c	F = 5 newtons	
6	AB = 9.90	
7a	10.3	
7b	732 cm ² or 731 cm ²	
8i	OQ = 4	
8ii	h = 3.46	
9a	2 <i>a</i>	
	<u>3c</u>	
9b	1	
	$\overline{x+5}$	
10	100 <i>y</i>	
	x	
11	\$180	
12a	x=1, y=1.5	
12c	3 units ²	
13a	AC = 18 cm	
13b	CD = 17 cm	
14a	(3p-5a)(p-q)	
14b	2(3x-2)(x+3)	
15a	5	
	$\frac{5}{9}$	1.
151	9	
15b	8 more	_
16	$3\frac{5}{9}$	

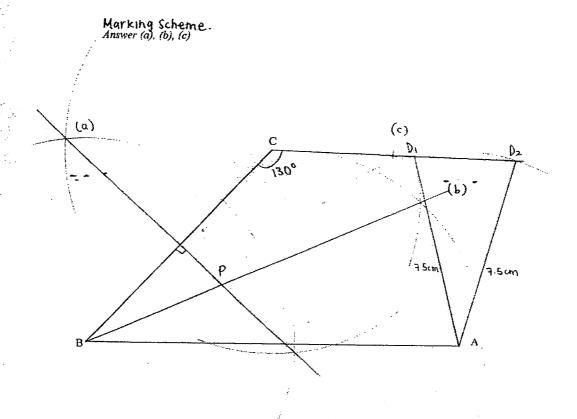
ţ

Sec 2 Express 2015 EOY Examination Mathematics Paper 1 Marking Scheme

No.	Working	Allocation of marks
1	$\sqrt[3]{-8}$, $\frac{2}{7}$, 0.3, $\frac{1}{3}$, 40%	[B1]
	$\sqrt[3-8]{\frac{7}{7}}, 0.3, \frac{3}{3}, 40\%$	no mark if answer is not
		according to question
2	11.835×6.051	
	$\sqrt{17}$	
ne die	$\approx \frac{12 \times 6}{\sqrt{16}}$	[M1]
enter Alex Transfer	$\sqrt{16}$	[MI] ~
	$=\frac{72}{4}$	
. 47	1	
2.5	=18	[A1]
3	Percentage increase = $\frac{(1.2x)^2 - x^2}{x^2} \times 100$	[M1]
*	Percentage increase $=\frac{x^2}{x^2}$	5443
or the second second	= 44%	[A1]
4a	$1008 = 2^4 \times 3^2 \times 7$	[B1]
4b	$LCM = 2^4 \times 3^3 \times 5^2 \times 7$	[B1]
4c	$k=2\times3=6$	[B1]
5a	$F = \frac{k}{x^2}$	
 	$\int_{0}^{\infty} x^{2}$	
	$3 = \frac{k}{3}$	
	42	
	$k = 3 \times 16$	
1	$3 = \frac{k}{4^2}$ $k = 3 \times 16$ $F = \frac{48}{4}$	
	$F = \frac{48}{x^2}$ $F = \frac{48}{2^2}$	[B1]
5b	48	
	$F = \frac{1}{2^2}$	No F.T. mark
	E 12	[B1]
5c	1.25 = $\frac{k}{x^2}$ When k = 48, $F = \frac{k}{(\frac{x}{2})^2} = \frac{4k}{x^2}$ $F = \frac{48}{(\frac{x}{2})^2}$ $F = \frac{48}{(\frac{x}{2})^2}$	
* .	$1.25 = \frac{48}{x^2}$	53443
**	$F = \frac{k}{k} = \frac{4k}{k}$	[M1]
	$(x^2)^2 x^2 = 48$	
	$\left(\frac{x}{2}\right)^2$	
	2	
	$ \begin{vmatrix} 1.25 = \frac{\kappa}{x^2} \\ F = \frac{k}{(\frac{x}{2})^2} = \frac{4k}{x^2} \\ F = \frac{48}{(\frac{x}{2})^2} \\ F = 4\left(\frac{48}{x^2}\right) $	
	$\therefore F = 1.25 \times 4$ $F = 1.25 \times 4$	FA43
	= 5	[A1]

	D D (I		
6	By Pythagoras' Theorem,		[M1]
	$AB = \sqrt{(\frac{14}{2})^2 + (\frac{14}{2})^2}$		[M1]
	1 2 2	to 20f) (ainea langth , 0)	[A1]
7a	$AB = 7\sqrt{2} \text{ or } AB = 9.90 \text{ (t)}$ $\pi r^2 h = 1500$	to 3SI) (Since length >U)	[M1]
/α			[MI]
	$h = \frac{1500}{3.142 \times 6.8^2}$		
	1		·
	=10.3244		
	=10.3 (to 3sf)		[A1]
7b	$2\pi r^2 + 2\pi rh$	If $h = 10.3$ used,	
	$=2(3.142)(6.8^2)$	$2\pi r^2 + 2\pi rh$	fM13
	+2(3.142)(6.8)(10.3244)	$=2(3.142)(6.8^2)$	[M1]
	=731.746	+2(3.142)(6.8)(10.3)	
		= 731.285	
	=732 cm ² (to 3sf)	=731 cm ² (to 3sf)	[A1]
8i			[M1]
	$\cos 60^\circ = \frac{2}{OQ}$	$\sin 30^\circ = \frac{2}{OQ}$	[]
	OQ = 4	$\therefore OQ = 4$	
	or $OQ = 4.00(3sf)$	or $OQ = 4.00(3sf)$	
8ii		11 02 1100(23)	[A1]
OII	$r = \sqrt{4^2 - 2^2}$	· ·	[M1]
1	$r=2\sqrt{3}$	$\tan 60^\circ = \frac{r}{2}$	
	0 2464	$\therefore r = 3.464$	
	Or 3.464 = 3.46 (to 3 sf)		
	- 3.40 (10 3 31)	= 3.46 (to 3 sf)	[A1]
9a	$3a^2$ $9a$		
	$\frac{3u}{7bc} \div \frac{3u}{14b}$		
			[M1] for reciprocal of
	$=\frac{3a^2}{7bc}\times\frac{14b}{9a}$	•	term after division sign
	$=\frac{2a}{a}$	***	
	$=\frac{1}{3c}$		[A1]
9b	2x 1		
	$\frac{1}{x^2-25} - \frac{1}{x-5}$		
			[M1] for making 2 nd
	$=\frac{2x-(x+5)}{x^2-25}$	•	term have the same
	1		denominator
	$=\frac{x-5}{x^2-25}$		[M1] for change of sign
			[z] for change of sign
	a=2		[A1]
10	1-1-11		[D41]
10	y dollars = 100y cents		[M1]
1			1

ż


Š

	100 <i>y</i>	[A1]
	Amount of petrol = $\frac{x}{x}$	
11	Total number of units = 2+3+4 = 9 If equally didved among A, B and C, each will get 3 units	[M1]
	Therefore total sum of money $= (3-2) \times 9 \times \20 $= \$180$	[A1]
12a	x = 1, y = 1.5	[B1]
12 b	Line drawn at $x = 3$	[B1]
12c	Area = $\frac{1}{2} \times 6 \times 2$	[B1]
13a	$= 6 \text{ units}^2$ $\frac{12}{8} = \frac{AC}{12}$	[M1]
	$AC = \frac{144}{8} = 18cm$	[A1]
13b	$\frac{CB}{6} = \frac{12}{8}$	[M1]
	$CB = 9$ $\therefore CD = 8 + 9 = 17cm$	[A1]
14a	$3p^{2}-3pq-5ap+5aq$ $=3p(p-q)-5a(p-q)$ $=(3p-5a)(p-q)$	[M1] [A1]
14b	$\begin{vmatrix} 6x^2 + 14x - 12 \\ = 2(3x^2 + 7x - 6) \\ = 2(3x - 2)(x + 3) \end{vmatrix}$	[B1] for factor 2 [B1] for factors in brackets
15a	Total no. of balls = 18 Probability that ball is red = $\frac{10}{18} = \frac{5}{9}$	[B1]
15b	Let additional blue marbles be x. $\frac{5+x}{18+x} = \frac{1}{2}$ $18+x=10+2x$ $x=8$	[B1]

16	$\frac{5}{y-3} + \frac{10}{3(3-y)} = 3$	
1	y-3 + 3(3-y)	53.43.6 3 6 .
		[M1] for change of sign
	$\frac{5}{y-3} - \frac{10}{3(y-3)} = 3$	
	y 5 50 5)	
	5	[M1] for multiplying
	$\frac{5}{3(y-3)} = 3$	denominator to both
	5(y-3) 5=9y-27	sides and correct
		expansion
	$y = \frac{32}{9}$ $= 3\frac{5}{9}$	**
	9	
- [5	
	$=\frac{3}{9}$	
		[A1] marks awarded if
		improper fraction
17	4a+15b=15	
	7a - 30b = 15	
	$(1) \times 2$: 8a + 30b = 30(3)	
	(2) - (2)	[M1] for elimination or
	(2) + (3): 15a = 45	substitution method
	15a = 45	UM DO VALUE DE LA CONTRACTION DELA CONTRACTION DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE
	a=3	
	Sub $(a = 3)$ into (1):	[A1]
	4(3)+15b=15	
	15b = 15 - 12	
	$b=\frac{1}{5}$	[A-1]
18ai	5 Modal marks = 61 marks	[A1] [B1]
18aii	68+71	[DI]
1.00	Median current = $\frac{68 + 71}{2}$	
	= 69.5 marks	[B1]
18aiii	Mean of boys' marks	
	50+52+54+2(61)+65+69+75+77+80	
	$=\frac{10}{10}$	
	= 64.4 <i>marks</i>	[B1]
18b	Sample Answer:	
-	The girls preformed better.	*definitely is girls
•	Because they attained a higher mean score as	
	compared to the boys	[B1]
19d	BA, BC;	[B1]
1	B,C	[B1]

ğ

Qn 19a, b, c

ţ

*

Ì

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2015 SECONDARY 2 EXPRESS

MATHEMATICS

Paper 2

Date: 08 October 2015

Duration: 1 hour 30 minutes

Candidates answer on Question Paper.

Additional Material: Graph paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

At the end of the examination, fasten all your work securely together.

	For Examiner's Use			
,	Paper 2	/ 60		

Setter: Miss Michelle Tan

This question paper consists of 16 printed pages including the cover page.

		•		
264	Name :	()	Sec 2_

Answer all the questions.

1. The ratio of the length and breadth of a rectangle is 5:3. Given that the perimeter of the rectangle is 32 cm, find the length of the rectangle.

Answer cm [1]

•

2. Mdm Teo bought 48 apples, 72 oranges and 96 pears. If she wants each type of fruit to be distributed equally among a certain number of fruit baskets, what is the greatest number of fruit baskets that can be prepared?

3.	If y is directly proportional to x^3 and the difference in the values of y when
	x = 1 and $x = 2$ is 35, find the value of y when $x = -3$.

4. (a) Calculate the sum of the interior angles of a decagon.

فالمنينه.

