Index Number	Class	Name

CHIJ ST JOSEPH'S CONVENT SEMESTRAL ASSESSMENT 2

SCIENCE (CHEMISTRY)

Secondary 1 Express

Monday, 10 October 2016 50 minutes

Candidates answer on the Question Paper. Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your index number, class and name on all the work you hand in. Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

There are ten questions. Answer all questions. For each question there are four possible answers A, B, C, and D.

Choose the one you consider correct and record your choice in soft pencil on the separate answer sheet. Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Section B

Answer all questions in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

Electronic calculator may be used in this paper.

The total of the marks for this paper is 40.

A copy of the Periodic Table is printed on page 14.

FOR EXAMINER'S USE		
Α		
В	4545 - Pa	
Total	40	

This document consists of 14 printed pages.

Setter(s): Mrs Tang Hui Sun and Ms Ho Yan Yi

LSS_Chemistry/SA2/16

Turn Over

Section A (10 marks)

Answer all questions.

Silica gel can be used to limit the growth of mould on leather goods and electronic equipment by absorbing water vapour from the air.
Which of the following methods can be used to study the rate of absorption of water vapour in silica gel in 15 minutes?

- 2 An element is found to have the following properties:
 - · good electrical conductivity,
 - · shiny in appearance,
 - · solid at room temperature.

What is the element most likely to be?

- A aluminium
- B carbon
- C nitrogen
- D silicon
- 3 Urea is a compound with the chemical formula, CO(NH₂)₂.
 Which of the following shows the correct information about one molecule of urea?

	number of elements	number of atoms
A	3	6
В	3	7
C	4	7
D	4	8

4 A mixture of hexane (boiling point, 70°C) and heptane (boiling point, 98°C) was separated by fractional distillation.

When the thermometer shows 70°C, at which point will there be the highest proportion of hexane?

Octane and water are immiscible liquids.
Which method could be used to separate a mixture of octane and water and how is the purity of separated octane checked?

	method of separation	purity check
Α	filtration	find the boiling point
В	filtration	obtain a chromatogram
C	using separating funnel	find the boiling point
D	using separating funnel	obtain a chromatogram

- 6 Which of the following remains constant when a liquid undergoes freezing?
 - A energy level of particles
 - B size of particles
 - C distance between particles
 - D attractive forces between particles
- 7 Which of the following best represents the change in arrangement of the particles when ammonium chloride undergoes heating?

A

P

C

D

- 8 Isotopes of the same element contain
 - A equal numbers of electrons, protons and neutrons.
 - B different numbers of electrons, protons and neutrons.
 - C the same numbers of protons and electrons but a different number of neutrons.
 - D the same numbers of electrons and neutrons but a different number of protons.

9 Which of the following diagrams represents molecules of methane?

C C

10 Which of the following sub-atomic particles determines the chemical properties of an atom?

- A proton
- B neutron
- C electron
- D nucleus

Section B (30 marks) Answer all questions.

1 The diagram shows the apparatus setup by a student to find the boiling point of ethanol. For Examiner's Use

Identify a mistake in the setup. Explain your answer and state how you can modify the setup to correct the mistake.

mistake	 	
explanation	 .,	
modification	 	

[2]

2	Infor	mation abo	out four s	substances, P, Q,	R and S is given	below.	
	Sub	stance P:	It is a water.	white solid. Only	some parts disso	lve in an excess o	f
	Subs	stance Q: stance R:	It is a w It is a g simpler	•	nnot be decompo	sed into anything	
Substance S: It is a blue liquid. When it is distilled, a colourless liquicollected.					colourless liquid is	3	
						t, a compound or a	
		substa	nce	element	compound	mixture]
		Р					
		Q			30		
		R					
		s					
	(b)	difference	1	es in properties be			[4]
			••••••				[2]
				141 11 34			

For Examiner's Use 3 The solubility of three solids in two different solvents, P and Q, are shown in the table below. For Examiner's Use

solid	solu	bility
Sonu	solvent P	solvent Q
sand	insoluble	insoluble
sulfur	soluble	insoluble
salt	insoluble	soluble

e mixture.	8		o obtain dry sam	. 1	
	•••••	•••••	***************************************	••••••	
	¥				
			••••••		
*****************	•••••	***************************************	•••••••	•••••	
		4 4 4 4 4			
			••••		
		45 £0	*******************		
	,		••••••		
					3+3
		**************	******************		

4		reaching home from school, a student realised that someone is baking e kitchen even though she was just at the doorstep.	
	(a)	Explain the student's observation.	
			2]
	(b)	The student walked to the kitchen and saw her mother heating some chocolate in a pan and there is a bar of chocolate on the table. The diagram below shows what the student saw.	
		Complete the table below about the characteristics of particles in W and X.	
		W X	
		arrangement	

[2]

For Examiner's Use

movement

(c) The student helps her mother by putting some of the ingredients back in the refrigerator. While doing so, she found a crushed empty plastic bottle in the refrigerator, which was still capped at its opening. She placed the crushed bottle on the kitchen table and the diagram below shows her observation after some time. For Examiner's Use

Using Kinetic Particle Theory, explain her observation.

(i)

		24 (Mar 10) (1	
		and the state of t	
	360 3 6		
		51 04	
	V. 1		
		457	
		5 10 87	
	The second secon	a na kaon' a san na	
(ii)	Explain why there was no cha	inge in the mass of the bottle and its	
(,		and are made of the both drie no	
	content.		
	A 1951	55 (6)	
		A	
			31
			1.3
			[A]
			[4]

5 The table below shows some information about the atoms of elements, Q and R. The letters do not represent the chemical symbols of the elements.

For Examiner's Use

element	atomic number	number of neutrons	mass number
Q	7		14
R	14	14	

(a) (i) Complete the table at	ove.
---	------

(ii)	Draw the full	electronic structure of R in the space	below.
------	---------------	--	--------

(b)	Explain why the mass number of an atom does not include the number of electrons.	
		[1]
(c)	Atoms of element Q can form diatomic molecules. What is a diatomic molecule?	
		[1]

[2]

(d)	Both elements Q and R can react with hydrogen to form QH ₃ and RH ₄ . State a similarity and a difference between molecules of QH ₃ and RH ₄ .	
	similarity	
	difference	
		[2]

For Examiner's Use

6			found a bottle of an unknown substance in the lab. She realised that has fallen off. She found the following information on the bottle.	
			information: • melting point = 650°C • boiling point: 1107°C • element found in Group II, Period 3	
	(a)		ed on the information above, write the chemical symbol, with proton nucleon numbers, of the unknown substance in the box below.	
		9		[2]
	(b)		student did some research online and learnt that atoms of the lown substance can form ions by losing 2 electrons.	
		(i)	Suggest the charge of the ion formed.	
		(ii)	Explain your answer in (b)(i).	

