

Grade thresholds - November 2017

Cambridge IGCSE Computer Science (0478)

Grade thresholds taken for Syllabus 0478 (Computer Science) in the November 2017 examination.

			min	imum raw	mark requ	ired for gra	ade:	
	maximum raw mark available	Α	В	С	D	E	F	D
Component 11	75	48	40	33	28	23	18	13
Component 12	75	49	41	34	28	23	18	13
Component 13	75	48	40	33	28	23	18	13
Component 21	50	31	23	16	12	9	6	3
Component 22	50	34	26	19	15	11	7	3
Component 23	50	31	23	16	12	9	6	3

Grade A* does not exist at the level of an individual component.

The maximum total mark for this syllabus, after weighting has been applied, is 125.

The overall thresholds for the different grades were set as follows.

Option	Combination of Components	A*	Α	В	С	D	Е	F	G
AX	11, 21	93	78	63	49	40	32	24	16
AY	12, 22	97	82	67	53	43	34	25	16
AZ	13, 23	93	78	63	49	40	32	24	16

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/11

Paper 1 October/November 2017

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)	Output	7
1(b)	1 mark for each correct conversion	က
	E 0 4	
	1 1 1 0 0 0 0 0 0 0 0	
1(c)	Any one from: — Hexadecimal codes can fit in a smaller display rather than a full text based message — Smaller amount of memory needed to store the hex error messages than text based	-
1(d)	1 mark for correct sensor, 1 mark for corresponding use Possible examples could include:	ဖ
	Temperature (sensor)To monitor the temperature of the water	
	Pressure (sensor)To monitor the level of water in the washing machine	
	Motion (sensor)To monitor whether the drum is still in motion	
	pH (sensor)To monitor the level of water hardness/detergent present in the water	

Question		Ans	Answer	Marks
2	1 mark for each correct file format e.g.			က
		File type	File format	
		Pictures	JPEG	
		Text	.doc, .txt, .rtf, .docx, .odt .pdf	
		Sound	.mp3, .wav, .aif, .flac, .mid	
		Video	.mp4, .flv, .wmv	

Question	Answer	Marks
3(a)	 Part 1 (access) protocol Part 2 domain (name) Part 3 filename 	က
3(b)	 Four from: P address is used to identify a device (on the Internet / network) IP address is allocated by the network/ ISP Can be used in place of URL IP addresses can be IPv4 or IPv6 IP address can be static meaning it doesn't change each time it is connected to the Internet IP address can be dynamic meaning that it can change each time a device is connected to the Internet Any valid example (e.g. xxx.xxx.xxx.xxxx.xxxx.xxxx.xxxx.xxx	4

4	1 mark for each correct line up to a total of 5 marks	al of 5 marks Description	3
		Used to connect together the internal components of the CPU.	
		Used to carry out	
		Used to tem porarii yhold data and instructions duing processing.	
		Used to allow interaction with the computer.	
		Used to hold data end instructions before they are processed.	
	Pegisters	Used to manage the flow of data through the CPU.	

D Cooper/November 2017 Marks	
	* ************************************
Cambridge IGCSE – Mark Scheme PUBLISHED Answer	1 mark for each correct logic gate A C C
Question	5(a)

Question	Answer	Marks
5(b)	1 mark for correct logic gate symbol:	က
	Any four from: - similar to an OR gate - It has (at least) two inputs - Output will be high/1 if both inputs are different - Output will be low/0 if both inputs are high - Output will be low/0 if both inputs are low - Output will be low/0 if both inputs are low	

2D - (Scanner) shines a light onto the surface of a document // Light moves across document - (Scanner) shines a light onto the surface of a document // Light moves across document - Reflected light is captured - Uses mirrors and lenses - Captured image is converted into a digital file - Produces a 2D digital image - Produces a 2D digital image 3D - Scanners shines a laser (or light) over the surface of a 3D object - Records measurements of the geometry/dimensions of the object - Measurements are converted to digital file - Produces a 3D digital model	Question	Answer	Marks
(Scanner) shines a light onto the sure Reflected light is captured Uses mirrors and lenses Captured image is converted into a Produces a 2D digital image 3D Scanners shines a laser (or light) over Records measurements of the geor Measurements are converted to dig Produces a 3D digital model	9	Any six from:	9
(Scanner) shines a light onto the sure Reflected light is captured Uses mirrors and lenses Captured image is converted into a Produces a 2D digital image 3D Scanners shines a laser (or light) ov Records measurements of the geor Measurements are converted to dig Produces a 3D digital model		2D	
		(Scanner) shines a light onto the su	
		Captured image is converted into a	
		3D	

Question	Answer			2	Marks
7	1 mark for each correct tick				9
	Statement	true	false (<)		
	Firewalls can monitor incoming and outgoing traffic.	>			
	Firewalls operate by checking traffic against a set of rules.	>			
	Firewalls cannot block access to a certain website.		>		
	Firewalls can be software and hardware.	>			
	Firewalls can act as intermediary servers.		>		
	Firewalls can block unauthorised traffic.	<i>></i>			

Question	Answer	Marks
8(a)	Any three from: - Human error (e.g. deleting/overwriting data) - Physical damage - Power failure/surge - Hardware failure - Software crashing	က
8(b)	Any three from: - Online shopping // Online payment systems // Online booking - Email - Cloud based storage - Intranet/extranet - VPN - VPN - VOIP // video conferencing - Instant messaging (IM) // social networking // online gaming	м

Question	Answer	Marks
8(c)	1 mark for identifying, 1 mark for description	9
	Strong passwordTo make it difficult to hack an account	
	Biometric deviceTo use data that is difficult to fake as a password	
	 TLS // Encryption To make data meaningless if intercepted To encrypt data that is exchanged (TLS only) More secure than SSL (TLS only) 	
	 Anti-spyware (software) To find and remove any spyware that is installed on a computer To help stop key loggers recording key presses 	
	 Firewall To help prevent unauthorised access to an account Blocks any requests that do not meet/match the criteria 	
	 Authentication (card reader at home)/mobile security code app/two-step verification To add another level of identification of the user 	
	Use of drop-down boxes (or equivalent)So key loggers cannot record the key presses	
	Proxy serverTo divert an attack away from the main system	

© UCLES 2017

Question	Answer			 Marks
10	1 mark for each correct tick			ဖ
	Statement	true (<)	false (<)	
	Assembly language uses mnemonic codes.	>		
	Assembly language programs do not need a translator to be executed.		>	
	Assembly language is a low-level programming language.	>		
	Assembly language is specific to the computer hardware.	>		
	Assembly language is machine code.		>	
	Assembly language is often used to create drivers for hardware.	>		

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/12
Paper 1 October/November 2017
MARK SCHEME

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1	1 mark per correct instruction:	5
	9 – LEFT	
	1 – DOWN	
	C – OPEN	
	3 - CLOSE	
	F – UP	

Question	Answer	Marks
3(a)	Any four from (Max 2 per number system):	4
	 A binary number system is a base-2 system A denary number system is a base-10 system 	
	 A binary number system uses 0 and 1 values A denary number system uses 0 to 9 values 	
	 A binary number system has units/ placeholders/column headings that increase by the power of 2 A denary number system has units/ placeholders/column headings that increase by the power of 10 	
	 Binary has more digit for the same value// Denary has less digits for the same value 	

Question	Answer	Marks
3(b)	Five from:	5
	Correct column headings / place holders by example	
	Correctly place a 1 or a 0 for each column	
	 Identify the columns to be added 	
	 Add together the (denary) values identified 	
	this will give a total which is the denary number/answer	
	Answer is 10	

Marks					
Answer					four from (Max 3 for serial): Serial has less/lower interference Serial is (more) reliable/accurate over distances In serial the bits won't be skewed In serial it is easier to collate the bits together again after transmission Duplex transmits data in both directions at the same time simplex/remaining methods won't allow read and write at same time
	Tick (✓)			>	together agons at the sinds won't all
	Tick (<) Method 2	Simplex	Half-duplex	Duplex	four from (Max 3 for serial): Serial has less/lower interference Serial is (more) reliable/accurate over distances In serial the bits won't be skewed In serial it is easier to collate the bits together again after Duplex transmits data in both directions at the same time simplex/half-direlex/remaining methods won't allow read a
	Tick (✓)	>			(Max 3 fo less/lowe more) relia more) relia no bits wor is easier transmits data
	Method 1	Serial	Parallel		Any four from (Max 3 for serial): Serial has <u>less/lower</u> interfer Serial is (more) reliable/accu In serial the bits won't be ske In serial it is easier to collate Duplex transmits data in bott simplex/half-duplex/remainin
Question	4(a)(i)				4(a)(ii)

Question	Answer	Marks
4(b)	1 mark for error checking method, 2 marks for description:	9
	 Checksum A value is calculated from the data // Description of calculation Value is transmitted with data Value is recalculated after transmission If the values match the data is (more likely to be) accurate 	
	 Parity check A parity bit is transmitted with each byte of data Odd or even (parity can be used) Counts / checks to see if 1's are even // counts / checks to see if 1's are odd (Each byte is) checked after transmission to see if it matches the odd/even parity used 	
	 Automatic Repeat Request (ARQ) Uses acknowledgement and timeout When a device detects an error in data transmission it asks for the packet to be resent / no error detected, positive acknowledgment sent The sending device resends the packet after the request to resend/ timeout received This process is continuous until the packet received is correct/until the ARQ limit is reached 	
	 Echo (check) Copy of data is sent back to sender Data is compared to see if it matches If it does not match error detected 	

© UCLES 2017

Question	Answer	Marks
5(a)	 Any four from: Data / files Stored in a text file Downloaded to a user's computer when a website is visited // webserver sends to web browser Stored on a user's computer Stored by a browser Detected by the website when it is visited again 	4
5(b)	 Any two from: e.g. To store personal information/data To store login details To save items in an online shopping basket To track/save internet surfing habits // to track website traffic To carry out targeted advertising To store payment details To customise a webpage // to store user preferences Store progress in online games/quizzes 	7

Question	Answer	Marks
9	 1 mark for each correct term, in this order: Interrupt Compiler ALU/Arithmetic and Logic Unit 	4
	ARQ/Automatic repeat request	

0478/12

/

Question	Answer	Marks
8(a)	1 mark for correct calculation method, 1 mark for correct answer:	2
	• 2048/1024 (or 1024 × 2) • 2 GB	
8(b)	 Instructions/programs/data currently in use 	2
8(c)	 Any three from: RAM is volatile, ROM is non-volatile RAM is temporary, ROM is (semi) permanent RAM normally has a larger capacity than ROM RAM can be edited ROM cannot be edited // Data can be read from and written to RAM, ROM can only be read from. 	က