Answer (a)...... [1]

(b) Seven of the interior angles of a decagon are 165° each. The rest of the angles are $2x^{\circ}$, $(2x+15)^{\circ}$ and $(x-30)^{\circ}$. Find the value of the largest interior angle.

Answer (b)...... [2]

ţ

5	Nam	ie : _		()	·	Sec 2
5. Jennifer sold x cupcakes at 60 cents each and 32 cookies at 20 cents e							uring a
		fund	raising activity in school. A	At the end of the	he day, she rec	eived at least \$1	68.
		(a)	Write down an inequality i	in x to represe	ent the informa	tion given abov	e.
		,				~	- ·
				·	Answer (a)	•••••••	[1]
		(b)	Solve the inequality forme	ed in (a) .			
					Answer (b)	•••••	[1]
		(c)	Hence, find the minimum	number of cu	pcakes sold.		

6. Study the number pattern below.

	C_1	C_2	C_3	C ₄
R_1	2	4	8	64
R_2	3	5	15	225
R_3	4	6	24	576
R_4	5	7	35	1225
R_5	6	8	48	2304
:	:	:	:	i i
R_n	n+1	n+3	575	330625
R_{n+1}	w	x	y	Z

(a) Write down an expression for w, x and y in terms of n.

Answer (u)	<i>w</i> =	
	<i>x</i> =	
	<i>y</i> =	[1]

(b) (i) Form an equation in terms of n.

(b) (ii) Show that your answer in (b)(i) can be simplified to $n^2 + 4n - 572 = 0$.

Answer
$$(b)(ii)$$
 [1]

(c) Explain why the number 15000 would not appear in the column C_4 .

Answer (c) .	 	 •,	• • • • • • • • • • • • • • • • • • • •	
• • •		•		

(d) Write down an expression for z in terms of y.

Ì

7. (a) Given that $\sqrt[3]{\frac{1-x}{y}} = p$, express x in terms of p and y.

Answer (a).....[2]

(b) Hence, find the value of x when p = -1 and y = 6.

Answer (b)......[1]

ď

8. It is given that $a^2 + b^2 = 548$ and 2ab = 352 and a > b, find the value of $a^2 - b^2$ where a and b are positive integers.

Sec 2__

9. Expand and simplify the following expressions.

(a)
$$-3x(2x-5)$$

Answer (a)......[1]

(b)
$$7(x-4)-3(2x+4)$$

Answer (b)......[2]

10. (a) Factorise 3k(4-h)-(h-4).

n in Sen

Answer (a)..... [1]

(b) Hence, simplify $\frac{3k(4-h)-(h-4)}{16-h^2}$

Answer (b)......[2]

Ļ

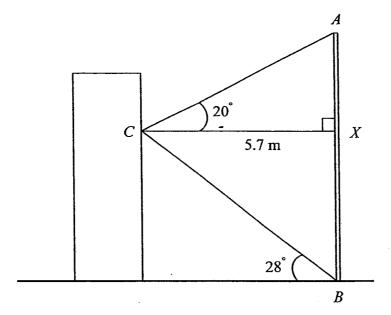
270	Name :					(
-----	--------	--	--	--	--	---

Sec 2_

11. Solve the following equations.

(a)
$$x-(2x-8)=28+4x$$

(b)
$$(m-20)^2=144$$


- 12. A map of Sentosa Island in Singapore is drawn to a scale of 1:50000.
 - (a) The distance on the map between the Merlion Park and Tanjong Beach is3.6 cm. Calculate, in kilometers, the actual distance between these two places.

Answer (a).....km [1]

(b) Sentosa Island has an actual area of 5 km². Calculate in square centimeters, the area of Sentosa Island on the map.

Ì

13. The figure shows a vertical monument AB. Caine is standing on a platform 5.7 m away, at point C.

It is given that the angle of elevation from C to the top of the monument is 20° and the angle of elevation from the foot of the monument to C is 28° . Find the height of the monument.

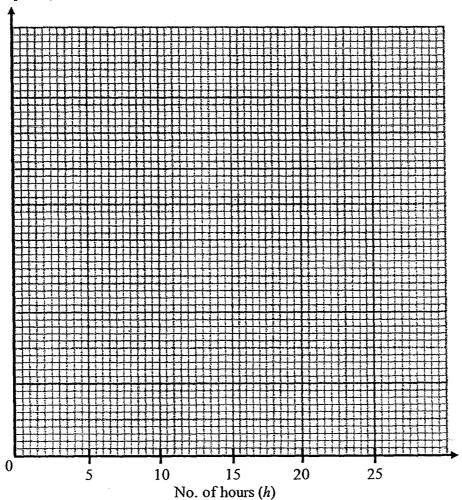
Ì

14. The table shows the number of hours, h, spent by a group of 20 students on the computer in a week.

5	2	14	8	17	0	11	3	9	20
3	10	12	22	14	20	18	20	12	24

(a) Complete the frequency table for the data.

No. of hours .	Frequency
0 ≤ <i>h</i> < 5	4
5 ≤ <i>h</i> < 10	
10 ≤ h < 15	
15 ≤ h < 20	
20 ≤ h < 25	

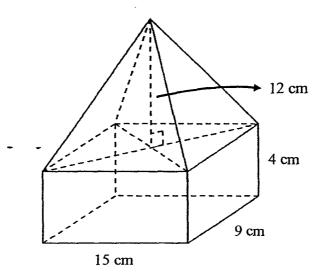

(b) Draw a histogram to illustrate the data in (a).

[2]

ķ

[1]

Frequency


274	Name :	()		Sec 2
-----	--------	---	---	--	-------

14. (c) Calculate an estimated mean for the number of hours the group of students spent on the computer in a week.

Answer (c)......[2]

3

15. A metal ornament is made up of a pyramid with a rectangular cuboid as its base as shown in the diagram below.

- (a) It is given that the height of the pyramid is 12 cm and the dimensions of the cuboid is 15 cm by 9 cm by 4 cm.
 - (i) Find the volume of the pyramid.

(ii) Show that the volume of the metal ornament is 1080 cm³.

Answer
$$(a)(ii)$$
 [1]

Ì

- 15. (b) The metal ornament was melted and recast into smaller solid cones with a base circumference of 12 cm and a slant height of 5 cm. Take $\pi = 3.142$.
 - (i) Find the volume of each cone.

(ii) Hence, find the maximum number of cones that can be formed.

ķ

- 15. (c) An engineer then cut off the top of the cone with a vertical height of 2 cm and a diameter of 1 cm. He intends to paint the remaining of the ornament after the removal of the top of the cone.
 - (i) Find the curved surface area of the remaining ornament after the removal of the top of the cone.

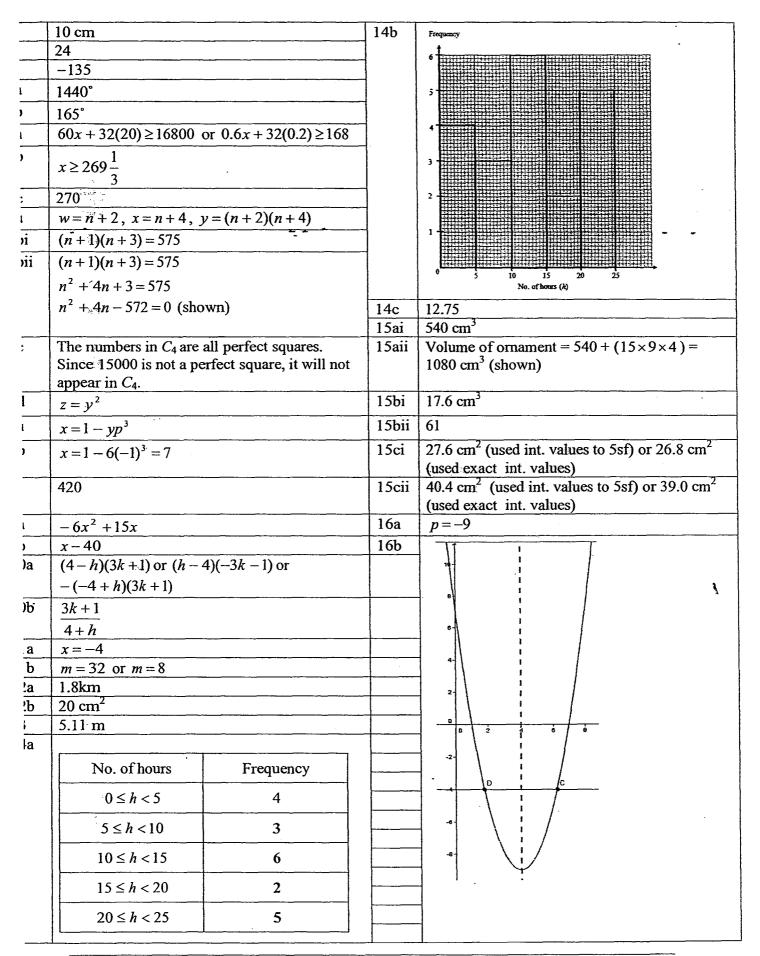
(ii) Find the total surface area of the ornament to be painted.

Š

16. Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = x^2 - 8x + 7$. The table below shows the corresponding values of x and y for the equation.

X	0 .	2	3	4	5	6
у	7	-5	-8	р	-8	-5


(a) Calculate the value of p.

[1]

ţ

- (b) Taking 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on [3] the y-axis, draw the graph of $y = x^2 8x + 7$ for $0 \le x \le 6$.
- (c) Using your graph, solve $x^2 8x + 7 = -4$. [1]
- (d) State the equation of the line of symmetry of the graph. [1]

