

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2015

SUBJECT: Mathematics

LEVEL

: Sec 1 Express

PAPER : 1

DURATION: 1 hour 15 minutes

SETTER : Mr Alvin Lim

DATE

: 7 Oct 2015

CLASS:

NAME:

REG NO:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

Answer all the questions.

For Examiner's Use	1	(a)	Correct 5196.28 to 3 significant figures.	Exan
				[1]
		(b)	Evaluate $\frac{268.221 \times (7.562)^2}{(1.998)^3}$, giving your answer correct to 1 decimal place.	
				96 4 -
				[1]
	Z	(a)	Arrange the following numbers in ascending order. $-\frac{1}{4}, 0.33, \sqrt{2}, -1.45$	
			Answer: (a)	[1]
		(b)	Represent the numbers in (a) on the given number line. Answer (b):	[2]
			 	

3	Kevin cycled at a speed of 8 km/h for 84 minutes for the first part of a journey. He then decided to slow down and continued to cycle for another 13 km at a speed of		For Examiner's Use
	5 km/h for the rest of the journey. Calculate	ļ	
	(a) the distance travelled in the first part of the journey,	And declaration of the second	
	Answer: (a)km	[1]	
	(b) the average speed for the whole journey.		
	Answer: (b)km/h	[2]	
4	Andy wanted to buy a pair of shoes which costs \$240. The shopkeeper gave Andy a discount and Andy paid \$225 for the pair of shoes instead. Calculate the percentage discount.		
	Answer :%	[2]	

For	
Examiner's	
11-0	

r ner's e	5	Show (a)	ing your workings clearly, evalute - 22 - 6 ÷ (-2),	iate				For Examiner's Use
				Answer :	(a)		[2]	•
		(b)	$\left(-\frac{1}{3}\right)^2 - \left(-\frac{4}{9}\right).$					
								-
				Answer :	(b)	••••••	[2]	
	6	Facto (a)	orise the following completely. $9qx - 12x^2$					
				Answer :	(a)		[1]	
		(b)	(2y-3)+x(3-2y)		ī		:	
				Answer :	(b)	•••••	[2]	

Solve the following equations. (a) 5x-25=3(3x+2)

(a)
$$5x-25=3(3x+2)$$

For Examiner's Use

(b)
$$\frac{x}{3} - \frac{x-1}{6} = 2$$

For Examiner's Use	8	(a)	Find the prime factorization of 2772, expressing your answer in index notation.	For Examiner's Use
				i
				[2]
		(b)	Given that the prime factorization of 4200 is $2^3 \times 3 \times 5^2 \times 7$, find the highest common factor of 2772 and 4200.	
	7			
				an early and a second
			Annuar : (h)	[1]
		(c)	Answer: (b)	[1]
		(0)	The the shallest meger it such that (2772 × 1200), is a square number.	
			: -	
				:
			Answer: (c) k =	[1]

For	
Examiner's	
F 7	

The diagram shows part of a regular 16-sided polygon.

For Examiner's Use

Calculate

(a) $\angle BCD$,

(b) the size of the exterior angle.

Answer: (b)

[1]

For	
Examiner's	
Use	

10	The	first four terms of a sequence are 8, 13, 18, 23.	For
• •	(a)	Write down the 7th term of the sequence.	Examiner's
	(**)	White down die 7th tehm of the sequence.	Use
į			ļ
1			
]
ŀ			
•		Answer: (a)[1]	
	(b)	Find an expression, in terms of n , for the n th term of the sequence.	
]
			1
		Answer: (b)[1]	
	(c)	Find the 65th term of the sequence.	
		·	
		Answer: (c)[1]	

11 (a) Find the values of x, y and z in the following diagram, stating your reasons clearly.

For Examiner's Use

y = [1]

:=.....[1]

(b) ABCD is a quadrilateral. Given that $\angle BAD = 100^{\circ}$, $\angle ADC = 82^{\circ}$ and $\angle BCD = 64^{\circ}$, find the value of p.

For Examiner's Use

Answer: (b) p = ... [2]

12 The pie chart below represents the favourite fruits of students in a class.

For Examın Use

(a) Find the value of x.

(b) Find the percentage of students whose favourite fruit is apple.

(c) Given that there are a total of 40 students in the class, find the number of students whose favourite fruit is orange.

 13 (a) In the diagram, ABCD is a parallelogram. AB = 15 cm, BC = 4 cm and AE = 11 cm. AE is perpendicular to BE and DF is perpendicular to BF.

For Examiner's Use

(i) Find the area of parallelogram ABCD.

Answer: (a) (i)cm² [1]

(ii) Find the length of DF.

Answer: (a) (ii)cm [2]

(b) In the diagram, PQRS is a quadrilateral. PQ = 5 cm, RS = 9 cm, PS = 6 cm, TR = 5 cm and QP is parallel to RS.

For Examiner's Use

- (i) State the special name of quadrilateral PQRS.
- (ii) Find the area of quadrilateral PQRS.

Answer: (b) (i)[1]

(ii) cm² [2]

Answers

2(a)
$$-1.45, -\frac{1}{4}, 0.33, \sqrt{2}$$

3(a)
$$11.2 / 11\frac{1}{5}$$
 km

$$3(b) \cdot 6.05 / 6 \frac{1}{20} \text{ km/h}$$

$$\frac{4}{6.25} / 6\frac{1}{4} \%$$

$$\frac{5(b)}{9}$$

6(a)
$$3x(3q-4x)$$

6(b)
$$(2y-3)(1-x)$$

7(a)
$$x = -7\frac{3}{4}$$

7(b)
$$x = 11$$

8(a)
$$2772 = 2^2 \times 3^2 \times 7 \times 11$$

8(b)
$$HCF = 84$$

8(c)
$$k = 66$$

10(b)
$$3+5n$$

11(a)
$$x = 50$$

$$y = 50$$

$$z = 74$$

11(b)
$$p = 114$$

12(a)
$$x = 54$$

19

$$44 \, \text{cm}^2$$
 $2 \frac{14}{15} \, \text{cm}$

Trapezium

$$35 \text{ cm}^2$$

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2015

SUBJECT : Mathematics LEVEL : Sec 1 Express

PAPER : 1 DURATION : 1 hour 15 minutes

SETTER: Mr Alvin Lim DATE: 7 Oct 2015

MARKINGSCHIMIB

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

Answer all the questions.

ForExaminer's Use

Correct 5196.28 to 3 significant figures.

5196.28 = 5200 (3 s.f.)[B]]

For Examiner's Use

Answer: (a)

5200

[1]

Evaluate $\frac{268.221 \times (7.562)^2}{(1.998)^3}$, giving your answer correct to 1 decimal place.

 $\frac{268.221\times(7.562)^2}{(1.998)^3} = 1923.0 \text{ (1 d.p.)}$ [B1]

Answer: (b)

1923.0

[1]

Arrange the following numbers in ascending order.

$$-\frac{1}{4}$$
, 0.33, $\sqrt{2}$, -1.45

$$-1.45, -\frac{1}{4}, 0.33, \sqrt{2}$$
 [B1]

Answer: (a)

$$-1.45, -\frac{1}{4}, 0.33, \sqrt{2}$$

[1]

Represent the numbers in (a) on the given number line.

[2]

Answer (b):

[-1 for any mistake]

Kevin cycled at a speed of 8 km/h for 84 minutes for the first part of a journey. He then decided to slow down and continued to cycle for another 13 km at a speed of 5 km/h for the rest of the journey. Calculate

For Examiner's Use

(a) the distance travelled in the first part of the journey,

 $84 \min \rightarrow 1.4h$

Distance travelled = $8 \times 1.4 = 11.2$ [B1]

Answer: (a)
$$11.2 / 11\frac{1}{5} \text{ km}$$
 [1]

(b) the average speed for the whole journey.

Time travelled for 2^{nd} part = 2.6h

Average speed =
$$\frac{11.2 + 13}{2.6 + 1.4}$$
 [M1]

$$= 6.05 \, \text{km/h}$$
 [A1]

Answer: (b)
$$6.05 / 6\frac{1}{20} \text{ km/h}$$
 [2]

Andy wanted to buy a pair of shoes which costs \$240. The shopkeeper gave Andy a discount and Andy paid \$225 for the pair of shoes instead.

Calculate the percentage discount.

Percentage discount =
$$\frac{240-225}{240} \times 100\%$$
 [M1] = 6.25% [A1]

Answer:

$$6.25 / 6\frac{1}{4} \%$$

[2]

Showing your workings clearly, evaluate

(a)
$$-22-6 \div (-2)$$
,

$$-22-6 \div (-2) = -22+3$$
 [M1]
=-19 [A1]

Answer: (a) -19 [2]

For Examiner's

Use

[2]

(b) $\left(-\frac{1}{3}\right)^2 - \left(-\frac{4}{9}\right)$.

$$\left(-\frac{1}{3}\right)^2 - \left(-\frac{4}{9}\right) = \left(\frac{1}{9}\right) - \left(-\frac{4}{9}\right)$$

$$= \frac{5}{9}$$
 [A1]

Answer: (b) $\frac{5}{9}$

6 Factorise the following completely.

(a)
$$9qx - 12x^2$$

 $9qx-12x^2=3x(3q-4x)$ [B1]

Answer: (a) 3x(3q-4x) [1]

(b)
$$(2y-3)+x(3-2y)$$

$$(2y-3)+x(3-2y)=(2y-3)-x(2y-3)$$
 [M1
= $(2y-3)(1-x)$ [A1]

Answer: (b) (2y-3)(1-x) [2]

Solve the following equations.

(a)
$$5x - 25 = 3(3x + 2)$$

[M1]

$$5x-25=9x+6$$
 [M1]
 $5x-9x=25+6$ [M1]
 $-4x=31$

$$x = -7\frac{3}{4}$$

[A1]

Answer: (a)
$$x = -7\frac{3}{4}$$
 [3]

(b) $\frac{x}{3} - \frac{x-1}{6} = 2$

$$\frac{2x}{6} - \frac{x-1}{6} = 2$$
 [M1]

$$\frac{2x}{6} - \frac{x-1}{6} = 2$$

$$\frac{2x - (x-1)}{6} = 2$$

$$2x-(x-1)=12$$

$$2x - x + 1 = 12$$
 [M1]

$$x = 11$$
 [A1]

Answer: (b)

x = 11

[3]

For Examiner's Use

(a) Find the prime factorization of 2772, expressing your answer in index notation.

For Examiner's Use

 $2772 = 2^2 \times 3^2 \times 7 \times 11$ [A1]

Answer: (a) $2772 = 2^2 \times 3^2 \times 7 \times 11$ [2]

(b) Given that the prime factorization of $4200 \text{ is } 2^3 \times 3 \times 5^2 \times 7$, find the highest common factor of 2772 and 4200.

HCF = 84 [B1]

Answer: (b) HCF = 84 [1]

(c) Find the smallest integer k such that $(2772 \times 4200k)$ is a square number.

k = 66 [B1]

Answer: (c)

k = 66

[1]

The diagram shows part of a regular 16-sided polygon.

Examiner's Use

Calculate

(a) $\angle BCD$,

Sum of interior angles = $(16-2)180^{\circ}$ [M1]= 2520°

$$\angle BCD = 2520^{\circ} \div 16$$

= 157.5° [A1]

Answer: (a) 157.5°

[2]

(b) the size of the exterior angle.

Exterior angle =
$$360^{\circ} \div 16$$

= 22.5° [B1]

Answer: (b)

22.5°

[1]

Exammer's

Use

For
Examiner's
Use

The first four terms of a sequence are 8, 13, 18, 23. Write down the 7th term of the sequence. 7^{th} term = 38 [B1] Answer: (a) 38 [1] (b) Find an expression, in terms of n, for the nth term of the sequence. n^{th} term = 3 + 5n[B1] Answer: (b) 3+5n[1] (c) Find the 65th term of the sequence. $65^{th} term = 328$ [B1] Answer: (c) 328 [1]

11 (a) Find the values of x, y and z in the following diagram, stating your reasons clearly.

For Examiner's Use

$$130^{\circ} + x^{\circ} = 180^{\circ}$$
 (interior angles)

$$x = 50$$
 [B1]

$$y^{\circ} = x^{\circ}$$
 (alternate angles)

$$y = 50$$
 [B1]

$$z^{\circ} = 24^{\circ} + y^{\circ}$$
 (exterior angle of a triangle)

$$z = 74$$
 [B1]

$$x = 50$$

$$y = 50$$

$$z = 74$$

(b) ABCD is a quadrilateral. Given that $\angle BAD = 100^{\circ}$, $\angle ADC = 82^{\circ}$ and $\angle BCD = 64^{\circ}$, find the value of p.

For Examiner's Use

$$100^{\circ} + 82^{\circ} + p^{\circ} + 64^{\circ} = 360^{\circ}$$
 (angle sum of quad.) [M1]
 $p = 114$ [A1]

Answer: (b)

p = 114

[2]

12 The pie chart below represents the favourite fruits of students in a class.

For Examin Use

(a) Find the value of x.

$$(2x-9)+(3x+9)+36+x=360$$
 [M1]
 $x = 54$ [A1]

Answer: (a)
$$x = 54$$
 [2]

(b) Find the percentage of students whose favourite fruit is apple.

Percentage of students =
$$\frac{99}{360} \times 100\%$$
 [M1]
= 27.5% [A1]

(c) Given that there are a total of 40 students in the class, find the number of students whose favourite fruit is orange.

Number of students =
$$\frac{171}{360} \times 40$$
 [M1]
= 19 [A1]

13 (a) In the diagram, ABCD is a parallelogram. AB = 15 cm, BC = 4 cm and AE = 11 cm. AE is perpendicular to BE and DF is perpendicular to BF.

For Examiner's Use

(i) Find the area of parallelogram ABCD.

Area of parallelogram =
$$4 \times 11$$

= 44 cm^2 [B1]

Answer: (a) (i)

 $44\,\mathrm{cm}^2$

[1]

(ii) Find the length of DF.

$$DF = 44 \div 15$$
 [M1]
= $2\frac{14}{15}$ cm [A1]

Answer: (a) (ii)

 $2\frac{14}{15}$ cm

[2]

 $\frac{13}{\text{In the diagram, } PQRS \text{ is a quadrilateral. } PQ = 5 \text{ cm, } RS = 9 \text{ cm, } PS = 6 \text{ cm,}$ TR = 5 cm and \widetilde{QP} is parallel to RS.

For Examiner's Use

- State the special name of quadrilateral PQRS. **(i)**
- (ii) Find the area of quadrilateral PQRS.
- (i) Trapezium [B1]
- (ii) Area of quadrilateral $PQRS = \frac{1}{2}(5+9)(5)$ [M1] $=35 \text{ cm}^2$ [A1]

Trapezium Answer: (b) (i) [1]

> $35~\mathrm{cm}^2$ [2] (ii)

BEATTY SECONDARY SCHOOL **END-OF-YEAR EXAMINATION 2015**

SUBJECT: Mathematics

LEVEL

: Sec 1 Express

PAPER : 2

DURATION: 1 hour 30 minutes

SETTER: Ms Yuen Shu Yan

DATE

: 9 October 2015

CLASS: NAME:	REG NO:
--------------	---------

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to

three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50.

1 Subtract
$$11x^2 - 5$$
 from $8x^2 + 3x - 1$. [2]

2 Simplify
$$\frac{3a+4b}{6} - \frac{5b-a}{5} + b$$
. [3]

- Buses for service number 231, 235 and 238 leave Toa Payoh bus interchange every 8 minutes, 3 minutes and 6 minutes respectively. If buses for all three service numbers left the interchange at 1900 hour, what is the next time when buses for all three service numbers leave the interchange at the same time again?

 [3]
- 4 If $\frac{1}{R} = \frac{1}{P} + \frac{1}{Q}$, find the value of P when R = 5 and $Q = \frac{2}{5}$. [3]

Solve the equation
$$\frac{2x+1}{x-3} = 2\frac{1}{3}.$$
 [3]

- Factorise a(5x-1)-b(5x-1).

 Hence, find the value of $20 \times 99 10 \times 99$.
- An interior angle of a regular polygon is five times its exterior angle. Find the number of sides of the polygon.

 [3]

8 The nutritional information of a Snickers bar is shown in the diagram below.

- (a) Find the ratio in mass of Total Fat: Sat(urated) Fat: Sugars. [2]
- (b) Calculate the percentage of the mass of sodium in one bar of Snickers. [2]
- (c) If a student burns 30 calories by walking to school in 15 minutes, calculate the time taken, in hours, he will need to burn all the calories in one bar of Snickers. [2]

Answer the whole question on a blank piece of paper provided.

9 Draw a quadrilateral ABCD given that AB = 8.6 cm, $AD = 4.4 \text{ cm} \angle ADC = 120^{\circ}$,

$$\angle BAD = 70^{\circ} \text{ and } \angle ABC = 100^{\circ}.$$
 [3]

- (a) Construct the angle bisector of $\angle BCD$. [1]
- (b) Construct the perpendicular bisector of CD. [1]
- (c) Label the point X where the angle bisector and the perpendicular bisector meet.
 Construct a circle with centre X which passes through points C and D. [1]
- (d) Write down the radius of the circle. [1]

The diagram below shows a cross-section of a solid prism with a hole of radius 3.5 m drilled through it. WXYZ is a trapezium, where WX = 20 m, XY = 12 m, YZ = 15 m, WZ = 13 m and $\angle WXY = 90^{\circ}$.

The length of the solid is 24 m.

Find

- (a) the area of the cross-section, leaving your answer in terms of π , [3]
- (b) the volume of the solid, [2]
- (c) the total surface area of the solid. [3]

Answer the whole of this question on a sheet of graph paper.

The table below shows some values of x and the corresponding values of y for the function 6y + 2x = 5.

x	5	-2	1	4
у	2.5	p	0.5	-0.5

- (a) Calculate the value of p. [1]
- (b) Using a scale of 2 cm to 1 unit on the x-axis for $-5 \le x \le 4$ and 4 cm to 1 unit on the y-axis for $-1 \le y \le 3$, draw the graph of 6y + 2x = 5. [3]
- (c) Find the gradient of the line.
- (d) From the graph, find
 - (i) the value of x when y = 2, [1]
 - (ii) the value of y when x = -1.
- (e) Draw and label the graph of x = 2. Hence, state the co-ordinates of point of intersection of the two graphs.[2]

Answers

- $1 3x^2 + 3x + 4$
- $\frac{21a + 20b}{30}$
- 3 24 min, 1924 h
- $\frac{4}{23}$
- 5 24
- 6 (5x-1)(a-b), 990
- 7 12
- 8(a) 8:3:18
- **(b)** 0.275 %
- (c) $12\frac{1}{12}$ hours
- 9(d) 5 cm
- 10(a) $210-12.25\pi \text{ m}^2$
 - **(b)** 4120 m^3
 - (c) 2310 m²
- 11(a) p = 1.5
 - (c) $-\frac{1}{3}$
- (d)(i) x = -3.5
 - (ii) y = 1.15
 - (e) (2, 0.15)

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2015

MARKING SCHEME

SUBJECT: Mathematics

LEVEL

: Sec 1 Express

PAPER : 2

DURATION: 1 hour 30 minutes

SETTER: Ms Yuen Shu Yan

DATE

: 9 October 2015

REG NO: NAME: CLASS:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to

three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50.

1 Subtract $11x^2 - 5$ from $8x^2 + 3x - 1$.

[2]

$$(8x^{2}+3x-1)-(11x^{2}-5) = 8x^{2}+3x-1-11x^{2}+5$$
$$= -3x^{2}+3x+4$$

M1 A1

2 Simplify
$$\frac{3a+4b}{6} - \frac{5b-a}{5} + b$$
.

[3]

$$\frac{3a+4b}{6} - \frac{5b-a}{5} + b = \frac{5(3a+4b)-6(5b-a)+30b}{30}$$
$$= \frac{15a+20b-30b+6a+30b}{30}$$

M1

M1

$$=\frac{21a+20b}{30}$$

A1

Buses for service number 231, 235 and 238 leave Toa Payoh bus interchange every 8 minutes, 3 minutes and 6 minutes respectively. If buses for all three service numbers left the interchange at 1900 hour, what is the next time when buses for all three services numbers leave the interchange at the same time again?

[3]

$$8 = 2^3$$

$$3 = 1 \times 3$$

M1 '

 $6 = 2 \times 3$

$$LCM = 2^3 \times 3$$

M1

Next time when buses of all three services leave = 1924 hour or 7.24 pm.

Α1

4 If $\frac{1}{R} = \frac{1}{P} + \frac{1}{Q}$, find the value of P when R = 5 and $Q = \frac{2}{5}$. [3]

When R = 5, $Q = \frac{2}{5}$,

$$\frac{1}{5} = \frac{1}{P} + \frac{1}{\binom{2}{5}}$$
 M1

$$\frac{1}{P} = -\frac{23}{10}$$

M1

$$P = -\frac{10}{23}$$

Α1

Solve the equation $\frac{2x+1}{x-3} = 2\frac{1}{3}$.

[3]

$$\frac{2x+1}{x-3} = \frac{7}{3}$$

$$3(2x+1) = 7(x-3)$$

$$6x+3 = 7x-21$$

$$x = 24$$
M1
A1

6 Factorise a(5x-1)-b(5x-1).

find the value of $20 \times 99 - 10 \times 99$.

[3]

$$(5x-1)(a-b)$$
 B1

Let x = 20, a = 20, b = 10,

$$20 \times 99 - 10 \times 99 = [5(20) - 1][20 - 10]$$

= (100 - 1)(10)

$$=99\times10$$

M1

Α1

$$20 \times 99 - 10 \times 99 = 99(20 - 10)$$

= 99×10

7 An interior angle of a regular polygon is five times its exterior angle. Find the number of sides of the polygon. [3]

 $\frac{(n-2)\times180}{n} = \frac{360}{n} \times 5$ $\frac{180n-360}{n} = \frac{1800}{n}$ 180n-360 = 1800M1

$$180n = 2160$$

$$n = 12$$

A1

8 The nutritional information of a Snickers bar is shown in the diagram below.

- (a) Find the ratio in mass of Total Fat: Sat(urated) Fat: Sugars. [2]
- (b) Calculate the percentage of the mass of sodium in one bar of Snickers. [2]
- (c) If a student burns 30 calories by walking to school in 15 minutes, calculate the time taken, in hours, he will need to burn all the calories in one bar of Snickers. [2]

(a)	Ratio of Total Fat, Sat Fat and Sugar	rs = 12:4.5:27 M1
b)	Percentage of mass of sodium	$= 8:3:18$ $= \frac{0.12}{\times 100\%} \times 100\%$
-,		= 0.275%
c)	Time required = $\frac{15}{30} \times 250$	M1
	= 125 minutes	
	$=2\frac{1}{12}\text{ hours}$	A1

Answer the whole question on a blank piece of paper provided.

9 Draw a quadrilateral ABCD given that AB = 8.6 cm, AD = 4.4 cm $\angle ADC = 120^{\circ}$,

∠BAD = 70° and ∠ABC = 100°. [3]
(a) Construct the angle bisector of ∠BCD. [1]
(b) Construct the perpendicular bisector of CD. [1]
(c) Label the point X where the angle bisector and the perpendicular bisector meet. Construct a circle with centre X which passes through points C and D. [1]
(d) Write down the radius of the circle. [1]

The diagram below shows a cross-section of a solid prism with a hole of radius 8 m drilled through it. WXYZ is a trapezium, where WX = 26 m, XY = 12 m, YZ = 15 m, WZ = 13 m and $\angle WXY = 90^{\circ}$.