Question	Answer	Marks
9(a)	 It is an <u>input</u> device It measures/takes (physical) readings of the surrounding environment / environment by example / physical properties 	2
(q)6	1 mark for each sensor, 2 marks for each description:	9
	Moisture (sensor)To measure the water content of the soilTo alert when the soil is too dry or too wet/needs watering	
	pH (sensor) • To measure how acidic/alkaline the soil is • To alert when there may be something polluting the soil	
	Light (sensor) • To measure the brightness of the environment • To alert when the fruit has too little/too much light	
	Temperature (sensor) • To measure the temperature of the environment • To alert when it is too hot/too cold for the fruit to grow	
	Gas (sensor) • To measure the amount of CO2/oxygen present • To alert when too much CO2/oxygen present	
	Humidity (sensor)To measure the water content in the airTo alert when the air is too dry	
	Infra-red / motion (sensor)To measure level of infra-red/microwaves deflectedTo alert to any intruders e.g. animals stealing the fruit	

© UCLES 2017

Page 8 of 9

Question	Answer	Marks
10(a)	Any three from: It is a (security) protocol It encrypts data (sent over the web/network) It is the updated version of SSL It has <u>two</u> layers It has a handshake layer It has a record layer	m
10(b)	 1 mark for each correct application, examples could include: Online banking Online shopping // Online payment systems Email Cloud based storage Intranet/extranet VPN VOIP Instant messaging (IM) // social networking 	ო

Question	Answer	Marks
11	1 mark for each correct missing word, in the correct order:	2
	• Plagiarism	
	Free software	
	Freeware	
	Shareware	
	• Ethics	

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/13

Paper 1 October/November 2017

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)	Output	7
1(b)	1 mark for each correct conversion	က
	E 0 4	
	1 1 1 0 0 0 0 0 0 0 0	
1(c)	Any one from: — Hexadecimal codes can fit in a smaller display rather than a full text based message — Smaller amount of memory needed to store the hex error messages than text based	-
1(d)	1 mark for correct sensor, 1 mark for corresponding use Possible examples could include:	ဖ
	Temperature (sensor)To monitor the temperature of the water	
	Pressure (sensor)To monitor the level of water in the washing machine	
	Motion (sensor)To monitor whether the drum is still in motion	
	pH (sensor)To monitor the level of water hardness/detergent present in the water	

File type
Pictures
Text
Sound
Video

Question	Answer	Marks
3(a)	 Part 1 (access) protocol Part 2 domain (name) Part 3 filename 	က
3(b)	 Four from: IP address is used to identify a device (on the Internet / network) IP address is allocated by the network/ ISP Can be used in place of URL IP addresses can be IPv4 or IPv6 IP address can be static meaning it doesn't change each time it is connected to the Internet IP address can be dynamic IP address can be dynamic Any valid example (e.g. xxx.xxx.xxx.xxxxxxxxxxxxxxxxxxxxxxx	4

Marks	rc.				
	S				
	l of 5 mark				
	1 mark for each correct line up to a total of 5 marks Component				
	rrect line i				
	or each col				
	1 mark fc	P.II			
					

		7107
Question	Answer	Marks
5(a)	1 mark for each correct logic gate A	4

Question	Answer	Marks
2(b)	1 mark for correct logic gate symbol:	ယ
	Any four from: - similar to an OR gate - It has (at least) two inputs - Output will be high/1 if both input is high - Output will be low/0 if both inputs are high - Output will be low/0 if both inputs are low - Output will be low/0 if both inputs are low	

Question	Answer	Marks
9	Any six from:	9
	2D	
	 (Scanner) shines a light onto the surface of a document // Light moves across document 	
	 Reflected light is captured 	
	 Uses mirrors and lenses 	
	 Captured image is converted into a digital file 	
	 Produces a 2D digital image 	
	3D	
	 Scanners shines a laser (or light) over the surface of a 3D object 	
	 Records measurements of the geometry/dimensions of the object 	
	 Measurements are converted to digital file 	
	 Produces a 3D digital model 	

Question	Answer			Marks
2	1 mark for each correct tick			9
	Statement	true	false (<)	
	Firewalls can monitor incoming and outgoing traffic.	>		
	Firewalls operate by checking traffic against a set of rules.	>		
	Firewalls cannot block access to a certain website.		>	
	Firewalls can be software and hardware.	>		
	Firewalls can act as intermediary servers.		^	
	Firewalls can block unauthorised traffic.	>		

Question	Answer	Marks
8(a)	Any three from: - Human error (e.g. deleting/overwriting data) - Physical damage - Power failure/surge - Hardware failure - Software crashing	က
8(b)	Any three from: - Online shopping // Online payment systems // Online booking - Email - Cloud based storage - Intranet/extranet - VPN - VOIP // video conferencing - Instant messaging (IM) // social networking // online gaming	ო

Question	Answer	Marks
8(c)	1 mark for identifying, 1 mark for description	9
	Strong passwordTo make it difficult to hack an account	
	Biometric deviceTo use data that is difficult to fake as a password	
	 TLS // Encryption To make data meaningless if intercepted To encrypt data that is exchanged (TLS only) More secure than SSL (TLS only) 	
	 Anti-spyware (software) To find and remove any spyware that is installed on a computer To help stop key loggers recording key presses 	
	 Firewall To help prevent unauthorised access to an account Blocks any requests that do not meet/match the criteria 	
	 Authentication (card reader at home)/mobile security code app/two-step verification To add another level of identification of the user 	
	 Use of drop-down boxes (or equivalent) So key loggers cannot record the key presses 	
	Proxy serverTo divert an attack away from the main system	

Question	Answer			Marks
10	1 mark for each correct tick			9
	Statement	true (<)	false	
	Assembly language uses mnemonic codes.	>		
	Assembly language programs do not need a translator to be executed.		>	
	Assembly language is a low-level programming language.	>		
	Assembly language is specific to the computer hardware.	^		
	Assembly language is machine code.		>	
	Assembly language is often used to create drivers for hardware.	^		

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/21
Paper 2 October/November 2017
MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

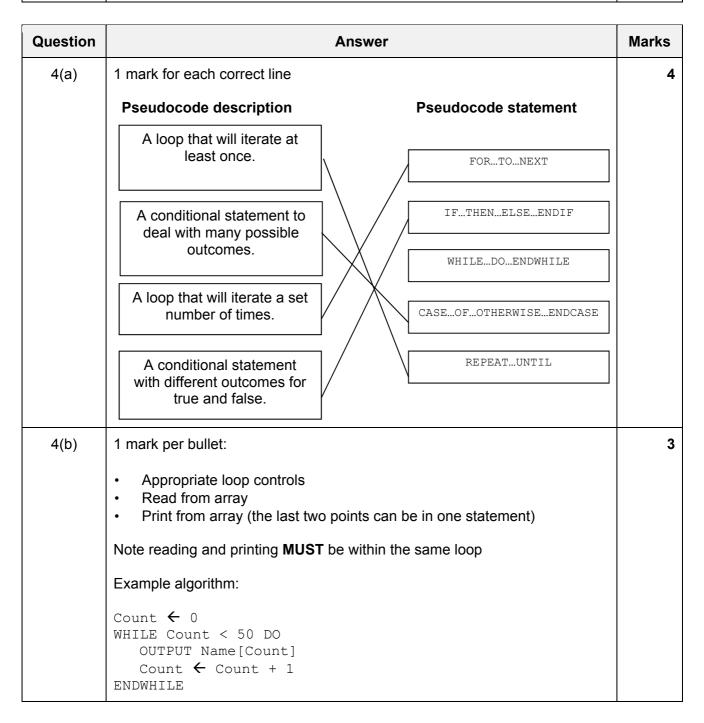
® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)(i)	1 mark per bullet:	3
	At least one array declarationAt least one array has an appropriate name	
	All arrays with appropriate names	
	Many correct answers, they must be meaningful. These are examples only.	
	<pre>Array_2Seater[] Array_4Seater[] Array_Historic[]</pre>	
1(a)(ii)	1 mark per bullet:	4
	Name of variablePurpose of variable	
	Name of constantPurpose of constant	
	Many correct answers, they must be meaningful. These are examples only.	
	Variable NumFlights to store the number of flights in a day	
	Constant FlightCost2Seat30 to store the cost of a 30 minute flight in a 2 seater plane	

© UCLES 2017 Page 2 of 7

Question	Answer	Marks
1(b)	Any five from:	5
	 Prompt for plane Input plane Prompt for another input length of flight along with the input. Attempt at calculation of maximum number of flights in a day Using correct values for maximum number of flights (from calculation or otherwise) Calculation/determination of cost of a single flight for selected plane and duration Calculation of income that can be generated for one combination of plane and flight Output of total possible income for one combination of plane and flight with message(s) 	
	Algorithm example:	
	OUTPUT "Please Enter Type of Plane" OUTPUT "1: 2 Seater" OUTPUT "2: 4 Seater" OUTPUT "3: Historic" INPUT PlaneType OUTPUT "Please Enter Length of Flight" INPUT FlightLength CASE FlightLength of 30: OUTPUT "Maximum number of flights is 10" 60: OUTPUT "Maximum number of flights is 6" OTHERWISE OUTPUT "Invalid length of flight" ENDCASE	
	CASE PlaneType of 1: Price30 ← 100; Price60 ← 150 2: Price30 ← 120; Price60 ← 200 3: Price30 ← 120; Price60 ← 500 OTHERWISE OUTPUT "Invalid type of plane" ENDCASE	
	CASE FlightLength of 30: OUTPUT "Total Possible Income is ", Price30 * 10 60: OUTPUT "Total Possible Income is ", Price60 * 6 ENDCASE	
1(c)	1 mark for each correct point related to the inputs for Task 1	4
	 Description of how the program would validate the input Description/identification of input(s) Type of validation check Checking inputs against stored data/maxima/correct data Dry-running the program Use of test data Identification of types of test data Example(s) of test data 	

© UCLES 2017 Page 3 of 7


Question	Answer	Marks
1(d)	Any four from:	4
	 Input timeslot Check 3 types of plane Methodology for checking time slot Identify any planes available Output plane(s) available Output if no planes available 	

Question	Answer	Marks
2	1 mark for each error identified plus suggested correction (the corrected lines must be written in full)	4
	Line 4 correct line WHILE Number <= 99 OR Number > 1000	
	Line 7 correct line Num[Index] = Number	
	Line 9 correct line NEXT (Index)	
	Line 10 correct line PRINT Count	

Question	Answer	Marks
3(a)	1 mark per bullet:	2
	 Validation checks whether data to be entered is possible/sensible // computer check 	
	 Verification checks that data entered is the data that was intended to be entered // can be a human check // matches the source 	
3(b)	1 mark for each valid point	2
	 Either Double Entry // suitable practical example the data will be entered twice compared by the computer or by a human if a discrepancy is found, the data entry operator is asked to re-enter the data 	
	 Visual Verification // suitable practical example the data will be compared to the source 'document' compared by a human if a discrepancy is found, the data is re-entered 	

© UCLES 2017 Page 4 of 7

Question	Answer	Marks
3(c)	1 mark for explanation and 1 mark for an expansion	2
	 Library routine is a list of instructions // block of code // subroutine that is used often which is given a name and which can be called from other programs Library routines make writing programs easier and faster as the code is already written Library routines make program testing easier as the code has already been tested and debugged 	