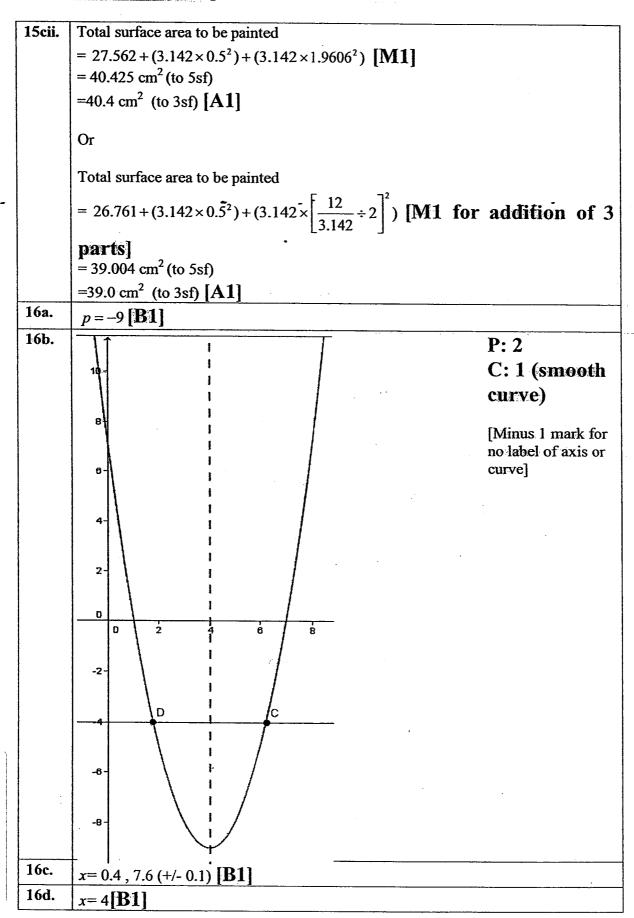
~ End of Paper ~

²⁸⁰ Name :	()	Sec 2

16c 16d Accept x = 1.7 to 1.8 x = 4

Ĭ

1.	Length of rectangle = $\frac{32}{16} \times 5 = 10 \text{ cm}$ [B1]
2.	$48 = 2^4 \times 3$
	$72 = 2^3 \times 3^2$
	$96 = 2^5 \times 3$
	$HCF = 2^3 \times 3 [M1]$
	= 24 [A1]
3.	$y = kx^3$
	When a 1 a - b When a 2 a 9b
	When $x = 1$, $y = k$ When $x = 2$, $y = 8k$
	8k - k = 35
	7k = 35
	k=5 [M1]
	When $x = -3$,
	when $x = -3$, $y = 5(-3)^3 = -135$ [A1]
4a.	
4b.	$(10-2)\times180^{\circ} = 1440^{\circ}$ [B1]
40.	7(165) + 2x + (2x+15) + (x-30) = 1440 $5x = 300$
	x = 60 [M1]
	Larges interior angle = 165° [A1]
<u> </u>	
5a.	$60x + 32(20) \ge 16800$ [B1] or $0.6x + 32(0.2) \ge 168$ [B1]
5b.	$60x + 32(20) \ge 16800$
	$60x \ge 16160$
	$x \ge 269\frac{1}{3}$ (to 5sf) [B1]
5c.	270 [B1]
6a.	w=n+2, x=n+4, y=(n+2)(n+4) [B1]
6bi.	(n+1)(n+3) = 575 [B1]
6bii.	(n+1)(n+3) = 575
	$n^2 + 4n + 3 = 575$
	$n^2 + 4n - 572 = 0$ (shown) [B1]
6c.	The numbers in C_4 are all perfect squares. Since 15000 is not a perfect square, it
	will not appear in C_4 . [B1]
6d.	$z=y^2 [B1]$
L	


§ .

11b.	(00)2 144
110.	$(m-20)^2=144$
	m-20=12 or $m-20=-12$ [M1]
	m = 32 or m = 8 [A1]
	Or
	$(m-20)^2=144$
A	$m^2 - 2(m)(20) + 20^2 = 144$
1	$m^2 - 40m + 256 = 0$
1.40-00	(m-8)(m-32)=0 [M1 for factorisation]
	m-8=0 or $m-32=0$
	m = 32 or m = 8 [A1]
12a.	Map Actual 1 cm rep. 50000 cm
	3.6 cm rep. 180000 cm = 1.8km [B1]
12b.	Actual Map
	50000 cm rep. 1 cm 0.5km rep. 1 cm
	0.5km rep. 1 cm 0.25km ² rep. 1 cm ² [M1]
-	5km^2 rep. 20 cm^2 [A1]
13.	$\angle ACX = 28^{\circ}$ (alt. angles)
	$\tan 28^\circ = \frac{BX}{5.7}$
	BX = 3.0307 m (to 5 sf) [M1]
22	$\tan 20^{\circ} = \frac{AX}{5.7}$
	AX = 2.0746 m (to 5 sf) [M1]
	Height of monument = $3.0307 + 2.0746 = 5.11 \text{ m}$ (to 3sf) [A1]
140	Or
	$\angle XBC = 62^{\circ}$
Sec. 18	$\tan 62^{\circ} = \frac{5.7}{BX}$
	BX = 3.0307 m (to 5 sf) [M1]
Sidney 1	· · · · · · · · · · · · · · · · · · ·
	$\tan 70^{\circ} = \frac{5.7}{AX}$
	AX = 2.0746 m (to 5 sf) [M1]
	Height of monument = $3.0307 + 2.0746 = 5.11 \text{ m}$ (to 3sf) [A1]

1	No. of hours	Frequency	
	$0 \le h < 5$	4	
	$5 \le h < 10$	3	
.	10 ≤ h < 15	6	
	$15 \le h < 20$	2	
	20 ≤ h < 25	5	
B1	for all correct]		
Fre	equency		
	†		
5			
4			
3			
2			
1			
	0 5	10 15 20 No. of hours (h)	25
1		s of bars drawn corr rror in height of bar	

È

14c.	Estimated mean = $\frac{(2.5 \times 4) + (7.5 \times 3) + (12.5 \times 6) + (17.5 \times 2) + (22.5 \times 5)}{[M1]}$					
	20					
	$=\frac{255}{20}$					
	=12.75 [A1]					
15ai.	Volume of pyramid = $\frac{1}{3} \times 15 \times 9 \times 12$ [M1]					
	$= 540 \text{ cm}^3 [\mathbf{A1}]$					
15aii.	Volume of ornament = $540 + (15 \times 9 \times 4) = 1080 \text{ cm}^3 \text{ (shown)} $ [B1]					
***	- * - * * * * * * * * * * * * * * * * *					
15bi.	Radius of base = $\frac{12}{3.142} \div 2 = 1.9096$ cm [M1 for radius or height]					
	Height of cone = $\sqrt{5^2 - 1.9096^2}$ = 4.6210 cm					
- A 182	Volume of cone = $\frac{1}{3} \times 3.142 \times 1.9096^2 \times 4.6210$ [M1]					
	$= 17.648 \text{ cm}^3 \text{ (to 5 sf)}$					
4	$= 17.6 \text{ cm}^3 \text{ (to 3 sf) } [A.1]$					
15bii.	Max. no. of cones = $1080 \div 17.648 = 61.196 = 61$ (nearest whole number) [B1]					
15ci.	Slant height of removed part = $\sqrt{2^2 + 0.5^2}$					
1	$=\sqrt{4.25}$					
7 % 7 % 7 %	= 2.0616 (to 5sf) Remaining curved surface area					
-	$= (3.142 \times 1.9606 \times 5) - (3.142 \times 0.5 \times 2.0616) $ [M1]					
	$= 27.562 \text{ cm}^2 \text{ (to 5sf)}$					
	$= 27.6 \text{ cm}^2 \text{ (to 3sf) } [A1]$					
	Or .					
	Remaining curved surface area					
	$= (3.142 \times \left[\frac{12}{3.142} \div 2 \right] \times 5) - (3.142 \times 0.5 \times \sqrt{4.25}) \text{ [M1]}$					
	$= 26.761 \text{ cm}^2 \text{ (to 5sf)}$					
1 m	$= 26.8 \text{ cm}^2 \text{ (to 3sf) } [A1]$					
1.31						
17-38-51 * 17-78-51 17-78-51						
100 pm						

ķ

Ĭ

Class Register Number Name

南洋女子中学校 NANYANG GIRLS' HIGH SCHOOL

End-of-Year Examination 2015 Secondary Two

INTEGRATED MATHEMATICS

1 hour 30 minutes

Paper 1

Thursday

8 October 2015

0800 - 0930

READ THESE INSTRUCTIONS FIRST

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, register number and class in the spaces at the top of this page.
- 2. Answer all the questions.
- 3. Write your answers and working in the spaces provided on the question paper.
- 4. All working must be written in dark blue or black ink.
- 5. Omission of essential working will result in loss of marks.
- 6. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
- 7. The use of calculators is allowed for this paper.

INFORMATION FOR CANDIDATES

- 1. The number of marks is given in brackets [] at the end of each question or part question.
- 2. The total number of marks for this paper is 60.
- 3. You are reminded of the need for clear presentation in your answers.

This document consists of 11 printed pages.

NANYANG GIRLS' HIGH SCHOOL

Turn over

Setter: E.Liow

-		.1	C 11 '	. 1			
1.	Arrange	the	following	numbers	ın	ascending	oraer.

$$3.2 \times 10^{-16}$$
, -32×10^{-15} , 0.32×10^{-17} , -3.2×10^{-13} .

Answer:	[2]

2. Solve the following pair of simultaneous equations:

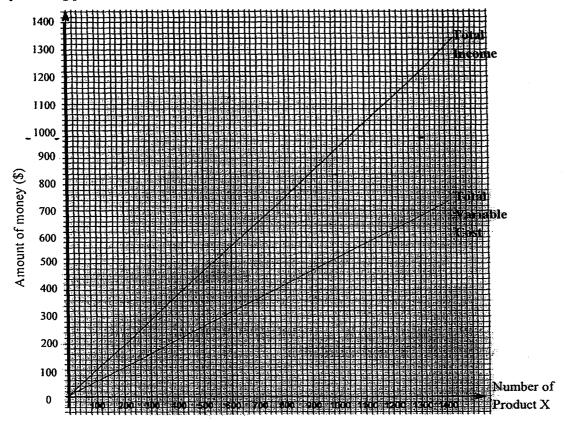
$$3x - y = 10$$

$$\frac{x}{2} + 2y = 6$$

Ì

3.	One cubic box of length 40 cm contains 4000 SG50 commemorative coins. A truck
	container with dimensions 2.5 m by 6 m by 2.5 m is used to deliver the coins to the packing
	center. Find the maximum number of coins that can be delivered each time. Leave your answer
	in standard form.

Answer:	 		• • •	coins	[2]
·	 	 		_	


4. Given that $p = 2 \times 10^{10}$ and $q = 1.62 \times 10^{12}$, evaluate each of the following without the use of a calculator. Express your answers in standard form.

(a) 8p

$$(b) \frac{p^2}{q-p}$$

Answer : (a)	[1]
(b)	[3]

5. The diagram below shows the Total Variable Cost and Total Income graphs of a company producing product X.

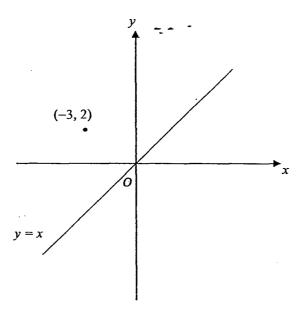
The Total Variable Cost includes expenses such as electricity bills, material costs, etc.

(a) Find the gradient of the line representing the Total Variable Cost and explain its significance.

The Total Cost incurred by the company comprises of the Total Variable Cost and the Fixed Cost. The Fixed Cost is \$500 and includes expenses such as insurance fees, rental fees, etc.

ğ

- (b) (i) On the graph provided above, draw the line representing the Total Cost for 0 ≤ number of Product X ≤ 1400. Label your graph "Total Cost". [1]
 - (ii) State the Total Cost incurred by the company when 800 Product X are produced.
 - (iii) Hence, conclude whether the company is making a profit or loss when 800 Product X are produced.


Answer: (a) Gradient =;			
Significance:			[2]
(b) (ii) \$	[1]	(iii)	[1]

6. The graph of y = x and the point (-3, 2) are plotted as shown below. On the axes below, sketch the graphs of the following given equations and, for each case, indicate the intercepts with the axes clearly. Label each graph clearly with its equation.

(a)
$$x = -4$$
, [1]

(b)
$$y + x + 1 = 0$$
, [2]

(c)
$$y = k + kx$$
, where $k > 1$. [2]

7. (a) Given that $b(3a-b) = \frac{ac}{b}$, express a in terms of b and c.