The length of the solid is 24 m.

Find

- (a) the area of the cross-section, leaving your answer in terms of π , [3]
- (b) the volume of the solid. [2]
- (c) the total surface area of the solid [3]
- (a) Area of trapezium = $\frac{1}{2}$ (12)(15 + 20) M1

 $= 210 \,\mathrm{m}^2$

Area of circle = $\pi(3.5)^2$

М1

 $= 12.25\pi \text{ m}^2$

Area of cross-section = $(210-12.25\pi)$ m²

A1

(b) Volume of solid = (

 $=(210-12.25\pi)\times 24$

M1 A1

 $=4120 \,\mathrm{m}^3$ (to 3 sig fig)

(c) Surface area of trapezium = $2(210-12.25\pi) + (20+12+15+13) \times 24$

M1

 $= 2(210-12.25\pi)+1440 \text{ m}^2$

Curved surface area of hole = $2\pi(3.5) \times 24$

M1

 $= 168\pi \text{ m}^2$

Total surface area

 $= [2(210-12.25\pi)+1440]+168\pi$

 $= 2310 \text{ m}^2 \text{ (to 3 sig fig)}$

Α1

Answer the whole of this question on a sheet of graph paper.

ø

The table below shows some values of x and the corresponding values of y for the function 6y + 2x = 5.

x	-5	-2	1	4
у	2.5	р	0.5	-0.5

- (a) Calculate the value of p. [1]
- (b) Using a scale of 2 cm to 1 unit on the x-axis for $-5 \le x \le 4$ and 4 cm to 1 unit on the y-axis for $-1 \le y \le 3$, draw the graph of 6y + 2x = 5. [3]
- (c) Find the gradient of the line. [1]
- (d) From the graph, find
 - (i) the value of x when y = 2, [1]
 - (ii) the value of y when x = -1. [1]
- (e) Draw and label the graph of x = 2. Hence, state the co-ordinates of point of intersection of the two graphs.

heme							Index	No				
Subje	st		····	Cia	22:		Date					
(I)Cyaph	of by t	ンス= 5					, , , , , , , , , , , , , , , , , , , 	<u> </u>	de of	641	-2X:	5
								7-17	(-5	-2	-1-	4
ccare	7-07 5	:2cm+	o lunit						1 75	1.5	0.5	-০.দ
	4-0416	4cm	to luni		7.7		h	1 14-) p= {	1	(B)	
							111		GiVAC		· · · ·	
			removed a second		-4					3	(Bi)
								(d)	(i) Wh			
	1		* , * ,		3				ا کار ء		,	· ·
	2							(li) whe	זר∿	ئے۔ مار	
	f3)								(e) Int	117	2 (B))
	76/15X	=5	. (1		-	<u>: </u>			(2) in	WYEC.) (E)	·
					12 -				-[<i></i>
								· .	.		,	
	- : - :								7,		. ,	- :
			X			:		-	6)	.		
	• 4			7				-				•
					M			-		-		
										· · · · · · · · · · · · · · · · · · ·		
	1 · · · · · · · · · · · · · · · · · · ·				 	_		_				
	**		# 4 March 1980							.		:
-1-		-	 -2		0	1	1		\rightarrow	- 		 > >6
 	-4	<u>-3</u>					· [}
		ļ 			<u> </u>							~
		<u> </u>						(e) 5	(=)			
				: :								
										-		
L	L .	i		<u>-</u>				<u>.</u>			·	

Class	Register No	Name		

Bukit Merah Secondary School End-of-Year Examination 2015 Secondary 1 Express

 ${f E}$

M.	Δ	T	Ή	\mathbf{F}	N	4	À	Т	1	C	S
178	_	л	18	ند	71	ж,	$\boldsymbol{\neg}$			◡	v

1 Oct 2015

Paper 1

1 hour 15 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, register number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used when appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

	For Examiner's Use
Calculator Model:	
<u> </u>	

Setter: Mdm CHOR O.M. Christina

Vener: Ms Stella TOH Y.M.

Answer all the questions

For Examiner's use	1	(a)	Given that $48 = 2^4 \times 3$ and $954 = 2 \times 3^2 \times 53$, find the (i) HCF of 48 and 954, and (ii) LCM of 48 and 954.	For Examined use
4		(b)	Round off 30993 to the nearest 100.	
			Express 1.2855, correct to 3 decimal places.	
			Answer (a) (i) [1]	
			(ii)[1]	
			. <i>(b)</i> [1]	
			(c)[1]	
	2	(a) (b)	Fill in the blanks with '+', '-', 'x', ' \div ' or '=' to form a correct mathematical statement. You may use the signs more than once. $-8 \underline{\hspace{1cm}} 7 = 112 \underline{\hspace{1cm}} 168 = -56$ [1] State the irrational number(s) from the list of numbers given below. $\sqrt[3]{8}, \sqrt{5}, \pi^2, \sqrt{225}$	
 			Answer (b)	

For Examiner's 3 (a) Solve the inequality 11x < 33.

For Examiner's use

(b) Hence, represent the solution from (a) on the number line given below.

Answer

(a)

. [1]

Answer (b)

[1]

- 4 (a) Rewrite each of the following as an algebraic expression.
 - (i) Subtract 3 from the product of 2ab and 5c.
 - (ii) Divide twice the sum of 4 and 7p by the cube of q.
 - (b) Evaluate $\frac{a^2 + b}{2ab}$ when a = -3 and b = 11.

(ii) [1]

(b)[1]

- 5 (a) Convert 280.8 km/h to m/s.
 - (b) A washing machine takes 40 minutes to wash a laundry load of 2.5 kg. Find
 - (i) the rate of washing in kg/min, and
 - (ii) the time required to wash a laundry load of 26 kg.

Answer (a) m/s [1]

(b) (i) kg/min [1]

(ii) minutes [1]

For Examiner's

- 6 (a) Simplify $16d^2 8d \times 2d + 5(-3d)$.
 - (b) Solve the equation -5x-3=18+2x.

For Examiner's use

Answer	(a)		
MISWEI	147	***************************************	[2]

- 7 The pie chart below shows the proportion of time spent on various activities on a particular Sunday (24 hours) by Miley, a secondary one pupil.
 - (a) Find the number of hours she spent on the birthday celebration.
 - (b) 40 % of the time at the CCA camp is spent on learning survival skills.

 Find the size of the angle represented by the CCA camp, if the time spent on learning survival skills is 2 hours.

For Examiner's use The pictogram below shows the number of students who like different types of kendama: Digital kendama (type A), Baseball kendama (type B) and Wooden-doll kendama (type C).

For Examine use

Digital kendama (type A)	
Baseball kendama (type B)	(C)(C)
Wooden-doll kendama (type C)	000
represents 20 students	

- (a) Find the ratio of the number of students who like type A to the number of students who like type C.
- (b) Express the number of students who like type B as a percentage of the number of students who like type A.

- 9 (a) Given that (3, a) lies on the graph of y = -4 + 3x, find the value of a.
 - (b) The graph of $y = \frac{5}{4}x + 1$ cuts the x axis at point A.

Find the coordinates of A.

For xaminer's use

10 In the diagram below, AE and BCD are parallel lines.

AB = AC and $\angle BAC = 105$ °.

Find, by stating your reason(s) clearly in the space below,

- $\angle CAE$, and (a)
- reflex ∠ACD. **(b)**

For

Examiner's

use

Answer (a)
$$\angle CAE = \dots$$
 [2]

(b) Reflex
$$\angle ACD = \dots$$
 [1]

- Express 2.75 years as a percentage of 15 months. 11 (a)
 - Find the value of the unknown in the following expression: 215 % of x is 6.88. (b)

Answer

For Examiner's use 12 (a) Given that the sum of two parallel sides in a trapezium is 16 m and its perpendicular height is 3 m, calculate the area of the trapezium.

For Examiner's use

(b) The diagram below shows the top surface of a cylindrical ballot box.
The top surface has a rectangular slit PQRS in the centre for voters to drop their ballot papers into the box.

Given that the diameter, d, of the top surface is 30 cm, RS = 10 cm and PS = 1.5 cm, calculate the area of the shaded region in m^2 .

Answer	(a)	****	m^2	[2]
	(b)	****	m^2	[3]

For Examiner's use 13 The diagram below shows a triangular prism that is a designer's flower vase.
It is filled up with water to a height of 70 cm.

AB = 50 cm, BC = 30 cm and AC = 40 cm.

- (a) Find the volume of water in the vase.
- (b) If 3468 cm³ of water is drained from the vase, find the new water level.

For

Examiner's

use

 For :aminer's use 14 Lines AB and BC have been drawn for you in the diagram below.

For Examine use

[2]

- (a) Given that AD = 4.8 cm and CD = 6.2 cm, construct the quadrilateral ABCD.
- (b) Draw the angle bisector of $\angle ADC$. [1]
- (c) Draw the perpendicular bisector of BC. [1]
- (d) The bisectors from parts (b) and (c) intersect at point X.
 Measure and write down the length of BX.

Answer (d) cm [1]

Sec 1 Express EOY Examinations 2015 Mathematics Paper 1 Marking Scheme

Question	Solution .	Mark
1(a)(i)	6	BI
1(a)(ii)	7 632	Bl
1(b)	31 000	BI
1(c)	1.286	BI
2(a)	×,-	BI
2(b)	$\sqrt{5}$, π^2	B1
3(a)	x < 3	B1
3(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 Ecf, only for solutions showing inequalities
4(a)(i)	10abc - 3	B1 Accept (2abx5c)-3
4(a)(ii)	$\frac{2(4+7p)}{q^3}$	BI
4(b)	$-\frac{10}{33} \text{ or } -0.30$ Reject: $-0.303 (3 \text{ s. f.})$	B1
5(a)	78	B1
5(b)(i)	0.0625 or $\frac{1}{16}$	Ві
5(b)(ii)	416	B1
6(a)	$16d^2 - 16d^2 - 15d$	M1 for either $-16d^2 or -15d$
<u> </u>	-15d	Al
6(b)	-5x - 2x = 18 + 3 $-7x = 21$	M1 (all working must be correct)
	-3	Al
7(a)	3.5 or $3\frac{1}{2}$	M1
7(b)	$\frac{100\%}{40\%} \times 2 \text{ hours}$ = 5 hours	
	$\frac{5}{24} \times 360^{\circ}$	MI
		Al M1
8(a)	80 : 45	
	16:9	Al

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8(b)	15,420	MI
9(a) 5 B1 9(b) $0 = \frac{5}{4}x + 1$ M1 $\left(-\frac{4}{5}, 0\right) \text{ or } (-0.8, 0)$ Note: For question 10(a) below, overall maximum deduction of 1 mark applies if all working is correct but the respective reason(s) is/are missing or wrong. 10(a) $\angle ACB = \frac{180^{\circ} - 105^{\circ}}{2}$ (base $\angle s$ of isos. \triangle) $\frac{10(a)}{2} \angle ACB = \frac{37.5^{\circ}}{2} \text{ (alt. } \angle s, AE \parallel BCD)$ 37.5 or $37\frac{1}{2}$ A1 10(b) $217.5 \text{ or } 217\frac{1}{2}$ B1 11(a) $\frac{2.75 \times 12}{15} \times 100\%$ 220 A1 11(b) $\frac{215}{100}x = 6.88$ M1 3.2 or $3\frac{1}{5}$ A1 12(a) $\left(\frac{1}{2} \times 16 \times 3\right)m^{2}$ A1 12(b) $(\pi \times 15^{\circ}) \cdot m^{\circ} - (1.5 \times 10)cm^{\circ}$ $= 692cm^{\circ}(3s.f.) \text{ or } 691.85 \text{ cm}^{\circ}(-1 \text{ mark for premature rounding})}$ M1 13(a) $\left(\frac{1}{2} \times 30 \times 40\right)cm^{\circ} \times 70cm$ M1 13(b) $3468cm^{\circ} + 600cm^{\circ}$ M1	3(0)	$\frac{1.5 \times 20}{80} \times 100\%$	141.1
9(b) $0 = \frac{5}{4}x + 1$ M1		37.5 or $37\frac{1}{2}$	Al
Note: For question 10(a) below, overall maximum deduction of 1 mark applies if all working is correct but the respective reason(s) is/are missing or wrong. 10(a) $\angle ACB = \frac{180^{\circ} - 105^{\circ}}{2}$ (base \angle s of isos. \triangle) M1 Marks deducted for not writing BASE \angle s and $AE \parallel BCD$ A1 10(b) 217.5 or $217\frac{1}{2}$ B1 B1 B1 B1 B1 B1 B1 B	9(a)	, -	Bl
Note: For question 10(a) below, overall maximum deduction of 1 mark applies if all working is correct but the respective reason(s) is/are missing or wrong. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9(b)	$0 = \frac{5}{4}x + 1$	MI
respective reason(s) is/are missing or wrong. 10(a) $ ACB = \frac{180^{\circ} - 105^{\circ}}{2} \text{ (base } \angle s \text{ of isos. } \Delta) $		$\left(-\frac{4}{5},0\right)$ or $(-0.8,0)$	Al
10(a) $\angle ACB = \frac{180^{\circ} - 105^{\circ}}{2}$ (base \angle s of isos. Δ) MI Marks deducted for not writing BASE \angle s and $AE //BCD$ All 10(b) 217.5 or 217 $\frac{1}{2}$ B1 11(a) $\frac{2.75 \times 12}{15} \times 100\%$ MI 220 Al 11(b) $\frac{215}{100}x = 6.88$ MI 12(a) $\frac{1}{2} \times 16 \times 3$ m² 24 Al 12(b) $(\pi \times 15^{2}) cm^{2} - (1.5 \times 10) cm^{2}$ Al 12(c) $(\pi \times 15^{2}) cm^{2} - (1.5 \times 10) cm^{2}$ MI (answer in cm²) O.0692 Al 13(a) $(\frac{1}{2} \times 30 \times 40) cm^{2} \times 70 cm$ MI 13(b) $3468cm^{3} \div 600cm^{2}$ MI 13(b) $3468cm^{3} \div 600cm^{2}$ MI	Note: For respective	question 10(a) below, overall maximum deduction of 1 mark applies if <u>all</u> workin reason(s) is/are missing or wrong.	g is correct but the
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\angle ACB = \frac{1}{2}$ (base \angle s of isos. \triangle)	M1
$ \angle CAE = 37.5^{\circ} \text{ (alt. } \angle s, AE \parallel BCD) $ $ 37.5 \text{ or } 37\frac{1}{2} $ $ 10(b) 217.5 \text{ or } 217\frac{1}{2} $ $ 11(a) \frac{2.75 \times 12}{15} \times 100\% $ $ 220 $ $ A1 $ $ 11(b) \frac{215}{100}x = 6.88 $ $ 3.2 \text{ or } 3\frac{1}{5} $ $ 12(a) \frac{1}{2} \times 16 \times 3 m^2 $ $ 24 $ $ 12(b) \frac{(\pi \times 15^2) \cdot m^2 - (1.5 \times 10) \cdot cm^2}{(\pi \times 15^2) \cdot m^2 - (1.5 \times 10) \cdot cm^2} $ $ = 692 cm^2 (3s.f.) \text{ or } 691.85 \text{ cm}^2 (-1 \text{ mark for premature rounding}) $ $ 0.0692 $ $ A1 $ $ 13(a) \frac{1}{2} \times 30 \times 40 \cdot cm^2 \times 70 cm $ $ 42 000 $ $ A1 $ $ 13(b) 3468 cm^3 \div 600 cm^2 $ $ A1 $ $ A2 $ $ A2 $ $ A3 $ $ A4 $ $ A4 $ $ A5 $ $ A6 $ $ A7 $ $ A7 $ $ A8 $ $ A8 $ $ A8 $ $ A1 $ $ A2 $ $ A2 $ $ A3 $ $ A4 $ $ A4 $ $ A4 $ $ A5 $ $ A5 $ $ A6 $ $ A7 $ $ A7 $ $ A7 $ $ A7 $ $ A8 $ $ A8 $ $ A8 $ $ A9 $ $ A1 $ $ A2 $ $ A2 $ $ A3 $ $ A3 $ $ A4 $ $ A4 $ $ A4 $ $ A5 $ $ A5 $ $ A5 $ $ A6 $ $ A7 $ $ A7 $ $ A7 $ $ A7 $ $ A8 $ $ A9 $ $ A1 $ $ A2 $ $ A2 $ $ A3 $ $ A4 $ $ A4 $ $ A4 $ $ A5 $ $ A5 $ $ A5 $ $ A7 $ $ A7 $ $ A7 $ $ A8 $ $ A8 $ $ A9 $ $ A9$		<u> </u>	Marks deducted
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 - · · · -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:	$\angle CAE = 37.5$ (alt. $\angle s, AE \parallel BCD$)	1
10(b) 217.5 or 217 $\frac{1}{2}$ 11(a) $\frac{2.75 \times 12}{15} \times 100\%$ 220 A1 11(b) $\frac{215}{100}x = 6.88$ M1 12(a) $(\frac{1}{2} \times 16 \times 3)m^2$ A1 12(b) $(\pi \times 15^2)cm^2 - (1.5 \times 10)cm^2$ $= 692cm^2(3s.f.)$ or 691.85 cm² (-1mark for premature rounding) 13(a) $(\frac{1}{2} \times 30 \times 40)cm^2 \times 70cm$ M1 13(b) $3468cm^3 \div 600cm^2$ M1 M1 M1 M1 A1 A1 A1 A1 A1 A1		1	
10(b) $217.5 \text{ or } 217\frac{1}{2}$ B1 11(a) $\frac{2.75 \times 12}{15} \times 100\%$ M1 220 A1 11(b) $\frac{215}{100}x = 6.88$ M1 3.2 or $3\frac{1}{5}$ A1 12(a) $(\frac{1}{2} \times 16 \times 3)m^2$ M1 24 A1 12(b) $(\pi \times 15^2)cm^2 - (1.5 \times 10)cm^2$ M1 (for $\pi \times 15^2$) M1 (answer in cm²) = 692cm² (3s.f.) or 691.85 cm² (-1 mark for premature rounding) M1 13(a) $(\frac{1}{2} \times 30 \times 40)cm^2 \times 70cm$ M1 13(b) $3468cm^3 + 600cm^2$ A1		37.5 or $37\frac{1}{2}$	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10(b)		Bi
11(b) $\frac{215}{100}x = 6.88$ M1 3.2 or $3\frac{1}{5}$ A1 12(a) $(\frac{1}{2} \times 16 \times 3)m^2$ M1 24 A1 12(b) $(\pi \times 15^2)cm^2 - (1.5 \times 10)cm^2$ M1 (for $\pi \times 15^2$) = 692cm² (3s.f.) or 691.85 cm² (-1 mark for premature rounding) M1 (answer in cm²) 0.0692 A1 13(a) $(\frac{1}{2} \times 30 \times 40)cm^2 \times 70cm$ M1 42 000 A1 13(b) $3468cm^3 \div 600cm^2$ M1	11(a)	$\frac{2.75 \times 12}{15} \times 100\%$	MI
$ \frac{100}{100} x = 6.88 $ 3.2 or $3\frac{1}{5}$ $ \frac{1}{2}(a) \left(\frac{1}{2} \times 16 \times 3\right) m^{2} $ M1 $ \frac{24}{12(b)} \left(\frac{\pi \times 15^{2}}{m^{2} - (1.5 \times 10)cm^{2}}\right) \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})} \qquad \frac{1}{m^{2}} (1.5 \times 10) cm^{2} $ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})$ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})$ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})$ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})$ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})$ $ = 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2}(-1 \text{ mark for premature rounding})$		220	A1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11(b)	$\frac{215}{100}x = 6.88$	MI
12(b) $(\pi \times 15^2)cm^2 - (1.5 \times 10)cm^2$ M1 (for $\pi \times 15^2$) $= 692cm^2(3s.f.)$ or 691.85 cm² (-1 mark for premature rounding) M1 (answer in cm²) 0.0692 A1 13(a) $(\frac{1}{2} \times 30 \times 40)cm^2 \times 70cm$ M1 42 000 A1 13(b) $3468cm^3 \div 600cm^2$ M1		$3.2 \text{ or } 3\frac{1}{}$	Al
12(b) $(\pi \times 15^{2})cm^{2} - (1.5 \times 10)cm^{2}$ M1 (for $\pi \times 15^{2}$) M1 (answer in cm ²) 0.0692 A1 13(a) $(\frac{1}{2} \times 30 \times 40)cm^{2} \times 70cm$ M1 42 000 A1 13(b) $3468cm^{3} \div 600cm^{2}$ M1	12(a)	$\left(\frac{1}{2}\times16\times3\right)m^2$	MI
$= 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2} \text{ (-1 mark for premature rounding)} $ $= 0.0692$ $13(a) \qquad \left(\frac{1}{2} \times 30 \times 40\right) cm^{2} \times 70 cm$ $42 000$ $13(b) \qquad 3468cm^{3} \div 600cm^{2}$ $M1$ $M1$		24	A1
$= 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2} \text{ (-1 mark for premature rounding)} $ $= 0.0692$ $13(a) \qquad \left(\frac{1}{2} \times 30 \times 40\right) cm^{2} \times 70 cm$ $42 000$ $13(b) \qquad 3468cm^{3} \div 600cm^{2}$ $M1$ $M1$	12(b)	$(\pi \times 15^2)cm^2 - (1.5 \times 10)cm^2$	M1 (for
$= 692cm^{2}(3s.f.) \text{ or } 691.85 \text{ cm}^{2} \text{ (-1 mark for premature rounding)} $ $= 0.0692$ $= 13(a) $			$\pi \times 15^2$)
0.0692 A1 $ \frac{13(a)}{(\frac{1}{2} \times 30 \times 40)cm^2 \times 70cm} M1 $ 42 000 A1 $ \frac{13(b)}{(\frac{1}{2} \times 30 \times 40)cm^2 \times 600cm^2} M1 $		= $692cm^2(3s.f.)$ or 691.85 cm ² (-1 mark for premature rounding)	M1 (answer in
$ \frac{\left(\frac{1}{2} \times 30 \times 40\right) cm^2 \times 70 cm}{42\ 000} $ $ \frac{42\ 000}{3468 cm^3 \div 600 cm^2} $ $ \frac{13(b)}{3468 cm^3 \div 600 cm^2} $ $ \frac{13(b)}{3468 cm^3 \div 600 cm^2} $		0.0692	
13(b) $3468cm^3 \div 600cm^2$ M1	13(a)	$\left(\frac{1}{2} \times 30 \times 40\right) cm^2 \times 70 cm$	M1
13(b) $3468cm^3 \div 600cm^2$ M1			Al
	13(b)	$3468cm^3 + 600cm^2$	
1 - J.7 oc m		= 5.78 <i>cm</i>	
(70-5.78)cm M1			M1
64.22 A1			Al
Reject: 64.2 (3 s.f.)			'''
14 (a) - (d) answers: (marker to advise) B1 ×5	14		B1 ×5
(d) 4.2 ± 0.1 cm (marked according to student's drawing.)		, · · · · ·	

---- The End ----

Class	Register No	Name	

Bukit Merah Secondary School End-of-Year Examination 2015 Secondary 1 Express

 \mathbf{E}

MATHEMATICS

8 Oct 2015

Paper 2

1 hour 30 minutes

Additional Materials: Wri

Writing Paper (4 sheets)
Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your class, register number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Answer all questions on writing papers.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used when appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

Begin each question on a fresh page.

Calculator Model:	For Examiner's Use

Setter: Mdm CHOR O.M. Christina Vetter: Ms Stella TOH Y.M.

This document consists of 6 printed pages.