For Examiner's Use

- End of paper -

[2]

S
=
O
E
ē
Elements
0
of the
4-
Table
3
a
-
O
ਰ
Periodic
ヿ
ø
0
The

H									Ğ	Group								
11														2	>	>		0
11								:										4:
11 12 14 16 19 19 19 19 19 19 19	hydr 1	hydr 1	hydi	hydi	hydi	hydr	- ķ.	uego	\$94 17				i 160					hollum
59 64 65 7 8 0 F 59 58 58 31 32 35.5 Co Ni Cu Zn 28 31 32 35.5 Co Ni Cu Zn 73 75 79 80 Co Ni Cu Zn Galluninium silicon phasphorus sultur chlorino 7 28 50 73 75 75 79 80 7 28 30 31 32 34 45 86 80 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td>12</td><td>14</td><td>16</td><td>18</td><td></td></td<>					1								11	12	14	16	18	
59 58 65 7 8 9 Inucial modulum Indicated coopies 128 31 32 35.5	Be										180		80	O	z	0	ட	Se
Signature Sign	beryllum 4	9 9	Ø											carbon 6	nitrogen 7	oxygen 8	Suorine 9	F
Signature	24												27	28		32	35.5	
59 59 64 65 70 73 75 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 80 Co Ni Cu Zn Ga Ga As Sa Br Att Br Att Att Br Att Br Att Att Att Br Att Att Att Br Att Att Br Br Br Att Br Att Br Br Att Att Br Br Att Att Br Br Att Att Br Br Att Br Br Att Att B	Mg												ΥI	ເວັ		ഗ	ರ	¥
59 58 64 65 70 73 75 79 80 Co Ni Cu Zn Ga Ge As Se Br cobalt nickel copper zinc gallium germenium arsenic selonium bromine 7 28 30 31 32 33 34 35 103 106 108 112 115 115 122 128 127 Rh Pd Ag Cd In Sn Sh Te I 46 47 48 49 60 51 52 63 192 195 197 Au Hg T/ Pb Bi Po At 1 Pt Au Hg T/ Pb Bi Po At 1 Pt Au Hg T/ Pb Bi Po At 7 </td <td>sodium magnosium</td> <td>C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>aluminium 13</td> <td>licon</td> <td>phasphorus 15</td> <td>sulfur 16</td> <td>chlorino 17</td> <td>argon 18</td>	sodium magnosium	C						-					aluminium 13	licon	phasphorus 15	sulfur 16	chlorino 17	argon 18
Co Ni Cu Zh Ga As Se Br Br cobalt nickel copper zino gallium germenium arscnic aelonium bromine 7 28 29 30 31 32 33 34 35 103 106 108 112 115 119 122 128 127 Rh Ag Cd In Sn Sh Te I frodium palialum animorum tin animorum sn 52 53 192 195 197 201 204 207 209 51 52 63 Ir Pt Au Hg TI Pb Bi Po At Ir Pt Au Hg TI Pb Bi Po At T 78 80 81 82 83 84 85	40 45 48 51 52 55	45 48 51 52 55	48 51 52 55	52 55	55	-	t)	9	29		64			73	75	79	80	84
cobalit nickel copper zino gaillum germenium arsenio aelonium bromine 7 28 29 30 31 32 33 34 35 103 106 108 112 115 119 122 128 127 Rh Ag Cd In Sn Sh Te I frodium paliantum animom innimom 50 51 52 53 192 195 197 201 204 207 209 51 52 63 Ir Pt Au Hg T/ Pb Bi Po At Ir Ppalinum gold marrany Inalium land bismuth polonium astatina 7 78 78 80 81 B5 At	Ca Sc Ti C Gr Mn	So Ti C G Mn	- Ti - Ct - Mu	ري ک	ري ک			e.	රි		ට			Ge	As	Se	ă	호
103 106 108 112 115 119 122 128 127 128 127 128 127 128 127 128 127 128 127 128 127 128 127 128 127 128 127 128 128 127 128	polassium calcium scandium ilianium vanadium chromium manganese iron 19 20 24 25 25	scandium Ilfanium vanadium chromium mangenes	litanium vanadium chromium manganes 22 24 25	chromium manganes 24	chromium manganes 24	manganese iron 25	iror 26		cobalt 27	nickel 28	сорры 29	ಜ	Mallium	germanium 32	arsenic 33	selonium	bromine 35	kryplon 36
Rh Pd Ag Cd In Sn Sb Te I frodium paladum aliver cadmium Indium un antimony tellurium todino 5 46 47 48 49 207 50 52 53 192 195 187 201 204 207 209 - - Ir Pt Au Hg T/I Pb Bi Po At Iridium gold morcury trailium land bland pland pland pland Bf Po At 7 78 80 81 82 83 84 85	88 89 91 93 96 -	89 91 93 96 -	91 93 96 -	96	96	10	۲	F	103	106	108	112	115	119	122	128	127	131
frodium palladium aliver cadmium cadmium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium thodium <td>Sr Y Zr Nb Mo Tc</td> <td>Y Zr Nb Mo Tc</td> <td>Nb Mo Tc</td> <td>Mo Tc</td> <td>2</td> <td>2</td> <td>_</td> <td>35</td> <td>뜐</td> <td>Pd</td> <td>Ag</td> <td>8</td> <td></td> <td></td> <td>Sb</td> <td>Ţe</td> <td>н</td> <td>×e</td>	Sr Y Zr Nb Mo Tc	Y Zr Nb Mo Tc	Nb Mo Tc	Mo Tc	2	2	_	35	뜐	Pd	Ag	8			Sb	Ţe	н	×e
192 195 197 201 204 207 209	molybdenu techneliun m 43	ytifum zirconium nlobium motybdenu technelium 9 40 m 43	contum nloblum motybdenu technetiun	oblum molybdenu technelium m 43	u technetiun	technelium ruth	~ 1	anium	rhodlum 45	palladium 46	alivor 47.	cadmium 48	**	5	antimony 51	tellurium 32	kodino 53	xenon 54
Ir Pt Au Hg T/ Pb Bi Po At indium gold morcury thallium lead bismuth polonium satetine 87 83 84 85 8	137 139 178 181 184 186	139 178 181 184 186	178 181 184 186	181 184 186	184 186	186 1	-	90		195		201	1		209	1	ı	1
indium Phaimum gold moreury thailium land bismuth polonium estation 877 77 80 81 81 82 83 84 85 81	Ba La Hf Ta W Re	La Hf Ta W Re	H Ta W Re	Ta W	S. ≪	Re	0	s.	ä	ă.		롸			ã	Ъ	¥	
	55 56 57 12 73 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76	Sylvanum hamium tantalum tungsten menum 57 • 72 73 74 74 75	hamium tantalum tungsten menum 72 73 74 75	rantalum tungsten menium 73 74 75	tungsten rhenium 74 75	75 76	76	ED.	indium 77	platinum 78		morcury 80	æ	900	bismulh 83	polonium 84	astatina 85	1
	ı	1							7.0		10	0	S					
	fancium radium actinium																	
	88		.:															

*58-71 Lanthanoid series †90-103 Actinoid series

	140	141	144	1	150	152	157	159	162	165	167	169	173	175	
	రి	Ā	S	Pm	Sm	교	PS	12	à	운	ш	Ę	2	r.	
	carlum 58	prateodymiu m 59	neodymlum 60	61	samarlum 32	3.	nedolinium 34	torblum 65	dysproslum 66	holmlum 67	erblum 68	thulium 69	ytlorbium 70	Iuleilum 71	
a = refalive alomic mass	232	1	238	,	1	1	•	1	1	1	1	1	1	ı	
X = atomic symbol	f	Pa	>	£	Pu	Am	Cm	益	ರ	Es	Fm	Md	2°	د	
h = proton (atomic) number	thorium	protactinium	uranium	neptunlum	plutonium	americium	5	berkelium	californium	leinium	formium	mendeleviu	nobelium	lawrencium	
	06	91	92	93	84	92	96	26	88	66	100	# 101	102	103	
1		1	-		-		-				_		-	1	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Sec 1 EXP SA2 Chemistry Answer Key