10.15

5 .-

(b) State the range of values of x for the following equation to be defined.

$$\frac{1}{x\sqrt{x+1}} = \frac{1}{x+1}$$

Answer: (a)_____[3]

(b)_____[2]

[Turn Over

- 8. Simplify the following expressions leaving your answers in the simplest factorized form.
 - (a) $\frac{1}{2x-1} \frac{3}{4x-2} + \frac{2}{4x^2 4x + 1}$
 - **(b)** $\frac{3a^2 5ab 2b^2}{b^2 9a^2} \div \frac{ab 3a 2b^2 + 6b}{3}$

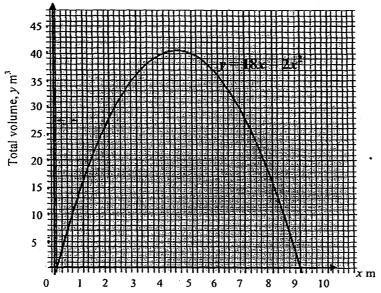
Answer: (a) [4]

(b)_____[4]

Š

4

- 9. Simplify the following, giving your answers in positive indices only.
 - $(a) \left(\frac{a^3}{27b}\right)^{\frac{2}{3}} \times \frac{b}{\left(-a\right)^2}$
 - **(b)** $\frac{(a^{-2}b^3c^0)^2}{5a^3c^2} \times \sqrt{100b^{-8}}$
 - (c) $\frac{3^{2x+1}-2(9^x)}{3^x}$, where x > 1


Answer: (a) [3]

(b)_____[3]

(c)____[2]

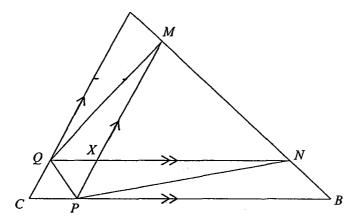
[Turn Over

10. A solid cuboid has dimensions (9-x) m by x m by 2 m. The graph representing its total volume, $y = (18x - 2x^2)$ m³, against x m is shown below.

- (a) Find the value of m given that the points (2, n) and (m, n) lie on the curve.
- (b) State the significance of the point (4.5, 40.5) on the above graph.
- (c) Find the equation of the straight line that must be drawn on the above graph to solve $x^2 \frac{21}{2}x + 15 = 0.$
- (d) Another cuboid with x m as one of its sides has a total volume of y = (30 3x) m³. By inserting the straight line y = 30 3x onto the graph above, find the value of x, where x < 5, when the two cuboids have the same volume.

ţ

11. The following is a pair of simultaneous equations:


$$x^2 - py^2 = 0,$$

$$x - 2y = 0.$$

- (a) If x = p + 1 and y = q, is the solution set of the above simultaneous equations, find the values of p and of q.
- (b) Write down a linear equation such that it has
 - (i) an infinite number of solutions with x-2y=0,
 - (ii) no solution with x-2y=0.

Answer: (a) [5]

(b) (i) _____[2

12. In the diagram shown below, ABC is a triangle. The points M and P are on AB and BC respectively, such that PM is parallel to CA. The points N and Q are on AB and AC respectively, such that QN is parallel to CB. NQ and MP meet at the point X, such that QXPC is a rhombus.

- (a) Name a triangle which is similar to ΔMNX .
- (b) What type of triangle should $\triangle NXM$ be, for it to be similar to $\triangle QXP$?
- (c) Given XN : QN : CB = 3:4:5.
 - (i) Prove that $\triangle ANQ$ and $\triangle MBP$ are congruent. State the geometrical reasons and the case of congruence clearly. [2]

Ì

(ii) If $\triangle QXP$ and $\triangle NXM$ are indeed similar, state the ratio QP : MN.

Answer: (a)		[1]
(b)	in the second second	[1]
(c)(ii)		[1]

END OF PAPER

Sec 2 EOY Paper 1 Solution

1	-3.2×10^{-13} , -32×10^{-15} , 0.32×10^{-17} , 3.2×10^{-16}
2	3x - y = 10 (1)
	$\frac{x}{2} + 2y = 6 (2)$
	2(1)+(2):
	$2(3x) + \frac{x}{2} = 2(10) + 6$
	$\frac{13x}{2} = 26$
	x = 4
	Sub $x = 4$ into (1), $3(4) - y = 10$
	y = 2
	Alternative method
	3x - y = 10 (1)
	$3x - y = 10 (1)$ $\frac{x}{2} + 2y = 6 (2)$
1	From (1): $y = 3x - 10 (3)$
	Sub (3) into (2):
 	$\frac{x}{2} + 2(3x - 10) = 6$
	$\frac{13x}{2} = 26$
	x = 4
	Sub $x = 4$ into (3), $3(4) - y = 10$
	y = 2
3	Maximum of boxes that can be packed into the truck container
	$= \frac{2.5}{0.4} \times \frac{6}{0.4} \times \frac{2.5}{0.4}$
	≈6×15×6
	= 540
	Maximum number of coins that can be delivered
	each time

Ì

	$=540 \times 4000$
	= 2160000
	$=2.16\times10^6$
4(a)	8 <i>p</i>
	$=8(2\times10^{10})$
	$=16\times10^{10}$
, ,	$=1.6\times10^{11}$
4(b)	$\frac{p^2}{q-p}$
	$\overline{q-p}$
	$=\frac{(2\times10^{10})^2}{1.62\times10^{12}-2\times10^{10}}$
	$-\frac{1.62\times10^{12}-2\times10^{10}}{1.62\times10^{10}}$
	$=\frac{4\times10^{20}}{}$
	$\frac{-1.62 \times 10^{12} - 0.02 \times 10^{12}}{1.62 \times 10^{20}}$
* * * * * * * * * * * * * * * * * * *	$= \frac{4 \times 10^{20}}{1.6 \times 10^{12}} \text{or} \frac{4 \times 10^{20}}{160 \times 10^{10}}$
	$\begin{vmatrix} 1.6 \times 10^{-8} & 160 \times 10^{-8} \\ = 2.5 \times 10^{8} & \end{vmatrix}$
	= 2.3 × 10
5(a)	Gradient = $\frac{420}{800}$ = 0.525
	800
	Significance: For each product X being produced,
	\$0.53 (2d.p) of variable cost was made.
5(bi)	Line drawn is parallel to Total Variable Cost line
	with <u>y-int=500</u>
5(bii)	420+500=\$920
5(biii)	loss
6	
· .	(a) $x = -4$ y $(c) y = k + kx, k > 1$
14 · 18*	<u> </u>
. X 🖑	
	• /
	(-3, 2)
•	*/
, #2 ·	x x
	y = x
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	(b) $y + x + 1 = 0$

7(a)	$b(3a-b)=\frac{ac}{b}$
	$b(3a-b) = \frac{ac}{b}$ $3a-b = \frac{ac}{b^2}$
	$3a - \frac{ac}{b^2} = b$
	$a\left(\frac{3b^2-c}{b^2}\right)=b$
	$a = \frac{b^3}{3b^2 - c}$
	Alternative method:
	$b(3a-b)=\frac{ac}{b}$
	$3ab^2 - b^3 = ac$
	$3ab^2 - ac = b^3$
	$a(3b^2-c)=b^3$
	4
	$a = \frac{b^3}{3b^2 - c}$
Ì	$3b^2-c$
7(b)	$x \neq 0$ and $x > -1$
	(Alt) $-1 < x < 0 \text{ or } x > 0$
8(a)	1 3 2
	$\frac{1}{2x-1} - \frac{3}{4x-2} + \frac{2}{4x^2 - 4x + 1}$
	$=\frac{1}{2x-1}-\frac{3}{2(2x-1)}+\frac{2}{(2x-1)^2}$
	$-\frac{2x-1}{2(2x-1)}$ $\frac{1}{(2x-1)^2}$
	2(2x-1)-3(2x-1)+2(2)
	$=\frac{2(2x-1)^2}{2(2x-1)^2}$
	5-2x
	$=\frac{5-2x}{2(2x-1)^2}$
8(b)	$3a^2 - 5ab - 2b^2$ $ab - 3a - 2b^2 + 6b$
	$\frac{3a^2 - 5ab - 2b^2}{b^2 - 9a^2} \div \frac{ab - 3a - 2b^2 + 6b}{3}$
	$= \frac{(a-2b)(3a+b)}{(b-3a)(b+3a)} \times \frac{3}{(a-2b)(b-3)}$
	3
	$=\frac{3}{(b-3a)(b-3)}$

0(a)	7
9(a) .	$\left(\frac{a^3}{27b}\right)^{\frac{2}{3}} \times \frac{b}{(-a)^2}$ $= \frac{a^2}{9b^{\frac{2}{3}}} \times \frac{b}{a^2}$ $= \frac{1}{9}b^{\frac{1}{3}}$
	$=\frac{a^2}{\frac{2}{a^2}}\times\frac{b}{a^2}$
	$9b^{\frac{3}{3}}$ " 1 $\frac{1}{2}$
	$=\frac{1}{9}b^3$
9(b)	$-\frac{(a^{-2}b^3c^0)^2}{5a^3c^2}\times\sqrt{100b^{-8}}$
	$= \frac{a^{-4}b^6}{5a^3c^2} \times 10b^{-4}$
	$=\frac{2b^2}{a^7c^2}$
9(c)	$\frac{3^{2x+1}-2(9^x)}{3^x}$
	$= \frac{3(3^{2x}) - 2(3^{2x})}{3^x}$
	3^x
	$=\frac{3^{2x}}{3^x}$ $=3^x$
10()	
10(a)	m=7
	The maximum total volume is 40.5 m^3 when $x=4.5$.
10(c)	$x^2 - \frac{21}{2}x + 15 = 0$
	$2x^2 - 21x + 30 = 0$
	$ \begin{vmatrix} 30 - 3x = 18x - 2x^2 \\ y = 30 - 3x \end{vmatrix} $
1:0(1)	
10(d)	Line drawn passes through (0,30) and (10, 0).
	Accept $x = 1.6$ to 1.8

11(a)	$(p+1)^2 - pq^2 = 0$ (1)
	(p+1)-2q=0(2)
	From (2), $q = \frac{p+1}{2}$ (3)
	Sub (3) into (1), $(p+1)^2 - \frac{p(p+1)^2}{4} = 0$
	$(p+1)^2 \left[1 - \frac{p}{4}\right] = 0$
	p = -1 or $p = 4$
	From (3),
	If $p = -1, q = 0$
	If $p = 4$, $q = 2.5$
	Alternative method:
	$(p+1)^2 - pq^2 = 0$ (1)
	(p+1)-2q=0(2)
	From (2), $p = 2q - 1 (3)$
	Sub (3) into (1), $(2q)^2 - (2q-1)q^2 = 0$
	$q^2(5-2q)=0$
	q = 0 or q = 2.5
	From (3),
	If $q=0, p=-1$
	If $q = 2.5, p = 4$
11(b)	(i) accept any $nx - 2ny = 0$, where $n \neq 0$
	(ii) accept any $x-2y=n$, where $n \neq 0$
12(a)	ΔANQ or ΔMBP or ΔABC
12(b)	Isosceles / Equilateral triangle

12(ci)	$\angle QAN = \angle PMB \text{ (corr. } \angle s, AC // MP)$
	$\angle ANQ = \angle MBP \text{ (corr. } \angle s, QN//PB)$
	$\angle AQN = \angle MXN$ (corr. \angle s, $AQ//MP$)
	$= \angle MPB \text{ (corr. } \angle s, AN//PB)$
	(*any of the 2 pairs of angles)
	QX = CP
	QN: PB = 4:5-(4-3)
	= 4:4
	QN = PB
	$\Delta ANQ = \Delta MBP \text{ (AAS/ASA * depends)}$
12(0;i)	<i>QP</i> : <i>MN</i> = 1 : 3
12(cii)	21.mm - 1.5

Class Register Number Name

南洋女子中学校 NANYANG GIRLS' HIGH SCHOOL

End-of-Year Examination 2015 Secondary Two

INTEGRATED MATHEMATICS

1 hour 30 minutes

Paper 2

1030 - 1200

08 October 2015

READ THESE INSTRUCTIONS FIRST

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, register number and class in the spaces at the top of this page.
- 2. Answer all the questions.
- 3. Write your answers and working on the separate answer paper provided.
- 4. All working must be written in dark blue or black ink.
- 5. Omission of essential working will result in loss of marks.
- 6. Write your name, register number and class on each separate sheet of paper that you use and fasten the separate sheets together with the string provided. Do not staple your answer sheets together.
- 7. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
- 8. The use of calculators is allowed for this paper.