93

Answer all the questions

1

(a)

(b)

(i)

The number 1071, expressed in index notation, is $1071 = 3^a \times 7 \times 17$.

		Find the value of a.	[2]
		(ii) Given that $8748 = 2^2 \times 3^7$, find the smallest value of k such that $8748k$ is	
		a perfect cube.	[2]
•	(b)	(i) Without using a calculator, find the value of $8 + (-2)^3 \div 4$.	[2]
		(ii) Mei Xi thinks that a fraction cannot be expressed as a recurring decimal.	1~3
		Do you agree or disagree with her?	
		Support your answer with an example of a fraction that can or cannot be	
		expressed as a recurring decimal.	[2]
2	(a)	In a supermarket, a 300-ml bottle of Shampoo A costs \$11.80 and a 350-ml	
		bottle of Shampoo B costs \$13.98.	
		Without the use of a calculator and by using only estimation, decide which	
		shampoo is better value for money.	[3]
	(b)	A black pen costs x cents.	
		A pink pen costs 5 cents more than twice the cost of a black pen.	
		(i) Express the cost of a pink pen in terms of x .	[1]
		(ii) Express the total cost of ten black pens and two pink pens in terms of x .	[2]
			
3	(a)	Solve the equation $\frac{2x-1}{4} + \frac{x+4}{8} = \frac{1}{2}$.	[3]

Find the greatest odd integer value of x that satisfies the inequality $-7x \ge -112$. [2]

- 4 (a) If a:b=11:8 and b:c=5:11, calculate
 - (i) a:b:c, and [2]
 - (ii) a:c. [1]
 - (b) Nick drove a car at a speed of 75 km/h for 15 minutes and then stopped the car for ¹/₄ hour. He then continued to drive at 120 km/h for 10 minutes on an expressway.

Find the average speed of his entire journey in km/h. [3]

The diagram below shows the cross-section of a hollow circular pipe.

The outer radius is 6 cm while the inner radius is x cm.

- (a) Write an algebraic expression for the shaded area of the diagram in terms of π and x, and then completely factorise it.
- (b) Given that the shaded area of the diagram is 28 cm², form an algebraic equation and solve it to find the value of x. [3]

6 (a) In the diagram below, AOB, COD and EOF are straight lines.

CG and AOB are parallel lines.

By stating your reason(s) clearly, find the values of

- (i) a, and [2]
 (ii) b. [2]
- (b) (i) Find the size of an interior angle of a regular octagon. [2]
 - (ii) Two of the exterior angles of a n-sided polygon are 25° and 23°, and the remaining exterior angles are 24° each.
 Find the value of n.

The diagram below shows a trapezoidal sticker ABCD with 'COOL' printed on it.

The shaded area of 'COOL' is 15 cm².

AB = 17 cm, CD = 10 cm and the perpendicular height, h, of ABCD is 5 cm.

- (a) Find the area of the unshaded region, in cm². [2]
- (b) If the shaded area is reduced by 18 %, calculate the new shaded area, in cm². [2]
- (c) The cost of printing 300 stickers after a discount of 10 % is \$711.

 Find the cost of printing one sticker before discount, giving your answer to the nearest cent.

8 The diagram shows the base, PQTRS, of a metal prism.

The base is made up of a parallelogram PQRS and a semicircle RTQ. PQ = RS = 30 cm, PS = RQ = 28 cm, and the height of the parallelogram, h = 24 cm.

Find

- (a) the area of PQTRS, in cm², [3]
- (b) the total surface area of the metal prism, in cm², given that the vertical height of the solid from its base is 50 cm, and
- (c) the length of one side of a cube, in cm, given that the metal prism is recast into [2] a cube.

9 Answer the whole of question 9 on a piece of graph paper.

(a) Given that y = 3x - 3, find the values of a and b.

х	-3	1	5	
y = 3x - 3	-12	а	b	[2]

(b) Plot the pairs of values of (x, y) from the table and draw the graph of y = 3x - 3 using the scale of 1 cm to 1 unit on the x – axis and 1 cm to 2 units on the y – axis.

- (c) Using the graph, find the value of x when y = -6. [1]
- (d) Find the gradient of a line drawn from (3, 6) and the point of origin. [2]

Sec 1 Express EOY Examinations 2015 Mathematics Paper 2 Marking Scheme

Question	olutions or answer. Solution	Mark
1(a)(i)	$3^{a} = \frac{1071}{7 \times 17}$ Accept: • 1071 ÷ 7 ÷ 17 • 3 ² × 7 × 17 = 1071 • Prime factorisation or tree diagram of 1071	M1
••	a=2	Al
1(a)(ii)	$k = 2 \times 3^{2}$ Accept: $k = \frac{2^{3} \times 3^{9}}{2^{2} \times 3^{7}}$	MI
	k = 18	A1
1(b)(i)	8+(-2) or 8-2	 Note: 1. Deduction of 1 mark for no bracket: 8+-2. 2. If 8+-2 is written first before 8-2, and final answer is correct, deduction of 1 mark applies for the lack of brackets.
	= 6	A1
1(b)(ii)	Disagree. • Reject: "Yes" or "No" single answers.	B1
	$\frac{1}{3} = 0.3$ Accept: other fractions that can be expressed as a recurring decimal.	Note: Examples must be well-supported by showing a recurring decimal.
2(a)	1 st estimate: \$11.80 ≈ \$12, and	and and
	2^{nd} estimate: \$13.98 \approx \$14	M1 (show either 1 st or 2 nd estimate)
	50 ml - \$2 (Shampoo A and B) Accept: $$1 - 25 \text{ ml}$ (Shampoo A and B) Or $$(14 - 12) = 2 , and Shampoo B (300 ml): $$(14 - 2) = $12 > 11.80 (Shampoo A) Or Shampoo A (350 ml): $$(12 + 2) = $14 > 13.98 (Shampoo B) Reject if student showed only $$(14 - 12) = 2 , which is merely the difference of 1^{s1} and 2^{nd} estimates.	M1
	Shampoo A.	Al
	Reason: \$12 - \$11.80 = \$0.20. and \$14 - \$13.98 = \$0.02	96

	question 2(b)(i) and 2(b)(ii) below, overall maximum t no brackets are used.	deduction of 1 mark applies if final answers are
2(b)(i)	(2x+5) cents	B1
(-)(-)	Accept: $\$(2x + 0.05)$	
2(b)(ii)	10x + 2(2x + 5)	
2 (0)(11)		M1 (show $10x + 4x$)
	= 10x + 4x + 10 Appendix 10 m 4 m 0.10 pm 10 m 4 m 0.1	
	Accept: $10x + 4x + 0.10$ or $10x + 4x + 0.1$	A1
	(14x+10) cents	
	Accept: $\$(14x+0.10)$ or $(14x+0.1)$	251
3(a)	$\frac{4x-2+x+4}{8} = \frac{1}{2}$	M1 (correct fraction on LHS, after multiplying both sides by LCM or by rewriting a fraction so that both fractions have the same denominator)
	4x-2+x+4=4 Or	M1 (no fractions on both sides, correct LHS and correct RHS)
	5x + 2 = 4	•
	Or	
	5x = 2	
	$5x = 2$ $x = \frac{2}{5} \text{or} 0.4$	Al
Note: For	question 3(b) below, overall deduction of 1 mark app	olies if a student did not solve the inequality as
	ring Maths lessons.	
3(b)	$-7x \ge -112$	
	-7x = -112	
	$\left \frac{-7x}{-7} \le \frac{-112}{-7} \right $	
	x ≤ 16	M1 (show $\frac{-7x}{-7} \le \frac{-112}{-7}$ or $x \le 16$)
	A count has not nucleared.	, ,
	Accept but not preferred: $-7(15) \ge -112$ [trial and error method]	
	Or	
	-7x = -112	
	$\frac{-7x}{-7} = \frac{-112}{-7}$ [equation method]	
	-7 -7	
	x = 16	
	Greatest odd integer is 15.	A1
4(a)(i)	a : b : c	
	= 11×5 : 8×5 : 11×8	M1 (show 8×5 or 40)
	= 55 : 40 : 88	Al
4(a)(ii)	5 : 8	B1
4(b)	Total distance	
	$= 75km / h \times \frac{15}{60} h + 120km / h \times \frac{10}{60} h$	M1 (total distance)
	= 38.75km	
	Total time taken	
	$= \left(\frac{15+10}{60} + \frac{1}{4}\right)h$	M1 (total time taken)
	$ = \frac{2}{3}h $	
	_	
	Accept: (15+10+15) mins = 40 mins	

	Average speed $= \frac{38.75 km}{\frac{2}{3} h}$	
	$=58\frac{1}{8} km/h$	Al
•	Accept: 58.125 km/h	
	Reject: 58.1 km/h (3 s.f.)	
5(a)	$\pi(6)^2 - \pi x^2$	M1 (show both $\pi(6)^2$ and πx^2)
	$=\pi(36-x^2)$	A1

Note: For question 5(b) below,

- no marks awarded if a student did not form a correct equation in any part of the working to solve it,
- deduction of 1 mark applies if a student wrote 3.142 or $\frac{22}{7}$ in any part of the working, and
- deduction of 1 mark applies if there is premature approximation in any part of the working, given that the final answer in 3 s.f. is correct.

5(b)	$\pi(36 - x^2) = 28$	M1 (show a correct equation)
		Note: allow e.c.f. from previous algebraic expression obtained from 5(a)
	$36-x^2=\frac{28}{\pi}$	
	$36 - x^{2} = \frac{28}{\pi}$ $x^{2} = 36 - \frac{28}{\pi} \text{or} x^{2} = 27.087$	M1
	Accept: $36 - \frac{28}{\pi} = 27.087$	
	$x = \sqrt{36 - \frac{28}{\pi}}$	
	= 5.20 (3 s.f.)	Aì .

Note: For question 6 below, overall maximum deduction of 1 mark applies if all working is correct but the

respective	reason(s) is/are missing or wrong.	
6(a)(i)	$\angle DOE = a'$ (vert. opp. \angle s) $2a' + a' + a' + 20' = 180'$ (adj. \angle s on a st. line) Accept:	M1 (show a correct equation)
	$4a^{\circ} + 2a^{\circ} + 2a^{\circ} + 40^{\circ} = 360^{\circ} (\angle \text{ s at a point})$	Deduction of 1 mark if student writes this: 360' - 40' = 320'
		$320^{\circ} \div 8a = 40^{\circ}$ Reason: presentation error. It should have been $a^{\circ} = 320^{\circ} \div 8 = 40^{\circ}$.
	a = 40	Al
6(a)(ii)	$b' = \angle AOD \text{ (corr. } \angle \text{ s, } CG//AOB)$ $= \angle AOE + \angle DOE$	
	$= 2 \times 40^{\circ} + 40^{\circ}$	M1 (correct last step of working)
		 Note: Students are not penalised if there is no mention of vert. opp. ∠ s in their working this time. Allow e.c.f. from the value of a obtained from 6(a)(ii) Accept other workings that are supported by (alt. ∠ s, CG//AOB)

		or (int. \angle s, $CG//AOB$).
		Deduction of 1 mark if student writes this: $60^{\circ} - 180^{\circ} = 120^{\circ}$
		b = 120
		Reason: presentation error. It should have been 180° - 60° = 120°.
	b = 120	Al
6(b)(i)	(8-2)×180°	M1 (formula to find sum of interior angles)
	8	
		Note: Deduction of 1 mark if student writes
	Accept:	8-2×180° without any use of brackets, given that the student obtains the correct
	360° ÷ 8 = 45°	final answer. This is an unacceptable
	180° – 45°	presentation error.
	135	Al
6(b)(ii)	$25^{\circ} + 23^{\circ} + (n-2) \times 24^{\circ} = 360^{\circ}$	M1 (accept other methods)
	24n' = 360'	
	n = 15	
	Number of sides = 15	A1
7(a)	Total area	M1 (formula to find area of trapezium)
	$= \left[\frac{1}{2}(10+17)(5)\right]cm^2$	Note: Deduction of 1 mark if student writes
		$\frac{1}{2} \times 10 + 17 \times 5$ without any use of
		*
		brackets. This is an unacceptable presentation error.
	Unshaded area	
	$= \left[\frac{1}{2}(10+17)(5)-15\right]cm^2$	
	$= 52.5cm^2$	Al
7(b)	$\frac{82}{100} \times 15 cm^2$	MI
	100 Or	
	$0.82 \times 15 cm^2$	
	Or	
	$18\% - 2.7cm^2$	
·····	12.3cm ²	Al
7(c)	90% - \$711	M1
	Or	
	$90\% - \frac{\$711}{300}$	
	300	
	Reject: 110% - \$711	
	100% - \$790	
	Cost per sticker	
	<u> \$790</u>	
	300	A1
	= \$2.63 (nearest cent)	A]
	Accept 263 cents (nearest cent)	
	Reject: \$2.60 or 260 cents.	

Note:

- 1. For whole of question 8, overall deduction of 1 mark applies if a student did not correct a final answer to 3 s.f. given that the respective final answer is correct.
- 2. For whole of question 8, overall deduction of 1 mark applies if a student wrote 3.142 or $\frac{22}{7}$ in any part of their working given that the required working is correct.

3. For questions 8(b) and 8(c), overall deduction of 1 mark applies if a student used 1030 cm² in their working, given that their final answers for 8(b) and 8(c) are correct.

	orking, given that their linar answers for o(b) and o(c) are e	of rect.
8(a)	$\left[(30 \times 24) + \frac{1}{2} \pi \left(\frac{28}{2} \right)^2 \right] cm^2$	M1 (show 30×24 to find the area of a paralleogram)
		M1 (show $\frac{1}{2}\pi\left(\frac{28}{2}\right)^2$ to find the area of a
		semi-circle)
	$= 1027.87cm^{2}$ $= 1030cm^{2} (3 \text{ s.f.})$	A1
8(b)	$2(1027.87)cm^{2} + \left[(28 + 30 + 30 + \frac{1}{2}\pi(28)) \right] cm \times 50cm$	M1 (show $\frac{1}{2}\pi(28)$ to find half the
		circumference of a circle)
		M1(show 2 x base areas + perimeter of base area x height, and correct method to find the perimeter of base area)
		Note: Deduction of 1 mark if student writes
		$28 + 30 + 30 + \frac{1}{2} \times \pi \times 28 \times 50$ to
		calculate lateral surface area, without any use of brackets. This is an unacceptable presentation error.
	$=8654.8cm^{2}$	
	$=8650cm^2$ (3 s.f.)	A1
8(c)	√1027.87×50 cm	M1 (show cube root of the product of base area and height)
:	= 37.179cm = $37.2cm(3 s.f.)$	Al
	······································	

Note:

For whole of question 9, overall deduction of 1 mark applies if

- 1. a student did not draw both axes on the grid line of the graph paper, and/or
- 2. a student showed negative y values above x-axis and negative x values to the right of the y-axis given that the student showed the correct scale i.e. 1 cm to 1 unit on the x axis and 1 cm to 2 units on the y axis.

9(a)	a = 3(1) - 3 = 0	B1
	b = 3(5) - 3 = 12	B1
9(b)	Correct plotting of all points from the table.	Bl
	Straight line passing through all points only if there is correct plotting of points.	B1
	3. Correct scales for both axes are drawn.	B1

	ን እና እና እንደነበር እና በተለቀው እና እና እና እና እርስ እርስ ከተለከተለ እና እና እና እና እና እርስ ከተለከተለከተለከተለከተለከተለከተለከተለከተለከተለከተለከተለከተለከ
	▎▐▗▀▐▗▊▗▊▗▆▗▊▊▗▐▗▊▊▗▊▄▊▟▐▞▐▃▘▃▊▋▗▘▃▐▐▗▘▃▘▊▗▃▗▘▊▗▃▗▘▊▐▄▗▊▐▗▗▘▊▗▊▗▊▗▐▗▗▗▘▊▗▆▗▊▐▗▄▊▗▗▘▋▗ ▊▗▄▗▊▄▊▄▊▄▄▊▄▄▊▄▗▄▊▄▋▄▗▄▊▄▋▄▗▐▗▗▄▊▄▗▄▋▄▗▄▄▊▄▄▗▊▄▄▄▊▄▄▄▊▄▄▄▊▄▄▄▊▄▄▄▊▗▄▄▊▊▄▄▄▊▄▄▄▊▄▄▄▊▄ ▊
	▕▗▐▞▗▓▘▊▜▞▘▄▘▐▞▓▜▗▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘
	l in india companda comitant la continui de como de co
	நாருக்கு கண்ணு நார்களுக்கு கண்ணுக்கு கண்ணுக்க கண்ணுக்க கண்ணுக்கு நார்கள் நூல்க கண்ணுக்க கண்ணிக்க கண்ணுக்க கண்ண
	կայունի հանաական վետական հանական հանարի առում եր չ.Շ. Քում իր ու - վետանին ուց կերչոնին անավ մապատկան այս վարդավում ավ
	Link was languaged and the data to the control of t
	the production of the control of t
	၂၈နှစ်ရှိသည်။ မြန်ခုတ်၍မင္ခင်းများမှုမှုများသည်။ ခွဲချစ်ရှိများသည်။ ၁၈၁၂ နေမှာမည်းများများခဲ့ခဲ့ မေခါ့များမှာများရှိသည်။ မေခြများများများများများများများများများများ
	l lancalita di finalita de mantica del 16 de la calenta de la calenta de la calenta de la calenta de la calent
	<u> </u>
	<u> </u>
	•
9(c)	Using the graph, $x = -1$ when $y = -6$
9(d)	Point of origin = (0, 0)
- 1-7	As given, the other point is (3, 6).
	Gradient = $\frac{6-0}{3-0}$ or $\frac{0-6}{0-3}$
	Gradient = $\frac{3}{3-0}$ or $\frac{3}{0-3}$
	3-0 0-3
	I _
	= 2

---- The End ----

lame:	() Class:
-------	------------

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2015 SECONDARY 1 EXPRESS

MATHEMATICS

Paper 1

Date: 7 October 2015 Duration: 1 hour 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction tape/fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

For Examiner's Use					
Paper 1	/ 60				
Paper 2	/ 60				
Total	%				

Setters: Miss Lee CP

This question paper consists of 14 printed pages including the cover page.

Nan	ne:				_()	Class:				
			Answer all	the ques	stions.			,			
1	State	State which of the following numbers are irrational.									
		$\sqrt{2} \times \sqrt{8}$,	$\frac{22}{7}$,	π, 3	$\sqrt{5}$,						
							ŧ				
			A	Inswer	*	**********		[1]			
2	Consider the following numbers.										
		$942\frac{1}{3}\%$,	3π ,	$\frac{471}{50}$,	9.4	3					
	Arra	nge the numbers in d	escending or	der.							
			Answer		,	***************************************		[1]			
3	(a)	The area of a circle the circle correct to				es. Find th	e length of rad	lius of			
			Ai	nswer (a _j)			cın [1]			
	(b)	Round off 198.45	to 2 significa	nt figure	es.						

Answer (b)[1]

Name:	()	Class:	
, , ,	1	1		

4	Estimate, without the use of a calculator,	$\frac{20.14 \times (2.04)^3}{\sqrt{2512}}$	correct to 1 significant
	figure.		•

Answer[2]

5 (a) Express $\frac{3}{20}$ % as a decimal number.

Answer (a)[1]

(b) A man bought a television set at a price of \$1440 after a 20% discount during a sale. Find the marked price of the television set.

Answer (b) \$.....[1]

Name:	()	Class:
-------	---	---	--------

6	Solve	9x - 6	(2x -	6) =	8-x
V	DOLAC	$y_{A} = 0$	(ZA "-"	∵ ,	U - A.

7 (a) The *n*th term of a sequence is given by $2n^2 + 2$. Write down the first 4 terms.

- (b) The first 4 terms of another sequence are 2, 8, 18, 32, ...
 - (i) Write down the next term.

(ii) By comparing this sequence with your answer to (a), write down the *n*th term.

			_	_		
Name:			()	Class:	
	 	 	 ١.	,		

Showing your working clearly, without the use of a calculator, evaluate 8

$$-\frac{7}{3} \div \left[\left(-\frac{1}{5} - \frac{2}{3} \right) \times 15 \right] - \left(-\frac{1}{4} \right).$$

Answer[2]

Given that
$$\frac{a}{b} = \sqrt{\frac{b^2 - 2c}{2}}$$
, find the value of c when $a = -1$ and $b = 2$.

Nam	ie:	() Class:
10	Petro	l costs w cents per litre.
	(i)	Find an expression, in terms of w, for the number of litres of petrol that can be bought with 1 cent.
		Answer (i)
	(ii)	Find an expression, in terms of w and x , for the number of litres of petrol that can be bought with x dollars.
		Answer (ii)
11		e interior angles of a hexagon are in the ratio 2:3:3:4:4:4, find the largest ior angle.

Name:	
name.	

Class: _____

12 (a) Factorise completely y(x+2) + 3(x+2).

(b) Expand and simplify 3(x-2y) - 2[(3x-y) - 2x].

13 (a) Solve the inequality x-8 < 29-3x.

(b) Express the solution in (a) on a number line.

(c) Find the largest prime number which satisfies the inequality.

Name:	

The graph shows the charges made by two companies for telephone calls lasting up to 10 minutes.

Singshop charges 40 cents for calls for the first 3 minutes and 10 cents per minute for each subsequent minute.

Starshop charges a connection fee of p cents and all calls are charged at a constant rate of q cents per minute.

Using these graphs, find

- (a) the cost of a 7-minute call made using Singshop,
- (b) the value of p,
- Answer (b) p =.....[1]

Answer (a) \$ [1]

- (c) the value of q.
- Answer (c) $q = \dots$ [1]

Name:	_()	Class:
143770	_ ` ′	

The figure is made up of a right-angled triangle PQR and a semicircle. POQ is the diameter of the semicircle with centre O.

Given that PR = 8 cm, QR = 6 cm and POQ = 10 cm, find

(a) the perimeter of the figure, leaving your answer in the form $(a + b\pi)$ cm,

Answer (a) cm [2]

(b) the area of the figure.

The figure shows a sketch of the world's largest gold bar that is 45.5 cm long. It is a solid prism with uniform cross section of a trapezium.

(a) Find the volume of the gold bar.

(b) The gold bar is melted and made into rectangular gold metal sheets of dimension 297 mm by 210 mm. Each sheet has a thickness of 2 mm. Find the maximum number of gold metal sheets that can be made using the gold bar.

Answer (b) gold sheets [2]

7	Mrs T	Tan sponsored a total of 96 hot dogs, 72 packets of fruit juice and 48 cake slices
	for a	class picnic.
	(a)	Given that each student will receive the same amount of each item, find the
		maximum number of students that can attend the class picnic.
		·
		•
		Answer (a)students [2
	(b)	How many hot dogs, packets of fruit juice and cake slices will each studen
		receive?
		•
	0.1	hot dogs packet fruit juice, cake slices [1]

Name:			(
	****	 	\

Class:

In the diagram, $\triangle DEF$ is an isosceles triangle and EFGH is a rhombus. It given that $\angle FGE = 61^{\circ}$, $\angle FKE = 81^{\circ}$, DE = FE and both DEH and DKF are straight lines.

)

By stating your reasons clearly, calculate

(a) $\angle EHG$,

Answer (a) ∠EHG =° [2]

(b) reflex $\angle FGH$,

Answer (b) reflex ∠FGH =° [1]

(c) $\angle KFG$,

Answer (c) ∠*KFG* =° [2]

(d) ∠*DEK* .