Section A (10 marks)

1 B	2 A	3 D	4 D	5 C	
6 B	7 A	8 C	9 D	10 C	

Section B (30 marks)

1	Marking points				Marks
	mistake: should not be		flame		1
	explanation: ethanol is				
	modification: heat in w	ater bath			1
	OR				
	mistake: should not be				
	explanation: pressure		ne boiling tube may	break	1
	modification: remove ti	ne stopper	*		
	lese				
	*1m for mistake & expl	anation; 1m for m	odification		
2a	<u> </u>			* 6400	
La	substance	element	compound	mixture	
	P	Clement	compound	/ / /	1
	Q		1		1
	R	/	· ·		1
	S				- 1
2b	P melts and boils over	a range of temper	ature but Q has fix	ed melting and boiling	1
	points.	,		3 J	h *
	P has variable compos	ition by mass but	Q has fixed compo	sition by mass.	1
	* or any correct proper	ty			
		A production is			
3	Add solvent P to dissol		2017		4
		nove sand and sal	t as residue		
	Filter the mixture to ren				
	Evaporate the filtrate to				
	Evaporate the filtrate to Add solvent Q to sand	and salt to dissolv	e salt		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt	and salt to dissolv ain sand as residu	e salt ue		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little	and salt to dissolv ain sand as residu cold distilled wate	e salt ue		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two shee	and salt to dissolv ain sand as residu cold distilled wate ets of filter paper	e salt Je r		2
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little	and salt to dissolv ain sand as residu cold distilled wate ets of filter paper	e salt Je r		2
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two shee	and salt to dissolvering sand as residual cold distilled wate ets of filter paper of dryness to obtain	e salt Je r		2
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two shee	and salt to dissolve ain sand as residu cold distilled wate at sof filter paper dryness to obtain	e salt Je r ı salt		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two shee Evaporate the filtrate to Add solvent Q to dissol	and salt to dissolve ain sand as residu cold distilled wate ets of filter paper odryness to obtain over salt	e salt ue r ı salt •R	N. A.	
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two shee Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to rem	and salt to dissolve ain sand as residu cold distilled wate ats of filter paper o dryness to obtain ove salt anove sulfur and sa	e salt ue r ı salt R nd as residue		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to ren Evaporate the filtrate to	and salt to dissolve ain sand as residucted distilled water to of filter paper of dryness to obtain the control of the control	e salt r salt R nd as residue		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to remetate the filtrate to Add solvent P to sulfur	and salt to dissolve ain sand as residuatin sand as residuated water of filter paper of dryness to obtain ove salt nove sulfur and sand sand to disso	e salt r salt R nd as residue salt lve sulfur		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to ren Evaporate the filtrate to Add solvent P to sulfur Filter the mixture to obt	and salt to dissolve ain sand as residuatin sand as residuatin sand as residuate of filter paper of dryness to obtain ove salt nove sulfur and sand to dissolain sand as residuatin sand	e salt ue r a salt R and as residue a salt lve sulfur ue	A A A A A A A A A A A A A A A A A A A	
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to remediate the filtrate to Add solvent P to sulfur Filter the mixture to obt Wash sand with a little	and salt to dissolve ain sand as residuated cold distilled waters of filter paper of dryness to obtain ove salt and sand to dissolain sand as residuated cold distilled waters	e salt ue r a salt R and as residue a salt lve sulfur ue		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to rent Evaporate the filtrate to Add solvent P to sulfur Filter the mixture to obt Wash sand with a little Dry sand with two sheet	and salt to dissolve ain sand as residucold distilled water to of filter paper of dryness to obtain to ove salt and sand to dissolve ain sand as residucold distilled water to of filter paper	e salt r salt R nd as residue salt lve sulfur le		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to reme Evaporate the filtrate to Add solvent P to sulfur Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to	and salt to dissolve ain sand as residucold distilled water to of filter paper of dryness to obtain to ove salt and sand to dissolve ain sand as residucold distilled water to of filter paper	e salt r salt R nd as residue salt lve sulfur le		
	Evaporate the filtrate to Add solvent Q to sand Filter the mixture to obt Wash sand with a little Dry sand with two sheet Evaporate the filtrate to Add solvent Q to dissol Filter the mixture to rent Evaporate the filtrate to Add solvent P to sulfur Filter the mixture to obt Wash sand with a little Dry sand with two sheet	and salt to dissolve ain sand as residucold distilled water to of filter paper of dryness to obtain to ove salt and sand to dissolve ain sand as residucold distilled water to of filter paper	e salt r salt R nd as residue salt lve sulfur le		

4a	<u>Diffusion</u> has occ <u>Particles</u> of the authroughout the ho	roma/ food/ cake moved out	randomly in all directions / spread	1 1
4b				1
	*	W	X	
	Arrangement	particles are closely packed in disorderly manner	particles are very closely packed in an orderly manner	1
	Movement	particles slide over one another	particles vibrate about fixed positions.	1
	*1m for 2 correct	mention of 'particles' points		
4ci	they move faster This causes the	rature increases, air particle and further apart from one volume of the air to increase e bottle back to its original spoints.	another.	3
4cii		number of air particles in th	e bottle	1
5ai	element ato	omic number neutron number 7 7 14 14	mber mass number	. 1
5aii	A ANTONIO	₹ or Si written in the center		1
5b	Electrons have n	egligible mass compared to	protons and neutrons.	1
5c	A molecule made	e up of two atoms chemically	y combined.	1
5d	Similarities			
	- Both contain tw Differences - QH ₃ contains 3 - QH ₃ contains a		contains 4 hydrogen atoms. ile RH4 contains atoms of R and	1
		o of 4 atoms in total but RH ₄ imilarity or difference	is made up of 5 atoms.	
	*1m for 1 correct			
6a	²⁴ ₁₂ Mg			2
6bi	*1m for correct s	ymbol; 1m for correct proto	n and nucleon numbers	1
IUO	* do not accept "			
6bii		han electrons or equivalent		1

Index Number	Class	Name

CHIJ ST JOSEPH'S CONVENT SEMESTRAL ASSESSMENT 2

SCIENCE (BIOLOGY)

Secondary 1 EXPRESS

Monday, 10 October 2016 50 minutes

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your index number, class and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. Working in pencil will not be marked. You may use an HB pencil for any diagrams or graphs Do not use staples, paper clips highlighters, glue or correction fluid.

Section A

Answer all questions. For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil in the multiple choice answer sheet.

Section B

Answer all questions. Write your answers in the spaces provided on the question paper.

This document consists of 10 printed pages.

Setter(s): Ms Koh PL and Ms Vera Yuen

[Turn over

Sec1 Exp Bio SA2 2016

Section A (10 marks) Answer all the questions.

1	Which of	f the following	have both	cytoplasm	and chloroplasts?
---	----------	-----------------	-----------	-----------	-------------------

0.000		200		
	root	hair	201	10
Α	1001	HAII	£ . E . I	15

- B xylem vessels
- C red blood cells
- D mesophyll cells
- 2 Red blood cells have a relatively large surface area.

How does this help the red blood cell carry out its function?

- A It can contain more haemoglobin.
- B It can absorb oxygen at a faster rate.
- C It can move more quickly through the blood.
- D It can pass through narrow blood vessels easily.
- 3 The pancreas is a human organ that secretes proteins involved in digestion.