© UCLES 2017 Page 5 of 7

Question				Answer				Marks
5(a)	Flag	Count	Name[1]	Name[2]	Name[3]	Name[4]	Temp	5
			Jamal	Amir	Eve	Tara		
	0	1	Amir	Jamal	Eve	Tara	Jamal	
	1	2	Amir	Jamal	Eve	Tara	Jamal	
	1	3	Amir	Eve	Jamal	Tara	Jamal	
	1	4	Amir	Eve	Jamal	Tara	Jamal	
	0	1	Amir	Eve	Jamal	Tara	Jamal	
	0	2	Amir	Eve	Jamal	Tara	Jamal	
	0	3	Amir	Eve	Jamal	Tara	Jamal	
	0	4	Amir	Eve	Jamal	Tara	Jamal	
	(1 Mark)	(1 Mark)	(1 N	/lark)	(1 M	ark)	(1 Mark)	
5(b)	1 mark per b	oullet:						2
	_	the name: ng order /		west to high	nest / Alpha	betic order		

Question	Answer	Marks				
6(a)	1 mark for any sensible appropriate field name 1 mark for data type, purpose + example data					
	Example 1: Field Name: SPECIESID Data Type: Alphanumeric Purpose: Primary key Example Data: SP06583					
	Example 2: Field name: NUMBER Data Type: Integer Purpose: To record how many of that species there are at the park Example Data: 30					

© UCLES 2017 Page 6 of 7

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question			Answ	er		Marks
6(b)						4
	Field:	Species	Classification	Diet	Legs	
	Table:	LIVESTOCK	LIVESTOCK	LIVESTOCK	LIVESTOCK	
	Sort:	Ascending/ Descending				
	Show:	\square				
	Criteria:		"Mammal"	"Herbivore"	4	
	or:					
		(1 Mark)	(1 Mark)	(1 Mark)	(1 Mark)	
	1 mark p	er completely co	orrect column.			

© UCLES 2017 Page 7 of 7

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/22
Paper 2 October/November 2017
MARK SCHEME

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer	Marks
1(a)(i)	1 mark for appropriate variable name, 1 mark for appropriate data type, 1 mark for appropriate use.	က
	Many correct answers, they must be meaningful. These are examples only. — HireTotal, integer, running total of money taken (for the day) — HoursHired, real, running total of hours hired for the day — Returned, real, hour and fraction of hour when next returned	
1(a)(ii)	1 mark for appropriate constant name, 1 mark for appropriate value.	7
	Many correct answers, they must be meaningful. These are examples only. - HourPrice, 20.00 - HalfHourPrice 12.00	
1(b)	1 mark for validation check, all checks must be different, 1 mark for the reason and 1 mark for the test data. The only inputs for task 1 can be length of hire, money taken, time of hire and time of return.	ဖ
	There are many possible correct answers these are examples only.	
	Validation check — range check for time of hire Reason — cannot be hired before 10:00 returned after 17:00 Test data — 12:00, 19:00 Validation check — type check for money taken Reason — must be a numeric value Test data — 20:00, bob	

Question	Answer	Marks
1(c)	- any loop for 10 boats (1 mark)	22
	Four from: - Initialisation	
	- check HoursHired against MaxHoursHired	
	update MaxHoursHired if greater	
	- check if HoursHired = 0	
	II so add 1 to NumberBoatsUnused - update daily totals (for hours and monev)	
	 output report with messages (including totals for hours and money, and number of boats unused and the most used hoat). 	
	Max 4 marks	
	Example:	
	MaxHoursHired ← 0	
	TotalHoursHired ← 0	
	TotalMoney ← 0	
	NumberBoatsUnused ← 0	
	FOR BoatNumber \leftarrow 1 to 10	
	TotalMoney 🗲 TotalMoney + Money(BoatNumber)	
	TotalHoursHired $lacktriangle$ TotalHoursHired + HoursHired (BoatNumber)	
	0 =	
	THEN NumberBoatsUnused 🗲 NumberBoatsUnused + 1	
	T.F.	
	<pre>IF HoursHired(BoatNumber) > MaxHoursHired</pre>	
	NAHL	
	MostUsed ← BoatNumber	
	MaxHoursHired $lackbr{\leftarrow}$ HoursHired(BoatNumber)	
	3oatNumber	
	"Boats were hired for ", TotalHoursH	
	PRINT "Total amount of money taken was ", TotalMoney	
	"Boat number ", MostUsed, " was used	

© UCLES 2017

Page 3 of 8

Question	Answer	Marks
1(d)	Maximum 4 marks in total for question part	4
	e.g. Explanation (may include reference to program statements)	
	- check all boats for	
	available	
	 keep a running total of those available display number of boats 	
	Example:	
	FOR BoatNumber < 1 to 10 loop to check for all boats IF ReturnTime (BoatNumber) <= CurrentTime check return time against current time	
	THEN BoatsAvailable ← BoatsAvailable + 1 keep a running total	
	NEXT BoatNumber	
	PRINT "Number of boats available ", BoatsAvailable display number of boats	

0478/22

Question	Answer	Marks
2	1 mark for each, there may be other solutions, award full marks for any working solution	9
	any six from: initialise total (outside loop) Input number of numbers (outside loop with validation) Loop using input value Input number (inside loop) Update Total (inside loop) Calculate average	
	Sample algorithm: INPUT NumberCount	
	FOR Count (1 TO NumberCount INPUT Number Total (Total + Number NEXT Average (Total/NumberCount	
	PRINT Total, Average	

Question	Answer	Marks
3	1 mark for each correct line, max 3 marks.	8
	Data Structure Description	
	Constant A collection of related data.	
	Array A value that can change whilst a program is running.	
	Table A value that never changes whilst a program is running.	
	Variable Same data type.	

Question	Answer	Marks
4	2 marks for identification, 1 mark for description, 1 mark for reason.	4
	Identification: CASE	
	OF OTHERWISE (ENDCASE) or OF (OTHERWISE) ENDCASE	
	Description: — a statement that allows for multiple selections // not any of the above	
	Reason: — to simplify pseudocode/ make pseudocode more understandable etc.	

Cambridge IGCSE – Mark Scheme **PUBLISHED**

0478/22

\Box
皿
퐀
=
面
\neg

Question				Answer				Marks
5(a)	Accept	Reject	Count	Sack		OUTPUT		ß
	0	0	0					
	_		1	50.4				
	7		2	50.3				
		1	3	49.1				
	ဧ		4	50.3				
	4		9	9.05				
	2		9	49.5				
	9		2	50.2				
	7		8	6.03				
	8		6	50.5				
		2	10	9.05		8 2		
	\leftarrow (1 mark) $\rightarrow \leftarrow$ (1 mark) $\rightarrow \leftarrow$ (1 mark)	← (1 mark) →		→< (1 mark)	>	(1 mark)	^	
5(b)	change to Is Countremove IS Sack > !	s Count = 50? Sack > 50.5?						7

Marks	9			-	ო						
Answer	1 mark for each field suitable name, 1 mark for appropriate data type and appropriate data sample	The following are examples there are many different correct answers.	012	ld number	Class Service Date	TRAIN TRAIN			Like 'P*' // Like 'P?' <10/11/2016		(1 mark) (1 mark)
	each field suitable	ng are examples t	Engine Number, text, 21012 Class, text, P6 Service Date, date, 4/3/2017	Engine Number // Correct field number	Field: Engine Number	TRAIN		₪			(1 mark)
	– 1 mark for 6	The followi	- Engine - Class, - Service	- Engine Nur	Field:	Table:	Sort:	Show:	Criteria:	OL:	I
Question	(e)9			(q)9	(၁)9						

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/23
Paper 2 October/November 2017

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

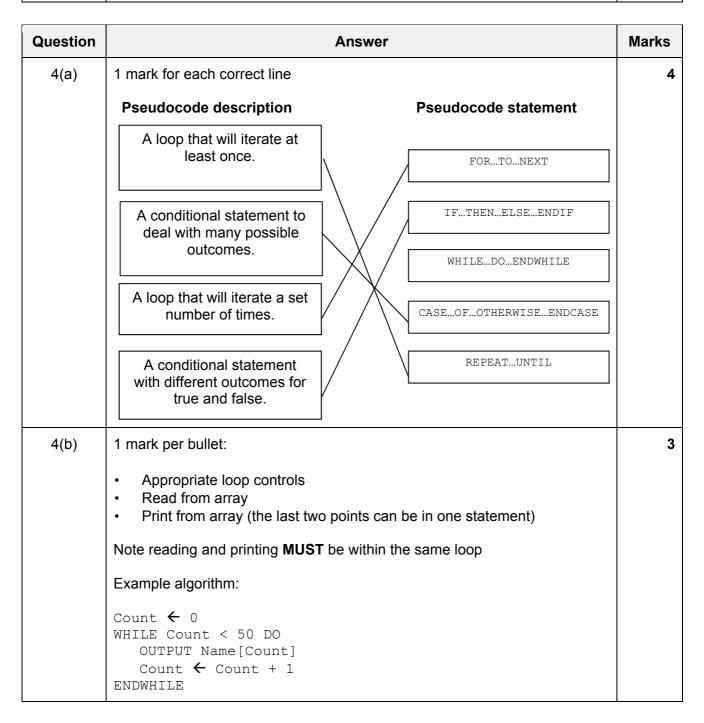
This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer	Marks
1(a)(i)	1 mark per bullet:	3
	 At least one array declaration At least one array has an appropriate name 	
	All arrays with appropriate names	
	Many correct answers, they must be meaningful. These are examples only.	
	<pre>Array_2Seater[] Array_4Seater[] Array_Historic[]</pre>	
1(a)(ii)	1 mark per bullet:	4
	Name of variablePurpose of variable	
	Name of constantPurpose of constant	
	Many correct answers, they must be meaningful. These are examples only.	
	Variable NumFlights to store the number of flights in a day	
	Constant FlightCost2Seat30 to store the cost of a 30 minute flight in a 2 seater plane	

© UCLES 2017 Page 2 of 7

Question	Answer	Marks
1(b)	Any five from:	5
	 Prompt for plane Input plane Prompt for another input length of flight along with the input. Attempt at calculation of maximum number of flights in a day Using correct values for maximum number of flights (from calculation or otherwise) Calculation/determination of cost of a single flight for selected plane and duration Calculation of income that can be generated for one combination of plane and flight Output of total possible income for one combination of plane and flight with message(s) 	
	Algorithm example:	
	OUTPUT "Please Enter Type of Plane" OUTPUT "1: 2 Seater" OUTPUT "2: 4 Seater" OUTPUT "3: Historic" INPUT PlaneType OUTPUT "Please Enter Length of Flight" INPUT FlightLength CASE FlightLength of 30: OUTPUT "Maximum number of flights is 10" 60: OUTPUT "Maximum number of flights is 6" OTHERWISE OUTPUT "Invalid length of flight" ENDCASE	
	CASE PlaneType of 1: Price30 ← 100; Price60 ← 150 2: Price30 ← 120; Price60 ← 200 3: Price30 ← 120; Price60 ← 500 OTHERWISE OUTPUT "Invalid type of plane" ENDCASE	
	CASE FlightLength of 30: OUTPUT "Total Possible Income is ", Price30 * 10 60: OUTPUT "Total Possible Income is ", Price60 * 6 ENDCASE	
1(c)	1 mark for each correct point related to the inputs for Task 1	4
	 Description of how the program would validate the input Description/identification of input(s) Type of validation check Checking inputs against stored data/maxima/correct data Dry-running the program Use of test data Identification of types of test data Example(s) of test data 	