Answer (d) $\angle DEK = \dots$ [1]

Nam	ne:		() Class:
19	(a)	(i)	Express 180 as the product of its prime factors.
			. Answer (a)(ii)[1]
		(ii)	The lowest common multiple of 12, 15, x is 180. Find the two possible values of x which are odd numbers and are greater than 1.
			Answer (a)(ii) $x =$
•	(b)	The n	numbers 2520 and 3375, written as the products of their prime factors, are
		T-, 1	$2520 = 2^3 \times 3^2 \times 5 \times 7 , \qquad 3375 = 3^3 \times 5^3$
		Find (i)	³ √3375,
			Answer (b)(i)[1]
		(ii)	the smallest positive integer value of n for which 2520 n is a multiple of 3375,

(iii) the smallest positive integer k such that $\frac{2520}{k}$ is a perfect square.

Answer (b)(iii) k = [1]

Name:	 () Cl	ass:

- 20 (a) Using ruler, set square, protractor and compasses only, construct
 - (i) a trapezium PQRS such that PQ is parallel to SR, PQ = 9.4 cm, QR = 5.2 cm, RS = 3.8 cm and $\angle PQR = 80^{\circ}$, [2]
 - (ii) the angle bisector of $\angle PQR$ such that it cuts PS at point T, [1]
 - (iii) the perpendicular bisector of QR such that it cuts PS at point U. [1]

Answer for (a)(i), (a)(ii), (a)(iii)

(b) Measure and write down the length of TQ.

(c) Measure the smallest interior angle of trapezium PQRS.

Answer (c) ° [1] - End of Paper -

Name:()	Class:
----------	--------

End of Year Examination Secondary 1 Express Mathematics Paper 1

Answer Key

3(b) 200 4 3.2 5(a) 0.0015 5(b) \$1800 6 $x = \frac{1}{4}$ or 0.25 7(a) 4, 10, 20, 34 7(b)(i) 50 7(b)(ii) $2n^2$ 8 $\frac{67}{156}$ 9 $c = \frac{7}{4}$ or 1.75 10(i) $\frac{1}{w}$ 10(ii) $\frac{100x}{w}$ 11 108° 12(a) $(x+2)(y+3)$ 12(b) $x-4y$ 13(a) $x < \frac{37}{4}$ or $x < 9 \frac{1}{4}$ 13(b) $\frac{30}{4}$ or $\frac{3x}{4}$ or $\frac{3x}{$	1	π , $3\sqrt{5}$	2	$9.43, 3\pi, 942\frac{1}{3}\%, \frac{471}{50}$	3(a)	10 cm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3(b)	200	4	3.2	5(a)	0.0015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5(b)	\$1800	6	$x = \frac{1}{4}$ or 0.25	7(a)	4, 10, 20, 34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7(b)(i)	50	7(b)(ii)	$2n^2$.	8	l ——
13(a) $x < \frac{37}{4}$ or $x < 9\frac{1}{4}$ 13(b) $\frac{4}{3} + \frac{3}{4} + \frac{3}{4} + \frac{38}{4} + \frac{39}{4}$ 13(c) 7 14(a) \$0.80 14(b) 30 14(c) 6 15(a) $(5\pi + 14)$ cm 15(b) 63.7 cm² (3 s.f.) 16(a) 16436.875 cm³ or 16400 cm³ (3 s.f.) 16(b) 131 gold sheets 17(a) 24 17(b) 4 hot dogs, 3 can fruit juice and 2 slices of cakes 18(a) 58° 18(b) 238° 18(c) 119° 18(d) 20° 19(a)(i) 180 = 2² × 3² × 5 19(a)(ii) 9, 45 19(b)(i) 15 19(b) 75 19(a)(iii) 70	9	$c = \frac{7}{4} or 1.75$	10(i)		10(ii)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	108°	12(a)	(x+2)(y+3)	12(b)	x - 4y
15(a) $(5\pi + 14)$ cm 15(b) 63.7 cm² (3 s.f.) 16(a) 16436.875 cm³ or 16400 cm³ (3 s.f.) 16(b) 131 gold sheets 17(a) 24 17(b) 4 hot dogs, 3 can fruit juice and 2 slices of cakes 18(a) 58° 18(b) 238° 18(c) 119° 18(d) 20° 19(a)(i) $180 = 2^2 \times 3^2 \times 5$ 19(a)(ii) 9, 45 19(b)(i) 15 19(b) 75 19(a)(iii) 70 20(a) 15 15 15 15 15	13(a)	$x < \frac{37}{4}$ or $x < 9\frac{1}{4}$	13(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7
16(b) 131 gold sheets 17(a) 24 17(b) 4 hot dogs, 3 can fruit juice and 2 slices of cakes 18(a) 58° 18(b) 238° 18(c) 119° 18(d) 20° 19(a)(i) 180 = 2² × 3² × 5 19(a)(ii) 9, 45 19(b)(i) 15 19(b) 75 19(a)(iii) 70 20(a) 18	14(a)	\$0.80	14(b)	30	14(c)	6
18(a) 58° 18(b) 238° 18(c) 119°	15(a)	$(5\pi + 14)$ cm	15(b)	63.7 cm ² (3 s.f.)	16(a)	
18(d) 20° 19(a)(i) 180 = 2° × 3° × 5 19(a)(ii) 9, 45 19(b)(i) 15 19(b) 75 19(a)(iii) 70 20(a)	16(b)	131 gold sheets	17(a)	24	17(b)	juice and 2 slices of
19(b)(i) 15 19(b) 75 19(a)(iii) 70 20(a)	18(a)	58°	18(b)	238°	18(c)	119°
(ii) (20(a)	18(d)	20°	19(a)(i)	$180 = 2^2 \times 3^2 \times 5$	19(a)(ii)	9, 45
	19(b)(i)	15		75	19(a)(iii)	70
20(b) $TQ = 6.9 \pm 0.1 \text{ cm}$ 20(c) $48 \pm 1^{\circ}$	20(a)					
	20(b)	$TQ = 6.9 \pm 0.1$ cm	20(c)	48±1°		

Fairfield Methodist School (Secondary) Secondary 1 Express Paper 1

Paper 1 Mathematics

End-of-Year Examination 2015

No	Working	Description	Marks Allocati on
1	π , $3\sqrt{5}$		B1
2	$942\frac{1}{3}\% = 9.42333$ $3\pi = 9.424777961$ $\frac{471}{50} = 9.42$ $9.43 = 9.43434343$		
	Descending order: $9.43, 3\pi, 942\frac{1}{3}\%, \frac{471}{50}$		В1
3(a)	Radius of circle, $r = \sqrt{108\pi + \pi} = 10.39230$ =10 cm		B 1
3(b)	200		Bl
4	$\frac{20.14 \times (2.04)^3}{\sqrt{2512}} = \frac{20 \times 2^3}{\sqrt{2500}}$	No working but correct answer, award A1	_M1
	$= \frac{20 \times 8}{50}$ =3.2 = 3		Al
5(a)	$\frac{3}{20}\% = 0.0015$	}	B1
5(b)	Sale price = \$1440 Marked price = $$1440 \times \frac{100}{80}$ =\$1800 Or 80% \$1440 100% $\frac{$1440}{80} \times 100 = 1800		. B1
6	$9x - (2x - 6) = 8 - x.$ $9x - 2x + 6 = 8 = x$ $7x + x = 8 - 6$ $8x = 2$ $x = \frac{1}{4} \text{ or } 0.25$	Expansion of bracket; must be correct for both terms	M1
7(a)	4, 10, 20, 34	All correct	B1
7(b)(i)	50		B1
7(b)(ii)	2n ²		<u> B1 </u>

No	Working ,	Description	Marks Allocati
8	$-\frac{7}{3} \div \left[\left(-\frac{1}{5} - \frac{2}{3} \right) \times 15 \right] - \left(-\frac{1}{4} \right)$ $= -\frac{7}{3} \div \left[\left(-\frac{3 - 10}{15} \right) \times 15 \right] + \frac{1}{4}$ $= -\frac{7}{3} \div \left[\left(-13 \right) \right] + \frac{1}{4}$ $= \frac{7}{3} \times \frac{1}{13} + \frac{1}{4}$ $= \frac{7}{39} + \frac{1}{4}$ $= \frac{67}{156}$	[Convert division to multiplicatio n and reciprocate fraction Of simplify inner bracket correctly]	M1
	Given that $\frac{a}{b} = \sqrt{\frac{b^2 - 2c}{2}}$, find the value of c when $a = -1$ and $b = 2$. $\frac{-1}{2} = \sqrt{\frac{2^2 - 2c}{2}}$ $-\frac{1}{2} = \sqrt{\frac{4 - 2c}{2}}$ $-\frac{1}{4} = \frac{4 - 2c}{2}$ $\frac{1}{4} = 2 - c$ Or $2 = 4(4 - 2c)$ Or $1 = 2(4 - 2c)$ $2 = 16 - 8c$ $2 - c = \frac{1}{4}$ $3c = 14$ $4c = 7$ $-c = \frac{1}{4} - 2$ $c = \frac{14}{8} = \frac{7}{4} \text{ or } 1.75$ $c = \frac{7}{4} \text{ or } 1.75$	Remove square root	M1
10 (i)	w cents buys 1 litres 1 cent buys $\frac{1}{w}$ litres		В1
10(ii)	100 cents buys $\frac{100}{w}$ litres 1 dollars buys $\frac{100}{w}$ litres x dollars buys $\frac{100x}{w}$ litres		B 1

No	Working	Description	Marks Allocati on
11	Ratio of interior angle: 2: 3: 3: 4: 4: 4		
	20 units represent $(6-2)\times180^{\circ} = 720^{\circ}$		M1
	1 unit represent 36°		M1
	Largest exterior angle = $180^{\circ} - 2(36^{\circ}) = 108^{\circ}$		A1
12(a)	y(x+2) + 3(x+2)		
	=(x+2)(y+3)		B1
12(b)	3(x-2y)-2[(3x-y)-2x]		
	=3x-6y-2[3x-y-2x]	Expand the	
	=3x-6y-2[x-y]	brackets	
	=3x-6y-2x+2y	correctly for	M1
		2 nd bracket	A1
13(a)	$\begin{vmatrix} -x - 4y \\ x - 8 < 29 - 3x \end{vmatrix}$	Collecting	Al
12(u)	x + 3x < 29 + 8	the like terms	M1
	4x < 37	correctly	
		i	
	$x < \frac{37}{4}$ or $x < 9\frac{1}{4}$		A1
13(b)			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B1
13©	7	FT1 (if	B1
1.47.5	ro 00	reasonable)	75.1
14(a) 14(b)	\$0.80 30		B1 B1
14(0) 14©	6		B
15(a)	Perimeter = Arc PQ + PR + RQ		
` ′	$= \frac{1}{2}\pi(10) + 6 + 8$	Method for	Ml
		arc PQ	A 1
15(1.)	$= (5\pi + 14) \text{ cm}$		A1
15(b)	Area = Area of semicircle + Area of triangle	Mtd for area	Ml
	$= \frac{1}{2}\pi(5)^2 + \frac{1}{2}(8\times 6)$	of semicircle	1411
	=63.269	İ	
	$= 63.3 \text{ cm}^2 \text{ (3 s.f.)}$		Al
		If answer not	
	If answer left in terms of $\frac{25}{2}\pi + 24$ cm ² , accept answer.	rounded off	
	2	to 3 s.f.	
		marks	!

		Description	Marks Allocati on
	f prism/figure		
1 .	trapezium × height/length	Formula for	Mi
$=\frac{1}{2}(20+$	22.5)×17]×45.5	trapezium	1711
	75 or 16400 cm ³ (3 s.f.)		A1
16(b) Volume of	on 1 metal sheet = 297 mm × 210 mm × 2 mm = 29.7 cm × 21 cm × 0.2 cm = 124.74 cm ³	If work out volume of 1 metal sheet or show divison of Vol. of prism by volume of 1	MI
No. of go	ld sheets = Volume of figure ÷ Volume of 1 metal sheet	metal sheet	
	$= 16436.875 \div 124.74$	give method	
	= 131.769 = 131 sheets	marks	A1
17(a)	- 101 Sheets		AI
3 8	96 72 48 32 24 16 4 3 2		
: Greate	st no. of student= HCF of 96, 72 and 48		MI
	= 3×8 = 24		Al
17(b) Each stud cakes	ent received 4 hot dogs, 3 can fruit juice and 2 slices of		B1
18(a) ∠ <i>EHG</i> =	$180^{\circ} - \angle HGE - \angle HEG$ (Angle sum of triangle and	A STATE OF THE STA	
i I	61°, as Alt angle, FG // EH)		MI
1 1	180° - 61° - 61° 58°		A1
18(b) Reflex ∠	$FGH = 360^{\circ} - 61^{\circ} - 61^{\circ}$ (angles at a pt) = 238°		B1
18©	∠GFE (Alt angles, FG//EH) 58°		
	$(180^{\circ} - 58^{\circ}) \div 2$ (Base angle of isos. Δ)	Find angle KFE	BI
∠KFG = =	61° + 58° 119°		Bl
OR ∠FED =	ZGFE (Alt angles, FG//EH)		
	58° (180° - 58°) ÷ 2 = 61° (Base angle of isosceles triangle)	Find angle	ВІ
}	$180^{\circ} - 61^{\circ} = 119^{\circ}$ (interior angles, FG//DE)	FDE	ВІ

No	Working	Description	Marks Allocati on
18(d)	$\angle DEK = 81^{\circ} - 61^{\circ} = 20^{\circ}$ (Ext. angle of \triangle) Or $\angle DEK = \angle FED - \angle FEK$ = $58^{\circ} - 38^{\circ} = 20^{\circ}$		В1
19(a) (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
19(a)	$\therefore 180 = 2^2 \times 3^2 \times 5$ $9, 45$		B1 B1
(ii) 19(b) (i)	15		B1
19(b) (ii)	Smallest integer, $n = 75$		B1
19(b) (iii)	Smallest integer, $k = 70$		B1
20(a) (i)		B1 for paralle trapezi B1 for trap	um
20(a) (ii)		B1 for	(ii)
20(a) (iii)		B1 for	(iii)
20(b)	$TQ = 6.9 \pm 0.1 \text{ cm}$		B1
20 (c)	48±1°		B1

NAME:	() CLASS:
-------	------------

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2015 SECONDARY 1 EXPRESS

MATHEMATICS

Paper 2

Date: 8 October 2015 Duration: 1 hour 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The total number of marks for this paper is 60.

For Examiner's Use		
Paper 2	/ 60	

Setter: Mr Kua KT

This question paper consists of 13 printed pages including the cover page.

Name:		()	Class:	
	A newer s	all the anestic	ane	
1	Answer all the questions. La Paz, the capital city of Bolivia, is located at an altitude of 3640 m above sea level while Baku, the capital city of Azerbaijan, is located at an altitude of 28 m below sea level.			
	(a) Represent the altitude of Bak	u using a neg	gative number.	
	A	nswer (a)		[1]
	(b) Hence, find the difference in	altitude betw	een La Paz and Baku.	
	A	nswer (b)	m	[1]
2	Suzy's monthly income consists of 5.5% on her sales for the month, month, find her sales for that month	If Suzy's inc		

Answer

\$[3]

Name:(,)	Class:
--------	---	---	--------

The rates of exchange between American dollars (US\$), Singapore dollars (S\$) and Korean won (\(\pi\)) are US\$1 = S\$1.2647 and S\$100 = \(\pi\)83917.

Convert the following into Singapore dollars, giving your answer correct to the nearest cent.

(a) US\$365

Answer (a) \$\$ [2]

(b) ₩20 000

Name:	()	Class:
-------	-----	--------

4 The first three figures of a sequence are as shown below.

Figure 1

Figure 2

Figure 3

(a) Draw Figure 4 of the sequence in the space below.

Answer (a)

Figure 4

[1]

(b) Complete the table below.

Answer (b)

Figure Number, <i>n</i>	Number of Circles at Base of the Figure, n	Total Nur	nber of Ci	rcles, T_n
]	1	1	 1	$=\frac{1\times2}{2}$
2	2	1 + 2	= 3	$=\frac{2\times3}{2}$
3	3	1+2+3	= 6	$=\frac{3\times4}{2}$
4				
	•			
n				

[2]

(c) Find the total number of circles in Figure 100.

Answer (c) circles [1]

Name:	()	Class:
vame:	\	O1835.

A survey was conducted among 240 students to find out the mode of transport that they used to travel to school. The results of the survey are shown below.

Number of Students
70
100
30
40

(a) The results of the survey are to be represented in the form of a pie chart. Complete the table below, showing your workings clearly.

Answer (a)

Mode of Transport	Angle of Sector in a Pie Chart.
By parent's car	
By bus and/or MRT	
By foot, i.e. walking	
. Others	

[2]

(b) Hence, represent the results of the survey in the pie chart below.

Answer (b)

[2]

The diagram below shows a rectangular football field with a semi-circular patch of recreational ground of radius 35 m at each end of the field. A running track with a uniform width of 10 m is built around the football field and the two semi-circular patches of recreational ground.

(a) Find the perimeter of the shaded region. (Take π to be 3.142)

Name:	()	Class:

6 (b) Find the area of the running track. (Take π to be 3.142)

Name:	.()	Class:
	- 1	· · · · · · · · · · · · · · · · · · ·

Smartphone price plans usually include a fixed monthly component and a variable component depending on the monthly usage. Two student price plans offered by a local telecommunication company are shown in the table below.

Student-Price Plan	A	В
Monthly subscription	\$28	\$42
Contract divisions 2 - 1 - 1	24 months	
tive locating managealls :	Unlimited	
Free local and going calls .	150 minutes	100 minutes
Free locations bundle #	1 GB	3 GB

^{*} If outgoing calls exceed the free minutes provided, excess usage is charged at \$0.002/second.

- (a) Jinny made 120 minutes of local outgoing calls and used 2 GB of local data in June 2015. Calculate her phone bill for the month of June 2015 if
 - (i) she had signed up for Student Price Plan A,

(ii) she had signed up for Student Price Plan B.

(b) Other than the monthly subscription fee, list 1 other factor Jinny should consider when deciding which plan to sign up for.

Answer (b)

[1]

[#] If data usage exceeds free data bundle provided, excess usage is charged at \$10/GB and capped at \$30 monthly.

Name:	()	Class:
· wanto.		,	

8 Express each of the following as a fraction in its simplest form.

(a)
$$\frac{2a+3b}{4} - \frac{a-2b}{3}$$

(b)
$$\frac{5(x+4)}{6} + \frac{x+2}{3} + 1$$

Name:		() Class:
9	nun	s has some two-dollar, five-dollar and ten-dollar notes in his wallet. The observed of two-dollar notes is thrice the number of ten-dollar notes. There are note five-dollar notes than ten-dollar notes in his wallet.
	(a)	Given that Luis has x ten-dollar notes in his wallet, write down an expression in terms of x , for the number of five-dollar notes he has in his wallet.
4		Answer (a) five-dollar notes [1]
	(b)	Luis gave his sister, Lucy, 4 two-dollar notes for her daily allowance.
		(i) Write down an expression, in terms of x, for the number of two-dollar notes Luis has in his wallet after giving Lucy her daily allowance.
		Answer (b)(i) two-dollar notes [1]
		Luis has \$44 left in his wallet after giving Lucy her daily allowance.
		(ii) Form an equation, in terms of x, to represent the above information, and show that it can be simplified to $21x + 2 = 44$.
		Answer (b)(ii)

[2]

(c) Solve the equation in (b)(ii) to find the value of x.

 $Answer(c) \quad x = \dots [2]$

Name:	() Class	S
1011101	` '	****

The diagram below shows a model of a Lego block. The model is made up of a cuboid measuring 8 cm by 8 cm by 6 cm, and 4 identical cylinders each with a base diameter of 3 cm and height of 1 cm.

(a) Find the total volume of the model.

Answer (a) cm³ [3]

(b) Find the total surface area of the model.

Name:	())
	٦.	,	,

In the figure, ABCDE is a regular pentagon and APQRSTUE is a regular octagon. The two polygons share a common side AE, and QP is parallel to RA.

- (a) By stating your reason(s) clearly, find
 - (i) $\angle PQR$,

Answer (a)(i)
$$\angle PQR = \dots$$
° [2]

(ii) $\angle EDU$.

Answer (a)(ii)
$$\angle EDU = \dots \circ [3]$$

(b) Show that $\angle SRA$ is a right angle. Answer (b)

Name:	1	Class:	
Name.	Ι.	j Ciass.	

12 Answer the whole of this question on a sheet of graph paper.

The total fare for a taxi ride can be represented by the equation

$$y = 0.50x + 3.2$$

where y represents the total fare in dollars, and x represents the distance travelled by the taxi in kilometres.

The table below shows some values of x and y.

x	0	2	5	8
у	3.2	4.2	p	7.2

- (a) Find the value of p.
- (b) Using a scale of 1 cm to represent 1 km, draw a horizontal x-axis for $0 \le x \le 8$.