INFORMATION FOR CANDIDATES

- 1. The number of marks is given in brackets [] at the end of each question or part question.
- 2. The total number of marks for this paper is 60.
- 3. You are reminded of the need for clear presentation in your answers.

This document consists of 6 printed pages.

NANYANG GIRLS' HIGH SCHOOL

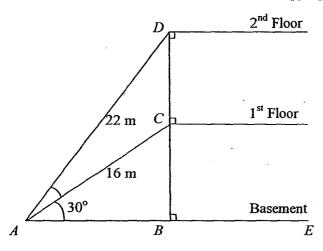
| Turn over

Setter: S Lee

1	(a)	The p	oint $(3, k)$ lies on the line $y = 3x + 1$. Find the value of k .	[1]
	(b)	The li	ne L_1 passes through the point (4, 7) and is parallel to the line $2y - x = 16$.	
		Find t	he equation of the line L_1 .	[3]
	(c)	The li	ne L_2 passes through the points $(2, -2)$ and $(2, 7)$. Write down the equation	
		of the	line L_2 .	[1]
			_	
2	(a)	It is g	iven that $\frac{3x-1}{4} \le \frac{7x+4}{3} < x+2\frac{2}{3}$.	
		(i)	Solve the inequality.	[4]
		(ii)	Hence, list the integer values of x that satisfy the inequality.	[1]
	(b)	Giver	that $2 \le p \le 7$ and $-1 \le q \le 5$, find	
		(i)	the largest value of $p-q$,	[1]
		(ii)	the smallest value of $p+q^2$,	[1]
		(iii)	the smallest value of $\frac{q^3}{p}$.	[1]
3	A de	elivery	van runs x kilometres on each litre of petrol when it travels up a slope.	
	(i)	Writ	te down, in terms of x, the number of litres of petrol used when the delivery	
		van	travels 70 km up the slope.	[1]
	The	delive	ry van runs $(x+2)$ kilometres on each litre of petrol when it travels down	
	the	slope.		
	(ii)	Wri	te down, in terms of x, the number of litres of petrol used when the delivery	
		van	travels 70 km down the slope.	[1]
	The	delive	ry van uses 3 litres less petrol to travel down the slope than up the slope.	
	(iii)	Usir	ng this information, form an equation in x and show that it reduces to	
		$3x^2$	+6x-140=0.	[3]
	(iv)	Solv	we the equation $3x^2 + 6x - 140 = 0$, giving both answers correct to two	
			mal places.	[3]
	(v)	Hen	ce, calculate the total volume of petrol used when the van travels 70 km up	

the slope and 70 km down the slope.

ţ

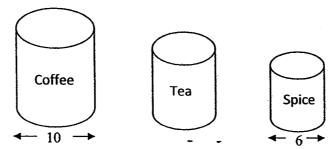

[2]

ţ

- The quadratic curve $y = ax^2 + bx + 23$ cuts the y-axis at point A and it passes through the points (1, 13) and (5, 13).
 - (i) Write down the coordinates of point A. [1]
 - (ii) Find the equation of the line of symmetry of the curve. [2]
 - (iii) Find the value of a and of b. Hence, explain with a reason whether the curve has a maximum or minimum turning point. [5]
 - (iv) The line y = k meets the curve $y = ax^2 + bx + 23$ at only one point. Find the value of k. [2]
- 5 The diagram shows two escalators, AC and AD, in a shopping centre.

....

1323



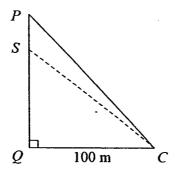
The escalator AC of length 16 m leads to the 1st Floor while the escalator AD of length 22 m leads to the 2nd Floor.

Given that the straight line BCD is perpendicular to the horizontal basement ABE and $\angle BAC = 30^{\circ}$, find

- (i) the height between the basement and the 1st floor, [2]
- (ii) the height between the 1st floor and the 2nd floor, [4]
- (iii) ∠*DAC*. [2]

6 The diagram shows three kitchen containers.

Each container is a cylinder and the containers are geometrically similar.

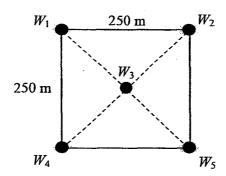

The bases of the Coffee and Spice containers have diameters of lengths 10 cm and 6 cm respectively.

- (a) Calculate the ratio
 volume of the Spice container: volume of the Coffee container.
 Hence, find the volume of the Spice container if the volume of the Coffee container is 980 cm³.
- (b) Given that the surface area of the Tea container is $\frac{9}{16}$ of the surface area of the Coffee container, evaluate $\frac{\text{Surface area of the Spice container}}{\text{Surface area of the Tea container}}$.

Ì

[3]

At the National Day Parade, a parachutist descended from a helicopter (not shown in the diagram). When he was at point P, he began to descend vertically at a constant speed of 7 m/s towards point Q on the parade ground. To record the descent, an automated motorized video camera was placed at point C on the parade ground, 100 m away from point Q. The angle of depression of C from P was 60°.


- (i) Calculate the time taken for the parachutist to reach the parade ground.
- (ii) Given that in the descent, it took 10 s for the parachutist to reach point S, calculate the angle of elevation of S from C. [3]

8 Singapore aims to be a test-bed for micro-wind technology generating electricity with low wind speeds. A wind power station is proposed to be erected in a 250 m by 250 m horizontal field at Pulau Ubin and some wind towers will be built. Each wind tower has three rotor blades and the length of each blade is 40 m.

(a) According to building regulations, the minimum distance between two wind towers, measured from the foot of one tower to another, has to be five times the length of a rotor blade.

An engineer made a suggestion on how to arrange five wind towers W_1 , W_2 , W_3 , W_4 and W_5 , in the square field. The arrangement is shown in the diagram below.

Explain why the engineer's suggestion does not meet the building regulations. Support your answer with working.

[3]

Ŋ

(b) Singapore wants to estimate the cost savings from generating electricity through this wind station. The formula $C = -10y^2 + 90y - 130$ is used to estimate the cost savings in C million dollars during the first y years of operation.

This formula can be re-written as $C = a(y - n)^2 + m$ where it will take n years to achieve the maximum cost savings of m million dollars. Find the maximum cost savings and the number of years it will take to achieve this.

[4]

Bonus Question

9 α and β are the roots of the quadratic equation $\alpha x^2 + bx + c = 0$ where a, b and c are constants and $a \neq 0$. Showing your working clearly, express the sum of the roots and the product of the roots in terms of a, b and/or c.

[3]

End of Paper 2

Ĕ

Sec 2 Math EOY 2015 Paper 2 Solution

1(a)	k = 10
[1 m]	
1(b) [3 m]	Gradient of L_1 is $\frac{1}{2}$
[2]	Let the equation of the line be $y = mx + c$
	and since the line passes through $(4, 7)$
	-
	$7 = \frac{1}{2}(4) + c$
	∴ c = 5
	Equation of L_1 is $y = \frac{1}{2}x + 5$
1(c)	x=2
[1 m]	
2(a)(i)	$\frac{3x-1}{4} \le \frac{7x+4}{3} < x+2\frac{2}{3}$
[4 m]	$\frac{1}{4} \le \frac{1}{3} < x + 2\frac{1}{3}$
1	
	$\left \frac{3x-1}{4} \le \frac{7x+4}{3} \right $
	4 3
	$9x - 3 \le 28x + 16$
	$-1 \le x \text{ or } x \ge -1$
1	7-14 2
]	$\left \frac{7x+4}{3} < x+2\frac{2}{3} \right $
	7x+4<3x+8
į	x<1
	∴-l≤x <l< td=""></l<>
2(a)(ii)	-1 and 0
[1 m]	
2(b)(i)	8
[1 m]	
2(b)(ii)	2
[1 m]	
2(b)(iii)	$\frac{1}{2}$
[1 m]	2
3(i)	70
[1 m]	X
3(ii)	70
[1 m]	x+2

3(iii)	70 70
[3 m]	$\frac{70}{x} - \frac{70}{x+2} = 3$
[]	x + 2 = 70(x+2) - 70x = 3x(x+2)
	$70x + 140 - 70x = 3x^2 + 6x$
	$3x^2 + 6x - 140 = 0 \text{ (shown)}$
3(iv)	
[3 m]	$x = \frac{-6 \pm \sqrt{6^2 - 4(3)(-140)}}{2(3)}$
	~ 2(3)
	$x \approx 5.90 \text{ or } -7.90$
3(v)	70 + 70
[2 m]	5.904 5.904 + 2
40	≈ 20.7 litres
4(i)	(0, 23)
[1 m] 4(ii)	1±5
[2 m]	$x = \frac{1+5}{2}$
	1 2
4(iii)	Line of symmetry is $x = 3$ a+b+23=13
[5 m]	$\begin{vmatrix} a+b+25=15 \\ a+b=-10(1) \end{vmatrix}$
[]	W. 0 = 10(1)
	$25a + 5b = -10 \dots (2)$
	25a + 5(-10 - a) = -10
	or $25a + 5b - 5a - 5b = -10 - 5(-10)$
	20a = -10 + 50
	a=2
	From (1), $b = -10 - 2 = -12$
	Sinne a the coefficient of it is recitive it.
	Since a, the <u>coefficient of x^2, is positive</u> , the curve has a <u>minimum turning point</u> .
4(iv)	When $x = 3$
[2 m]	$k = 2(3)^2 - 12(3) + 23$
	$\therefore k = 5$
5(i)	$BC = 16\sin 30^{\circ}$
[2 m]	=8 m
5(ii)	$AB = 16\cos 30^{\circ}$
[4 m]	≈13.86 m
	$BD = \sqrt{22^2 - 13.86^2}$
	≈17.09 m
	CD = 17.09 - 8
	= 9.09 m