© UCLES 2017 Page 3 of 7


Question	Answer	Marks			
1(d)	Any four from:				
	 Input timeslot Check 3 types of plane Methodology for checking time slot Identify any planes available Output plane(s) available Output if no planes available 				

Question	Answer	Marks		
2	mark for each error identified plus suggested correction (the corrected nes must be written in full)			
	ine 4 correct line WHILE Number <= 99 OR Number > 1000			
	Line 7 correct line Num[Index] = Number			
	Line 9 correct line NEXT (Index)			
	Line 10 correct line PRINT Count			

Question	Answer	Marks				
3(a)	I mark per bullet:					
	 Validation checks whether data to be entered is possible/sensible // computer check 					
	 Verification checks that data entered is the data that was intended to be entered // can be a human check // matches the source 					
3(b)	1 mark for each valid point					
	 Either Double Entry // suitable practical example the data will be entered twice compared by the computer or by a human if a discrepancy is found, the data entry operator is asked to re-enter the data 					
	 Visual Verification // suitable practical example the data will be compared to the source 'document' compared by a human if a discrepancy is found, the data is re-entered 					

© UCLES 2017 Page 4 of 7

Question	Answer	Marks			
3(c)	1 mark for explanation and 1 mark for an expansion				
	 Library routine is a list of instructions // block of code // subroutine that is used often which is given a name and which can be called from other programs Library routines make writing programs easier and faster as the code is already written Library routines make program testing easier as the code has already been tested and debugged 				

© UCLES 2017 Page 5 of 7

Question				Answer				Marks
5(a)	Flag	Count	Name[1]	Name[2]	Name[3]	Name[4]	Temp	5
			Jamal	Amir	Eve	Tara		
	0	1	Amir	Jamal	Eve	Tara	Jamal	
	1	2	Amir	Jamal	Eve	Tara	Jamal	
	1	3	Amir	Eve	Jamal	Tara	Jamal	
	1	4	Amir	Eve	Jamal	Tara	Jamal	
	0	1	Amir	Eve	Jamal	Tara	Jamal	
	0	2	Amir	Eve	Jamal	Tara	Jamal	
	0	3	Amir	Eve	Jamal	Tara	Jamal	
	0	4	Amir	Eve	Jamal	Tara	Jamal	
	(1 Mark)	(1 Mark)	(1 N	/lark)	(1 M	ark)	(1 Mark)	
5(b)	1 mark per b	oullet:						2
	_	the names		west to high	nest / Alpha	ıbetic order		

Question	Answer				
6(a)	I mark for any sensible appropriate field name I mark for data type, purpose + example data				
	Example 1: Field Name: SPECIESID Data Type: Alphanumeric Purpose: Primary key Example Data: SP06583				
	Example 2: Field name: NUMBER Data Type: Integer Purpose: To record how many of that species there are at the park Example Data: 30				

© UCLES 2017 Page 6 of 7

Question	Answer						Marks
6(b)							4
	Field:	Species	Classification	Diet	Legs		
	Table:	LIVESTOCK	LIVESTOCK	LIVESTOCK	LIVESTOCK		
	Sort:	Ascending/ Descending					
	Show:	Ø					
	Criteria:		"Mammal"	"Herbivore"	4		
	or:						
		(1 Mark)	(1 Mark)	(1 Mark)	(1 Mark)		
	1 mark p	er completely co	orrect column.				

© UCLES 2017 Page 7 of 7

Cambridge International Examinations

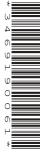
Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/21

Paper 2 Problem-solving and Programming

October/November 2017


PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by **writing** and testing a program or programs.

A small airfield operates a flying club where people can take a short flight to see if they would like flying lessons. The owner of the airfield has asked you to write a program to organise the flight bookings. The airfield operates three different planes and offers either a 30 minute or a 60 minute flight.

The following table shows the tariff:

Length of Flight	2 Seater Plane	4 Seater Plane	Historic Plane
30 minutes	\$100	\$120	\$300
60 minutes	\$150	\$200	\$500

After each flight, 30 minutes must be allowed for refuelling and safety checks before the next flight can take off. All planes offer both 30 minute and 60 minute flights, but, for the purpose of this activity, they will not be mixed on a given day, e.g. the 2 seater will offer 30 minute flights ONLY on one day and 60 minute flights ONLY on another day.

Write and test a program for the owner of the airfield.

- Your program must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Work out the maximum income.

Assume that the flights take place between 08:00 and 18:00. Write a program that will work out the maximum income that can be generated by each plane in a day for each type of flight. The program should allow you to:

- input the type of plane
- input the length of flight
- calculate the maximum number of flights in a day
- output the total possible income per day for the choice of plane and length of flight

TASK 2 – Record bookings.

Write a program to store bookings for each plane and to allow you to find which planes are available at a given time slot during the day. The program should calculate the actual number of flights taken by each plane in that day.

TASK 3 - Work out income.

Modify TASK 2 so that it will calculate the total amount of money taken in a day for each plane, as well as the overall daily total for all three planes, and output the results.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

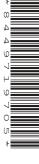
Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/22

Paper 2 Problem-solving and Programming

October/November 2017


PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by **writing** and testing a program or programs.

The owner of a river boat hire company wants to calculate the daily profits from hiring out 10 rowing boats on the river. Boats are numbered 1 to 10. Boats can be hired for use between 10:00 and 17:00 every day.

Write and test a program for the owner.

- Your program must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – calculate the money taken in a day for one boat.

The cost of hiring a boat is \$20 for one hour or \$12 for half an hour. When a boat is hired the payment is added to the money taken for the day. The running total of hours hired that day is updated and the time when the boat must be returned is stored. At the end of the day the money taken and the total hours hired is output.

No boat can be hired before 10:00 or returned after 17:00.

TASK 2 – find the next boat available.

Extend TASK 1 to work for all 10 rowing boats. Use the data stored for each boat to find out how many boats are available for hire at the current time. If no boats are available show the earliest time that a boat will be available for hire.

TASK 3 – calculate the money taken for all the boats at the end of the day.

At the end of the day use the data stored for each boat to calculate the total amount of money taken and the total number of hours boats were hired that day. Find out how many boats were not used that day and which boat was used the most. Provide a report for the owner to show this information.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/23

Paper 2 Problem-solving and Programming

October/November 2017

PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by **writing** and testing a program or programs.

A small airfield operates a flying club where people can take a short flight to see if they would like flying lessons. The owner of the airfield has asked you to write a program to organise the flight bookings. The airfield operates three different planes and offers either a 30 minute or a 60 minute flight.

The following table shows the tariff:

Length of Flight	2 Seater Plane	4 Seater Plane	Historic Plane
30 minutes	\$100	\$120	\$300
60 minutes	\$150	\$200	\$500

After each flight, 30 minutes must be allowed for refuelling and safety checks before the next flight can take off. All planes offer both 30 minute and 60 minute flights, but, for the purpose of this activity, they will not be mixed on a given day, e.g. the 2 seater will offer 30 minute flights ONLY on one day and 60 minute flights ONLY on another day.

Write and test a program for the owner of the airfield.

- Your program must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Work out the maximum income.

Assume that the flights take place between 08:00 and 18:00. Write a program that will work out the maximum income that can be generated by each plane in a day for each type of flight. The program should allow you to:

- input the type of plane
- input the length of flight
- calculate the maximum number of flights in a day
- output the total possible income per day for the choice of plane and length of flight

TASK 2 – Record bookings.

Write a program to store bookings for each plane and to allow you to find which planes are available at a given time slot during the day. The program should calculate the actual number of flights taken by each plane in that day.

TASK 3 - Work out income.

Modify TASK 2 so that it will calculate the total amount of money taken in a day for each plane, as well as the overall daily total for all three planes, and output the results.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME						
CENTRE NUMBER			CANE NUME	DIDATE BER		
COMPUTER SO	CIENCE					0478/11
Paper 1 Theory				Oct	tober/Nove	mber 2017
					1 hour 4	45 minutes
Candidates ans	wer on the Qu	estion Paper.				
No Additional Ma	aterials are re	quired.				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

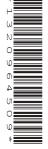
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No calculators allowed.

No marks will be awarded for using brand names of software packages or hardware.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

A washing machine has a small display screen built into it.

	One use of the display screen is to show an error code when a problem has occurred with a vashing cycle.						
(a)	State whether the display screen is an input, output or storage device.						
		[1]					
(b)	The display screen shows a hexadecimal error code:						
	E04						
	This error code means that the water will not empty out of the washing machine.						
	Convert this error code to binary.						
		[3]					
		[O]					
(c)	State why hexadecimal is used to display the error code.						
		[1]					
(d)	dentify three sensors that could be used in the washing machine.						
	State what each sensor could be used for.						
	Sensor 1						
	Jse						
	Sensor 2						
	Jse						
	Sensor 3						
	Jse						

2 Data files are stored in different file formats.

Complete the table by providing a suitable file format for each file type. The first one has been done for you.

File type	File format
Pictures	.JPEG
Text	
Sound	
Video	

http://www.cie.org.uk/index.htm

[3]

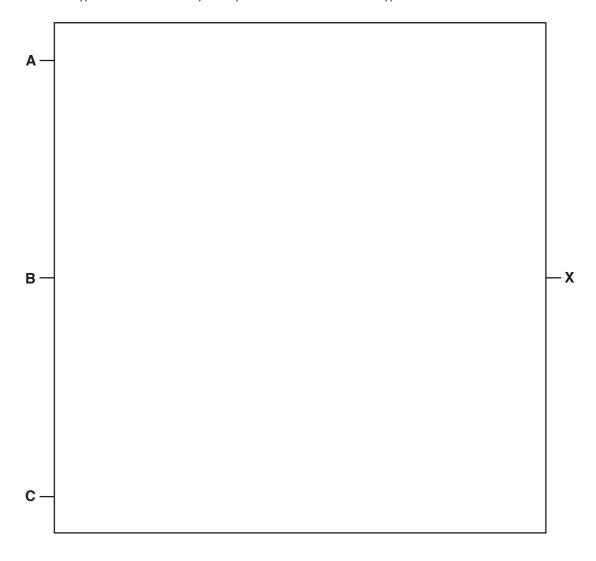
3 (a) An example of a Uniform Resource Locator (URL)	is:
--	-----

(b)

rait rait z rait o
Identify the three parts that make up this URL.
Part 1
Part 2
Part 3
Describe what is meant by an Internet Protocol (IP) address.