Which of the following organelles is not likely to make up a large part of a pancreatic cell?

- A golgi apparatus
- B ribosomes
- C rough endoplasmic reticulum
- D smooth endoplasmic reticulum

4 Which of following best describes the process of diffusion?

	type of molecules	direction of movement	presence of partially permeable membrane
A	solute	high to low solute concentration	no
В	solute	low to high solute concentration	yes
С	water	high to low water potential	no
D	water	low to high water potential	yes

5 The diagram shows the results of an experiment, where two plant cells were placed in solutions X and Y respectively for 30 minutes.

solution X

solution Y

Which process took place in the experiment and what was the relative water potentials of solutions X and Y?

	process	water potential
A	osmosis	solution X has higher water potential than solution Y
В	diffusion	solution X has lower water potential than solution Y
С	osmosis	solution X has lower water potential than solution Y
D	diffusion	solution X has higher water potential than solution Y

- 6 Which processes can take place in a muscle cell when oxygen is not available?
 - l osmosis
 - II diffusion
 - III active transport
 - IV aerobic respiration
 - A I and II only
 - B III and IV only
 - C I, II and IV only
 - D II, III and IV only
- A human red blood cell is placed in hypotonic solution. What is the net movement of the water molecules and the effect on the cell?

	net movement of water	effect on cell
A	out of the cell	cell is plamolysed
В	out of the cell	cell crenates
С	into the cell	cell is turgid
D	into the cell	cell bursts

8 The diagram shows a section of a leaf of a green plant. During exposure to bright light, which cell contains the most starch?

9 The graph below shows the amount of oxygen produced by a green plant over a 24-hour period, on a warm, sunny day. Which letter represents a point in the day where light intensity is the highest?

10 The diagram below shows a leaf.

Which of the following statements explains how feature X helps the leaf to optimise its function?

- A ensures that carbon dioxide rapidly reaches the inner cells of the leaf
- B carries manufactured food away from lamina to other cells of the plant
- C increases surface area to volume ratio to maximise light absorption
- D holds the leaf lamina away from the stem so that it receives optimum light

Section B (30 marks) Answer all questions.

B1 The diagram shows the internal structure of a leaf.

For examiner's use

[Turn over

· ·	C D D E		25
(a)	Identify cells B to D.		
	B:		
	C:		
	D:	[3]	
(b)	State the function of D.		
		[1]	
(c)	State two differences between A and E.		
		10	
		[2]	
		12	

Sec1 Exp Bio SA2 2016

B3	HodelaagrangelehooredioderedEbodeee,daasaten pilapitebatdigressiuleh submerged in	
	water. Its leaves are thin and narrow.	
	Suggest and explain one way to reduce the survival of Elodea in an infested pond.	
		[2]
ВЗ	The diagram below shows an electron discograph of an organelle. The organelle is found in large quantities in heart muscle cells	
(a)	(i) Define the terr	
		[1]
	(ii) State the func	
(a)	(i) State the name of the organelle.	[1]
		[1]
	(iii) Predict and explain whether <i>Elodea</i> contains xylem tissue. (ii) State the function of the organelle.	1.3
		[1]
(b)	Explain why the organelle is found in large quantities in heart muscle cells.	[2]
(b)	Explain how the thin and narrow shape of Elodea leaves enables the plant to make food more efficiently.	[2]
		[2]

	The diagram below shows the apparatus	s used during an experiment.	e
	glass tube 5% glucose solution water	glucose solution	
	time: 0 minutes	time: 10 minutes time: 30 minutes	
	With reference to the diagram, identify the of glucose and water molecules respective		
F	molecule	process involved	
	glucose	process inverses	
1	water		
	A change in solution level of the glass tul how this change occurs.		[1]
	A change in solution level of the glass tul how this change occurs.		[1]
	A change in solution level of the glass tul how this change occurs.	be is observed after 10 minutes. Explain	[1]
	A change in solution level of the glass tul how this change occurs.	be is observed after 10 minutes. Explain	
	A change in solution level of the glass tul how this change occurs.	be is observed after 10 minutes. Explain	[3]
	A change in solution level of the glass tul how this change occurs.	be is observed after 10 minutes. Explain	
	A change in solution level of the glass tul how this change occurs.	be is observed after 10 minutes. Explain	
	A change in solution level of the glass tul how this change occurs.	be is observed after 10 minutes. Explain	
	A change in solution level of the glass tull how this change occurs. State the concentration of glucose in glas	be is observed after 10 minutes. Explain	

4.1

4.2

B5	placed in four sugar solutions of dif	weighing 4 g with dimensions 1×1×3 cm, weigher to concentrations (A-C) for one hour. To weighed. The weight of each potato strip weighed.	hey
	sugar solution	weight of potato strip/ g	
	Α	4.5	

В

С

For examiner's use

	lowest wate	r potential		highest water	potential
sugar solution	S		*2		
7					
Explain your ans	wer in (a)	340			
Explain your and	wei iii (a).		#1 #		
2 2			2		
				• • • • • • • • • • • • • • • • • • • •	
Wi Colonia		_+01			
				•••••	
A second identic weighing 4 g, we experiment resu experimental pro	ere cut into st Its, suggest a	rips of dimension	ons 1×2×1.5	cm. To obtain	the same

End of Paper

Sec1 Exp Bio SA2 2016

.....[3]

[Turn over

Answers for Sec1 Exp Bio SA2 2016

1	2	3	4	5	6	7	8	9	10
D	В	D	Α	С	A	D	В	Α	D

B1%			Est
a	B: Palisade mesophyll cell (accept palisade		1
	mesophyll);	5	
	C: Xylem;		1
	D: Phloem;		1
b	Transport manufactured food (sucrose and amino		1
	acids) from leaves to all/other parts of the plant		
С	E has a thinner cuticle than A		2
	E has stomata unlike A		
	E has guard cells unlike A		
	(accept any 2 out the 3 - comparison must be		
	made)		1
B2			R. S.
ai	A group of cells with similar structure that work		1
-11	together to perform a common/specific function		1
aii	Transport water and mineral salts from roots to		1
	other parts of plant / leaves (must state direction)		
-111	(Accept: mechanical support)		1
aiii	Does not contain xylem tissue;		1
	Does not need a water and mineral salt transport	1111	1
	system as these can directly diffuse / be absorbed		1 .
	into all parts of the plant (since it is fully		
	submerged in water);	4:	
	(If student says it contains xylem tissue, no mark	Gan L	
	awarded even if explanation is correct)		
b	(Thin and narrow) for greater SA to vol ratio for more		1
	efficient diffusion of CO2 / exposure to sunlight; OR		1
	(Thin) for CO2/sunlight to enter inner cells of leaves	-	
	quickly;		
	CO2/sunlight is used in photosynthesis;		1
C	Shade pond from sunlight (e.g. by planting trees		1
	beside it) / reduce carbon dioxide level in pond		
	water; (Accept: any measure that reduces		
	availability to CO2 / sunlight)	E .	- 5
			1
	So as to reduce photosynthetic rate;		1
o."	(Must state how measure affects photosynthesis)		
B3			對認
ai	Mitochondrion (Accept: mitochondria)		1
aii	Site of aerobic respiration (to release energy for	a 1	1
5.5	cell)		

b	Heart muscle cells require a lot of energy (to pump blood);		1
	Hence more mitochondria are needed to <u>release</u> <u>more energy</u> for the cell through aerobic respiration		1
B4	The state of the s		THE SE
а	Diffusion; Osmosis;		1
b	Net movement of water molecules from water to glucose solution as water has a higher water potential;		1
	Net movement of glucose molecules from glucose solution to water as glucose solution has a higher glucose concentration;		1
	Water molecules enter glass tube more rapidly than glucose molecules exiting		1
С	2.5%, 2.5%	Peuro Periodo Maior e de Africa de	1
			DAME:
а	B,C,A,D		1
þ	Water molecules enter the cytoplasm of potato cells as the solutions have higher water potentials.		1
	The greater the difference in water potential, the more weight gained (r/s between water potential and weight gained has to clearly stated for mark to be awarded)		1
С	Time taken for experiment can be reduced.		1
	The potato strip in the second experiment has a higher surface to volume ratio,	* **	1
4	allowing a faster rate of osmosis.	2 y	1
	(If students provide values for SA/V, values be to be accurate for mark to be awarded)		