Using a scale of 2 cm to represent \$1, draw a vertical y-axis for $0 \le y \le 8$

Plot the pairs of values in the table above and draw the graph of y=0.50x+3.2. [3]

- (c) From your graph,
 - (i) find the total fare for a taxi ride of 7 km, [1]
 - (ii) find the distance travelled by a taxi when the total fare is \$5.20. [1]
- (d) What does the gradient of the graph represent? [1]
- (e) Explain why the fare can never be less than \$3.20. [1]

[1]

Fairfield Methodist School (Secondary) Secondary 1 Express Paper 2 Mathematics End-of-Year Examinations 2015

Qn No.	Workings	Description	Mark Allocation
1(a)	-28		B1
1(b)	Difference in altitude = 3640 - (-28) = 3668 m	AND THE PARTY AN	Bl
2	Commission earned = 1690 - 700 = \$990		Ml
	5.5% rep \$990 1% rep \$\frac{990}{5.5} 100% rep \$\frac{990}{5.5} \times 100		Ml
	5.5 = \$18000		A1
3(a)	US\$1 = S\$1.2647 US\$365 = S\$1.2647 ×365 = S\$461.62 (to nearest cent)	Al cannot be awarded if answer is not given to nearest cent	M1 A1
3(b)	S100 = 3917 $$1 = $\frac{100}{83917}$ $$20000 = $\frac{100}{83917} \times 20000$ $= $23.83 (to nearest cent)$	Al cannot be awarded if answer is not given to nearest cent	M1 A1
4(a)	0 00 000 0000		В1
4(b)	$\frac{1^{st} \text{ row}}{4 , 1 + 2 + 3 + 4 = 10} = \frac{4 \times 5}{2}$ $\frac{2^{nd} \text{ row}}{n , 1 + 2 + 3 + \dots + n} = \frac{n \times (n+1)}{2}$	B2 if all correct B1 if 1 or 2 incorrect B0 if > 2 incorrect	В2
4(c)	$\frac{100 \times (100+1)}{2} = 5050 \text{ circles}$		Bl

Qn No.	Workings	Description	Mark Allocation
5(a)	Angle of sector representing By parent's car $\frac{70}{240} \times 360^{\circ} = 105^{\circ}$ By bus and/or MRT $\frac{100}{240} \times 360^{\circ} = 150^{\circ}$	B2 if all correct B1 if 1 or 2 incorrect B0 if >2 incorrect	
	$\frac{\text{By foot}}{30} \times 360^{\circ} = 45^{\circ}$ $\frac{\text{Others}}{340} \times 360^{\circ} = 60^{\circ}$		B2
5(b)	240 240		
	Others Parent's car By foot By bus and/or MRT	B2 if angles of all 4 sectors correct B1 if angles of 2 sectors incorrect B0 if angles of >2 sectors incorrect	B2
6(a)	Required perimeter $= (110 \times 2) + [2 \times \frac{1}{2} \times 2\pi (35)]$		M1
	= 220 + 70(3.142) = 439.94 m or 440 m (to 3 s.f.)		Al
6(b)	Area of curved parts of track $= 2\left[\frac{1}{2}\pi(45^{2}) - \frac{1}{2}\pi(35^{2})\right]$ $= 800(3.142)$		
•	$= 2513.6 \text{ m}^2$		MI
	Area of straight parts of track = $2 \times (110 \times 10)$ = 2200 m^2		MI
	Area of running track = $2513.6 + 2200$ = 4713.6 m^2 or 4710 m^2 (to 3 s.f.)		Al

Qn No.	Workings	Description	Mark Allocation
7(a)(i)	Phone bill under Student Price Plan A = 28 + (2 - 1)(10) = \$38	·	M1 A1
7(a)(ii)	Phone bill under Student Price Plan B = 42 + (120 - 100)(60)(0.002) = 42 + 2.40		Ml
:	= \$44.40		A1
7(b)	She should consider whether she makes more outgoing calls or uses more data when making her decision.	Accept any other logical answers.	B1
8(a)	$ \frac{2a+3b}{4} - \frac{a-2b}{3} \\ = \frac{3(2a+3b)}{12} - \frac{4(a-2b)}{12} \\ = \frac{3(2a+3b)-4(a-2b)}{12} $	Change to common denominator	M1
	$= \frac{6a + 9b - 4a + 8b}{12}$	Expand 3(2a+3b) or -4(a-2b) correctly	MI
	$=\frac{2a+17b}{12}$		A1
8(b)	$\frac{5(x+4)}{6} + \frac{x+2}{3} + 1$ $= \frac{5(x+4)}{6} + \frac{2(x+2)}{6} + \frac{6}{6}$ $= \frac{5(x+4) + 2(x+2) + 6}{6}$	Change to common denominator	M1
	$= \frac{5x + 20 + 2x + 4 + 6}{6}$	Expand $5(x+4)$ or $2(x+2)$ correctly	MI
	$=\frac{7x+30}{6}$		A 1
9(a)	x+2		Ві
9(b)(i)	3x-4		B1
9(b)(ii)	x(10) + (x + 2)(5) + (3x - 4)(2) = 44 $10x + 5x + 10 + 6x - 8 = 44$	B1 for forming equation correctly	B1
	21x + 2 = 44 (Shown)	B1 for correct simplification) B1

Qn No.	Workings	Description	Mark Allocation
9(c)	21x + 2 = 44		
	21x = 42	44 – 2 simplified coπectly	М1
•	$\therefore x = 2$	simplified correctly	A 1
10(a)	Volume of cuboid = $8 \times 8 \times 6$ = 384 cm^3 Volume of 4 cylinders		M1
	$= 4 \times \left[\pi \left(\frac{3}{2}\right)^{2}(1)\right]$ = 9(3.142) = 28.278 cm ³ Total volume		M1
	= 384 + 28.278 = 412.278 cm ³ or 412cm ³ (to 3 s.f.)		A1
10(b)	Total surface area of the model = surface area of cuboid + curved surface area of 4 cylinders = $2(8 \times 8) + 4(8 \times 6) + 4[\pi(3)(1)]$	Mark awarded for correct total S.A of cuboid (320)	Ml
	= 128 + 192 + 12(3.142)	Mark awarded for correct total S.A of cuboid (37.704)	M1
	$= 357.704 \text{ cm}^2 \text{ or } 358 \text{cm}^2 \text{ (to 3 s.f.)}$		Al
11(a)(i)	$\angle PQR$ = $\frac{(8-2)\times180^{\circ}}{8}$ (sum of int. \angle s of octagon) = $\frac{1080^{\circ}}{8}$		M1
	8 = 135°		A1
11(a)(ii)	∠AEU = ∠PQR = 135°		
	$= \frac{(5-2)\times180^{\circ}}{5}$		
	5 = $\frac{540^{\circ}}{5}$ = 108°		And a challenge of the common

Qn No.	Workings	Description	Mark Allocation
11(a)(ii)	$\angle DEU = 360^{\circ} - \angle AEU - \angle AED$ (\angle s at a pt.) = $360^{\circ} - 135^{\circ} - 108^{\circ}$ = 117°		M1
	Since $EU = AE$ and $ED = AE$, EU = ED		A A A A A A A A A A A A A A A A A A A
	$\angle EDU$ = $\frac{180^{\circ} - 117^{\circ}}{.2}$ (base \angle s of isos. Δ) = $\frac{63^{\circ}}{.2}$	1	M1
	= 31.5°		A1
11(b)	$\angle ARQ$ = 180° - $\angle PQR$ (int. \angle s, PQI/AR) = 180° - 135° = 45°		B1
	$\angle ARS$ = $\angle QRS - \angle ARQ$ = $135^{\circ} - 45^{\circ}$		The second secon
	= 90° (Proved)		B)
12(a)	When $x = 5$, $y = p$: (p) = 0.50(5) + 3.2 p = 2.5 + 3.2		
	= 5.7		B1
12(b)- 12(c)	Refer to next page.		
12(d)	The gradient of the graph represents the taxi fare charged per kilometer travelled by the taxi.		B1
12(e)	The fare can never be less than \$3.20 because the distance travelled by the taxi will always start from zero, at which point the (starting) fare will be \$3.20.		BI

聖嬰中學

HOLY INNOCENTS' HIGH SCHOOL

Name of Student		
Class	Index Number	, 60

END-OF-YEAR EXAMINATION 2015 SECONDARY 1 EXPRESS MATHEMATICS PAPER 1

4048/01

Date:

8 Oct 2015

Duration:

1 h 30 min

Students answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, glue or correction tape/fluid.

Answer ALL questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown in the space below the question.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 60

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142.

Set by: Ms Cheryl Chew Vetted by: Mdm Hayati

Ms Goh Lay Ching

Answer all the questions.

By rounding each number to the nearest whole number, estimate the value of $\frac{\sqrt{9.3}}{\sqrt[3]{26.9}}$.

2 (a) The number of spectators at a football match is 149 500 when rounded off to 4 significant figures.

What is the smallest number of spectators that were present?

(b) Arrange the following numbers in ascending order.

30%,
$$-0.3$$
, $\frac{16}{50}$, 0.3 , 0.33 .

Answer (a)[1]

(b) [1]

For the following diagram, 3

write down

- the number of lines of symmetry, (a)
- the order of rotational symmetry. **(b)**

Consider the following numbers.

$$-8$$
, $\frac{\pi}{5}$, $\frac{9}{\sqrt{3}}$, $\sqrt{5}$, $\sqrt[3]{8}$, 125.

Write down

- all irrational number(s),
- all perfect cube number(s), (b)
- all prime number(s). (c)

- 5 (a) Solve the inequality $-2x \ge -27 + x$.
 - (b) Hence write down the largest prime number x that satisfies the inequality

$$-2x \ge -27 + x$$
.

- 6 (a) (i) Express 56 as a product of its prime factors.
 - (ii) Find the smallest integer, n, such that 56n is a perfect square.
 - (b) p leaves a remainder of 1 when divided by 2, 3 or 7.

Find the smallest integer value of p.

Answer (a)(i)
$$56 =$$
 [1]

(ii)
$$n = \dots [1]$$

7	Susan has a mass of 3x kg and Charlene has a ma	ss that is 6 kg less than Susan
	The mass of Kelly is half of the total mass of Susa	n and Charlene.

Write an expression, in terms of x, for

- (a) Charlene's mass,
- (b) the average mass of the 3 girls.

Answer (a)kg [1]

(b)kg [2]

- 8 (a) Simplify $a \times a + 3a \times b 2b \times a$.
 - (b) Factorise $5x^2y^2 20xy^2$ completely.

(b)[1]

9 (a) The solid shown below is made up of cubes.
Draw the front view and top view of the solid in the answer space below.

Answer (a) [2]

Front View Top View

(b) Draw a sketch of the solid that can be formed by the net shown below.

Answer (b)

[1]

10 The first three members of a family of hydrogen, H, and carbon, C, compounds have bonding structures as shown below.

(a) Draw the bonding structure for the 4th member of the family.

Answer (a) [1]

The table below shows the number of carbon atoms and hydrogen atoms in each member of the family of chemical compounds.

n	Number of Carbon	Number of Hydrogen atoms
	atoms	atoms
1	1	4
2	2	6
3	3	8
	~ L *	***
n	17	T_n

- (b) Find the number of hydrogen atoms in the structure for the 10th member of the family.
- (c) Find the general term, T_n , for the number of hydrogen atoms for the n^{th} member of the family.

- In June, Sarah spent 20% of her income and saved the rest. Sarah's monthly income is \$2000.
 - (a) Find the amount she spent in the month of June.
 - (b) In July, Sarah increased her expenditure and spent 30% of her income. Find the percentage increase in her expenditure from June to July.

Answer (a)[1]

(b)% [2]

- 12 The sum of exterior angles of a polygon with n sides is $\frac{1}{3}$ the sum of its interior angles.
 - (a) Find the value of n.
 - (b) Name this polygon.

Answer (a)[3]

(b)[1]

In the diagram, ABCD is a trapezium with DC = 12 cm, AD = 10 cm and AB = 16 cm. 13. DC is parallel to AB and AD is parallel to NC.

Given that the area of trapezium $ABCD = 112 \text{ cm}^2$, calculate

- the value of h, (a)
- the area of parallelogram ANCD. **(b)**

The lengths of three sides of triangle ABC are (3x+2y) cm, (8x-8y-2) cm and (4x+7y+1) cm.

- (a) Write down and simplify, an expression in terms of x and y, for the perimeter of the triangle.
- (b) It is given that $x = 4\frac{1}{2}$ and y = 1.
 - (i) Find the perimeter of the triangle.
 - (ii) What type of triangle is triangle ABC?

For Examiner's Use

15 The charges for printing and framing photographs at Filmhub and Picturehub are given in the table below.

	Filmhub	Picturehub
Printing service	\$0.15 per photograph	\$0.18 per photograph
Framing service	\$3 per photograph	\$2.80 per photograph

- (a) Calculate
 - (i) the amount you need to pay to print 80 photographs at Filmhub,
 - (ii) the number of photographs you can frame at Picturehub with \$392.
- (b) You need to print and frame 50 photographs.

Find the amount you would save if you use the services at Picturehub instead of Filmhub.

Answer	(a)	(i)	\$	[2]
		(ii)		[2]
	(b)	\$		
			125	

- 16 (a) Subtract (2+x+4y) from (5x-2y). Leave your answer in its simplest form.
 - (b) Simplify

(i)
$$-\frac{x}{2}+3y-2(4y-x)$$
,

(ii)
$$\frac{3(x-3)}{2} - \frac{2x}{5}$$
.

Answer	(a)	 [2]
	/	 1 3

Use

13 **17** In a quadrilateral ABCD, $AB = 6.5 \,\mathrm{cm}$, $BC = 4.8 \,\mathrm{cm}$ and $CD = 8.5 \,\mathrm{cm}$. It is also given that $\angle ABC = 115^{\circ}$, $\angle BCD = 98^{\circ}$. The side AB is drawn in the answer space below. Using a ruler and compasses, construct quadrilateral ABCD. [2] Measure and write down $\angle DAB$. (b) On the same diagram, construct and label clearly (c) the perpendicular bisector of AD, **(i)** [1] (ii) the angle bisector of $\angle ADC$. [1] (d) Mark the point M where the two bisectors meet. Measure the length of AM. Answer (a), (c) and (d) В

Answer (b) $\angle DAB = \dots$ [1] (d)cm [1]

126

For

Examiner's

Use

END OF PAPER

Answer Key

]	1	10b	22
2a	149 450	10c	2n+2
2b	$-0.3, 30\%, \frac{16}{50}, 0.33, 0.3$	11a	\$400
3a	0	11b	50%
3b	3	12a	8
4a	$\frac{\pi}{5}, \frac{9}{\sqrt{3}}, \sqrt{5}$	12b	Octagon .
4b	-8, 125	13a	h = 8
4c	₹ 8	13b	96cm ²
5a	<i>x</i> ≤ 9	14a	(15x+y-1)cm
5b	7	14b	$67\frac{1}{2}$ cm
6ai	2 ³ × 7	14c	Isosceles triangle or Acute-angled triangle.
6aii	14	15ai	\$12
6b	43	15aii	140
7a	3x-6	15b	\$8.50
7b	3x-3	16a	4x-6y-2
8a	$a^2 + ab$	16bi	$\frac{3x}{2}$ - 5y
8b	$5xy^2(x-4)$	16bii	$\frac{11x-45}{10}$
9a	Front View Top View	17a	O See See See See See See See See See Se
9b			
10a	H H H	17b	81°
	H-C-C-C-H 	17d	5.4 cm

Marl	Mark Scheme for 2015 Sec 1 Express EOY Mathematics Paper 1				
Qn	Answer	Marks	Remarks		
la	√9.3				
	₹√26.9				
	$\sqrt{9}$	MI	:		
	$=\frac{\sqrt{9}}{\sqrt[3]{27}}$	1			
	=1	Al			
2a	149 450	B1			
2b	$-0.3, 30\%, \frac{16}{50}, 0.33, 0.3$	B1			
3a	0	B1			
3b	3	B1			
4a	$\frac{\pi}{5}, \frac{9}{\sqrt{3}}, \sqrt{5}$	B1			
4b	-8, 125	B1			
4c	√8	Bl			
5a	$-2x \ge -27 + x$				
	$-3x \ge -27$	M1	Award M1 if student wrote		
	$x \le \frac{-27}{-3}$		$27 \ge 3x$ instead		
	<i>x</i> ≤ 9	Al			
5b	7	B1			
6ai	56 = 2 ³ × 7	B1			
6aii	$n=2\times7$	В1			
бЪ	$= 14$ $LCM = 2 \times 3 \times 7$	MI			
00	=42	1411			
	p = 42 + 1				
	= 43	Al			
7a	3x-6	Bl			
7ь	Kelly's weight = $\frac{3x + 3x - 6}{2}$	Ml			
	= (3x - 3) kg				
	Average weight = $\frac{3x + 3x - 6 + 3x - 3}{3}$				
	= (3x - 3) kg	A1			
8a	$a \times a + 3a \times b - 2b \times a$	Bl			
01	$=a^2+ab$	Di			
8b	$5x^2y^2 - 20xy^2 = 5xy^2(x-4)$	Ві			

9a Front View Top View B1 (eac)	h) front view even if student did not
	I student did not
	1 1
<u> </u>	shade the squares.
	Do not award
	marks if rectangles
	instead of squares
	are drawn
9b B1	Do not accept
	plane figure
	-
10а н н н н	
н — с — с — с — н	
HHHH	
10b 2(10) + 2 = 22 B1	
10c $2n+2$ B1	
Amount spent in June = $\frac{20}{100} \times 2000$	
100 B1	
= \$400	
July's expenditure = $\frac{30}{100} \times 2000$	
100 × 2000	
= \$600	
Percentage increase in expenditure from June to July	
$=\frac{600-400}{400}\times100\%$	
= 400 × 100%	
= 50% A1	
12a sum of interior angles=360°×3 M1	
= 1080°	
$(n-2) \times 180^{\circ} = 1080^{\circ}$	
$n = \frac{1.080}{1.080} + 2$	
$n = \frac{1.080}{180} + 2$ M1	
=8 A1	
12b Octagon B1	
	4
13a $\frac{1}{2} \times (12+16) \times h = 112$ M1	
A1	
h=8	

13b	Area of parallelogram $ANCD = 12 \times 8$	MI	1
	$= 96 \mathrm{cm}^2$	A1	•
14a	Perimeter = $3x + 2y + 8x - 8y - 2 + 4x + 7y + 1$	M1	
	= (15x + y - 1)cm	A1	
14b	Perimeter = $15(4\frac{1}{2}) + 1 - 1$	B1	
	$=67\frac{1}{2}$ cm	•	
14c	Isosceles triangle or Acute-angled triangle.	B1	Do not award mark for spelling error .
15ai	Amount I need to pay = $80 \times \$0.15$	M1	
	= \$12	Al	
15aii	Number of photographs = $\frac{$392}{$2000}$	M1	
	\$2.80 = 140	Al	
15b	Amount saved per photograph		
	= (\$0.15 + \$3) - (\$0.18 + \$2.80)	M1	
	=\$0.17		
	Total amount saved for 50 photographs		
	$=50 \times \$0.17$		
	= \$8.50	A1	
	Alternative method:		
	Amount cost at Filmhub		
	$=50\times(\$0.15+\$3)$		
	= \$157.50		
	A construction of the state of	├ M1	
	Amount cost at Picturehub		:
	$=50 \times (\$0.18 + \$2.80)$		
	= \$149		
	Total amount saved		a- e-
	= \$157.50 - \$149		
	= \$8.50	Al	
16a	5x - 2y - (2 + x + 4y)		
	=5x-2y-2-x-4y	M1 A1	
	=4x-6y-2		
16bi	$-\frac{x}{2} + 3y - 2(4y - x) = -\frac{x}{2} + 3y - 8y + 2x$	MI	Do not accept
	$=\frac{3x}{2}-5y$	Al	$1\frac{1}{2}x - 5y$

16bii	$\frac{3(x-3)}{2} - \frac{2x}{5} = \frac{15x - 45 - 4x}{10}$ $= \frac{11x - 45}{10}$	M1 Award mark for common denominator	
17a	Refer to the last page.	B1 (BC) B1 (CD) B1 (perpen. Bisector) B1 (Angle Bisector)	
17b	81°	B1 Accept 81°±1°	
17d	5.4 cm	B1 Accept (5.4 ± 0.1) cm	

ø

-

•

•

Name of Student		
Class	Index Number	•

END-OF-YEAR EXAMINATION 2015 SECONDARY 1 EXPRESS MATHEMATICS PAPER 2

4048/01

Date:

2 Oct 2015

Duration:

1 h 30 min

Additional Materials:

5 sheets of Writing Paper 1 sheet of Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, glue or correction tape/fluid.

Answer ALL questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown in the space below the question.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 60

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142.

Set by: Mdm Hayati

Vetted by: Ms Goh Lay Ching

Answer all the questions.

1 In an election, 87% of the people who were eligible to vote cast their votes.

There were 3 candidates in the election

The table below illustrates the number of votes received by each candidate.

Candidates	Number of votes received
Candidate X	х
Candidate Y	49 938
Candidate Z	21 402

(a) The number of votes for the 3 candidates, X, Y, Z, were in the ratio 4:7:3. Calculate the value of x. [2]

(b) Calculate the total number of people who were eligible to vote. [2]

(c) Jane drew a pictogram to represent the results of the election.

Candidate X	XXXXI;
Candidate Y	XXXXXXI:
Candidate Z	
represents	7000 votes

(i) Explain why the pictogram may be considered misleading. [1]

(ii) Amy wants to represent the data using a pie chart instead.

Explain why using a pie chart is a better representation of the data? [1]

2 (a) In the diagram, the line AB is parallel to CED. $\angle CEF = 125^{\circ}$ and $\angle EFD = 72^{\circ}$.

Calculate

(i)
$$\angle EDF$$
, [1]

(ii) reflex
$$\angle ABD$$
. [2]

(b) In the diagram TSR, TPU and PQR are straight lines. $\angle PTS = 56^{\circ}$ and $\angle TSQ = 114^{\circ}$.

Find the value of m+n. [2]

- 3 Shirley opened a saving account by investing \$2400.

 The account pays simple interest at the rate of 4.8% per year.
 - (a) Calculate the total amount in Shirley's account after 3 years. [2]
 - (b) Karen deposited \$P\$ in her saving account.
 This account pays simple interest at the rate of 4% per year.
 At the end of 3 years, the amount of interest Karen received is twice as much as the interest Shirley received.

Calculate the value of P.

[3]

- 4 (a) A submarine is 68 m below sea level.
 - (i) A jet fighter which is 354 m above sea level dropped a bomb to hit the submarine.

Find the vertical distance travelled by the bomb.

[1]

(ii) A falcon is midway between the submarine and the jet fighter.

Find the distance of the falcon above sea level.

[2]

(b) A rectangular room measures 6 m by 5.5 m.A contractor wants to tile the floor with identical square tiles to fit the room.

(i) Find the largest possible length of each tile.

[2]

(ii) Find the maximum number of tiles needed.

[1]

5 (a) Evaluate

$$\sqrt{7^2 + 2 \times (-8.2) \times \frac{3}{4}}$$
,

giving your answer correct to 2 significant figures.

[2]

(b) Solve

(i)
$$\frac{1}{3}(x+6)=3-(2-x)$$
, [2]

(ii)
$$\frac{10}{2x+5} - 3 = 0$$
. [2]

Jessie bought a few books during her trip to Melbourne.
The diagram below shows the receipt issued by the book store.
Some of the printouts on the receipt have faded and they are indicated by the black boxes.
You have to help Jessie recover the details of her purchases.

All purchases are made in Australian Dollar (AUD).

FAVOURED BOOK COMPANY One Emporium Melbourne Store VIC, 3000								
QTY			TOTAL					
1	29.90		29.90					
1	15.40		11.55					
1	30.80	15.40	15.40					
∏ota	Discount =	19.25]						
3		 -	- -					
AUD	ø							
OTAL								
001	N/IC	•	3456789 456123					
	Emporiu V QTY 1 1 1 ITota 3 AUD OTAL 001	Emporium Melboume VIC, 3000 QTY PRICE AUD 1 29.90 1 15.40 1 30.80 [Total Discount =	Emporium Melboume Store VIC, 3000 QTY PRICE AUD DISC AUD 1 29.90 1 15.40 1 30.80 15.40 [Total Discount = 19.25] 3 AUD OTAL 001 Slip: 123 Trans:					

(a)	Find total amount, in AUD, in Jessie's receipt.	[1]
(b)	Find the percentage discount given to the book "You Say, I Say"	[2]
(c)	The total amount is inclusive of 10% GST. Calculate the GST amount, in AUD.	[2]
(d)	On 27 Aug 2015 the rate of exchange between Australian Dollar (AUD) and Singapore Dollar (SGD) was 1 AUD = 1.18 SGD.	

(e) Jessie claims that the original price of the book "Stylistics" is 50% more than the book "You Say, I Say".

Do you agree with Jessie? Justify your answer with clear working.

Calculate the total amount of the purchases in SGD.

[2]

[1]

7	(a)	During the 2015 SEA Games, Singapore national swimmer Quah Zheng Wen set a new national record of 25.27 s in the 50 m backstroke event.					
		Expr	ress his speed in km/h, giving your answer correct to 2 decimal places.	[2]			
	(b)	-	y makes a trip from office A to office B for a meeting. distance between office A and office B is 250 km.				
		(i)	Kelly travels x km for the first part of her trip at an average speed of 60 k before she stops to have her lunch.	m/h			
			Write down an expression, in terms of x , for the time taken, in hours, to the first part of her trip.	ravel			
		(ii)	After her lunch, Kelly continues the second part of her trip, travelling the remaining distance at an average speed of 80 km/h to office B.	;			
			Write down an expression, in terms of x , for the time taken, in hours, to the second part of her trip.	ravel			
		(iii)	Given that the total time taken for the whole trip is $3\frac{1}{2}$ hours, form an				
			equation in x and solve it.	[3]			

(iv) Find the time taken, in hours, for the second part of her trip.

[1]

8 (a) The diagram shows a triangle ABC.

A is (-4, 6), B is (-1, 4) and C is (-1, 0).