4 Six components of a computer system and six descriptions are shown.

Draw a line to match each component with the most suitable description.


Component **Description** Used to connect together Arithmetic Logic the internal components Unit (ALU) of the CPU. Used to carry out Buses calculations on data. Used to temporarily hold **Control Unit** data and instructions (CU) during processing. **Immediate Access** Used to allow interaction Store (IAS) with the computer. Used to hold data and Input/Output instructions before they are processed. Used to manage the flow Registers of data through the CPU.

[5]

© UCLES 2017 0478/11/O/N/17

5 (a) Draw a logic circuit for the logic statement:

X = 1 if ((A is 1 AND B is 1) OR (A is NOT 1 AND C is 1))

[4]

	Explanation						
	cribe the ope		scanner a		canner.		
	cribe the ope		scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		

© UCLES 2017 0478/11/O/N/17

7 Six statements about firewalls are shown.

Tick (\checkmark) to show whether each statement is **true** or **false**.

Statement	true (✔)	false (✓)
Firewalls can monitor incoming and outgoing traffic.		
Firewalls operate by checking traffic against a set of rules.		
Firewalls cannot block access to a certain website.		
Firewalls can be software and hardware.		
Firewalls can act as intermediary servers.		
Firewalls can block unauthorised traffic.		

[6]

(a)	Data is valuable. It needs to be kept secure and it can easily be damaged.
	Give three different ways that data can be accidentally damaged.
	1
	2
	3
	[3]
(b)	The Secure Socket Layer (SSL) protocol can be used to securely transmit data in online banking.
	State three other different applications that use SSL.
	Application 1
	Application 2
	Application 3[3]

© UCLES 2017 0478/11/O/N/17

	, ,	O !:	1 1 2				1 21
((C)	Online	banking	ıs	increasing	ın	popularity.

Online banking can be a risk as it can raise a number of security issues. SSL can be used as a security method to make online banking safer.

Identify and describe **three** other security methods that could be used to make online banking safer.

Security method 1
Security method 2
Security method 3
[6]

(a)	Optical storage media can be used to store data.	
	Describe how the data is read from a Compact Disc (CD).	
(h)		[,]
(D)		
	Working	
	Answer bytes	[2]
(c)	Describe the differences between primary and secondary storage.	
(-)	, a,	
	(b)	(b) Kamil wants to store a 16-bit colour image file. The image size is 1000 pixels. Calculate the size of the file. Give your answer in bytes. Show your working. Working

© UCLES 2017

10 Six statements about assembly language are shown.

Tick (\checkmark) whether the statement is **true** or **false**.

Statement	true (✔)	false (✓)
Assembly language uses mnemonic codes.		
Assembly language programs do not need a translator to be executed.		
Assembly language is a low-level programming language.		
Assembly language is specific to the computer hardware.		
Assembly language is machine code.		
Assembly language is often used to create drivers for hardware.		

[6]

© UCLES 2017 0478/11/O/N/17

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 0478/11/O/N/17

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
COMPUTER SCIENCE	0478/12
Paper 1 Theory	October/November 2017
	1 hour 45 minutes
Candidates answer on the Question Paper.	
No Additional Materials are required.	
No calculators allowed.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 A robot arm in a factory is programmed to move products.

The binary instructions to operate the robot arm are:

Operation	Bin	ary In	struc	tion
UP	1	1	1	1
DOWN	0	0	0	1
LEFT	1	0	0	1
RIGHT	0	1	1	0
OPEN	1	1	0	0
CLOSE	0	0	1	1

The instructions are entered as hexadecimal values.

An operator enters the values:

9 1 C 3 F

Convert the values and write down the operation (e.g. RIGHT) carried out by the robot arm.

9	
1	
С	
3	
_	

[5]

© UCLES 2017 0478/12/O/N/17

2	Stor	rage devi	ces and storage media can be categorised as primary, secondary or off-line.
		e primar able cate	y, secondary or off-line next to each storage device or medium to indicate its most gory.
	HDI)	
	RAN	M	
	ROI	М	
	CD-	ROM	
	SSE)	
	DVE	D-RAM	
			[6]
3	(a)	Explain	the differences between the binary number system and the denary number system.
			[4]
	(b)	Explain t	the process of converting the binary number 1010 into a denary number.
		•••••	
			[5]

4 A file server is used as a central data store for a network of computers.

Rory sends data from his computer to a file server that is approximately 100 metres away.

It is important that the data is transmitted accurately. Rory needs to be able to read data from and write data to the file server at the same time.

(a) (i) Use ticks (\checkmark) to identify the most suitable data transmission methods for this application.

Method 1	Tick (✓)	Method 2	Tick (✔)
Serial		Simplex	
Parallel		Half-duplex	
		Duplex	

(ii)	Explain why your answer to part (a)(i) is the most suitable data transmission.					
	IA					

[2]

© UCLES 2017 0478/12/O/N/17

(b)	Identify and describe two methods of error checking that can be used to make sure that the data stored after transmission is accurate.
	Method 1
	Method 2
	[6

5

	Raj is using the Internet to do some online shopping. He visits a website that tells him that it uses cookies.						
(a)	Explain what is meant by the term cookies .						
	[4]						
(b)	Give two examples of the use of cookies.						
	Example 1						
	Example 2						

6

Selma writes the following four answers in her Computer Science examination.
State which computer terms she is describing.
"It is a signal. When the signal is received it tells the operating system that an event has occurred."
Selma is describing
"It takes source code written in a high level language and translates it into machine code. I translates the whole of the source code at once."
Selma is describing
"The part of the central processing unit (CPU) that carries out calculations."
Selma is describing
"Mhon data in transmitted if an error is detected in the data received a signal is cent to call for the
"When data is transmitted, if an error is detected in the data received a signal is sent to ask for the data to be retransmitted. This continues until the data received is correct."
Selma is describing
[4

7 Draw a logic circuit to represent the logic statement:

X = 1 if (A is NOT 1 AND B is 1) AND (A is NOT 1 AND C is NOT 1) OR (B is 1 AND C is 1)

© UCLES 2017 0478/12/O/N/17

8

(a)	A computer has 2048 MB of RAM.	
	How many GB of RAM does the computer have?	
	Show your working.	
	GB	[2]
(b)	Describe one item that is stored in RAM.	
(D)		
(c)	Explain three ways that RAM is different to ROM.	[스]
(0)	1	
	2	
	3	
		[3]

9

[6]

© UCLES 2017 0478/12/O/N/17

10	(a)	Describe what is meant by Transport Layer Security (TLS).
		[3]
	(b)	Name three different applications of TLS.
		1
		2
		3
		[3]

11	Complete the p	aragraphs	choosing	the	correct	five	terms	from	the	list.	Each	term	can	only	be
	used once:														

- Ethics
- Freeware
- Free Software
- Hacking
- Malware
- Plagiarism
- Shareware
- Virus

Taking another person's work from the Internet and claiming it as your own is called
One product that people may want to protect is software does allow
a person to share, copy and change software freely, but does no
allow a person to do this legally. Software that has a licence allowing free use for a trial period
is called

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 0478/12/O/N/17

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER S	Octob	0478/13
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Paper 1 Theory

October/November 2017
1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

A washing machine has a small display screen built into it.

1

	e use of the display screen is to show an error code when a problem has occurred with a shing cycle.
(a)	State whether the display screen is an input , output or storage device .
(b)	The display screen shows a hexadecimal error code:
	E04
	This error code means that the water will not empty out of the washing machine.
	Convert this error code to binary.
	[3]
(c)	State why hexadecimal is used to display the error code.
	[1]
(d)	Identify three sensors that could be used in the washing machine.
	State what each sensor could be used for.
	Sensor 1
	Use
	Sensor 2
	Use
	Sensor 3
	Use

2 Data files are stored in different file formats.

Complete the table by providing a suitable file format for each file type. The first one has been done for you.

File type	File format
Pictures	.JPEG
Text	
Sound	
Video	

[3]

3 (a) An example of a Uniform Resource Locator	(URL)	is
--	-------	----

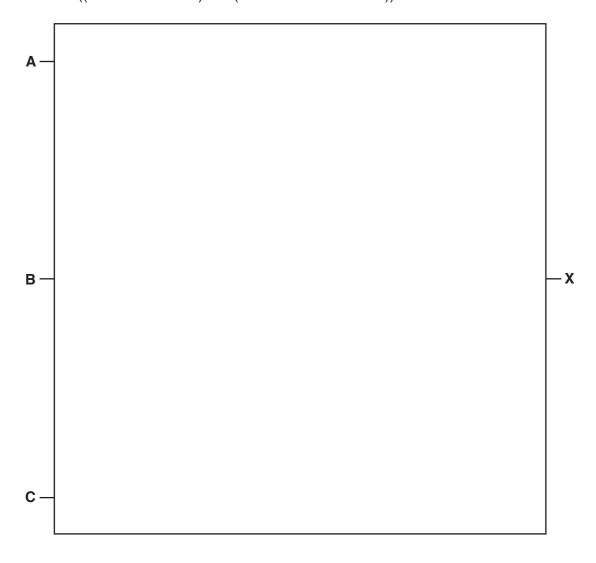
(b)

	nttp://ww	nttp://www.cie.org.uk/index.ntm					
	Part 1	Part 2	Part 3				
Identify the thr	ee parts that make	e up this URL.					
Part 1							

Part 3[3]
Describe what is meant by an Internet Protocol (IP) address.
TAT

4 Six components of a computer system and six descriptions are shown.

Draw a line to match each component with the most suitable description.


Component **Description** Used to connect together Arithmetic Logic the internal components Unit (ALU) of the CPU. Used to carry out Buses calculations on data. Used to temporarily hold Control Unit data and instructions (CU) during processing. **Immediate Access** Used to allow interaction Store (IAS) with the computer. Used to hold data and Input/Output instructions before they are processed. Used to manage the flow Registers of data through the CPU.

[5]

© UCLES 2017 0478/13/O/N/17

5 (a) Draw a logic circuit for the logic statement:

X = 1 if ((A is 1 AND B is 1) OR (A is NOT 1 AND C is 1))

[4]

	Explanation						
	cribe the ope		scanner a		canner.		
	cribe the ope		scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		
2D .			scanner a	and a 3D so	canner.		

7 Six statements about firewalls are shown.

Tick (\checkmark) to show whether each statement is **true** or **false**.

Statement	true (✔)	false (✓)
Firewalls can monitor incoming and outgoing traffic.		
Firewalls operate by checking traffic against a set of rules.		
Firewalls cannot block access to a certain website.		
Firewalls can be software and hardware.		
Firewalls can act as intermediary servers.		
Firewalls can block unauthorised traffic.		