ğ

5(:::)	12.06
5(iii) [2 m]	$\angle BAD = \cos^{-1} \frac{13.86}{22}$
[,	22 ≈ 50.95°
6(a)	$\angle DAC = 50.95^{\circ} - 30^{\circ} \approx 21.0^{\circ} \text{ or } 20.9^{\circ}$
[3 m]	63:103
	= 27:125
	Volume of Coffee container
y t	$=\frac{27}{125} \times 980$
	125
	$=211.68 \text{cm}^3$
6(b) [4 m]	$\frac{\text{Surface area of Spice container}}{\text{Surface area of Coffee container}} = \left(\frac{3}{5}\right)^2$
	1
	$=\frac{9}{25}$
	Surface area of Spice container $= \frac{9}{3} \div \frac{9}{3}$
1	Surface area of Tea container 25 16
	$=\frac{16}{25}$
	25
7(i)	OP
[3 m]	$\frac{QP}{100} = \tan 60^{\circ}$
	QP = 173.21
	Time taken = $\frac{173.21}{7}$
	7
7(3)	≈ 24.7 s
7(ii) [3 m]	<i>QS</i> = 173.21 – 10(7)
[2]	=103.21
	Angle of Elevation of S from C
	$= \tan^{-1} \frac{103.21}{100}$
	100 ≈ 45.9°
8(a)	$\sqrt{250^2 + 250^2}$
[3 m]	2
	≈177
	Since $177 < 200$, the engineer's suggestion
90	does not meet the building requirements.
8(b) [4 m]	$-10(y^2-9y)-130$
1 17 111	$=-10(y^2-9y+4.5^2-4.5^2)-130$
	$=-10(y-4.5)^2+72.5$
	It takes 4.5 years to achieve a maximum cost

	savings of 72.5 million dollars	
9	$(x-\alpha)(x-\beta) = x^2 - (\alpha+\beta)x + \alpha\beta$	
	$x^{2} - (\alpha + \beta)x + \alpha\beta \equiv x^{2} + \frac{b}{a}x + \frac{c}{a}$	
	$\therefore \alpha + \beta = -\frac{b}{a}$	
	$\alpha\beta = \frac{c}{a}$	

SWISS COTTAGE SECONDARY SCHOOL SECONDARY TWO EXPRESS SECOND SEMESTRAL EXAMINATIONS

) Class: Sec 2E
4048/01 Friday 2 October 2015 1 hour 15 minutes
. I nour 15 minutes
_

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

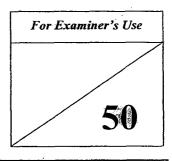
You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.


Calculators are **NOT ALLOWED** in this paper.

Give answers in degrees to one decimal place.

For π , use 3.142 unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

ķ

This question paper consists of 10 printed pages.

Setter: Mr Wilson Wee Vetter: Ms Zoe Pow

Turn over

		Answer all the questions.	
1	(a)	Express 180 as a product of its prime factors.	
	•		
		• • • • • • • • • • • • • • • • • • •	
•		Answer (a) $180 =$	[2]
	(L)	0: 4 . 504 03 02 5 5 14 1:1 4	
	(b)	Given that $504 = 2^3 \times 3^2 \times 7$, find the highest common factor of 504 and 180. Express your answer as a product of its prime factors.	
		and 100. Express your unover as a product of its prime factors.	
		Answer (b)	[1]
2	Give	In that $a = 5$, $b = 2$, $c = -3$ and $d = 8$, evaluate $\frac{3d}{b} - ac^2$.	
2	GIVG	$b = \frac{ac}{b}$	
		Answer	[2]

Make a the subject of the formula 7a-3b=2ac+8c. 3

> [2] Answer

ţ

4	(a)	Solve the inequality $16-4x < -\frac{1}{2}$	$\frac{1}{2}x$.
---	-----	---	------------------

Answer (a)[2]

(b) Hence, find the smallest possible value of x if

(i) x is an integer,

Answer (b)(i)[1]

(ii) x is a prime number.

Answer (b)(ii)[1]

5 Simplify the following.

50 A

(a)
$$3 + \frac{5m-n}{3} - \frac{3m}{4}$$

Answer (a)[2]

(b)
$$\frac{x+3}{x-1} \div \frac{2x^2 + 7x + 3}{2x-2}$$

	•	Answer (b)		[3]
6	Expand and simplify $(x+3)^2 - (x+3)^2$	x^2-2x+3).		
		Answer		[2]
7	Factorise the following.		•	

(a)
$$2ab - 6b^2 - ac + 3bc$$

ţ

(b)
$$3x^2 - 75$$

8 Solve the simultaneous equations

.. **40**00

$$2x-3y=14,$$
$$3x=4-4y.$$

Answer

9	8 workers can	build a towe	r in 60 days
,	O WOLKOLD COLL	bulle a to wo	I III OO UU ya

(a)	How many days will it take to build the same tower if 3 workers were
	injured?

Answer (a) days [2]

ķ

(b) How many workers are required to build 5 towers in 30 days?

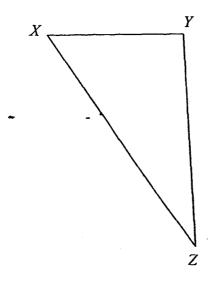
Answer (b) workers [3]

10	A 3 k	m road is represented by 6 cm on a map.	
	(a)	Find the scale of the map in the form $1:n$.	
* • .		Answer (a) [1]
		• • • • • • • • • • • • • • • • • • •	
	(b)		
		Find the area of the park on the map in cm ² .	
		Answer (b) cm ² [21
		Allower (b)	~] .
			
11	,	aptop costs \$2500. Jonathan buys the laptop under hire purchase. ording to the terms of the hire purchase, there is a down payment of 20%.	
	The	remaining amount is to be paid in monthly instalments over 4 years at a	
	simp	le interest rate of 5% per annum. Calculate the monthly instalment that	
	he ha	as to pay.	
		•	
	,		
	,		
	•		•
2			•

probability that (i) the first chip taken is red. Answer (a)(i)	(a)	Expressing your answer as a fraction in its lowest term, find the	
Answer $(a)(i)$		probability that	
(ii) the first chip taken is not yellow. Answer (a)(ii)		(i) the first chip taken is red.	
(ii) the first chip taken is not yellow. Answer (a)(ii)			
(ii) the first chip taken is not yellow. Answer (a)(ii)		Answer (a)(i)[1	1]
Answer (a)(ii)		• • • • • • • • • • • • • • • • • • • •	,
(iii) the first chip taken is either green or yellow. Answer (a)(iii)		(ii) the first chip taken is not yellow.	
(iii) the first chip taken is either green or yellow. Answer (a)(iii)			
(iii) the first chip taken is either green or yellow. Answer (a)(iii)			
(iii) the first chip taken is either green or yellow. Answer (a)(iii)			
(iii) the first chip taken is either green or yellow. Answer (a)(iii)			
Answer (a)(iii)		Answer (a)(ii)[2	2]
Answer (a)(iii)			
(b) If the first chip taken is yellow and is not replaced in the bag, find the		(iii) the first chip taken is either green or yellow.	
(b) If the first chip taken is yellow and is not replaced in the bag, find the			
(b) If the first chip taken is yellow and is not replaced in the bag, find the			
(b) If the first chip taken is yellow and is not replaced in the bag, find the			
		Answer (a)(iii)[2]
productivy and the second chip taken is green.	(Đ)		
		productive that the second crip taken is green.	

Š

13 The table below shows the number of books that a group of people have read over 2 months.


Number of books	0	1	2	3	4
Frequency	1	3	4	x	2

(a) If the mode is 2, write down the largest possible value of x.

(b) If the median is 2, write down the largest possible value of x.

(c) If the mean is 2, calculate the value of x.

Answer (a)

- (a) construct the
 - (i) angle bisector of $\angle YXZ$,

[1]

(ii) perpendicular bisector of XZ.

[1]

(b) The angle bisector in (a)(i) meets the perpendicular bisector in (a)(ii) at point P. Measure the shortest distance of P from XZ.

Answer (b)

..... cm

[1]

ż

End of Paper

ķ

Answer Key for Math 2E SA2 P1 2015

Qn	Marking Point
1(a)	$2^2 \times 3^2 \times 5$
1(b)	$2^2 \times 3^2$
_(-/	
2	-33
<u> </u>	-55
3	80136
.3	$a = \frac{8c + 3b}{7 - 2c}$
	1-2c
4(a)	$3\frac{5}{9} < x$
	<u> </u>
4(b)(i)	4
4(b)(ii)	5
	· · ·
5(a)	36+11m-4n
,	12
5(b)	2
, ,	$\sqrt{\frac{2}{(2x+1)}}$
	(=3,12)
6	8x+6
	0.2.1.0
7(a) .«	(a-3b)(2b-c) $3(x+5)(x-5)$
7(b) ~	3(x+5)(x-5)
8	y = -2
	x=4
9(a)	96 days
9(b)	
page a le c	Workers Days Towers
	8 60 1
	×5 ×5
	= 40 60 = 5
	× 2 ÷ 2
	- = 80 = 30
<u> </u>	Answer 80 workers
10(a)	Scale = 1:50000
10(b)	108 cm ²

11	\$50
12(a)(i)	5
2-()(-)	14
12(a)(ii)	4 -
	7
12(a)(iii)	9
	14
12(b)	3
	$\frac{3}{13}$
13(a)	3
13(b)	5
13(c)	x=1
14(c)	1.7±0.1 cm

Marking Scheme for Math 2E SA2 P1 2015

Qn	Marking Point	Marks Awarded	Remarks
1(a)	2 180		
	2 <u> 90</u>		
	3 <u>[45</u>	M1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 5		
	5 5	~	
	•		
_	$180 = 2^2 \times 3^2 \times 5$	A1	
1(b)	$180 = 2^2 \times 3^2 \times 5$		
	$504 = 2^3 \times 3^2 \times 7$	·	
, asa, i c	$HCF = 2^2 \times 3^2$	B1	
2	$\frac{3d}{b} - ac^2$		
	$\frac{1}{b} - ac$		
	$=\frac{3(8)}{2}-5(-3)^2$		
	$=\frac{24}{2}-5(9)$	M1	Evaluation of c^2 as 9.
	=12-45		
	= -33	A1	
3	7a - 3b = 2ac + 8c		
	7a - 2ac = 8c + 3b		, %
	a(7-2c)=8c+3b	Mi	Factorising the terms
	$a = \frac{8c + 3b}{7 - 3c}$		containing a.
	$a = \frac{1}{7 - 2c}$	A1	

			
4(a)	$16-4x<\frac{1}{2}x$		
	$16 < 4x + \frac{1}{2}x$		
	$16-4x < \frac{1}{2}x$ $16 < 4x + \frac{1}{2}x$ $16 < 4\frac{1}{2}x$ $16 < \frac{9}{2}x$ $32 < 9x$	M1	Shifting the variables to one side.
	$16 < \frac{9}{2}x$	-	
	į daras ir d		
	$3\frac{5}{9} < x$	A1	
4(b)(i)	4	B1	
4(b)(ii)	5	B1	
			<u> </u>
5(a)	$3 + \frac{5m-n}{3} - \frac{3m}{4}$		
,	$= \frac{36}{12} + \frac{4(5m-n)}{12} - \frac{9m}{12}$ $= \frac{36 + 4(5m-n) - 9m}{12}$	M1	Combining second and third
	$= \frac{36 + 20m - 4n - 9m}{12}$		term into one fraction with common denominator.
	$=\frac{36+11m-4n}{12}$	A1	
5(b)	$\frac{x+3}{x-1} \div \frac{2x^2 + 7x + 3}{2x-2}$		
	$= \frac{x+3}{x-1} \times \frac{2x-2}{2x^2+7x+3}$	M1	Changing to multiply sign.
	$= \frac{x+3}{x-1} \times \frac{2(x-1)}{(x+3)(2x+1)}$	M1	Factorising $2x^2 + 7x + 3$
	$=\frac{2}{(2x+1)}$	A1	
6			
1 6	$(x+3)^2 - (x^2-2x+3)$		
١٠	•		
	$= x^{2} + 6x + 9 - x^{2} + 2x - 3$ $= 8x + 6$	M1 A1	Correct expansion and opening of bracket.