(i) Write down the gradient of the line AB.

[1]

(ii) ABDC is a parallelogram.Write down the coordinates of point D.

[1]

(iii) A point E lies on the x-axis such that triangle EBC has the same area as triangle ABC.

Write down one possible coordinates of the point E.

[1]

(b) Answer the whole of this question on a sheet of graph paper.

(i) The variables x and y are connected by the equation 2x + y = 3. Some corresponding values of x and y are given in the table below.

х	- 2	0	1	р	4
у	7	3	1	0	· - 5

Find the value of p.

[1]

(ii) Using a scale of 2 cm to 1 unit on x-axis and 1 cm to 1 unit on y-axis, plot the points in the table.

Draw and label clearly the graph 2x + y = 3.

[2]

(iii) On the same axes, draw the graph y = -2. Write down the x-coordinate of the point where the two graphs intersect. [2]

The diagram shows a solid prism whose cross-section is a triangle ABC. AC = 24 cm, BX = 15 cm and AD = 50 cm.

[Take $\pi = 3.142$]

(a) Find the volume of the prism.

[2]

(b) The solid prism was melted and recast into 5 identical cylindrical solids with radius 6 cm and height h cm.

One such cylindrical solid is shown in the diagram below.

Show that the height, h, of each cylindrical solid, when rounded to the nearest whole number, is 16 cm. [2]

(i) Kevin wanted to paint the external surfaces of the 5 cylindrical solids using spray paint.

Using the value of h in part (b), find the total area of the surfaces to be painted. Leave your answer in terms of π . [2]

(ii) One can of spray paint covers an area of 600 cm².

Given that a can of spray paint costs \$5.50, calculate the amount of money Kevin would have to spend on painting. [2]

(c)

Answer Kev

Answer 1(a)	$\dot{x} = 28536$	7(a)	7.12 km/h (correct to 2 dp)				
1(b)	Total number of people eligible to vote = 114 800	7(b)(i)	$\frac{x}{60}$ h				
1(c)(i)	The symbols to represent the number of votes are unequal in size. The pictogram seems to show that Candidate Y received a lot more votes than the actual number of votes.	7(b)(ii) 7(b)(iii)	$\frac{250 - x}{80} \text{ h}$ $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$				
1(c)(ii)	Pie chart is able to show proportion of each candidate in comparison with the total number of votes.	7(b)(iv) 8(a)(i)	$x = 90$ 2 hours Gradient of $AB = -\frac{2}{3}$				
2(a)(i)	$\angle EDF = 53^{\circ}$	8(a)(ii)	D(2,-2)				
2(a)(ii)	Reflex $\angle ABD = 233^{\circ}$	8(a)(iii)	E(-4, 0) or E(2, 0)				
2(b)	m+n=170	8(b)(i)	$p=1\frac{1}{2}$				
3(a) 3(b)	Total amount = \$2745.60 P = \$5760	8(b)(ii)					
4(a)(i)	Vertical distance = 422 m		\\ \frac{\nu_2}{7} \\ \qquad \qquad \qquad \qquad \qua				
4(a)(ii)	Dist above sea level = 143 m		6				
4(b)(i)	Largest length = 50 cm		\ -5\				
4(b)(ii)	Max number of tiles = 132		41 1 1 1 1 1 1 1 1 1 1 1				
5(a)	6.1 (correct to 2 sig fig)		$\begin{array}{c c} 3\\2\\2\\x+y=3\\\end{array}$				
5(b)(i)	$x = 1\frac{1}{2}$						
5(b)(ii)	$x = -\frac{5}{6}$	-2 $y = -2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
6(a)	Total amount = 56.85 AUD						
6(b)	% discount = 25%		3				
6(c)	GST = 5.17 AUD						
6(d)	67.08 SGD						
6(e)	I don't agree with Jessie's claim. If "Stylistics" is 50% more than "You	8(b)(iii)	$x = 2\frac{1}{2}$				
	Say, I Say" then its price should be	9(a)	Volume of prism = 9000 cm ³				
	$=\frac{150}{100} \times 15.40$	9(b)	$\pi \times 6^2 \times h = 1800$				
	= 23.10 AUD and not 30.80 AUD. OR		$h = \frac{1800}{100} \approx 16 \text{ cm}$				
	If "Stylistics" is 50% more than "You Say, I Say" then its price should be	9(c)(i)	36π Total surface area = 1320π				
	$\frac{15.40}{15.40} \times 100\% = 100\%$	9(c)(ii)	Cost = \$38.50				
	more than the price of "You Say, I Say".						

End-of-Year Examination 2015 Marking Scheme Sec 1 Express Mathematics Paper 2

(t) i	i a STOTT	110	and the Marchine Philipperson	173 pp. 1830 283 pp. 1840 f		Reikārks izers.
1	(a)		$x = \frac{49938}{7} \times 4$			Alternative method
			= 28 536	M1 A1	2	$x = \frac{21402}{3} \times 4$
	4.5		Total number of votes received	A1	-	
	(b)		= 28 536 + 49 938 + 21 402			= 28 536
	,		= 99 876			
	ŕ		No of ppl eligible to vote			
			$=\frac{99876}{87}\times100$	Mi		•
			= 114 800	A1	2	
	(c)	(i)	The symbols to represent the number of			
			votes are unequal in size. The pictogram seems to show that	B1	1	
			Candidate Y received a lot more votes			
			than the actual number of votes.			
		(ii)	Using pie chart is a better			
		•	representation as pie chart is able to			
			show proportion of each candidate in comparison with the total number of	BI	1	***************************************
			votes	DI	<u> </u>	
2	(a)	(i)	$\angle EDF = 125^{\circ} - 72^{\circ}$	· -	_	
			= 53° (exterior \angle of \triangle)	BI	}	-
		(ii)	$\angle ABD = 180^{\circ} - 53^{\circ}$:
		(11)	= 127°	M1		
			Reflex $\angle ABD = 360^{\circ} - 127^{\circ}$			
			= 233°	Al	2	
	(b)		180 - n + 180 - m + 56 + 114 = 360	M1		
			170 - n - m = 0	A 1	2	
			m+n=170	A1	2	
3	(a)		Interest = $2400 \times \frac{4.8}{100} \times 3$	M1		
			= \$345.60			
			Total amount = 2400 + 345.60			
			= \$2745.60	Al	2	
L		······································			L	, 31,

Ą.		3 (1	eng est Vartagu Kinife († 2008)			ZZ:Hemarks 29.
3	(b)		$P \times \frac{4}{100} \times 3 = 2(345.60)$	MI		M1 for forming equation correctly.
			$P = \frac{691.2 \times 100}{12}$	Mi		
			12 = \$5760	A1	3	
4	(a)	(i)	Vertical distance = 354 - (-68) = 422 m	B1	1	
			(422)			(422)
		(ii)	Dist above sea level = $354 - \left(\frac{422}{2}\right)$	M1		M1 for $\left(\frac{422}{2}\right)$
			= 143 m	A1	2	
	(b)	(i)	6 m = 600 cm $= 23 × 3 × 52$			
			5.5 m = 550 cm	M1		M1 for prime factorisation
			$= 2 \times 5^2 \times 11$ HCF = $2 \times 5^2 = 50$ cm	A1	2	
			Largest length = 50 cm			
		(ii)	600 550			Administrative of the second s
			No of tiles = $\frac{600}{50} \times \frac{550}{50}$ = 12×11	E. Constant		
			= 132	B1	1	-
5	(a)		6.058	B1		
	(~)		≈ 6.1 (correct to 2 sig fig)	B1	2	
	(b)	(i)	$\frac{1}{3}x + 2 = 3 - 2 + x$	M1		M1 for correct
			$\begin{bmatrix} 3 \\ \frac{2}{3}x = 1 \end{bmatrix}$			expansion
				Al	2	
			$x = 1\frac{1}{2}$			
		(ii)	10 = 3(2x + 5)	MI		M1 for eliminating the denominator
			10 = 6x + 15 5			ценонинасы
			$x = -\frac{5}{6}$	Al	2	

6 (a) Total amount = 29.90+11.55+15.40 = 56.85 AUD (b) Discount = 15.40 - 11.55 = 3.85 % discount = $\frac{3.85}{15.4} \times 100\%$ = 25% (c) $\frac{3.85}{110} \times 56.85$ = 5.17 AUD (d) $\frac{1}{10} \times 10.85 \times 100\%$ = 150. $\frac{10}{10} \times 10.40$ = 67.083 = 67.08 SGD (e) $\frac{50\%}{100} \times 15.40$ = 23.10 AUD The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say". 1 don't agree with Jessie's claim. 7 (a) $\frac{50}{25.27} \times 1000$ = 7.12 km/h (correct to 2 dp) (b) (i) $\frac{3}{10} \times 1000$ Time taken = $\frac{x}{60}$ h Time taken = $\frac{x}{60}$ h Time taken = $\frac{x}{60}$ h Time taken = $\frac{250-x}{80}$ = $\frac{3}{24} \times 1750-3x = 840$ $\frac{x}{3} \times 1000$ M1 Alternative method Discount and Disco	Onesting No.	Service County (A. 1881)			Kemarks 32
(b) Discount = 15.40 – 11.55 = 3.85 M1 Discount = 25% M1 Discount = 3.85 × 100% M1 E19.25 – 15.40 = 3.85 AUD M1 E19.25 – 15.40 = 3.85 AUD M1 E19.25 – 15.40 = 3.85 AUD E19.25 – 15.40 E19.25 –	6 (a)	Total amount			
(b) Discount = $15.40 - 11.55 = 3.85$ % discount = $3.85 \times 100\%$ = 25% (c) $GST = \frac{10}{110} \times 56.85$ = 5.17 AUD (d) $1 \text{ AUD} = 1.18 \text{ SGD}$ $56.85 \text{ AUD} = 56.85 \times 1.18 \text{ SGD}$ = 67.083 $\approx 67.083 \text{ GD}$ B1 (e) $\frac{150}{100} \times 15.40$ = 23.10 AUD The price of "Stylistics" is 30.80 AUD not 23.10 AUD . Therefore the price of "Stylistics" is not 50% more than "You Say, I Say". The price of "Stylistics" is not 50% more than "You Say, I Say", Stylistics" is 15.40 AUD more than "You Say, I Say". Compare to "You Say, I Say", Stylistics" is 15.40 AUD more than "You Say, I Say". The price of "Stylistics" is 15.40 AUD more than "You Say, I Say", Stylistics" is 15.40 AUD more tha			101	1	
% discount = $\frac{3.85}{15.4} \times 100\%$ M1 2 Discount = $\frac{19.25-15.40}{19.25-15.40}$ A1 2 2 3.85 AUD (c) GST = $\frac{10}{110} \times 56.85$ M1 A1 2 (d) 1 AUD = 1.18 SGD 56.85 \times AUD = 56.85 \times 1.18 SGD 67.08 SGD B1 1 (e) 50% more than "You Say, 1 Say" $\frac{150}{100} \times 15.40$ AUD more than "You Say, 1 Say". Compare to "You Say, 1 Say". Compare to "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than the price of "You Say, 1 Say". "Stylistics" is not 50% more than the price of "You Say, 1 Say". "The price of "You Say, 1 Say". "Stylistics" is not 50% more than the price of "You Say, 1 Say". "Stylistics" is not 50% more than the price of "You Say, 1 Say". "The price of "You Say, 1 Say". "Stylistics" is not 50% more than the price of "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is not 50% more than "You Say, 1 Say". "Stylistics" is 15.40 AUD more than "You Say, 1 Say". "Stylistics" is 15.40 AUD more than "You Say, 1 Say". "Stylistics" is 15.40 AUD more than "You Say, 1 Say". "Compare to "You Say, 1 Say". "Stylistics" is 15.40 AUD more than "You Say, 1 Say". "Stylistics" is 15.40 AUD more than "You Say, 1 Say". "Compare to "You Say, 1 Say". "Stylistics" is 15.40 AUD more than "You Say, 1 Say". "Compare to "You Say, 1 Say". "Stylistics" is 15.40 AuD more than "You Say, 1 Say". "Stylistics" is 15.40 AuD more than "You Sa		= 56.85 AUD	DI	1	
% discount = $\frac{3.85}{15.4} \times 100\%$ M1 2 Discount = 19.25 - 15.40 -3.85 AUD (c) GST = $\frac{10}{110} \times 56.85$ M1 2 -3.85 AUD (d) 1 AUD = 1.18 SGD 56.85 × 1.18 SGD = 67.083 = 67.08 SGD B1 1 (e) 50% more than "You Say, 1 Say" = $\frac{150}{100} \times 15.40$ = 23.10 AUD The price of "Stylistics" is not 50% more than "You Say, 1 Say". Compare to "You Say, 1 Say". Compare to "You Say, 1 Say". Say. Say". Say. Say". Say. Say". Say. Say". Say. S	(b)				Alternative method
(c) $GST = \frac{10}{110} \times 56.85$ $= 5.17 \text{ AUD}$ Al 2 $= 3.85 \text{ AUD}$ (d) $1 \text{ AUD} = 1.18 \text{ SGD}$ $56.85 \text{ AUD} = 56.85 \times 1.18 \text{ SGD}$ $= 67.083$ $\approx 67.08 \text{ SGD}$ Bl 1 (e) $\frac{150}{100} \times 15.40$ Bl $\frac{1}{100} \times 15.40$ AUD more than "You Say, 1 Say". I don't agree with Jessie's claim. 7 (a) $\frac{15.40}{25.27 \times 1000} \times \frac{15.40}{25.27 \times 1000}$ Ml $\frac{15.40}{25.27 \times 1000} \times \frac{15.40}{80} \times \frac{15.40}{80}$ Ml $\frac{1}{100} \times \frac{15.40}{80} \times \frac{15.40}{80} \times \frac{15.40}{80}$ Ml for converting m to km or s to hr $\frac{x}{100} \times \frac{15.40}{80} \times $		$\% \text{ discount} = \frac{3.85}{100\%} \times 100\%$:	•
(c) $GST = \frac{10}{110} \times 56.85$ $= 5.17 \text{ AUD}$ Al 2 (d) $1 \text{ AUD} = 1.18 \text{ SGD}$ $56.85 \text{ AUD} = 56.85 \times 1.18 \text{ SGD}$ $= 67.083$ $\approx 67.08 \text{ SGD}$ Bl 1 (e) $\frac{150}{100} \times 15.40$ Bl $\frac{15.40}{100} \times 15.40$ Bl $\frac{15.40}{15.40} \times 15.40$ Bl $\frac{15.40}{15.40} \times 15.40$ Compare to "You Say, 1 Say". Compare to "You Say, 1 Say". I don't agree with Jessie's claim. 7 (a) $\frac{15.40}{25.27 \times 1000} \times 1000$ Al $\frac{15.40}{15.40} \times 100\% \times 100\%$ Ml for converting m to km or s to hr 8 $\frac{15.40}{15.40} \times 100\% \times 100\%$ Ml for converting m to km or s to hr 10 $\frac{15.40}{15.40} \times 100\% \times 100\%$ Ml for forming correct equation 11 $\frac{x}{40} \times 100\% \times 100\%$ Ml for forming correct equation	,	15.4		2	
(d) $ \begin{array}{c} 1 \text{ AUD} = 1.18 \text{ SGD} \\ 56.85 \text{ AUD} = 56.85 \times 1.18 \text{ SGD} \\ = 67.083 \\ \approx 67.08 \text{ SGD} \\ \end{array} $ (e) $ \begin{array}{c} 50\% \text{ more than "You Say, 1 Say"} \\ = \frac{150}{100} \times 15.40 \\ = 23.10 \text{ AUD} \\ \end{array} $ The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say", "Stylistics" is olaim.	(c)				= 5.83 AUD
(d) $ \begin{array}{c} 1 \text{ AUD} = 1.18 \text{ SGD} \\ 56.85 \text{ AUD} = 56.85 \times 1.18 \text{ SGD} \\ = 67.08 \text{ SGD} \\ \approx 67.08 \text{ SGD} \\ \end{array} $ B1 $ \begin{array}{c} 1 \text{ The price of} \\ \text{SD} \text{ more than "You Say, I Say"} \\ = \frac{150}{100} \times 15.40 \\ = 23.10 \text{ AUD} \\ \end{array} $ B1 $ \begin{array}{c} 1 \text{ The price of} \\ \text{"Stylistics" is 15.40} \\ \text{AUD more than "You Say, I Say"} \\ \text{Compare to "You Say, I Say"}. \\ \text{Compare to "You Say, I Say"}. \\ \text{Compare to "You Say, I Say"}. \\ \text{Say, I Say". I don't agree with Jessie's claim.} \\ \end{array} $ B1 $ \begin{array}{c} 2 \\ \frac{15.40}{15.40} \times 100\% = 100\% \\ \text{More than the price of} \\ \text{"You Say, I Say"} \\ \end{array} $ To (a) $ \begin{array}{c} \text{Speed} = \frac{50}{25.27} \text{ m/s} \\ = \frac{50 \times 3600}{25.27 \times 1000} \\ = 7.123 \\ \approx 7.12 \text{ km/h (correct to 2 dp)} \\ \text{A1} \\ \text{Cii)} \end{array} $ Time taken $ \begin{array}{c} \frac{250 - x}{80} \\ \text{Oi} \\ \end{array} $ B1 $ \begin{array}{c} \text{M1 for converting m to km or s to hr} \\ \text{M2} \\ \end{array} $ $ \begin{array}{c} \text{M1 for forming correct equation} \\ \text{M3} \\ \text{M4} \\ \end{array} $ $ \begin{array}{c} \text{M1 for forming correct equation} \\ \text{M4} \\ \end{array} $	(6)	$GST = \frac{3}{110} \times 56.85$	1411]	
(b) $56.85 \text{ AUD} = 56.85 \times 1.18 \text{ SGD}$ $= 67.083$ $\approx 67.08 \text{ SGD}$ B1 1 (c) $\frac{150}{0} \times 15.40$ $= 23.10 \text{ AUD}$ The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say". 1 Compare to "Stylistics" is not 50% more than "You Say, 1 Say". 1 Say". 1 don't agree with Jessie's claim. To (a) $\frac{50 \times 3600}{25.27 \times 1000}$ $\frac{50 \times 3600}{25.27 \times 100$		= 5.17 AUD	Al	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)	1 AUD = 1.18 SGD			
(e) $= \frac{150}{100} \times 15.40$ $= \frac{150}{100} \times 15.40$ $= 23.10 \text{ AUD}$ The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say". Compare to "You Say, 1 Say", "Stylistics" is so 15.40 AUD more than "You Say, 1 Say". I don't agree with Jessie's claim. To (a) $= \frac{50}{25.27} \times 1000$ $= \frac{50 \times 3600}{25.27 \times 1000}$ $= \frac{50 \times 3600}{25.27 \times 1000}$ $= \frac{7.123}{25.27 \times 1000}$ $= 7.123$	(4)				
(e) $\frac{150}{100} \times 15.40$ $= \frac{150}{100} \times 15.40$ B1 The price of "Stylistics" is 15.40 AUD more than "You Say, 1 Say". Compare to "You Say, 1 Say". Compare to "You Say, 1 Say". I don't agree with Jessie's claim. 7 (a) Speed $= \frac{50}{25.27}$ m/s $= \frac{50 \times 3600}{25.27 \times 1000}$ M1 or sto hr (b) (i) Time taken $= \frac{x}{60}$ h (iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ $\frac{150}{4x + 750 - 3x = 840}$ M1 The price of "Stylistics" is 15.40 AUD more than "You Say, 1 Say". Compare to "You Say, 1 Say". Compare to "You Say, 1 Say", "Stylistics" is $\frac{15.40}{15.40} \times 100\% = 100\%$ M2 has a $\frac{15.40}{15.40} \times 100\% = 100\%$ more than the price of "You Say, 1 Say". M1 for converting m to km or s to hr M1 of forming correct equation			 		
		≈ 67.063GD	Bi	1	L. L. Barrer
The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say". I don't agree with Jessie's claim. To make the price of "Stylistics" is not 50% more than "You Say, 1 Say". I don't agree with Jessie's claim. To make the price of "You Say, 1 Say". Stylistics" is not 50% more than "You Say, 1 Say". Stylistics" is not 50% more than "You Say, 1 Say". To make the price of "You Say, 1 Say". M1	(e)				
The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say". I don't agree with Jessie's claim. To make the price of "Stylistics" is not 50% more than "You Say, 1 Say". I don't agree with Jessie's claim. To make the price of "You Say, 1 Say". Stylistics" is not 50% more than "You Say, 1 Say". Stylistics" is not 50% more than "You Say, 1 Say". To make the price of "You Say, 1 Say". M1		$=\frac{130}{100} \times 15.40$			
The price of "Stylistics" is 30.80 AUD not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, 1 Say". 1 don't agree with Jessie's claim. B1 2		f .	B1		1
not 23.10 AUD. Therefore the price of "Stylistics" is not 50% more than "You Say, I Say". I don't agree with Jessie's claim. B1 2 $\frac{15.40}{15.40} \times 100\% = 100\%$ more than the price of "You Say, I Say"		The price of "Stylistics" is 30.80 AUD	1		1 - 1
Say, I Say". I don't agree with Jessie's claim. 7 (a) Speed = $\frac{50}{25.27}$ m/s = $\frac{50 \times 3600}{25.27 \times 1000}$ M1 M1 for converting m to km or s to hr (b) (i) Time taken = $\frac{x}{60}$ h Time taken = $\frac{250 - x}{80}$ B1 1 (iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ M1 M1 M1 for forming correct equation $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ M1 M1		not 23.10 AUD. Therefore the price of	Ri	2	
Claim. more than the price of "You Say, I Say"					$\frac{15.40}{15.40} \times 100\% = 100\%$
7 (a) Speed = $\frac{50}{25.27}$ m/s = $\frac{50 \times 3600}{25.27 \times 1000}$ M1 M1 for converting m to km or s to hr (b) (i) Time taken = $\frac{x}{60}$ h Time taken = $\frac{250 - x}{80}$ B1 1 (ii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ M1 M1 M1 for forming correct equation M1 for converting m to km or s to hr M1 M1 for forming correct equation		claim.			
$= \frac{50 \times 3600}{25.27 \times 1000}$ $= 7.123$ $\approx 7.12 \text{ km/h (correct to 2 dp)}$ A1 (ii) Time taken = $\frac{x}{60}$ h (iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ $4x + 750 - 3x = 840$ M1 for converting m to km or s to hr M1 for forming to km or s to hr M3 for converting m to km or s to hr M4 for forming correct equation	7 (2)	50			You Say, I Say
(b) (i)	, (a)				
(b) (i) Time taken = $\frac{x}{60}$ h (ii) Time taken = $\frac{250-x}{80}$ (iii) $\frac{x}{60} + \frac{250-x}{80} = 3\frac{1}{2}$ $\frac{4x + 3(250-x)}{240} = 3\frac{1}{2}$ $4x + 750 - 3x = 840$ M1 A1 2 B1 I M1 M1 M1 M1 M1 M1 M1 M1 M1			M1		- 1
(b) (i) Time taken = $\frac{x}{60}$ h (ii) Time taken = $\frac{250 - x}{80}$ (iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ $4x + 750 - 3x = 840$ M1 A1 2 B1 I M1 M1 M1 M1 M1 M2 M1 for forming correct equation		1			to km or s to hr
(b) (i) Time taken = $\frac{x}{60}$ h (ii) Time taken = $\frac{250 - x}{80}$ B1 I (iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ $4x + 750 - 3x = 840$ M1 M1 M1 M2 M1		.	Al	2	
(ii) Time taken = $\frac{250 - x}{80}$ B1 M1 for forming correct equation $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ $4x + 750 - 3x = 840$ M1	(b) (i)		1931	1	
(iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ M1 or forming correct equation $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ M1			17.1	,	
(iii) $\frac{x}{60} + \frac{250 - x}{80} = 3\frac{1}{2}$ M1 or forming correct equation $\frac{4x + 3(250 - x)}{240} = 3\frac{1}{2}$ M1	(11)	Time taken = $\frac{250 - x}{80}$	В1	1	,
$\begin{vmatrix} 4x + 3(250 - x) \\ 240 & = 3\frac{1}{2} \\ 4x + 750 - 3x = 840 & M1 \end{vmatrix}$	1::::		242.4		M1 for forming
$\begin{vmatrix} 4x + 3(250 - x) \\ 240 & = 3\frac{1}{2} \\ 4x + 750 - 3x = 840 & M1 \end{vmatrix}$	(11)	$\frac{x}{60} + \frac{230}{80} = 3\frac{x}{2}$	107.1		1 1
4x + 750 - 3x = 840 M1		1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	241		
$A \rightarrow A \rightarrow$		4x + 750 - 3x = 840 $x = 90$	Al	3	135