[6]

(a)	Data is valuable. It needs to be kept secure and it can easily be damaged.
	Give three different ways that data can be accidentally damaged.
	1
	2
	3
	[3]
	[∾]
(b)	The Secure Socket Layer (SSL) protocol can be used to securely transmit data in online banking.
	State three other different applications that use SSL.
	Application 1
	Application 2
	Application 3[3]
	[0]

© UCLES 2017 0478/13/O/N/17

	/ _ Y	01!	Lancated States				
(C	Online	banking	IS	increasing	ın	popularity.

Online banking can be a risk as it can raise a number of security issues. SSL can be used as a security method to make online banking safer.

Identify and describe **three** other security methods that could be used to make online banking safer.

Security method 1
Security method 2
Security method 3
[6]

9	(a)	Optical storage media can be used to store data.
		Describe how the data is read from a Compact Disc (CD).
		[4]
	(b)	Kamil wants to store a 16-bit colour image file. The image size is 1000 pixels.
		Calculate the size of the file.
		Give your answer in bytes . Show your working.
		Working
		Answer bytes
		[2]
	(c)	Describe the differences between primary and secondary storage.
		F 43

© UCLES 2017

10 Six statements about assembly language are shown.

Tick (\checkmark) whether the statement is **true** or **false**.

Statement	true (✓)	false (✓)
Assembly language uses mnemonic codes.		
Assembly language programs do not need a translator to be executed.		
Assembly language is a low-level programming language.		
Assembly language is specific to the computer hardware.		
Assembly language is machine code.		
Assembly language is often used to create drivers for hardware.		

[6]

© UCLES 2017 0478/13/O/N/17

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 0478/13/O/N/17

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SO	CIENCE		0478/21
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 2 Problem-solving and Programming

October/November 2017

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

A small airfield operates a flying club where people can take a short flight to see if they would like flying lessons. The owner of the airfield has asked you to write a program to organise the flight bookings. The airfield operates three different planes and offers either a 30 minute or a 60 minute flight.

The following table shows the tariff:

Length of Flight	2 Seater Plane	4 Seater Plane	Historic Plane
30 minutes	\$100	\$120	\$300
60 minutes	\$150	\$200	\$500

After each flight, 30 minutes must be allowed for refuelling and safety checks before the next flight can take off. All planes offer both 30 minute and 60 minute flights, but, for the purpose of this activity, they will not be mixed on a given day, e.g. the 2 seater will offer 30 minute flights ONLY on one day and 60 minute flights ONLY on another day.

Write and test a program for the owner of the airfield.

- Your program must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these **three** tasks. Each task must be fully tested.

TASK 1 – Work out the maximum income.

Assume that the flights take place between 08:00 and 18:00. Write a program that will work out the maximum income that can be generated by each plane in a day for each type of flight. The program should allow you to:

- input the type of plane
- input the length of flight
- calculate the maximum number of flights in a day
- output the total possible income per day for the choice of plane and length of flight

TASK 2 – Record bookings.

Write a program to store bookings for each plane and to allow you to find which planes are available at a given time slot during the day. The program should calculate the actual number of flights taken by each plane in that day.

TASK 3 – Work out income.

Modify TASK 2 so that it will calculate the total amount of money taken in a day for each plane, as well as the overall daily total for all three planes, and output the results.

© UCLES 2017 0478/21/O/N/17

(a)	ΑII	variables, constants and other identifiers should have meaningful names.	
	(i)	Declare suitable arrays for each of the planes to store time slots booked.	
			[3
	(ii)	Name one variable and one constant you used for Task 1 and state the purpose of e one.	ach
		Variable	
		Purpose	
		Constant	
		Purpose	
			[4]

C	Write an algorithm to con or a flowchart.		•	

[5]

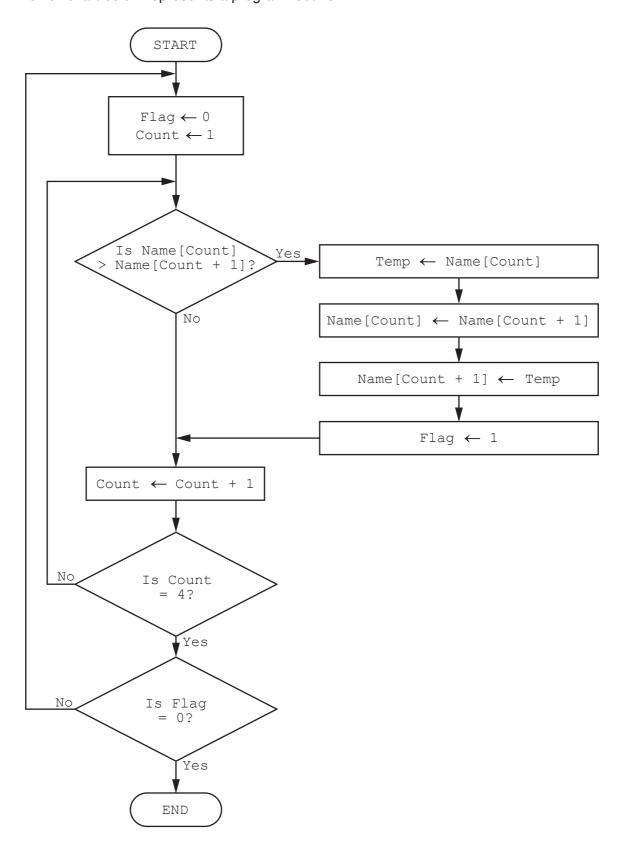
٠)	Describe how you could validate and test the inputs for Task 1 .
	[
l)	Explain how your program checks and displays whether any of the planes are available at given time of the day (Task 2). Any programming statements used must be fully explained.

Section B

2 This section of program code asks for 80 numbers between 100 and 1000 to be entered. It checks that the numbers are in the correct range, and stores them in an array. It counts how many of the numbers are larger than 500 and then outputs the result when the program is finished.

```
1 Count = 0
2 \text{ FOR Index} = 1 \text{ TO } 80
    INPUT 'Enter a number between 100 and 1000', Number
  WHILE Number = 99 AND Number = 1001
     INPUT 'This is incorrect, please try again', Number
5
6
   ENDWHILE
7
   Num[80] = Number
  IF Number > 500 THEN Count = Count + 1
9 UNTIL Index = 80
10 PRINT Index
11 PRINT ' numbers were larger than 500'
There are four lines of code that contain errors.
State the line number for each error and write the correct code for that line.
```

Error 1 Line Number
Correct Code
Error 2 Line Number
Correct Code
Error 3 Line Number
Correct Code
Error 4 Line Number
Correct Code


[4]

3	(a)	Explain the difference between	n a validation check and a verification check.
			[2]
	(b)	Describe, using an example, h	now data could be verified on data entry.
			[2]
	(c)	Explain what is meant by the t	erm library routine.
			[2]
4	(a)		s and five pseudocode statements are shown. Draw one line to tion to the correct pseudocode statement. Not all pseudocode
		Pseudocode description	Pseudocode statement
	A	A loop that will iterate at least	
		once.	FORTONEXT
		conditional statement to deal vith many possible outcomes.	IFTHENELSEENDIF
			WHILEDOENDWHILE
		A 1	
		A loop that will iterate a set number of times.	CASEOFOTHERWISEENDCASE
			CASEOFOTHERWISEENDCASE REPEATUNTIL

© UCLES 2017 0478/21/O/N/17

(b)	Write an algorithm in pseudocode, using a single loop, to print 50 names that have been stored in an array.
	[2]

5 The flowchart below represents a program routine.

© UCLES 2017 0478/21/O/N/17

(a) The array used in the flowchart contains the following data:

Name[1]	Name[2]	Name[3]	Name[4]
Jamal	Amir	Eve	Tara

Complete the trace table using the data given in the array.

Flag	Count	Name[1]	Name[2]	Name[3]	Name[4]	Temp
		Jamal	Amir	Eve	Tara	

(b)	Describe what the algorithm represented by the flowchart is doing.
	[2]

[5]

Question 6 begins on Page 12.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

6 A wildlife park has a database table, called LIVESTOCK, to classify and record its animal species. Part of the database table is shown.

Species	Classification	Diet	Legs	
Giraffe	Mammal	Herbivore	4	
Elephant	Mammal	Herbivore	4	
Crocodile	Reptile	Carnivore	4	
Ostrich	Bird	Omnivore	2	
Gorilla	Gorilla Mammal		2	
Bear	Mammal	Omnivore	4	
Rhinoceros	Mammal	Herbivore	4	
Hippopotamus	Mammal	Herbivore	4	
Flamingo	Bird	Omnivore	2	
Lion	Mammal	Carnivore	4	
Turtle	Reptile	Omnivore	4	
Penguin	nguin Bird		2	

Field name
Data Type
Purpose

(a) Suggest another appropriate field that could be added to this database by stating its name

and data type. State its purpose and give an example of the data it could contain.

(b) Use the query-by-example grid below to provide a list of all four legged mammals that are herbivores, sorted alphabetically by species, with only the species displayed.

Example of data

Field:			
Table:			
Sort:			
Show:			
Criteria:			
or:			

© UCLES 2017 0478/21/O/N/17

[2]

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

378198201

COMPUTER SCIENCE

0478/22

Paper 2 Problem-solving and Programming

October/November 2017

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

The owner of a river boat hire company wants to calculate the daily profits from hiring out 10 rowing boats on the river. Boats are numbered 1 to 10. Boats can be hired for use between 10:00 and 17:00 every day.

Write and test a program for the owner.

- Your program must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – calculate the money taken in a day for one boat.

The cost of hiring a boat is \$20 for one hour or \$12 for half an hour. When a boat is hired the payment is added to the money taken for the day. The running total of hours hired that day is updated and the time when the boat must be returned is stored. At the end of the day the money taken and the total hours hired is output.

No boat can be hired before 10:00 or returned after 17:00.

TASK 2 – find the next boat available.

Extend TASK 1 to work for all 10 rowing boats. Use the data stored for each boat to find out how many boats are available for hire at the current time. If no boats are available show the earliest time that a boat will be available for hire.

TASK 3 – calculate the money taken for all the boats at the end of the day.

At the end of the day use the data stored for each boat to calculate the total amount of money taken and the total number of hours boats were hired that day. Find out how many boats were not used that day and which boat was used the most. Provide a report for the owner to show this information.

© UCLES 2017 0478/22/O/N/17

(a)	All ۷	variables, constants and other identifiers should have meaningful names.
	(i)	For one variable that you have used to record the information about a single boat in Task 1 , state the name, data type and its use.
		Variable name
		Data type
		Use
		[3
	(ii)	State one constant and its value that you could have used for Task 1 .
		Constant name
		Value
		[2
(b)		e two different validation checks you could have used for data entry in Task 1 . For each ck explain why it could be used and provide a set of data for testing.
	Vali	dation check 1
	Rea	ason for choice
	Set	of test data
	Vali	dation check 2
	Ros	ason for choice
	1100	
	Set	of test data
		[6
		l∝

or a	flowo	hart.	You	may	assı	ıme	Ias	k 2 r	nas b	een	con	nplet	ed.				
					• • • • • • • • • • • • • • • • • • • •									 	 	 • • • • • • •	

Explain how your program finds out how many boats are available for hire (Task 2). Any programming statements used must be fully explained.							