Name :	()	Class:

ST JOSEPH'S INSTITUTION

END OF YEAR EXAMINATION (SECONDARY 1)

LOWER SECONDARY SCIENCE PAPER 1

5 October 2016 45 minutes

(1100 - 1145 hrs)

Additional Materials:

NIL

READ THESE INSTRUCTIONS FIRST

- 1. Answer all the questions in the spaces provided on the question paper.
- 2. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.
- 3. Use pi (T) value preprogrammed in calculator.
- 4. Express your final answer in 3 significant figures where appropriate, show all working, and include units in all your working.
- 5. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

This document consists of 10 printed pages.

[Turn over]

Section A (30 marks)

Α

There are 30 multiple-choice questions in this section. For every question, select the most suitable option and shade in the appropriate circle in the OTAS provided.

1. What is the length of the nail as shown below?

The figure below shows an electrical wire placed between the jaws of a pair of vernier callipers.

The radius of the electrical wire is _____ cm.

- A 0.49
- B 0.54
- C 0.97
- D 1.07
- A plant specimen is viewed under the microscope installed with an eyepiece of magnification 10x and objective lens of magnification 25x.

When viewed under the microscope, the specimen has a length of 60 mm. What is the actual length of the specimen?

- A 0.24 mm
- B 1.7 mm
- C 2.4 mm
- D 6.0 mm

4.	Sarah has been asked to calculate the volume of a piece of wire, which is
	about 0.17 cm in diameter and about 0.700 m long. Which are the most
	suitable measuring instruments she should use?

	Length	Diameter
i	Metre rule	Vernier callipers
3	Metre rule	Measuring tape
: [Measuring tape	Metre rule
)	Measuring tape	Measuring tape

 Timothy placed a sample of an unknown solid in liquids of different densities. The table below shows the results of his observations.

Liquid	Density of liquid (kg/m³)	Observation
٧	1000	Floats
W	12 300	Floats
Х	700	Sinks
Υ	450	Sinks

What is the approximate density of the sample?

- A 700 kg/m³
- B 1000 kg/m³
- C Between 700 kg/m³ and 1000 kg/m³
- D Between 1000 kg/m³ and 12 300 kg/m³
- On Earth, the gravitational field strength is about 10 N/kg. On Mars, the gravitational field strength is about 3.7 N/kg.

If an object has a weight of 50 N on Earth, what is its weight on Mars?

- A 1.4N B 5.0N C 18.5N D 135N
- 7. Two forces 5 N and 7 N are acting on an object. Which one of the following is not a possible resultant force acting on the object?
 - A 2N B 6N C 10N D 14N

8. If metal X scratches metal Y and a scratch mark is left on metal Y, a tick (/) is put in the box. Otherwise, a cross (x) is put in the box.

X	brass	gold	steel	titanlum
brass		1	×	×
gold	×		×	×
steel	1	1		*
titanium	1	1	✓	

Which one of the following correctly shows the metals arranged in increasing hardness?

- A brass, gold, steel, titanium
- B gold, brass, steel, titanium
- C steel, titanium, brass, gold
- D titanium, steel, brass, gold
- 9. Which of the following statements about diffusion is correct?
 - A Diffusion can only take place in gases and liquids.
 - B Diffusion shows that all particles are made up of molecules.
 - C The greater the mass of the particle, the slower the rate of diffusion.
 - D The speed of diffusion is not affected by temperature.
- 10. Which of the following statements about a compound is false?
 - A A compound has a fixed melting point.
 - B A compound is made up of at least 2 different types of atoms.
 - C A compound has properties that is different from that of its constituent elements.
 - D A compound can be separated into its constituent elements by separating techniques such as filtration, distillation, etc.
- 11. Which of the following ways can be used to distinguish between pure water and seawater?
 - Adding sodium chloride (table salt)
 - II) Adding distilled water
 - III) Checking the boiling point
 - IV) Using filtration
 - A Lonly
 - B III only
 - C 1, 111 and IV only
 - D II, III and IV only

12.	Which chloring		diagrams	describe	a mixtur	e of	water vapo	our and	
	Α	-							

Which of the following substances A, B, C or D (at room temperature) will contain particles that vibrate about fixed positions?

Substance	Melting point /°C	Boiling point /°C
Α	-28	67
В	11	- 52
C	98	890
D	-101	-35

- Which of the following mixtures can filtration be used to obtain the 14. underlined substance?
 - A Iron fillings and sand
 - В Oxygen and carbon dioxide
 - C Salt and sugar
 - D Oil and sand
- 15. Which of the following compounds contain exactly three elements?
 - A Potassium oxide
 - B Lead chloride
 - C Sodium hydroxide
 D Carbon dioxide

- 16. A solid is thought to be pure iron fillings. Which of the following is the best way to test its purity?
 - A Measure its melting point.
 - B Pass a magnet over the solid and test whether it is attracted.
 - C React it with dilute hydrochloric acid.
 - D React it with aqueous sodium hydroxide.
- 17. A flask contains the liquids chloroform and water. They are separated using a separating funnel. Which conclusion can be made from this observation alone?
 - A Chloroform is very poisonous and must be handled carefully.
 - B Chloroform and water have different boiling points.
 - C Chloroform and water are immiscible liquids.
 - D Chloroform has a higher density than water.
- 18. A filter tip of a cigarette acts as both a filter and a condenser. Which of the following cannot be removed, assuming that the filter tip is 100% effective?

	Substance	Boiling point / 00
A	Carbon monoxide	-191
B	Water	100
C	Nicotine	247
n	Tar	350 to 400

- 19. Which of the following is an inference and not an observation?
 - A Water evaporates quicker at higher temperatures
 - B All matter is made up of tiny particles.
 - C Dogs and cats are both covered in fur.
 - D Water drains quicker in sandy soil than clay soil.
- 20. Which of the apparatus below is most suitable for measuring exactly 28.7 cm³ of a liquid?
 - A Burette
 - B Displacement can
 - C Measuring cylinder
 - D Electronic balance

The table shows some characteristics of four types of cells. Which cell could be a red blood cell? Key: $\sqrt{\ }$ = present \times = absent 21.

	Nucleus	Chloroplast
A	4	1
В	7	×
c	Х	1
D	X	X

- Which line in the table correctly identifies these body components?
 - brain, spinal cord and nerves
 - blood

 - 2 3 4 xylem stomach

	cell	tissue	organ	system
A	2	3	1	4
В	2	4	3	1
C	3	2	4	1
D	3	2	1	4

23. The diagram shows two cells as seen using a light microscope.

Which label is correct for both cells?