(0)	5-31 1 111		OF CITY OF VEH KNOW ON THE			
7		(iv)	Time = $\frac{250 - 90}{80}$ = 2 h	B1	1	
8	(a)	(i)	Gradient of $AB = -\frac{2}{3}$	B 1	1	
		(ii)	D (2, -2)	B1	1	
			E(-4, 0) or $E(2, 0)$	B1	1	B1 for either one of the coordinates
	(b)	(i)	$p=1\frac{1}{2}$	B1	1	
	ē	(ii)	Draw axes and plot all points correctly Draw straight line graph through all points $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P1 C1	2	
		(iii)	The line $y = -2$ drawn correctly.	B1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			$x = 2\frac{1}{2}$	Ві	2	
9	(a)		Cross sectional area = $\frac{1}{2} \times 24 \times 15$ = 180 cm^2 Volume = 180×50	MI		
<u> </u>	(b)		$= 9000 \text{ cm}^3$ Volume of each solid = $\frac{9000}{5}$ = 1800	A1	2	
rest rive - the same that the same transmitter are.			$\pi \times 6^{2} \times h = 1800$ $h = \frac{1800}{36\pi}$ = 15.91	M1		
			≈ 16 (nearest whole number)	A1	2	

- Qii	estion	No.	្នា <u>ប្រាស់</u> ទៅពីស្វេទ្ធមថាក្រប្រជាជ្រាន់ នៅប្រាស់	Oylatekus. Avyatededa	a Jointe Marke	#E. P. Reministra
9	(c)	(i)	Total surface area = $5(2 \times \pi \times 6^2 + 2 \times \pi \times 6 \times 16)$ = $5(72\pi + 192\pi)$	Ml	•	M1 for correct area of 2 circles or curved
			$= 1320\pi$	Al	2	surface area
		(ii)	No of bottle = $\frac{1320\pi}{600}$	MI		
			= 6.91 · ≈ 7 bottles			
			Cost = 7×5.5 = \$38.50	A1	2	
•						

Class

Register Number

Name

南洋女子中学校 NANYANG GIRLS' HIGH SCHOOL

End-of-Year Examination 2015 Secondary One

INTEGRATED MATHEMATICS

1 hour 15 minutes

Paper 1

Monday

12 October 2015

0845 - 1000

READ THESE INSTRUCTIONS FIRST

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, register number and class in the spaces at the top of this page.
- 2. Answer all the questions.
- 3. Write your answers and working in the spaces provided on the question paper.
- 4. All working must be written in dark blue or black ink.
- 5. Omission of essential working will result in loss of marks.
- 6. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
- 7. The use of calculators is **NOT** allowed for this paper.

INFORMATION FOR CANDIDATES

- 1. The number of marks is given in brackets [] at the end of each question or part question.
- 2. The total number of marks for this paper is 50.
- 3. You are reminded of the need for clear presentation in your answers.

This document consists of 10 printed pages.

NANYANG GIRLS' HIGH SCHOOL

Turn over

1. Arrange the following in ascending order:

$$0.\overline{21}$$
 , $\frac{1}{5}$, $\frac{21}{100}$, -0.21 , $-0.2\overline{1}$

[2
_	[

2. Alex reads $\frac{3}{5}$ of a book on Monday and $\frac{1}{3}$ of the remaining pages on Tuesday.

If he has 64 pages left to read after Tuesday, how many pages does the book have?

Answer: pages [2]

- 3. Evaluate the following:
 - (a) $2-3[5-(-8)]\times 7-(6+4)$
 - **(b)** $-\frac{5}{2} + 2\left(-\frac{1}{4}\right)^2 + \frac{2}{3} \div \left(-\frac{14}{9}\right)$

Answer:	(a)	 [2]

4. Even numbers are arranged in a table comprising three columns C1 to C3 for the 1st to 4th rows as shown below:

	C1	C2	C3
1 st row	2	4	6
2 nd row	8	10	12
3 rd row	14	16	18
4 th row	20	22	24
5 th row	а		4 + +
• • •	. •••		4-4
n th row	***	k	
* 4 *	***		***
100 th row	•••		х

- (a) Write down the value of a.
- (b) The number k is in the n^{th} row of column C2. Write down and simplify an equation connecting n and k.
- (c) The number x is in the 100^{th} row of column C3. Calculate the value of x.

Answer: (a) $a = ____[1]$

(b) _____[2]

(c) x = [1]

- 5. (a) Express 48 as the product of its prime factors.
 - (b) What is the smallest natural number, n, for which 48n is a multiple of 315?
 - (c) Find the smallest value of m such that the product 48m is a perfect cube.
 - (d) Using your result in (c), evaluate $\sqrt[3]{48m}$.

Answer:	(a) $48 =$	
	(b) <i>n</i> =	 [2]

(c)
$$m =$$
 [2]

- 6. (a) Estimate the value of $\frac{5.112 \times 39.998}{0.199}$ correct to 1 significant figure. Show all workings clearly.
 - (b) Use your result in (a) to estimate the value of $\frac{0.5112 \times 0.39998}{1.99}$.
 - (c) Using as much of the information below as necessary, evaluate $\sqrt{0.00486}$. [$\sqrt{48.6} = 6.97$, $\sqrt{4.86} = 2.20$]

Answer:	(a)	[2]
	(b)	[2]
	(c)	[2]

- 7. In the diagram, ABDF is a parallelogram. GJ is a straight line parallel to AB and FD that cuts DB at C. BE is a straight line that cuts GJ at H. ΔBCJ is an isosceles triangle with BC = JC. $\angle AGH = 80^{\circ}$ and $\angle BED = 50^{\circ}$. Calculate the following angles, stating your reasons clearly.
 - (a) ∠BDE
 - (b) ∠*BHG*
 - (c) ∠BJC

Answer: (a)
$$\angle BDE =$$
 [2]

(b)
$$\angle BHG =$$
 [2]

(c)
$$\angle BJC =$$
 [2]

[Turn Over]

- 8. Expand and simplify each of the following expressions:
 - (a) $(2x+3y)^2$
 - **(b)** 2r[1-3s-2(r-s+1)-r]
 - (c) 3(2x-y)(x+y)-(x+2y)(x-2y)

Answer: (a) _____[]]

(b) _____[2]

(c) _____[3]

- 9. Factorise the following completely:
 - (a) $12u^2 + 9u 3$
 - **(b)** $16x^2 25$
 - (c) 3ac + ad 6bc 2bd

Answer:	(a)	 [2]
	(b)	 [2]
	(c)	[3]

[Turn Over]

9

10. (a) Simplify the following, giving your answer as a single fraction in its simplest form:

$$3 - \frac{2(x-2)}{3} + \frac{x}{4}$$

- (b) Solve $\frac{3}{x-4} = -\frac{2}{1+2x}$.
- (c) A company has x male employees and y female employees. The average yearly income of 1 employee is \$30 000. If the average yearly income of 1 female employee is (x-5000), write down an algebraic expression in a single fraction that represents the average yearly income of 1 male employee.

Answer: (a) ______[3]

(b) x = [2]

(c)_____[3]

- End of Paper -

2015 Sec 1 EOY P1 Marking Scheme

No.	Solution
1	
	$-0.21, -0.21, \frac{1}{5}, \frac{21}{100}, 0.21$
	2 100
2	1 2 2
	$\frac{1}{3}$ of the remaining $\frac{2}{5}$ of the book =
,	
	$\frac{2}{15}$
	0 0 11
	By Tuesday, he has read $\frac{3}{5} + \frac{2}{15} = \frac{11}{15}$ of
	the book.
	64 pages represents $\frac{4}{15}$ of the book.
	No. of pages the book has =
	$64 \div 4 \times 15 = 240$
3a	$2-3[5-(-8)]\times 7-(6+4)$
	$=2-3(13)\times7-10$
	=2-273-10
	= -281
3b	
	$-\frac{5}{2}+2\left(-\frac{1}{4}\right)^2+\frac{2}{3}\div\left(-\frac{14}{9}\right)$
	2 (4) 3 (9)
	$=-\frac{5}{2}+2\left(\frac{1}{16}\right)+\frac{2}{3}\times\left(-\frac{9}{14}\right)$
	2 (16) 3 (14)
	19 3
	$=-\frac{19}{8}-\frac{3}{7}$
	157
	= <u>157</u> 56
	$=-2\frac{45}{56}$
4a	a = 26
4b	k = 4 + 6(n - 1)
	= 6n - 2
4c	x = 6 + 6(100 - 1)
	= 600
<u> </u>	Or $x = 100 \times 6 = 600$
5a	48 = 2 ⁴ × 3
5b	$315 = 3^2 \times 5 \times 7$
	$n = 3 \times 5 \times 7 = 105$
5c	$m = 2^2 \times 3^2 = 36$
	<u> </u>

5đ	$\sqrt[3]{48m} = \sqrt[3]{2^4 \times 3 \times 2^2 \times 3^2}$
	$=\sqrt[3]{2^6 \times 3^3}$
	$=2^2\times3$
	= 12
6a	5.112×39.998 _≈ 5.1×40
	0.199 0.2
	= 1000
6b	0.5112×0.39998
	1.99
	$= \frac{5.112 \div 10 \times 39.998 \div 100}{100}$
	0.199×10
	≈ 0.1
6c	$\sqrt{0.00486} = \sqrt{48.6 \div 10000}$
	= 6.97 ÷ 100
	= 0.0697
7a	$\angle GCB = 180^{\circ} - 80^{\circ} \text{ (int } \angle, GA \text{ // } CB)$ = 100°
	$\angle BDE = 100^{\circ}$ (corres. \angle , $GJ // FD$)
7b	$\angle EHC = 180^{\circ} - 50^{\circ} \text{ (supp } \angle \text{)}$
	$= 130^{\circ}$ $\angle BHG = 130^{\circ} \text{ (vert. opp. } \angle \text{)}$
7c	$\angle BCG = \angle BDE = 100^{\circ}$ (corres. \angle ,
	GJ // FD)
	$\angle BJC = 100^{\circ} \div 2$
	(ext. \angle = sum of opp. int. \angle) = 50°
8a	$(2x+3y)^2$
	$=4x^2 + 12xy + 9y^2$
8b	$2r\{1-3s-2(r-s+1)-r\}$
1	$=2r\{1-3s-2r+2s-2-r\}$
	$=2r\{-1-s-3r\}$
	$=-2r-2rs-6r^2$
8c	3(2x-y)(x+y)-(x+2y)(x-2y)
	$= 3(2x^2 + 2xy - xy - y^2) - (x^2 - 4y^2)$
	$= 3(2x^2 + xy - y^2) - x^2 + 4y^2$
	$=6x^2 + 3xy - 3y^2 - x^2 + 4y^2$
	$=5x^2+3xy+y^2$
L	

9a	
74	$12u^2 + 9u - 3$
	$=3(4u^2+3u-1)$
	=3(4u-1)(u+1)
	OR
	$12u^2 + 9u - 3$
	=(4u-1)(3u+3)
	=3(4u-1)(u+1)
9b	$16x^2 - 25$
	$=(4x)^2-5^2$
	=(4x-5)(4x+5)
9c	3ac + ad - 6bc - 2bd
	= a(3c+d) - 2b(3c+d)
	, , , , , , , , , , , , , , , , , , , ,
	= (a-2b)(3c+d)
10a	2(- 2) -
104	$3-\frac{2(x-2)}{3}+\frac{x}{4}$
	_
	$=\frac{36-8(x-2)+3x}{}$
	$=\frac{36-8(x-2)+3x}{12}$
	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$
	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$
	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$
10	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$
10	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$
1 .	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$ $\frac{3}{x - 4} = -\frac{2}{1 + 2x}$
1 .	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$ $\frac{3}{x - 4} = -\frac{2}{1 + 2x}$ $3(2x + 1) = -2(x - 4)$
1 .	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$ $\frac{3}{x - 4} = -\frac{2}{1 + 2x}$ $3(2x + 1) = -2(x - 4)$ $6x + 3 = -2x + 8$
1 .	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$ $\frac{3}{x - 4} = -\frac{2}{1 + 2x}$ $3(2x + 1) = -2(x - 4)$ $6x + 3 = -2x + 8$ $8x = 5$
1 .	$= \frac{36 - 8(x - 2) + 3x}{12}$ $= \frac{36 - 8x + 16 + 3x}{12}$ $= \frac{52 - 5x}{12}$ $\frac{3}{x - 4} = -\frac{2}{1 + 2x}$ $3(2x + 1) = -2(x - 4)$ $6x + 3 = -2x + 8$

10c)

Total yearly income of all the staff in \$ = 30000(x + y)

Total yearly income of female employees in = y(x-5000)

Total yearly income of male employees in \$

$$=30000(x+y)-y(x-5000)$$

$$=30000x + 30000y - xy + 5000y$$

$$=30000x - xy + 35000y$$

Average yearly income of male employees in \$

$$=\frac{30000x - xy + 35000y}{x}$$

南洋女子中学校 NANYANG GIRLS' HIGH SCHOOL

End-of-Year Examination 2015 Secondary One

INTEGRATED MATHEMATICS

1 hour 15 min

Paper 2

Thursday

8 Oct 2015

1030 - 1145 hrs

READ THESE INSTRUCTIONS FIRST

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, register number and class in the spaces at the top of this page.
- 2. Answer all the questions from number 1 to 10 before attempting the Bonus Question number 11.
- Write your answers and working on the separate writing paper provided.
- All working must be written in dark blue or black ink.
- 5. Omission of essential working will result in loss of marks.
- 6. Write your name, register number and class on each separate sheet of paper that you use and fasten the separate sheets together with the string provided. Do not staple your answer sheets together.
- 7. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
- The use of calculators is allowed for this paper.

INFORMATION FOR CANDIDATES

- 1. The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 50.
- You are reminded of the need for clear presentation in your answers.

Parent's Signature:

Score:

/50

This document consists of 5 printed pages.

Nanyang Girls: High School

Setter: CP and GT

Answer the whole of this question on the piece of plain paper provided. Using only a ruler and a pair of compasses, construct $\triangle ABC$ such that AB = 12 cm, BC = 8 cm and AC = 10 cm, [1]the angle bisector of $\angle BAC$. [1] (c) the perpendicular bisector of BC. [1] (d) a circle which passes through the vertices A, B and C. [2] A building has a perimeter of 8 cm, with a gate of width 0.5 cm on a map. If the actual perimeter of the building is 0.56 km, (a) find the scale of the map in the form 1: r. A model of the building is made to another scale of 1:5000. Calculate (b) (i) the width of the gate in centimetres as represented by the second scale, [1] (ii) the floor area of the building model in square centimetres if the actual [2] floor area of the building is 16000 m^2 . In 2008, the price of a car was \$45 000. In 2015, the price of the same car is \$85 000. (a) Calculate the percentage increase in the price of the car, leaving your answer [2] to I decimal place. (b) In 2015, the dealer decides to cut down the price of the car by 5%. Calculate [2] the new price of the car. 4. In the Lifeskills Camp, 6 litres of milo is given to a class of 30 students as [2] supper. Find the additional volume of milo needed for a class of 35 if each student is to get the same amount of milo. (b) A small tap can fill up a tank with water in 5 hours. A big tap can fill up the [2] same tank in 3 hours. If both taps were switched on at the same time, how long would it take to fill up 2 of such tanks?

1.

- 5. In an octagon, four of the interior angles are $2x^{\circ}$ each and the other four angles are $(2x+15)^{\circ}$, $(2x+25)^{\circ}$, $(2x+35)^{\circ}$ and $(3x-15)^{\circ}$ respectively. Find
 - (a) the value of x, [3]
 - (b) the size of the smallest exterior angle. [2]
- 6. Given that $x^2 + y^2 = 26$ and xy = (-5), evaluate

(a)
$$\left(\frac{x-y}{2}\right)^2$$
, [2]

- (b) $(x+y)^4$. [2]
- 7. Simplify $\sqrt{\frac{16x^4y^2}{25z^4}} \div \frac{12x+12y}{2x^2z^3} \times \left(\frac{3(x+y)}{-2xz}\right)^3$, giving your answer as a single fraction in its simplest form. [4]
- 8. Ann's car can travel x km on each litre of petrol. She travelled (x + 10) km on Monday.
 - (a) Write down, in terms of x, the number of litres of petrol she used on [1] Monday.
 - (b) Given that she travelled (2x+15) km on Tuesday and used 1.25 litres of petrol more on Tuesday than on Monday, form an equation in x and solve it.
 - (c) Calculate the total distance that she travelled on Monday and Tuesday. [1]

9.	Number of	0	1	2	3	4	5
	books borrowed						
	Number of	7	Х	6	2	4	5
	students						

The table above shows the number of books borrowed by the students of a class.

- (a) If the mean is 2.25, form an equation in x and use it to find the value of x. [3]
- (b) Find the largest possible value of x if the median number of books borrowed [2] is 2.

[Turn Over]

10. In this question, take $\pi = 3.142$ and leave all your answers to 2 decimal places.

[Volume of a cone with height h and base radius r is $\frac{1}{3}\pi r^2 h$,

Curved surface area of cone with slant height l and base radius r is $\pi r l$.]

[Volume and surface area of a sphere with radius r are $\frac{4}{3}\pi r^3$ and $4\pi r^2$ respectively.]

Figure 2

Figure 1 shows a solid object made up of a right cone with height 24 cm, and slant height 25 cm, and a cylinder with diameter 14 cm and height 2 cm. For the solid object in Figure 1, calculate.

[2]

(ii) the volume.

[2]

The object in Figure 1 is then melted down to form another solid object as shown in Figure 2. It is made up of a triangular prism and a hemisphere resting at the top of it. The triangular prism has thickness 8 cm and its triangular face has base 14 cm, perpendicular height 24 cm and slant height 25 cm. For the solid object in Figure 2, calculate

[3]

(ii) the total surface area.

[3]

Bonus Question

11. Without the use of calculator, evaluate
$$\frac{1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{1}{2005} - \frac{1}{2006}}{\frac{1}{1 + 2007} + \frac{1}{2 + 2008} + \dots + \frac{1}{1003 + 3009}}.$$

END OF PAPER

145

1 Construction on separate piece 2a 0.56km = 56 000 cm 56000 ÷ 8 = 7000	
1 · · · · · •	1
	<u> </u>
Scale of map = 1:7000	
2 0.5×7000÷5000	
bi 0.5 x /000 ÷ 3000	
$ = 0.7 \mathrm{cm}$	
2 Conversion	
bi $1 \text{ cm}^2 = 0.0001 \text{ m}^2$	
i	
On the scale model,	
1:5000	
1 cm ² : 25 000 000 cm ²	
Actual floor area of building 16 000 m ² = 160 000 000 cm ²	
$16\ 000\ m^2 = 160\ 000\ 000\ cm^2$	
Floor area of building model =	
160 000 000 ÷ 25 000 000	
$= 6.4 \text{ cm}^2$	
3a 85000 - 45000 ×100	
45000	
= 88.9%	
3 0.95×85000	·····
= \$80750 4a Additional volume of milo	
4a Additional volume of milo	
$=\frac{35-30}{30}\times 6$	
= 17;	
$\begin{bmatrix} 4 \\ b \end{bmatrix}$ Small tap fills up $\frac{1}{5}$ of the tank i	n l
hr	
1	• 1
Big tap fills up $\frac{1}{3}$ of the tank in	i nr
With both taps switched on,	
$\frac{1}{5} + \frac{1}{3} = \frac{8}{15}$ of the tank is filled	nn in
5 3 15	-p
l hr.	
Time taken to fill up 2 of such ta	nks
I I -	
$=\frac{15}{8}\times 2$	
= 3.75 hrs	
1 1	

5a	Sum of interior angles of an octagon = $180^{\circ}(8-2)$
	10009
	$= 1080^{\circ}$ $1080^{\circ} = 4 \times 2x + 2x + 15^{\circ} + 2x + 25^{\circ}$
	$1080^{\circ} = 17x + 60^{\circ}$
	$17x = 1020^{\circ}$
	x=60
	7-00
5	Smallest exterior angle =
ь	180° - [3 × 60° - 15°]
6a	= 15°
"	$\left \left(\frac{x-y}{2} \right)^2 \right $
	` " '
	$=\frac{x^2-2xy+y^2}{4}$
	1
	$=\frac{26-2(-5)}{4}$
	$=\frac{26+10}{4}$
	4
	= 9
6 b	$(x+y)^4$
	$=[(x+y)^2]^2$
	$=(x^2+2xy+y^2)^2$
	$= (26 + 2(-5))^2$
	$=16^2$
	= 256
7	$\sqrt{\frac{16x^4y^7}{25z^4}} \div \frac{12x + 12y}{2x^2z^3} \times \left(\frac{3(x+y)}{-2xz}\right)^2$
	$\sqrt{\frac{25z^4}{25z^4}} \div \frac{2z + 2z}{2x^2z^3} \times \left(\frac{3\sqrt{z^2y^2}}{-2xz}\right)$
	$= \frac{4x^2y}{5z^2} \times \frac{2x^2z^3}{12(x+y)} \times \frac{27(x+y)^3}{-8x^3z^3}$
	$=\frac{-9xy(x+y)^2}{20z^2}$
<u> </u>	
<u> </u>	

2015 Sec 1 EOY Paper 2 Solutions

8a	$\frac{x+10}{x}$ litres
i	
b	$\frac{x+10}{}+1.25=\frac{2x+15}{}$
	x x
	$\frac{x+10+1.25x}{x} = \frac{2x+15}{x}$
	$ \begin{array}{cccc} x & x \\ 2.25x + 10 &= 2x + 15 \end{array} $
	0.25x = 5
	x = 20
С	Total dist travelled = $20 + 10 + 2(20) + 15$
	= 85 km
9a	2.25(7+x+6+2+4+5) = x+12+6+16+25
	2.25(24+x) = x + 59
	54 + 2.25 x = x + 59
	1.25x = 5 x = 4
Ъ	7+x=5+2+4+5
	x = 9
10	Total surface area =
ai	surface area of cone +
	surface area of cylinder + base area
	Total surface area =
	$3.142 \times 7 \times 25 + 3.142 \times 14 \times 2 +$
	$3.142 \times 7 \times 7$
	= 549.85 + 87.976 + 153.958
	$= 791.78 \text{ cm}^2$
10 aii	Total vol = vol of cone + vol of cylinder
	- voi oi cone i voi oi cynnaei
	Total Volume
	$=\frac{1}{3}\times3.142\times7\times7\times24+$
	3.14×7×7×2
	= 1231.664 + 307.916
	$= 1539.58 \text{cm}^3$
<u></u>	

10bi)

Vol of hemisphere + vol of prism = total vol from (ai)

Let the radius of the hemisphere be r

$$\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(3.142)r^3 + \left(\frac{1}{2}\right)(14)(24)(8) = 1539.58$$

$$\left(\frac{2}{3}\right)(3.142)r^3 + 1344 = 1539.58$$

$$\left(\frac{2}{3}\right)(3.142)r^3 = 195.58$$

$$r^3 = 93.37046$$

$$r = 4.54 \text{ (to 3 sf)}$$

10bii)

Surface area of hemisphere

$$= \left(\frac{1}{2}\right)(4)(3.142)(4.54)^2$$

Suface area of top of pyramid without the area covered by hemisphere

$$=(14\times8)-(3.142)(4.54^2)$$

$$=112-64.762$$

$$=47.238 \, \text{cm}^2$$

Surface area of the triangular faces

$$= \left(\frac{1}{2}\right)(14)(24)(2) + (2)(8)(25)$$

$$= 336 + 400$$
.

$$= 736 \, \text{cm}^2$$

Total surface area

$$= 736 + 47.238 + 129.52$$

$$= 912.76$$
cm² (to 2 dp)

2015 Sec 1 EOY Paper 2 Solutions

$$113. \frac{1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{1}{2005} - \frac{1}{2006}}{\frac{1}{1 + 2007} + \frac{1}{2 + 2008} + \dots + \frac{1}{1003 + 3009}}$$

$$= \frac{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots + \frac{1}{2005} + \frac{1}{2006} - \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2006}\right) \times 2}{\frac{1}{2008} + \frac{1}{2010} + \dots + \frac{1}{4012}}$$

$$= \frac{1 + \frac{1}{2} + \dots + \frac{1}{2005} + \frac{1}{2006} - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{1003}\right)}{\frac{1}{2} \times \left(\frac{1}{1004} + \frac{1}{1005} + \dots + \frac{1}{2006}\right)}$$

$$= \frac{\frac{1}{1004} + \frac{1}{1005} + \dots + \frac{1}{2006}}{\frac{1}{2} \times \left(\frac{1}{1004} + \frac{1}{1005} + \dots + \frac{1}{2006}\right)}$$

$$= 2$$

SWISS COTTAGE SECONDARY SCHOOL SECONDARY ONE EXPRESS SECOND SEMESTRAL EXAMINATIONS

Name:	()	Class: Sec 1E
MATHEMATICS Paper 1			4048/01 Monday 5 October 2015 1 hour 15 minutes
Candidates answer on the Question Paper.			