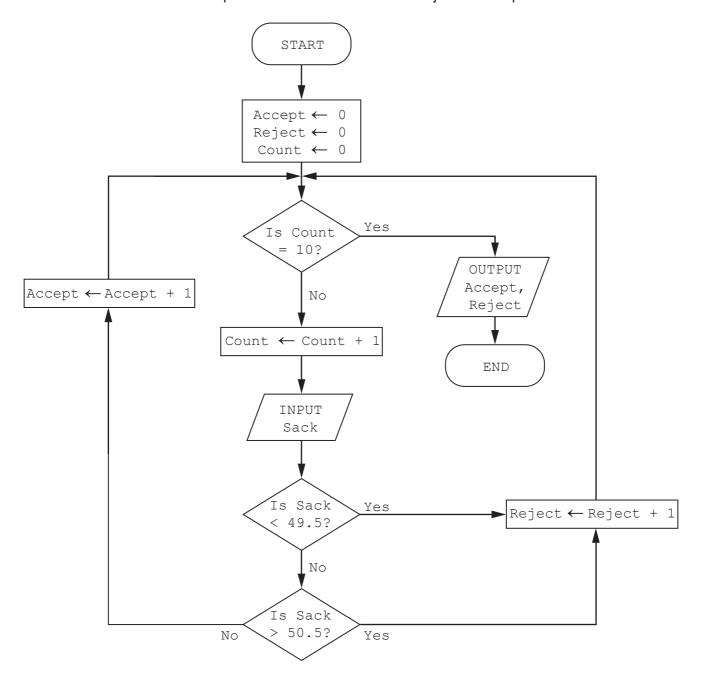
Section B

- 2 Write an algorithm using **either** pseudocode **or** a flowchart, to:
 - input a positive integer
 - use this value to set up how many other numbers are to be input
 - input these numbers

calculate and output the total and the average of these numbers.

Description

3 The following diagram shows **four** data structures and **four** descriptions.


Draw a line to connect each data structure to the correct description.

Data structure

	Operations	
	Constant	A collection of related data
	Array	A value that can change whilst a program is running
	Table	A value that never changes whilst a program is running
	Variable	A series of elements of the same data type
Identify		rpe of conditional statement that you could use when rou would use this type of conditional statement.
Identify pseudo	and describe another ty code. Give a reason why y	
Identify pseudo	and describe another ty code. Give a reason why y	ou would use this type of conditional statement.
Identify pseudo	and describe another ty code. Give a reason why y	ou would use this type of conditional statement.
Identify pseudo Condition	and describe another ty code. Give a reason why y onal statement	ou would use this type of conditional statement.
Identify pseudo Condition	and describe another ty code. Give a reason why y onal statement	ou would use this type of conditional statement.
Identify pseudo Condition	and describe another ty code. Give a reason why y onal statement	ou would use this type of conditional statement.

[4]

5 (a) This flowchart checks a batch of 10 rice sacks for weight. Sacks should weigh 50 kilograms each. Sacks weighing over 50.5 kilograms or less than 49.5 kilograms are rejected. The number of sacks accepted and the number of sacks rejected is output.

© UCLES 2017 0478/22/O/N/17

Complete the trace table for the input data:

50.4, 50.3, 49.1, 50.3, 50.0, 49.5, 50.2, 50.3, 50.5, 50.6

Accept	Reject	Count	Sack	OUTPUT
	l			

b)	The size of the batch has increased to 50 sacks. It has been decided to only reject sacks that are underweight.
	State the changes that need to be made to the flowchart.
	[0]

6

Criteria:

or:

	avai are num	atabase table, TRAIN, is ilable for use. Each engi classified as freight (F) on the between 0 and 9, for service for each engine.	ne has a unique numl or passenger (P) togetl	per made up of 5 digit her with a power class	s, nnnnn. The engines ification that is a whole
	(a)	Identify the three fields type. Provide a sample of			
		Field 1 Name			
		Data type			
		Data sample			
		Field 2 Name			
		Data type			
		Data sample			
		Field 3 Name			
		Data type			
		Data sample			[6]
	(b)	State the field that you s	hould choose as the p	rimary key.	
					[1]
	(c)	Using the query-by-exament have not been serviced			
ı	Field	i:			
Т	able	e:			
	Sor	t:			
S	Show	<i>I</i> :			

[3]

© UCLES 2017 0478/22/O/N/17

BLANK PAGE

© UCLES 2017 0478/22/O/N/17

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 0478/22/O/N/17

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMPUTER SCIENCE

0478/23

Paper 2 Problem-solving and Programming

October/November 2017

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

A small airfield operates a flying club where people can take a short flight to see if they would like flying lessons. The owner of the airfield has asked you to write a program to organise the flight bookings. The airfield operates three different planes and offers either a 30 minute or a 60 minute flight.

The following table shows the tariff:

Length of Flight	2 Seater Plane	4 Seater Plane	Historic Plane		
30 minutes	\$100	\$120	\$300		
60 minutes	\$150	\$200	\$500		

After each flight, 30 minutes must be allowed for refuelling and safety checks before the next flight can take off. All planes offer both 30 minute and 60 minute flights, but, for the purpose of this activity, they will not be mixed on a given day, e.g. the 2 seater will offer 30 minute flights ONLY on one day and 60 minute flights ONLY on another day.

Write and test a program for the owner of the airfield.

- Your program must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these **three** tasks. Each task must be fully tested.

TASK 1 – Work out the maximum income.

Assume that the flights take place between 08:00 and 18:00. Write a program that will work out the maximum income that can be generated by each plane in a day for each type of flight. The program should allow you to:

- input the type of plane
- input the length of flight
- calculate the maximum number of flights in a day
- output the total possible income per day for the choice of plane and length of flight

TASK 2 – Record bookings.

Write a program to store bookings for each plane and to allow you to find which planes are available at a given time slot during the day. The program should calculate the actual number of flights taken by each plane in that day.

TASK 3 – Work out income.

Modify TASK 2 so that it will calculate the total amount of money taken in a day for each plane, as well as the overall daily total for all three planes, and output the results.

© UCLES 2017 0478/23/O/N/17

(a)	All ۱	variables, constants and other identifiers should have meaningful names.
	(i)	Declare suitable arrays for each of the planes to store time slots booked.
		[3]
	(ii)	Name one variable and one constant you used for Task 1 and state the purpose of each one.
		Variable
		Purpose
		Constant
		Purpose
		[4]

•••••			 	
••••••	 	• • • • • • • • • • • • • • • • • • • •	 	

[5]

٠)	Describe how you could validate and test the inputs for Task 1 .
	[
l)	Explain how your program checks and displays whether any of the planes are available at given time of the day (Task 2). Any programming statements used must be fully explained.

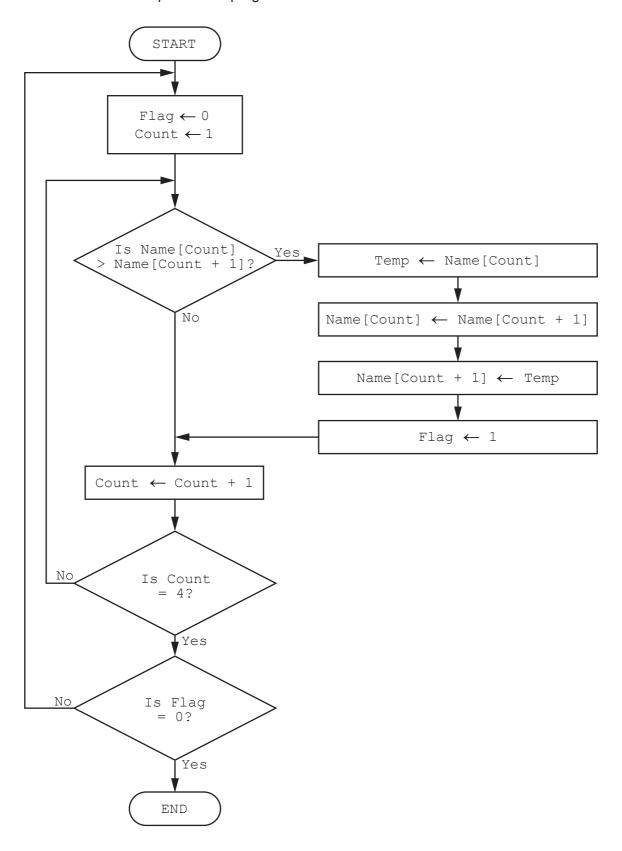
Section B

2 This section of program code asks for 80 numbers between 100 and 1000 to be entered. It checks that the numbers are in the correct range, and stores them in an array. It counts how many of the numbers are larger than 500 and then outputs the result when the program is finished.

```
1 Count = 0
2 FOR Index = 1 TO 80
   INPUT 'Enter a number between 100 and 1000', Number
4 WHILE Number = 99 AND Number = 1001
5
    INPUT 'This is incorrect, please try again', Number
  ENDWHILE
6
7
  Num[80] = Number
8 IF Number > 500 THEN Count = Count + 1
9 UNTIL Index = 80
10 PRINT Index
11 PRINT ' numbers were larger than 500'
There are four lines of code that contain errors.
```

Ot - t - t - 1 :			والمستوال المسالة المتلاسية والمسالة	and the second s
State the line	number for 6	eacn error an	a write the correc	ct code for that line.

Error 1 Line Number
Correct Code
Error 2 Line Number
Correct Code
Error 3 Line Number
Correct Code
Error 4 Line Number
Correct Code


[4]

3	(a)	Explain the difference between	n a validation check and a verification check.
			[2]
	(b)	Describe, using an example, h	now data could be verified on data entry.
			[2]
	(c)	Explain what is meant by the t	erm library routine.
			[2]
4	(a)		s and five pseudocode statements are shown. Draw one line to tion to the correct pseudocode statement. Not all pseudocode
		Pseudocode description	Pseudocode statement
	A	A loop that will iterate at least	
		once.	FORTONEXT
		conditional statement to deal vith many possible outcomes.	IFTHENELSEENDIF
			WHILEDOENDWHILE
		A 1	
		A loop that will iterate a set number of times.	CASEOFOTHERWISEENDCASE
			CASEOFOTHERWISEENDCASE REPEATUNTIL

© UCLES 2017 0478/23/O/N/17

(b)	Write an algorithm in pseudocode, using a single loop, to print 50 names that have stored in an array.	been
		[3]

5 The flowchart below represents a program routine.

© UCLES 2017 0478/23/O/N/17

(a) The array used in the flowchart contains the following data:

Name[1]	Name[1] Name[2]		Name[4]	
Jamal	Amir	Eve	Tara	

Complete the trace table using the data given in the array.

Flag	Count	Name[1]	Name[2]	Name[3]	Name[4]	Temp
		Jamal	Amir	Eve	Tara	

(b)	Describe what the algorithm represented by the flowchart is doing.
	rol
	[2]

[5]

Question 6 begins on Page 12.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

6 A wildlife park has a database table, called LIVESTOCK, to classify and record its animal species. Part of the database table is shown.