- cell sap
- В chloroplast
- C cytoplasm
- D membrane

24. Four different foods were tested as shown below and the test results were recorded as positive (+) or negative (-). Which food contained both glucose and oil?

	Benedict's test	Biuret's test	Ethanol emulsion test	lodine test
A	+	+	-	-
В	+	-	+	<u></u>
C	-	+	· ·	+
D	2	_	+	+

 The diagram shows a root hair cell, surrounded by a dilute solution of mineral ions.

Which statement is correct?

- A Water molecules move into the root hair because the water potential is lower outside.
- B Water molecules move into the root hair because the water potential is higher outside.
- C Water molecules move out of the root hair because the water potential is lower outside.
- D Water molecules move out of the root hair because the water potential is higher outside.

The apparatus was set up as shown in the diagram.

After 30 minutes, the partially permeable tubing containing liquid Y had collapsed while the tubing containing liquid Z was firm. Which could be a correct description of the liquids at the start of the experiment?

	Liquid X	Liquid Y	Liquid Z	Commented [A1]:	December of the second
Α	10% sucrose solution	25% sucrose solution	water		
В	25% sucrose solution	10% sucrose solution	water		
C	water	25% sucrose solution	10% sucrose solution		
D	10% sucrose solution		25% sucrose solution		
D	10% sucrose solution	water	25% sucrose solution		

 The diagram shows an experiment to find out whether carbon dioxide is needed for photosynthesis.

What is the most suitable control for this experiment?

28. What is a result of the action of stomata?

	Action of stomata	Result
Α	open	Carbon dioxide diffuses in during daytime
В	open	Oxygen diffuses out during night-time
C	closed	Water vapour is not taken in by plant
D	closed	Photosynthesis stops

29. What do phloem and xylem vessels transport in a plant?

	xylem	phloem
Α	water	sucrose
В	water	starch
C	sucrose	water
D	sucrose	amino acids

30. Which of the following environmental conditions would cause rapid transpiration?

	air	light	temperature
Α	damp	bright	cold
В	damp	dim	warm
С	dry	bright	warm
D	dry	dim	cold

End of Paper

Answers to LSS Sec 1 - Paper 1 End of Year Examination 2016

1	A
2	В
3	A
4	Α
5	C
6	С
7	D
8	В
9	С
10	D

11	В
12	A
13	С
14	D
15	С
16	Α
17	С
18	Α
19	В
20	Α

21	D
22	C
23	D
24	В
25	В
26	D
27	С
28	A
29	A
30	C

Name:	()	Class:

ST JOSEPH'S INSTITUTION

END OF YEAR EXAMINATION (SECONDARY 1)

LOWER SECONDARY SCIENCE PAPER 2

5 October 2016 1 hour 45 minutes

Additional Materials:

NIL

READ THESE INSTRUCTIONS FIRST

- 1. Answer all the questions in the spaces provided on the question paper.
- Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.
- 3. Use pi (π) value preprogrammed in calculator.
- 4. Express your final answer in 3 significant figures where appropriate, show all working, and include units in all your working.
- 5. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.
- 6. A copy of the Periodic Table is found overleaf.

This document consists of 18 printed pages.

[Turn over]

Section A (40 marks)

Answer all questions in the spaces provided.

A1 Fig. 1.1 shows the setup of a pendulum experiment, while Fig. 1.2 shows the angle of release. The experiment was performed four times, each with a different length (L).

θ L

Fig. 1.1

Fig. 1.2

The following results are obtained and tabulated below.

Experiment	Length L/m	Period T/s	Mass of bob M / kg	Angle of release θ / °
1	0.10	0.638	0.250	10.0
2	0.15	0.775	0.250	10.0
3.	0.20	0.901	0.250	10.0
4	0.25	1.003	0.250	10.0

Period is the time taken for one complete oscillation. The same type of thread is used for the experiments.

(a)	Suggest a possible hypothesis for the experiment.		[2]
	<u></u>		
		······································	
(b)	Identify the following variables for this experiment:	B 10 10 10 10 10 10 10 10 10 10 10 10 10	
*	(i) Independent variable		[1]
	(ii) Dependent variable		[1]
	(iii) Controlled variables (list two)		[2]

A2 (a) Fig. 2.1 shows how the volume of 10 g of water changes as the temperature rises from ~10 °C to +10 °C. The water melts at 0 °C.

Fig. 2.1

Calculate the density of unmelted ice at 0 °C.

	Density =	[1]
(b)	State how the density of water changes as the temperature rises from –10 $^{\circ}\text{C}$ to +10 $^{\circ}\text{C}$.	
	You should refer to the density changes , if any, when water is in solid state, as it is melting and when it is in liquid state. No further calculation is necessary.	[2]
ŧï.	−10 °C to 0 °C:	
	Melting at 0 °C:	
	0 °C to 4 °C:	
	4 °C to +10 °C:	

(c) The Plimsoll line is a reference mark located on the external surface of a ship's hull. This indicates the maximum depth to which the ship may be safely immersed when loaded with cargo. Hence when a merchant ship is loaded in a port, it should not be allowed to sink below the level marked on the Plimsoll line.

Fig. 2.2 shows the safe load levels indicated on the side of a ship.

Fig. 2.2

(i)	Why is the safety load line higher in freshwater?	[1]
(ii)	Why does a ship float higher in winter than in summer?	F41
(11)	why does a ship hoat higher in whiter than in summer?	[1]
	······································	

A3 (a) Fig. 3.1 shows the side view of a dam used to store water.

Fig. 3.1

	Explain briefly, in terms of pressure, why the thickness of the wall of the dam is greater at the base than at the top.		
	••••		
	••••		
(b)	Fig.	3.2 shows a simple type of hydraulic braking systems used in a light icle.	
		brake pedal piston large diameter cylinder with piston to brakes on wheels diameter brake fluid Fig. 3.2	
	The 0.00	cross-sectional areas of the small cylinder and large cylinder are 04 m ² and 0.0024 m ² respectively.	
	(i)	The brake pedal is pushed against the piston in the small cylinder with a force of 90 N. Calculate the pressure exerted on the brake fluid in the small cylinder.	
		Pressure =	[1]
	(ii)	State the amount of pressure exerted by the brake fluid on the piston in the large cylinder.	[1]

			3						
		(iii)	Determine large cylind		exerted	by the	brake t	fluid on the piston in the	
								_	
								Force =	[1]
A4	The o	diagra	m shows soi	me reaction	ons of ma	gnesiun	n.		
								2	
				Magnes	ium + oxy	vaen			
					combu				
			#0	Magn	esium ox				
					Sulfurio			٦	
			Solution	on of mag	nesium s	ulfate +	water		
					Proc	ess B			
				Solid mag	nesium s	sulfate			
			L.						
	(a)	A mix	cture of mag	nesium a	nd oxyge	en, wher	n not ig	nited, remains unchanged	
			mixture of ma a blinding wh		and oxy	gen. Wi	nen igni	ited, the magnesium burns	
						الدائدة حدد	- farms	d is a harmonized and not a	
		State		s wny tne	magnesi	JIII OXIG	e ioime	d is a compound and not a	[2]
			54						
							•		25
		•••••	***************************************						
					8	a) (2)			
	(b)			ss B to ob	tain solid	pure ma	agnesiu	ım sulfate from magnesium	[43
		sulta	te solution.			(#)			[1]