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators are NOT ALLOWED in this paper.

Give answers in degrees to one decimal place.

For $\,\pi$, use 3.142 unless the question requires the answer in terms of $\,\pi$.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This question paper consists of 10 printed pages. .

Setter: Mr Ngoh Kia Joon Vetter: Miss Zoe Pow

Turn over

Answer all the questions.

1 Showing your working clearly, evaluate $5 - (\frac{2}{0.1} - 14)^2$.

Answer[2]

2 Represent the numbers -2.5, $\sqrt{4}$, 0.7 and $4\frac{1}{5}$ on the number line below.

Answer

[2]

3 (a) (i) Express 300 as a product of its prime factors.

Answer (a)(i)
$$300 = ...$$
 [2]

(ii) Given that 300k is a perfect square, write down the smallest possible integer value of k.

Answer (a)(ii)
$$k =$$
 [1]

	(b)	Farmer Sam has 54 apples, 132 oranges and 30 pears. He wishes to distribute each type of fruits equally into boxes.
		Find the largest number of boxes that farmer Sam needs.
		Answer (b)boxes [2]
	(a)	Express $\frac{4}{25}$ as a percentage.
		Answer (a)% [1]
	(b)	Jonathan spent 24 minutes running in a 2-hour gym session.
		Express the time spent running as a percentage of the total time spent in the gym session.
		·
		Answer (b)% [2]
5	Sim	aplify the following expressions
	(a)	4(2a-3)-11(2+a).

Answer (a)[2]

(b)
$$\frac{2(5m+n)}{5} - \frac{2m-n}{2}$$
.

Answer (b)	•	[3]
moner (U)	*********	- { -

6 The following diagram shows a series of figures formed using dots.

•			,
	• • •	• • • •	
	•	•	•
		•	•
			•
Figure 1	Figure 2	Figure 3	Figure 4

(a) Draw Figure 5 in the answer space below.

Answer

(c)

Use your answer to part (b) to find the number of dots in Figure 30.

Answer (c)[1]

7	Factorise the	following	expressions	completely	v
1	ractorise the	HILLOHORIDE	expressions	combicies	Y

(a)
$$6xy - 12y^2 + 3y$$
,

Answer (a)[1]

(b)
$$14-28y-a+2ay$$
.

Answer (b)[2]

8 (a) Plot the points A(-2, 1), B(5, 1), C(5, 6) and D(0, 6) in the graph below.

[2]

Answer

(b) Name the shape of figure ABCD.

Answer (b)[1]

9	Sol	ve the following equations	•		
	(a)	7(2x-5)=4(x+1),			
	(b)	$\frac{x-9}{2} + 3 = \frac{3x+1}{5}.$	Answer (a)	••••	[2]
			Answer (b)	•••••	[3]
10	(a)	Solve the inequality $4x+12<65$.			
	(b)	Hence, state the largest possible value of x if		ber.	[2]
			Answer (b)	X ==	[1]

In the diagram below, AFE is an isosceles triangle, ABDE is a parallelogram, AC and FD are straight lines, $\angle FAE = 44^{\circ}$ and $\angle BDC = 60^{\circ}$.

Giving your reasons, find

(a) ∠AEF,

Answer (a) [1]

(b) ∠*DBC*,

Answer (b) [2]

(c) $\angle BCD$.

Answer (c) [1]

12 The diagram below shows a regular pentagon PQSTU and triangle QRS. PQR and TSR are straight lines.

Find ∠QRS.

0	[3]
•	0

13 The table below shows the number of meals eaten in a day by a group of students.

Number of meals	. 2	3	4	5	6
Number of students	6	11	х	1	2

Given that the mean number of meals eaten in a day is 3.5, find the value of x.

Answer	<i>x</i> =	[3]
--------	------------	-----

14 The diagram below shows a trapezoidal prism. AB = 5 cm, CD = 11 cm, DF = 20 cm, EF = 12 cm and AC = h cm.

(a) Show that the cross-sectional area of the trapezoidal prism is $8h \text{ cm}^2$.

Answer

[]]

(b) Given that the volume of the trapezoidal prism is 1600 cm^3 , calculate the value of h.

(c)	Hence, find the total surface area of the trapezoidal prism.
	f

Answer (c)cm² [3]

End of Paper

On	Solution and the state of the s
146,	-31
2	
	-2.5 0.7 $\sqrt{4}$ $4\frac{1}{5}$
:	-3 -2 -1 0 1 2 3 4 5
3	(a)(i) $588 = 2^2 \times 3 \times 5^2$
	(a)(ii) 3
	(b) Largest no. of boxes = 6
4	(a) 16%
5	(b) 20%
3	(a) $-3a-34$
	(b) $\frac{10m+9n}{10}$
6	(a) 10
"	(a)
	- -
	•
	•
	•
	(b) $3n-2$
7	(c) 88 (a) $3y(2x-4y+1)$
'	(b) $(14-a)(1-2y)$
8	(a)

	1 2
	л× × В
	2 1 0 1 2 3 4 5 6
	-2
	E
	(b) Trapezium
9	(a) $x = 3.9$
	(b) $x = -17$
10	(i)
	$x < 13\frac{1}{4}$
	4
1	(ii)
	x = 13

11	(a)
	$\angle AEF = 68^{\circ}$
	(b)
	$\angle BDE = 68^{\circ}$
	(c)
	$\angle BCD = 52^{\circ}$
12	$\angle QRS = 36^{\circ}$
13	x=16
14	(a)
	Area of trapezium = $8h \text{ cm}^2$ (Shown)
	(b)
	h=10
	(c)
	Total surface area = 920 cm ²

Answer Scheme for 2015 Sec 1 Express Maths SA2 P1

17 <u>71</u> No.		Marks
1	$5 - \left(\frac{2}{0.1} - 14\right)^2$ $= 5 - \left(6\right)^2$ $= 5 - 36$	M1 M1 A1
2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2'- 1 mistake deduct 1 mark
3	(a)(i) 2 300 2 150 3 75 5 25 5 5 1 $588 = 2^2 \times 3 \times 5^2$ (a)(ii) 3	M1 A1 B1
	(b) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
4	(a) $\frac{4}{25} \times 100$ = 16% (b) 2 hours = 120 mins $\frac{24}{120} \times 100$ = 20%	B1 M1 A1

9	(-)	
9	(a) $7(2x-5) = 4(x+1)$	
	14x - 35 = 4x + 4	M1 (expansion)
	10x = 39	
	x = 3.9	A1
1	(b)	
ļ	$\frac{x-9}{2} + 3 = \frac{3x+1}{5}$	
	$\frac{x-9+6}{2} = \frac{3x+1}{5}$	
	5(x-3) = 2(3x+1)	M1 (Removal of
	5x - 15 = 6x + 2	denominator)
	x = -17	M1 (Expansion)
	X = -17	A1
10	(i) $4x+12 < 65$	
		MI
	4x < 65 - 12	
	4x < 53	
	$x < 13\frac{1}{4}$	Al
	(ii)	B1
	x == 13	- DI
11	(a)	
	$\angle AE\hat{F} = \frac{180 - 44}{2}$ (Base angle of isos. \triangle)	
	= 68°	B1
	(b)	3.41
	$\angle AEF = \angle BDE (Corr. \angle s, AE \parallel BD)$	M1
	$\angle BDE = \angle DBC(Alt \angle s, AE // BD)$	Al
	= 68°	
	(c)	
	$\angle BCD = 180 - 68 - 60$ (Angle sum of triangle)	B1
	= 52°	
12	1 interior angle = $\frac{(5-2) \times 180}{5}$	M1 (formula for 1 int. angle)
	$=108^{\circ}$	M1 (For finding both
	$\angle QSR = \angle SQR = 180 - 108$ (Adj. angle on a str line) = 72°	angles)
	$\angle QRS = 180 - 72 - 72$ (\angle s sum of triangle) = 36°	Al
		

13	$\frac{(2\times6) + (3\times11) + 4x + (5\times1) + (6\times2)}{6+11+x+1+2} = 3.5$ $\frac{62+4x}{20+x} = 3.5$ $62+4x = 70+3.5x$ $0.5x = 8$ $x = 16$	M1 (Correct Formula) M1 (remove deno.)
14	(a) 1	
	Area of trapezium = $\frac{1}{2} \times (5+11) \times h$ = $8h \text{ cm}^2$ (Shown)	B 1
	(b) $8h \times 20 = 1600$	M1 (formation of formula)
	160h = 1600	lonnand)
	h=10	A1
	(c) Area of trapezium = 8×10	
	$= 80 \text{ cm}^2$ Area of sides = $(5+10+11+12) \times 20$	M1
	$= 760 \mathrm{cm}^2$ Total surface area = $760 + 2(80)$	M 1
	$= 920 \mathrm{cm}^2$	Al

SWISS COTTAGE SECONDARY SCHOOL SECONDARY ONE EXPRESS SECOND SEMESTRAL EXAMINATIONS

Name:	()	Class: Sec 1E
MATHEMATICS Paper 2			4048/02 Wednesday 7 October 2015 1 hour 15 minutes
Additional materials: Graph Paper (1 sheet)			
Candidates answer on the Question Paper.			

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π ,

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This question paper consists of 9 printed pages.

Setter: Mr Wilson Wee Vetter: Ms Zoe Pow

[Turn over

Answer all the questions.

1 (a) Calculate $\frac{9.52 + \sqrt{24.03}}{\sqrt[3]{52} - 1.28}$

Write down the first five digits on your calculator display.

Answer (a)[1]

(b) Write your answer to part (a) correct to 2 significant figures.

Answer (b)[1]

2 The graph below shows triangle ABC.

Find

(a) the gradient of AC,

Answer (a)[1]

(b) the area of $\triangle ABC$.

Answer (b) unit² [2]

The table shows the record of the scores of 20 students in a test. 3

24	18	28	33	25	29	25	22	30	18
26	36	30	30	26	28	23	19	31	39

The total score was 40 marks and the scores were tabulated in an ordered stem-and-leaf diagram below.

Answer (a)

Stem	Leaf	
1	8	
2		
3		

	Key: 1	8 represents 18 marks		
(a)	Comp	olete the stem-and-leaf diagram.		[1]
(b)	Find (i)	the modal score,		
			Answer (b)(i)	 [1]
	(ii)	the median score.		
			Answer (b)(ii)	 [1]

The passing mark for the test is 20. The scores of another 5 students were added to (c) the record and the percentage of the number of students who passed dropped to 76%. How many of the newly added students passed the test?

> Answer (c) students [2]

4 The frequency table below shows the monthly salary of 30 workers in a company.

Answer (a)

Salary (\$S)	Mid-value (x)	Frequency (f)	fx
$1000 < S \le 2000$		9	
2000 < S ≤ 3000		14	
$3000 < S \le 4000$		7	
· · · · · · · · · · · · · · · · · · ·		Total = 30	Total =

(a)	Comple	te the	table	above.
	I			

[2]

[3]

(b) Hence, calculate an estimate of the mean monthly salary.

Answer (b)	\$	[2]
------------	----	-----

5 The original price of a bicycle in January was \$212. In February, its price increased by 15%. In March, its price was 20% lesser than the price in February. Calculate the price of the bicycle in March.

Answer \$

6		l sold x chicken pies at \$2 each and 32 muffins. At the end of the day, he received at least \$135.	at \$1.50 eacl	n at his school's charity	
	(a)	Write down an inequality in terms of x.			
			Answer (a)		[1]
	(b)	Solve the inequality to find the minimum numb	er of chicken	pies sold.	
			Answer (b)	chicken pies	[2]
7	weigl of Be	ratio of the weights of Beatrice, Linda and Henry hed again and found that only Linda's weight was eatrice, Linda and Henry became 7:8:13. Givinge in weight for Beatrice and Henry respectively.	unchanged.	The ratio of the weights	
	0.13013	go m weight for Doubles and Train y respectively.		o	
		·			
			Answer	Beatrice: kg	
				Henry: kg	[4]

8 Two different sizes of tins of fruit juice are shown below. The small tin has a radius of 6 cm and a height of 13 cm. The price of the fruit juice is given on the respective tins.

(a) Find the volume of the small tin.

Answer (a)	cm ³	[2]
, ,		

(b) Which size of tin gives the better value? You must show all your working clearly.

Answer (b) tin [2]

9 A piece of metal is cut into the shape as shown in the diagram below. AOCB is a semicircle of radius 5 cm and BDOE is an inscribed circle of the semicircle with OB as the diameter.

(a) Calculate the area of the shaded region.

	3	
Answer (a)	 cm ²	[3]

(b) Calculate the perimeter of the shaded region.

10	apart a	y and a van were travelling towards each other at at 1300 h and passed each other at 1430 h. The seed of the lorry.	wards each other at uniform speeds. They were 210 km er at 1430 h. The speed of the van was 75 km/h. Find			
		•		• •		
			Answer	km/h	[4]	
11	(a)	Tap A can fill a tank in 10 minutes. What fraction of the tank is filled in 1 minute?				
			Answer (a)		[1]	
	(b)	Tap B can fill a tank in 5 minutes. What fraction of the tank is filled in 1 minute?				
			Answer (b)		[1]	
	(c)	How long will it take to fill the tank when both	taps A and E	3 are turned on?		
			Answer (c)	min	[2]	

12 Answer the whole of this question on a piece of graph paper.

The table below shows some values for the equation y = 2 - 2x.

19 To	-2	-1	0	1	2
i Jan Jan V	6	p	2	0	q

(a) Calculate the values of p and q.

[2]

- (b) Using a scale of 2 cm to 1 unit for the y-axis and 4 cm to 1 unit for the x-axis, draw [3] the graph y = 2 2x for $-2 \le x \le 2$.
- (c) Using your graph, find the value of x when y = 3.5. [1]
- (d) On the same axes, draw the line x = -1.5. Find the coordinates of the point of [2] intersection of the two lines.

End of Paper

Answer Key for Math 1E SA2 P2 2015

Qn		Ma	rking Point		
1(a)	5.8805				
1(b)	5.9				
2(a)	$-1\frac{1}{2}$				
	2	ø			
2(b)	6 units ²				
			•		
3(a)	Stem Le	af			
	1	3 9			
		3 4 5 5 6 6	8 8 9		
	3 0 4	001369			
<u> </u>	Key: 1 8 re	presents 18 n	narks		
3(b)(i)	30 marks				
3(b)(ii)	27 marks				***************************************
3(c)	2				
4(a)		1	T	· · · · · · · · · · · · · · · · · · ·	1
	Salary (\$S)	Mid-value	Frequency	fx	
		(x)	(/)		
	1000 < S ≤ 2000	1500	9	13500	
	2000 < S ≤ 3000	2500	14	35000	
	3000 < S ≤ 4000	3500	7	24500	
			Total = 30	Total = 73000	
471.5	# n 422 22		P. 1711-100-71-71-71-11-11-11-11-11-11-11-11-11-11-		
4(b)	\$ 2433.33				
5	\$195.04				
6(0)	2-140-125	-1			
6(a)	$2x + 48 \ge 135$ $x \ge 43.5$		 		
6(b)	x ≥ 45.5				
	Minimum number	of chicken n	ise sold is AA		
	14111111111111111111111111111111111111	or emeken p	103 3010 13 44.		
7	Change in weight	for Beatrice =	= 2 kg	, , , , , , , , , , , , , , , , , , , ,	
	Change in weight	for Henry =	12 kg		
<u> </u>					

	<u></u>
8(a)	1470 cm ³
8(b)	Large tin is cheaper.
9(a)	19.6 cm ²
9(b)	41.4 cm
10	65 km/h
11(a)	1
	$\overline{10}$
11(b)]
	5
11(c)	$3\frac{1}{3}$ min
	$\frac{3-}{3}$ min
12(a)	p = 4 and $q = -2$
12(b)	
12(c)	x = -0.75
12(d)	(-1.5,5)

Marking Scheme for Math 1E SA2 P2 2015

Qn	Marking Point			Marks Awarded	Remarks
1(a)	5.8805		····	B1	
1(b)	5.9			B1	
1(0)	0.2				
2(a)	Gradient = $-\frac{6}{4}$				
	$= -1\frac{1}{2}$			В1	
2(b)	Area = $\frac{1}{2} \times 3 \times 4$			MI	
	$= 6 \text{ units}^2$			A1	
3(a)	Stem Leaf 1 8 8 9 2 2 3 4 5 5 6 6 8 8 9 3 0 0 0 1 3 6 9 Key: 1 8 represents 18 marks			B1	
3(b)(i)	Modal score = 30 marks			BI	
3(b)(ii)	Median score = $\frac{26+8}{2}$				
		7 marks		B1	ļ
3(e)	Number of students who passed the test $= \frac{76}{100} \times 25$ $= 19$ New students who passed the test			M1	
	= 19 - 7			A1	
	= 2				
4(a)				<u> </u>	M1 - Correct values for Mid-
, \ - '/	Salary (\$S)	Mid-value (x)	Frequency (/)	fx	value column
	1000 < S ≤ 2000	1500	9	13500	A1- Correct values for fx column
	2000 < S ≤ 3000	2500	14	35000	
	3000 < S ≤ 4000	3500	7	24500	
			Total = 30	Total = 73000	

4(b)	Mean monthly salary = $\frac{73000}{30}$	Ml	•
• •	Mean monthly salary = ${30}$		
	= \$ 2433.33	A1	
	- 5 Z+JJ.JJ		
		2.41	
5	Price in February = $\frac{115}{100} \times 212$	M1	
	100		
	= \$243.80		
	80		
	Price in March = $\frac{80}{100} \times 243.80$	MI	
	= \$195.04	A1	
	0 . 40 > 106	70.1	
6(a)	$2x+48\geq 135$	B1	
6(b)	$2x + 48 \ge 135$		
	2 <i>x</i> ≥ 87		
	87		
	$x \ge \frac{87}{2}$		
	x ≥ 43.5	M1	
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		:
	Minimum number of chicken pies sold is 44.	A 1	
	111111111111111111111111111111111111111		
7	Beatrice: Linda: Henry	······································	
′			
	Old ratio 20 : 24 : 33		-
	New ratio 7 : 8 : 13		
	= 21 : 24 : 39	M1	
ĺ	- 21 · 24 · 37	1111	
	24		
	24 units 48 kg		
	1 unit 48	M1	
	24		
	= 2 kg		
	Beatrice increased in weight by 21-20=1		
	unit		
	Henry increased in weight by $39 - 33 = 6$		
	units		
			<u>.</u>
	Change in weight for Beatrice= 2 kg	A1	
	Change in tracting to begins a tile		
	Change in weight for Horny - 6×2		
	Change in weight for Henry = 6×2	A1	
	= 12 kg	* * * *	
i			

8(a)	Volume of small tin = $\pi \times 6^2 \times 13$ = 1470 cm ³	M1 A1	
8(b)	Price per cm ³ for small tin = 480÷1470 = 0.33 cents Price per cm ³ for large tin = 1880÷11310 = 0.17 cents	M1	Find the price per unit volume for both tins.
	Large timis cheaper.	A1	
9(a)	Area of semicircle $ABC = \frac{1}{2} \times \pi \times 5^2 \text{ cm}^2$	M1	
	= 39.27 cm ² Area of circle $BEOD = \pi (2.5)^2$ cm ² = 19.63 cm ²	M1	
	Area of shaded region = $39.27 - 19.63 \text{ cm}^2$ = 19.6 cm^2	A1	
9(b)	Arc length of semicircle $ABC = \frac{1}{2} \times 2 \times \pi \times 5$	MI	
	$= 15.71 \text{ cm}$ Circum. of circle $BEOD = 2 \times \pi \times 2.5$ $= 15.71 \text{ cm}$	М1	
	Perimeter of the shaded region =15.71+15.71+5+5		
	= 41.4 cm	A1	
10	Distance travelled by van = 75×1.5 = 112.5 km	M1	
	Distance travelled by the lorry = 210 - 112.5 = 97.5 km	M1	
	Speed of the lorry = 97.5 ÷ 1.5 = 65 km/h	M1 A1	

11(a)	Tap A can fill $\frac{1}{10}$ of the tank in 1 min.	В1	
11(b)	Tap B can fill $\frac{1}{5}$ of the tank in 1 min.	B1	
11(c)	$\frac{1}{10} + \frac{1}{5}$ $= \frac{1}{10} + \frac{2}{10}$ $= \frac{3}{10} \text{ of the tank is filled up in 1 min if both taps are turned on.}$ $\frac{3}{10} \text{ of tank 1 min}$ $1 \text{ tank} \frac{10}{3}$. M1	-
	$= 3\frac{1}{3} \min$	A1	
12(a)	p = 4 and $q = -2$	B2	
12(b)	As drawn on attached graph.	В3	One mark for correct axes. One mark for all points correctly plotted. One mark for straight line drawn through all the points.
12(c)	x = -0.75	Bl	
12(d)	As drawn on attached graph.	B1	Horizontal line drawn passing through the y-axis at -1.5 .
	(-1.5,5)	B1	J