7(a)	$2ab-6b^2-ac+3bc$		
	$\begin{vmatrix} 2b(a-3b)-c(a-3b) \end{vmatrix}$	M1	
	= (a-3b)(2b-c)	A1	
7(b)	$3x^2 - 75$	A	
/(b)	1 ' '		
	$=3(x^2-25)$	M1	
r Mik	=3(x+5)(x-5)	A1	
8	2x-3y=14(1)	<u></u>	
	3x + 4y = 4 (2)		
	(1)×3,		
1.48 × 31	6x - 9y = 42 (3)		
e de la companya de l	(2) × 2, 6x + 8y = 8		
	6x + 8y = 8 (4)		
	(3)-(4)		
	(3)-(4), -17y = 34	3/11	Subtracting on (4) from (2)
	y = -2	M1 A1	Subtracting eq. (4) from (3).
		AI	
	Subst. $y = -2$ into (1),		
	2x-3(-2)=14		
	2x+6=14		
· salan.	2x = 8		
	x = 4	A1	,
0(a)	8 workers 60 days	 	
9(a)	1		•
*. (\$1) **.	5 workers $\frac{8}{5} \times 60$	M1	
	= 96 days	A1	
9(b)	Workers Days Towers		
	8 60 1		
SE SE SE	×5 ×5	M1	
Per manage	= 40 60 = 5		
		M1	
	$\begin{array}{c cccc} \times 2 & \div 2 \\ \hline = 80 & = 30 \end{array}$	1411	
E. C.			
	Answer 80 workers	A1	
L	<u> </u>		

10(a)	6 cm 300000 cm		
10(4)	30000		
	1 cm 6		
	= 50000 cm		
	30000 5111		
	Scale = 1 : 50000	B1	
10(b)	3 km 6 cm		
	(3km) ² (6cm) ² 9 km ² 36 cm ²		
	9 km ² 36 cm ²	M1	Area scale
	$27 \text{ km}^2 - \frac{27}{9} \times 36$		
		A1	
	$= 108 \text{ cm}^2$	- A1	
11	$Down payment = \frac{20}{100} \times \2500		
	$\frac{100 \text{ m payment}}{100} \times 32500$	M1	·
	= \$500		
	Remaining amt.		
	= \$2500 - \$500		
	=\$2000		
	\$2000.5.4	201	
	Interest = $\frac{$2000 \times 5 \times 4}{100}$	M1	
	100		
	=\$400		1
	Total amt, to be paid for 4 years		
	=\$2000+\$400		
	=\$2400		
	- \$2400		
	Monthly installment		
ļ	\$2400		
	$=\frac{12\times4}{12\times4}$		
	=\$50	A1 .	
12(a)(i)	Probability 5		
	Probability = $\frac{5}{5+3+6}$		
1	$=\frac{5}{}$		•
	$=\frac{1}{14}$	B1	

12(a)(ii)	Probability = $1 - \frac{6}{14}$	M1	
	$=\frac{8}{14}$		
•	$=\frac{4}{7}$	A1	
12(a)(iii)	Probability = $\frac{3+6}{14}$	M1	
	$=\frac{9}{14}$	A1	
12(b)	Probability = $\frac{3}{14-1}$	M1	
Tipe A	$=\frac{3}{13}$	A1	·
13(a)	3	B1	
13(b)	0 1 1 1 2 2 2 2 3 3 4 4		
ľ	Answer 5	B 1	
13(c)	$\frac{0 \times 1 + 1 \times 3 + 2 \times 4 + 3 \times x + 4 \times 2}{1 + 3 + 4 + x + 2} = 2$	M1	
	3x + 19 = 2(x + 10)		
	3x+19=2x+20		
	x = 1	A1	
14(c)	1.7±0.1 cm	B1	

Ì

ţ

SWISS COTTAGE SECONDARY SCHOOL SECONDARY TWO EXPRESS SECOND SEMESTRAL EXAMINATIONS

Name:	()	Class: Sec 2E
MATHEMATICS			4048/02
Paper 2			Thursday 8 October 2015
•	-		1 hour 15 minutes
Additional Materials: Graph Paper (1 shee	et).		
Additional Candidates answer on the Que	stion Paper.		

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

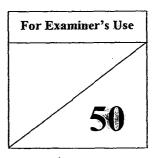
Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.


For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π

At the end of the examination, fasten all your work securely together.

Attach the graph paper at the back of the question paper.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This question paper consists of 12 printed pages.

Setter: Mr Ngoh Kia Joon **Vetter:** Ms Zoe Pow

[Turn over

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

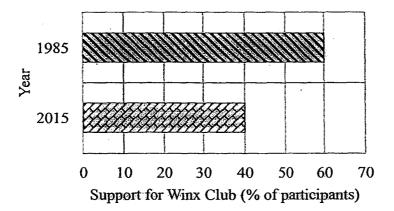
Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

ķ


Answer all questions.

1 (a) Evaluate $\frac{17.69^2 - \sqrt{22.11}}{\frac{8}{3}\pi}$, giving your answer correct to 1 decimal place.

(b) A rectangular pond has a length of 31.356 m and breadth of 17.282 m.

Estimate the area of the pond by rounding off each given dimension to 1 significant number.

2 (a) Results of a recent poll on the support for Winx Football Club in the year 1985 and 2015 are shown below. Both polls were conducted on 100 participants.

Find the percentage decrease in the support for Winx Football Club in 2015 as compared to 1985.

(b) John came across the following advertisement while he was shopping.

GAMING CONCEPT STORE

PS4 console

Usual Price: \$699 Discounted Price: \$499 PS4 games bundle

Usual Price: \$125 Discount: 15% off Usual Price

(i) Calculate the percentage discount given for the PS4 console.

Answer (b)(i)% [2]

(ii) Calculate the discounted price of the PS4 games bundle.

ţ

ķ

3	(a)	David wishes to deposit \$2000 in a bank for 5 years. During his research, two brochures
		caught his interest.

SBD BANK

GBGO Bank

- 8% simple interest for 1st year
- 4% simple interest for subsequent years

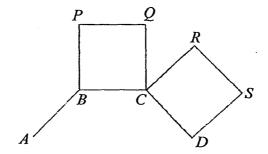
- 4% compound interest per annum, compounded monthly
- (i) Calculate the interest David would earn from SBD Bank at the end of 5 years.

Answer (a)(i) \\$..... [2]

(ii) Which bank should David deposit his money to earn the higher interest at the end of 5 years? Show all workings clearly.

Answer (a)(ii)[2]

- (b) During the December holidays, Kalif wishes to bring his family to Malaysia for a short getaway. On that particular day, the exchange rate between Singapore Dollar (S\$) and Malaysia Ringgit (RM) was S\$ 1 = RM 2.87.
 - (i) Given that Kalif changed S\$950 in total, find the amount of Malaysia Ringgit he received.


Answer (h)(i)	RM	[1]

(ii) In Malaysia, Kalif and his family spent a total of RM 1220. Upon return, he decided to change his Malaysian Ringgit back to Singapore Dollar at the rate of S\$1 = RM 2.92.

Find the amount of Singapore Dollar he received from the exchange.

Answer (b)(ii) \$\$.....[2]

4 The diagram below shows part of a regular polygon ABCD... and 2 squares PQCB and RSDC.

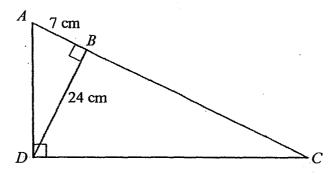
Given that polygon ABCD... has an exterior angle of 45°, find

(a) the number of sides of polygon ABCD...,

Answer (a)[2]

(b) ∠QCR.

Answer (b) [2]


Find							
(a)	Peter's avera	ge speed while tr	raveling from To	wn A to the cafe	e, giving your	answer in k	m/h
			-		~	- *	
				•			
· • •	, 	d , i					
		3 7 <u>2</u> .					
						1 .	
				Answer (a)	•••••	km/n	[:
(b)	the time Pete	er took to travel fi	rom the cafe to T	own B, giving y	our answer in	minutes,	
	* 6						
	- 1						
	**				•		
		*					
		`					

On the return journey, Peter cycled at a uniform speed and took 5 hours to travel from Town B to Town A.

(d) Calculate Peter's speed for the return journey.

Answer (d)km/h [1]

6 In the diagram below, $\angle ABD = \angle ADC = 90^{\circ}$, AB = 7 cm and BD = 24 cm.

Find


(a) length AD,

Answer (a)cm [2]

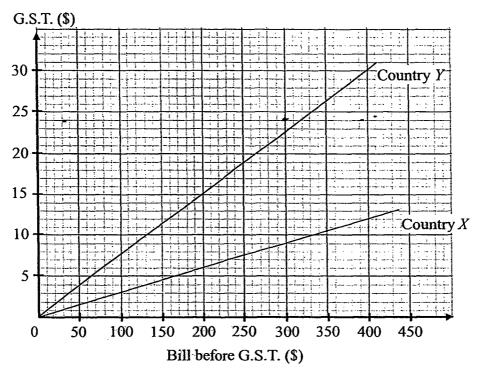
(b) $\angle BCD$.

ţ

7 In the diagram below, TP // SR, PT = 27 cm, RS = 9 cm and PS = 32 cm. PQS and TQR are straight lines.

(a) Prove that $\triangle PQT$ is similar to $\triangle SQR$.

Answer


[2]

[2]

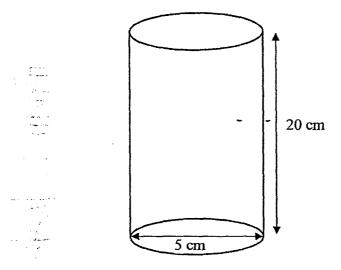
Ĭ

(b) Find the length of QS.