(c)	Writ	e down the chemical symbols for all the elements present in magnesium ate.	[1]
	•••••		
(d)	sodi	imple of magnesium was found to be contaminated with iron fillings and um chloride solution. Select (by circling) suitable techniques to obtain magnesium.	
	Step	1: distillation / separating funnel / filtration	[1]
	Step	2:	
		crystallization / magnetic attraction / evaporation to dryness	[1]
(e)	Fume	ttle of concentrated sulfuric acid was accidentally spilled in the laboratory. es of sulfuric acid are choking and pupils present in the laboratory must sickly evacuated for safety reasons.	
	(i)	State and define the process in which fumes of sulfuric acid spreads from the area of spillage to the rest of the laboratory.	[2]
		,	
	(ii)	State a factor that can cause the process stated in (i) above to occur in a shorter period of time.	[1]
*	, V		

A 5	You are given different sets of three substances each. In each set, circle the odd one out and provide a reason for your answer.						
	(a)	Sodium / lead / sulfur (circle odd one out)	[2]				
		Reason:					
	(b)	Air / brass / water (circle odd one out)	[2]				
		Reason:	ći.				
			(3)				
A6	(a)	Write down what the acronym DNA stands for.	[1]				
		<u> </u>	es				
	(b)	Outline the relationship between DNA, genes and chromosomes.	[2]				
	90						
	i a		8				

A7 In an investigation, the volume of samples of 20 dried raisins was measured. Each sample was then placed in water or sugar solutions of different concentrations. After 12 hours, the raisins were blotted dry and the volume of each sample of raisins was measured again. Fig. 7 shows the results.

Fig. 7

(a) Calculate the percentage change in the volume of the sample of raisins in 5% sugar solution.

	Percentage change =	[2]
(b)	Explain the results in the 10% sugar solution.	[2]
	······································	
9		

A8 The rate of photosynthesis in six tropical crop plants was measured when the plants were growing outside under normal conditions (rate X). The measurements were repeated when the plants were grown under controlled optimum conditions in a glasshouse (rate Y). The results are shown in the table and bar chart below.

Crop plant	Rate of photosynthesis (X) / µmol/m²/s	Rate of photosynthesis (Y) / µmol/m²/s	Difference in rate of photosynthesis (Y – X) / µmol/m²/s
Cassava	13.7	23.1	9.4
Eucalyptus	18.4	26.0	7.6
Maize	23.4	26.0	2.6
Soya bean	18.3	25.1	6.8
Sugar cane	24.0	26,8	2.8
Sunflower	24.3	31.7	7.4

	(b)	The measurements of the rate of photosynthesis (X) of the plants are means of 10 readings. Suggest a reason why mean measurements were used.	[1]
	(c)	Suggest two factors that were changed when the plants were grown in controlled optimum conditions.	[2]
		*	
Se	ection	n B (30 marks)	
Ar	swer	all questions in the spaces provided.	
B1	Stu	dy the flowchart given and answer the following questions.	
	22	Lead(II) nitrate solution + dilute hydrochloric acid	
		Suspension of white precipitate A + water	
		Add oil	
		Mixture B	
	(a)	State whether the reaction between lead(II) nitrate and hydrochloric acid is a physical or chemical change.	[1]
		* * * * * * * * * * * * * * * * * * *	
	(b)	State one physical property of A.	[1]

Mixtu top la	ure B, upon standing for several minutes, separate out into three layers. The ayer looks like oil while the bottom layer is a chalky white substance.	
(c)	Select, by circling, which of the following apparatus/technique can be used to check if mixture B is a solution or a suspension.	[1]
	Separating funnel / distillation / filtration / crystallization	
(d)	Describe, in steps, how you would obtain a $\underline{\text{dry}}$ sample of substance A from mixture B.	[3]
		ý.
(e)	The melting point of nitrogen is -210 °C while its boiling point is -195 °C.	
	Using one circle O to represent a diatomic molecule of nitrogen, draw some nitrogen molecules to show their arrangement at room temperature and	[1]
	pressure (25 °C, 1 atm).	
	e e e e e e e e e e e e e e e e e e e	

	(f)	The element nitrogen is found in all nitrate salts, as in the case with lead(II) nitrate. Several types of nitrogen atoms (known as "isotopes") have been discovered, differing only in the number of neutrons. The two most common nitrogen atoms can be depicted as follows:	
		$ \begin{array}{c c} 14 \\ N \\ 7 \end{array} $	
	*	Using information about these two isotopes of nitrogen, complete the table below:	[3]
		isotope No. of No. of No. of protons electrons neutrons	
		14 N 7	
		15 N 7	
B2	(a)	Define the term transpiration.	[1]
		······································	
	(b)	Explain how each of the following factors can affect the rate of transpiration:	
		(i) High humidity of the air.	2]

	(ii)	Increase in temperature of the air.	[2]	
(b)	Fig. E	32 below shows a potometer.		
		water reservoir screw clip waterproof seal		
		air bubble		
		scale / Fig. B2		
	(i)	Describe how you think the potometer can be used to measure the rate of water loss from the leafy shoot. (Hint: position of air bubble)	[2]	
		••••••••••••••••••••••••••••••••••••••		
	(ii)	Hence, describe how the leafy shoot absorbs more water.	[1]	

	The table shows the results of an investigation, using a potometer
	similar to that in (b), to measure the rate of water loss from a leafy
	shoot of a plant kept in different conditions.

Distance move	d by bubble (mm)
Still air	Moving air
8	16

			leafy shoot.	[2]
4				
В3	(a)	The e	engine of a car exerts a forward, horizontal force of 15 000 N to cause it ove along a rough road. The car moves at a constant speed of 50 km/h.	
		(i)	Complete the free body diagram of the car moving in the horizontal direction. Draw and label the horizontal forces acting on the car.	[1]
			car	
		(ii)	State the amount of friction acting on the car.	[1]
		(iii)	Suggest a modification that can be made to the car to reduce the amount of air resistance acting on it when it moves.	[1]
		• 9		

(b) When a head strikes another object, like the ground, two collisions occur. The first collision is between the skull and the ground, the second between the brain and the skull. It is important to wear a helmet in any activity with a risk of head collisions.

During a collision with a tree or the ground, a helmet crushes to absorb some of the impact of the collision. By slowing down over a longer period of time, the collision between the brain and the skull is reduced or avoided.

Fig. B3 shows modern cars designed to crumple on impact.

Fig. B3

Use the information about helm cars to be designed with crumple	ets above, to explair e zones.	why it is important for
2751 Tr		

	×	
		= ==
Established and an article of the second second and article of the second secon		

[2]

B4 Fig. B4 shows the properties of some materials used in the manufacturing and building industries.

When choosing a material for a particular function or job, you need to consider the stiffness, strength and density of the material. You will also need to be aware of the cost involved too.

Material	Relative stiffness	Relative strength*	Density (kg/m³)	Stiffness Density	Strength Density	per tonne (USD)
Aluminium	7300	27 000	2700	2.7	10	1646
Brick	2100	5500	3000	0.7	1.8	30
CFRP	20 000	100 000	2000	10	50	3000
Concrete	1500	4000	2500	0.6	1.6	20
GRP	2000	50 000	2000	1	25	210
Steel	21 000	40 000	7800	2.7	5.1	300
Wood	1400	2700	500	2.8	5.4	100

^{*} These strengths are for the materials under compression.