8 The Government Service Tax (G.S.T.) charged to a bill before G.S.T. in Country X and Country Y is shown in the graph below.

(a) State the amount of G.S.T. when the bill before G.S.T. in Country X is \$200.

Answer (a) \$.....[1]

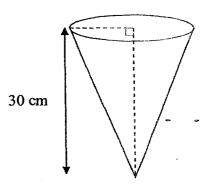

ď

(b) State the bill before G.S.T. when the G.S.T. charged in Country Y is \$19.

Answer (b) \$.....[1]

(c) If Thomas spends \$170 before G.S.T., find the difference in the amount of G.S.T. charged between Country X and Country Y.

9 Gong Gong Teahouse sells milk tea with pearls in cups that take the shape of a closed cylinder with height 20 cm and base diameter 5 cm. Each cup of milk tea with pearls is filled to the brim with milk tea and 60 spherical pearls each of radius 0.5 cm.



(a) Calculate the surface area of 1 spherical pearl.

	_		ì
Answer (a)	cm ²	[2]	

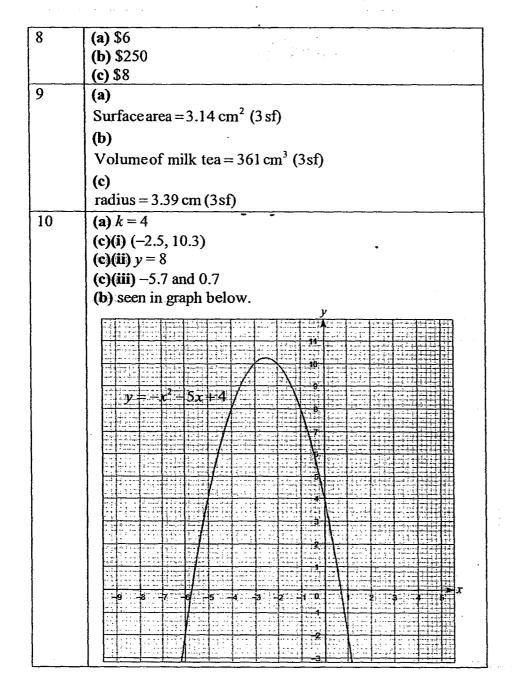
(b) Calculate the volume of the milk tea in the cup.

 (c) In a special edition, the same volume of milk tea from (b) is poured into an inverted cone of height 30 cm and filled it to the brim. Calculate the radius of the cone.

10 Answer the whole of this question on a single sheet of graph paper.

The table below shows the x and y values for the equation $y = -x^2 - 5x + 4$.

x	- 7	-5	-3	-2	0	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
у	-10	k	10	10	4	-2	


(a) Calculate the value of k. [1]

- (b) Taking 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw the graph of $y = -x^2 5x + 4$ for $-7 \le x \le 1$. [3]
- (c) Using your graph, find
 - (i) the coordinates of the maximum point of the graph, [1]
 - (ii) the value of y when x = -1, [1]
 - (iii) the solution(s) of $-x^2 5x + 4 = 0$. [1]

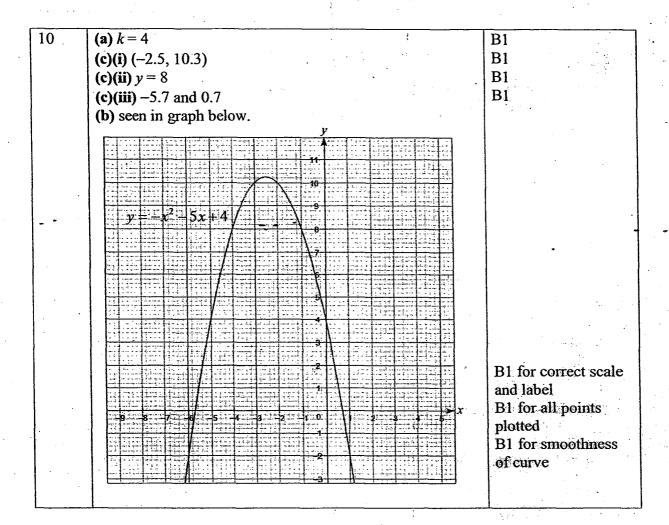
ţ

Answer Scheme for 2015 Sec 2 Express Maths SA2 P2

1	(a) 36.8 (1 dp) (b)
	$Area = 600 \mathrm{m}^2$
2	(a)
	% decrease = $33\frac{1}{3}$ % or 33.3% (3sf)
-	(b)(i) % discount = 28.6% (3sf)
	(b)(ii)
	Discounted price = \$106.25
3	(a)(i)
	Interest (SBD) = \$480
	(a)(ii)
	Interest (CBCO) = \$441.99 (nearest cents)
	Therefore David should deposit his money in SBD Bank
1 .	to earn a higher interest. (b)(i)
	Amount received = RM 2726.50
	(b)(ii)
l ·	Amount remaining (S\$) = SG\$515.92 (nearest cents)
4	(a)
	number of sides = 8
	(b) $\angle QCR = 45^{\circ}$
5	
	(a) Averagespeed = 18 km/h
,	(b) Time taken = 165 minutes
	$\begin{array}{c} (c) \\ x = 80 \end{array}$
	(d)
	Uniform speed = 17 km/h
6	(a)
-	$AD = 25 \mathrm{cm}$
	(b)
	$\angle BCD = 16.3^{\circ} (1 \text{ dp})$
7	(a) (TOP - (POS from one (a))
	$\angle TQP = \angle RQS \text{ (vert. opp. } \angle S)$ $\angle QPT = \angle QSR \text{ (alt } \angle S, PT // RS)$
	$\angle PTQ = \angle SRQ \text{ (alt } \angle S, PT // RS)$
	Since all corresponding angles are equal, therefore, ΔPQT
	is similar to $\triangle SQR$.
	(b)
	QS = 8 cm

_

ž


Mark Scheme for 2015 Sec 2 Express Maths SA2 P2

	School Control of the	Victoria de la compansión
1	(a) 36.8 (1 dp)	B1
	$\begin{array}{l} \textbf{(b)} \\ \text{Area} = 30 \times 20 \end{array}$	
		B1
2	$=600 \mathrm{m}^2$	
	60 – 40	
	$\%$ decrease = $\frac{100\%}{60}$	M1
	% decrease = $\frac{60-40}{60} \times 100\%$ = $33\frac{1}{3}\%$ or 33.3% (3sf)	
	= 33-% or 33.3% (381)	A1
	(b)(i)	
	$\% \text{ discount} = \frac{699 - 499}{699} \times 100\%$	M1
	4	
	=28.6% (3sf)	A1
	(b)(ii)	4.7
	Discounted price = $\frac{85}{100} \times 125$	M1
	= \$106.25	A1
3	= 3100.23 (a)(i)	
	Interest (SBD) = $\frac{8}{100} \times 2000 + \frac{4}{100} \times 2000 \times 4$	M1
	= \$480	A1
	(a)(ii)	
	4	
	Final Amount (CBCO) = $2000(1 + \frac{\frac{4}{12}}{100})^{60}$	
	= \$2441.993	M1
	Interest (CBCO) = $2441.993 - 2000$	
	= \$441.99 (nearest cents)	
	Therefore David should deposit his money in SBD Bank	A1 (Conclusion)
	to earn a higher interest.	AI (Conclusion)
	(b)(i) Amount received = 950×2.87	
	= RM 2726.50	B1
	(b)(ii)	
	Amount remaining (RM) = $2726.50 - 1220$	•
	= RM 1506.50	
	Amount remaining (S\$) = $\frac{1506.50}{2.92}$	M1
	Amount remaining $(55) = {2.92}$	
	= SG\$515.92 (nearest cents)	A1
	•	
L		

4	(a)	
	number of sides = $\frac{360}{}$	
	45	M1
	= 8	A1
	(b)	
	1 interior angle = $180 - 45$	241
	=135°	M1
	$\angle QCB = \angle RCD = 90^{\circ} \text{ (Given)}$	
	$\angle QCR = 360 - 90 - 90 - 135$ (Angles at a pt)	
	= 45°	A1
5	(a)	
	Average greed = 30	
	A verage speed = $\frac{1}{2}$	M1
	Average speed = $\frac{30}{1\frac{2}{3}}$	
	= 18 km/h	A1
	(b)	İ
	85 - 30 = 55 km	ļ
	Time taken = $\frac{55}{20}$	M1
•	20	
	= 2.75h	
	= 165 minutes	A1
	(c)	
	1545 - 1000 = 5h 45 mins = 345 mins	
	x = 345 - 100 - 165	D1
	= 80	B1
	(d)	
	Uniform speed = $\frac{85}{5}$	
	5	B1
	= 17 km/h	
6	(a)	
	By Pythagoras theorem,	
	$AD^2 = 7^2 + 24^2$	M1
	$AD^2 = 625$	
	$AD = 25 \mathrm{cm}$	A1
:	(b)	
	$\tan \angle DAB = \frac{24}{7}$,
	7	M1
	(D. ID. 1 = 1 24	
	$\angle DAB = \tan^{-1} \frac{24}{7} = 73.740$	
	$\angle BCD = 180 - 90 - \tan^{-1} \frac{24}{7}$	
	·	
1	$=16.3^{\circ}(1 \mathrm{dp})$	A1
		1

È

		
7	(a)	
	$\angle TQP = \angle RQS$ (vert.opp. \angle s)	ļ·
	$\angle QPT = \angle QSR$ (alt $\angle s$, $PT // RS$)	
	$\angle PTQ = \angle SRQ$ (alt $\angle s$, $PT // RS$)	M1
	Since all corresponding angles are equal, therefore, ΔPQT	
		A1
	is similar to $\triangle SQR$.	Ai
	(b)	
	$\frac{QS}{QP} = \frac{RS}{TP} = \frac{1}{3}$	
	$\overline{OP} = \overline{TP} = \overline{3}$	M1
	PS = AOS	
	PS = 4QS	
	$QS = \frac{32}{4}$	-
	4	A1
	QS = 8 cm	
8	(a) \$6	B1
	(b) \$250	B1
	(c) \$13 - \$5 = \$8	B1
9		
,	(a)	
	Surface area = $4 \times \pi \times 0.5^2$]
	$= 3.14 \text{cm}^2 (3 \text{sf})$	M1
	l · · · · · · · · · · · · · · · · · · ·	A1.
	(b)	
	Volume of cylinder = $\pi \times 2.5^2 \times 20$	M1 (For correct
	$=125\pi \text{ cm}^3$	method)
		M1 (For correct
1	Volume of 60 pearls = $\frac{4}{3} \times \pi \times 0.5^3 \times 60$	method)
	3	memoa)
	$=10\pi$ cm ³	
	Volume of milk tea = $125\pi - 10\pi$	
	$=361\mathrm{cm}^3\;(3\mathrm{sf})$	A1
	(c)	
	1 ()2 ()2	
}	$115\pi = \frac{1}{3}\pi(r)^2(30)$	M1
	radius = 3.39 cm (3sf)	A1
	1aulus – 3.39 cm (381)	111
ł		
	· 🐇 🙄	
1		
1		
L		<u> </u>