1 tonne = 1000 kg.

GRP: Glass reinforced plastic

CFRP: Carbon fibre reinforced plastic

Fig. B4

(a)	low	e relative stiffness and relative strengths of concrete, brick and wood are er than the rest of the materials.	
	Wh	y are they still often used for building houses?	[1]
	••••		
(b)	(i)	Explain what is meant by strength of a material.	[1]
		• · · · · · · · · · · · · · · · · · · ·	

	(ii)	Stiffness measures the rigidity of a material — the extent to which it resists deformation when a force is applied on it. The stiffer a material is, the less flexible it is.				
		Explain the importance of calculating the ratios $\frac{\text{stiffness}}{\text{density}}$ and $\frac{\text{strength}}{\text{density}}$				
		of each material.	[1]			
(c)	Nav pose	can be used to build small boats and even small minesweepers for the y. A minesweeper is a small naval warship designed to remove threats ed by naval mines. This ensures that waterways are safe for ships to el in.				
	With the help of Fig. B4, suggest					
	(i)	Why is it useful to make minesweepers from GRP?	[1]			
	(ii)	Why large naval ships, used for warfare, should not be made from GRP.	[1]			

End of paper

SUGGESTED MARK SCHEME

Section A (40 marks)

1.	(a)	If the length of thread increases, then the time of one complete swing increases.	[2]
		1 mark: correctly identifies dependent (0.5 mark) and independent (0.5 mark) variables 1 mark: hypothesis worded with directionality effect	
	(b)	(i) Length of thread	[1]
		(ii) Period	[1]
		(iii) mass of bob, angle of release, type of thread [any two answers,1/2 mark for each answer]	[2]
2.	(a)	Density = mass / volume = 10 / 11	ma
		$= 0.909 \text{ g/cm}^3$	[½] [½]
	(b)	-10 °C to 0 °C: density of water remains constant at about 0.91 g/cm ³ . Melting at 0 °C: density increases to 1 g/cm ³ . 0 °C to 4 °C: density increases further to a maximum of 1.04 g/cm ³ . 4 °C to +10 °C: density decreases to 1 g/cm ³ .	[½] [½] [½]
	(c)	(i) Freshwater is less dense.With the same amount of load, the ship will be floating higher.	[½] [½]
		(ii) In winter, volume of water in the sea decreases. This causes the density of the water to increase.	[½] [½]
3.	(a)	As the depth of water increases, the water pressure exerted on the wall of the dam increases.	[1]
		To prevent the wall from cracking, the wall is thicker at the base	[1]
	(b)	Deduct ½ mark if wrong units or no formula. Award zero if no working shown. (i) Pressure = Force/ Area = 90 / 0.0004	
		= 225 000 Pa (accept N/m²)	[1]
37		(ii) 225 000 Pa (accept N/m²)	[1]
		(iii) Force = Pressure × Area = 225 000 × 0.0024	
		= 540 N	[1]

4	¥.	(a)	(1) It has a fixed melting / boiling point.(2) It has properties different from its constituent elements.[any other reasons that is correct also can be accepted]	[2]
		(b)	crystallization	[1]
		(c)	Mg/S/O	[1]
		(d)	Step 1: filtration Step 2: magnetic attraction	[1] [1]
		(e)	(i) Diffusion [1] The process by which particles move down the concentration gradient [0.5] until equilibrium is reached [0.5].	[1] [1]
			(ii) Any: raise temperature / greater spillage / etc No mark if just state "temperature"/ "spillage" i.e must include direction of change	[1]
	5	(a)	Circle: sulfur Reason: it is non-metal whereas the other 2 are metals	[1] [1]
		(b)	Circle: water Reason: it is compound whereas the other 2 are mixtures	[1] [1]
	6	(a)	Deoxyribonucleic acid	[1]
		(b)	A gene is a small section of DNA [1], located at a particular locus on a chromosome [1], which stores hereditary information.	[2]
	7	(a)	% change = [(12.8 - 8)/8] x 100% [1] = 60% [1]	[2]
		(b)	There is no change in the volume of the raisins. There is no net movement of water. [1] The water potential of the raisins is the same as that of the 10% sugar solution.[1]	[2]
	8	(a)	Cassava and eucalyptus	[1]
		(b)	To reduce <u>random error</u> / offset any anomaly in the readings, obtaining a more accurate result.	[1]
# *		(c)	Any 2 of the following: Temperature / amount of light / amount of carbon dioxide	[2]

...

Section B (30 marks)

1.	(a)	Physical change	[1]
	(b)	Any logical answer eg: it is insoluble in water; it is insoluble in oil, etc.	[1]
	(c)	Filtration	[1]
	(d)	Step 1: Use a separating funnel to remove the oil layer (it remains in the separating funnel).	[1]
		Step 2: Filter the mixture obtained from step 1. The residue will be substance A.	[1]
		Step 3: Rinse residue A with distilled water and pat dry between pieces of filter paper.	[1]
	(e)	[arrangement of particles in gaseous state]	[1]
	(f)	Nitrogen-14: 7 protons, 7 electrons, 7 neutrons Nitrogen-15: 7 protons, 7 electrons, 8 neutrons [0.5 mark for each correct sub-atomic particle]	[3]
2.	(a)	Transpiration is the loss of water vapour through the aerial parts of the plant, mainly through the stomata in the leaves	[1]
	(b)	(i) The leafy shoot loses water in the form of water vapour during transpiration and absorbs water to replace the water loss. The air bubble moves. [1] The distance moved by the air bubble (final position – initial position) can be used to measure the rate of water loss by considering the time taken.	[2]
		(ii) Loss of water vapour via the stomata [1] creates a suction force (transpiration pull) which draws water up the xylem vessels in the stem and roots. [1]	[2]
	(b)	(i) Moving air results in more water loss from the leafy shoot as it removes the water vapour lost through stomata faster than still air. [1] The leafy shoot absorbs more water to replace the water lost and the bubble moves a longer distance. [1]	[2]
		(ii) High humidity means high amount of water vapour in the air. This decreases the water vapour concentration gradient between the air and inside the leaves. [1] The plant loses less water vapour via the stomata and the rate of transpiration is reduced. [1]	[2]
		(iii) A higher outside temperature means that the water vapour lost by the plant evaporates / diffuses faster. [1] There is a greater water vapour concentration gradient between the air and inside the leaves. The plant loses more water vapour faster and the rate of transpiration increases. [1]	[2]

[1] 3. (a) (1) Forward horizontal force [1/2] Friction [1/2] [1] (ii) 15 000 N [1] Adopt a more streamline shape for the car body. During a collision, the front and back parts of the car will crush / crumple to [1/2] absorb some impact. Slows down the collision over a longer time period. [1/2] This reduces the risk of the passengers getting severely / fatally injured. [1] [1] Cheap / the costs per tonne are the lowest. 4. Ability to withstand a heavy load without breaking. (b) Materials are being compared according to the same density base [1] (ii) value [0.5]. Allows fair (or accurate) comparison to be made [0.5] [1] [1] Less dense than metals. Cheaper than aluminium or steel. (c) Stiffness value might not be high enough. [0.5] (ii) Density Large naval ships can deform easily when a large force (e.g. due to bomb explosion) is exerted on them. [0.5]