Species	Classification	Diet	Legs
Giraffe	Mammal	Herbivore	4
Elephant	Mammal	Herbivore	4
Crocodile	Reptile	Carnivore	4
Ostrich	Bird	Omnivore	2
Gorilla	Mammal	Herbivore	2
Bear	Mammal	Omnivore	4
Rhinoceros	Mammal	Herbivore	4
Hippopotamus	Mammal	Herbivore	4
Flamingo	Bird	Omnivore	2
Lion	Mammal	Carnivore	4
Turtle	Reptile	Omnivore	4
Penguin	Bird	Carnivore	2

	and data type. State its purpose and give an example of the data it could contain.
	Field name
	Data Type
	Purpose
	Example of data
	[2
(b)	Use the query-by-example grid below to provide a list of all four legged mammals that are herbivores, sorted alphabetically by species, with only the species displayed.
Field	i:

(a) Suggest another appropriate field that could be added to this database by stating its name

© UCLES 2017 0478/23/O/N/17

Table:

Sort:

Show:

Criteria:

or:

Grade thresholds - March 2018

Cambridge IGCSE Computer Science (0478)

Grade thresholds taken for Syllabus 0478 (Computer Science) in the March 2018 examination.

			minimum raw mark required for grade:					
	maximum raw mark available	Α	В	С	D	E	F	G
Component 12	75	53	45	37	32	28	23	18
Component 22	50	36	29	22	18	14	11	8

Grade A* does not exist at the level of an individual component.

The maximum total mark for this syllabus, after weighting has been applied, is 125.

The overall thresholds for the different grades were set as follows.

Option	Combination of Components	A*	Α	В	С	D	Е	F	G
AY	12, 22	104	89	74	59	50	42	34	26

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/12
Paper 1 March 2018

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

PUBLISHED Generic Marking Principles

specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
 - marks are awarded when candidates clearly demonstrate what they know and can do
 - marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Page 3 of 11

© UCLES 2018

Answer
1 mark for each 'Type of software' if correct lines are attached to it.

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks
2(b)	Any three from:	
	Use a firewall	
	Use of a proxy server	
	Do not use / download software / files from unknown sources	
	Do not share external storage devices / USB pens	
	Do not open / take care when opening attachments / link	
	Do not connect computer to network / use as stand-alone computer	
	Limiting access to the computer	

Question	Answer	Marks
3(a)	Byte 3 / 10110100	_
3(b)	Odd parity used Counted / added the number 1's // Most Bytes have an odd number of 1's Byte 3 has an even number of 1's // Byte 3 didn't follow odd parity	က

Question	Answer	Marks
4	Any six from:	9
	Sensor(s) send data/signals to the microprocessor Analogue signal/data from sensor is converted to digital (using ADC) Microprocessor compares data value against set boundaries / pre-set data If value between 21 and 24 no action taken If value > 24 °C / signal is sent from microprocessor to turn conditioning unit ON//Set to cold If value is < 21 °C signal is sent from microprocessor to turn conditioning unit ON//Set to warm Process is repeated for a continuous operation	

Question	Answer	Marks
5(a)	One mark for each correct Hexadecimal value	က
	C4 10 FE 09	
(q)g	Any two from:	2
	Easier / simpler to remember / write down // quicker to transcribe Less likely to make error Less digits to use	

Question		Answer	Marks
9	1 mark for su	1 mark for suitable example and 1 mark for suitable associated use.	9
	Primary	RAM stores OS <u>when running</u> / data <u>currently in use</u> / instructions <u>currently in use</u> ROM stores boot instructions / BIOS Cache stores frequently used instructions	
	Secondary	HDD / SSDstores files / applications (by example)	
	Offline	CD/DVD/Blu-ray/Flash Memory/USB stick/Removable HDD/Removable SSD	

Marks	4									σ
Answer										*
			-	7	1	0	1	1	-	ation
	outputs a outputs a outputs	0	0 +	- 0	1	0	1	0	_	1 mark per gate in correct location A B C
	or 8 corrector 6 corrector 7 c	В	0	0 -	1	0	0	1	_	r gate in c
	4 marks for 8 correct outputs 3 marks for 6 correct outputs 2 marks for 4 correct outputs 1 mark for 2 correct outputs	А	0	0	0	1	1	1	1	1 mark pe B C
Question	7(a)									7(b)

Question					Answer	Marks
(3)2	4 marks fo	r 8 correct	† Orithorits			4
	3 marks for 6 correct outputs	r 6 correct	t outputs			•
	2 marks fo	r 4 correct	t outputs			
	1 mark for	2 correct	outputs			
	⋖	В	O	×		
	0	0	0	0		
	0	0	1	0		
	0	1	0	1		
	0	1	1	1		
	1	0	0	0		
	1	0	1	0		
	1	1	0	0		
	1	1	1	0		

Question			Answer		Marks
8(a)		Met	Method		က
	Descriptions	Serial	Parallel		
	Multiple bits are sent and received at the same time.		<i>></i>	[1]	
	Bits are sent one at a time in a single direction.	<i>></i>		[1]	
	Bits are sent using a single wire. Data can be sent or received, but not at the same time.	>		[1]	

Question			Answer			Marks
			Туре			
	Descriptions	Simplex	Half-duplex	Duplex		
Multiple bits are the same time.	Multiple bits are sent and received at the same time.			>	[1]	
Bits are ser direction.	Bits are sent one at a time in a single direction.	>			[1]	
Bits are sencan be sent same time.	Bits are sent using a single wire. Data can be sent or received, but not at the same time.		>		[2]	

Question	Answer	Marks
O	Max 3 – 1 mark for correct answer and 2 marks for correct calculations.	က
	Any two from:	
	16000 × 32	
	512000 / 1024	
	Or	
	16000 × 8 128000 × 32 4096000 / 8	
	512000 / 1024	
	Correct answer:	
	500 kB	

Question	Answer	Marks
10(a)(i) 10010	10010	1
10(a)(ii)	10(a)(ii) 11110001	1
10(b)	Any four from:	4
	The program is stored on a secondary storage device Data and instructions are moved to memory / RAM Data and instructions are stored in the same memory / RAM Data and instructions are moved to registers to be executed Instructions are fetched one at a time	

Question	Answer	Marks
11(a)	Smaller file size reduces download / display time // reduces upload time	1
11(b)	Any four from:	4
	A compression algorithm is used Permanently deleting some data // file cannot be restored to original Colour depth / palette can be reduced Resolution can be reduced // number of pixels can be reduced Less bits will be required for each pixel / colour	

Question	Answer	Marks
12(a)	Quicker to scan rather than type into a system	4
	Fewer errors no human input	

Question	Answer	Marks
12(b)	Any four from:	4
	Uses a barcode reader / scanner Reader shines light / red laser at barcode White lines reflect (more) light Sensors / photoelectric cells detect light reflected back Different reflections / bars will convert to different binary values	

Question	Answer	Marks
13	Any four from	4
	• (Provides an) interface	
	• Loads / opens / installs / closes software	
	Manages the hardware // manages peripherals // spooling	
	Manages the transfer of programs into and out of memory	
	Divides processing time // processor management	
	Manages file handling	
	Manages error handling / interrupts	
	Manages security software	
	Manages utility software	
	Manages user accounts	
	Multitasking // Multiprocessing // Multiprogramming // Time slicing	
	Batch processing // real time processing	

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

Paper 1 Theory		F	ebruary/March 2018 1 hour 45 minutes
COMPUTER S	CIENCE		0478/12
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 Some types of software can be described as free software or freeware.

Draw lines to link each description to a correct type of software. A description can be linked to more than one type of software.

	Description	Type of software
	Free to download	
		Free software
	Code can be	
	modified and redistributed	
		Freeware
	Subject to copyright legislation	
		[2
Dav	rid has installed anti-virus software o	nis computer.
(a)	State three tasks carried out by ant	irus software.
	Task 1	
	Task 2	

Task 3

[3]

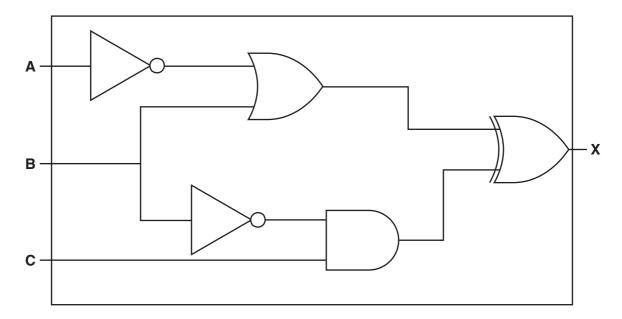
© UCLES 2018 0478/12/F/M/18

2

(b)	David is still conce	rned that his computer	might get infected by a	computer virus.
	State three other virus.	vays in which David car	n reduce the risk of his c	computer getting a computer
	1			
	2			
	3			
				[3]
Pari	ity checks can be us	sed to check for errors (during data transmissio	n
One	or the bytes has be	een transmitted incorred	otiy.	
By	te 1	Byte 2	Byte 3	Byte 4
10	110011	10101000	10110100	10110101
(a)	State which byte w	as incorrectly transmitte	ed.	
				[1]
/ _\	Evalaia havevas is			
(b)	Explain flow you ic	dentified the incorrectly	transmitted byte.	
				ro1
				[3]

3

An a	air conditioning syste	m is used to control the	ne temperature in a hos	pital.	
The	air conditioning syst	em uses temperature	sensors and a micropro	ocessor.	
The	temperature must re	emain between 21 °C a	and 24°C.		
Des hosp		ors and the micropro	cessor are used to co	ntrol the temperature	of the
					16
					[0
The	IP address of a com	puter is stored as a se	et of four 8-bit binary nu	ımbers.	
The	network administrate	or converts each bina	ry number into hexaded	cimal.	
(a)		to show the hexadecing already been conve	mal equivalent of the bi rted.	nary IP address.	
	Binary IP address				
	11000100	00010000	11111110	00001001	
	Hexadecimal				
	C4				
					[3
(b)	Explain why the net	work administrator us	es hexadecimal.		
					r


© UCLES 2018 0478/12/F/M/18

5

6

Primary, secondary and off-line are types of storage.
Give an example of each type of storage.
For each example state how it is used.
Primary storage
Example
Use
Secondary storage
Example
Use
Off-line storage
Example
Use
[6]

7 (a) For this logic circuit:

Complete the truth table.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

© UCLES 2018 0478/12/F/M/18

(b) For this logic statement:

X = 1 if (B is 1 OR C is NOT 1) AND ((A is NOT 1) AND (B is 1 OR C is 1))

Draw a logic circuit.

(c) Complete the truth table for the logic statement given in part (b).

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

8 (a) Three descriptions and two methods of data transmission are given.

Tick (\checkmark) the correct box to show the **Method** of data transmission for each description.

Description	Met	hod
	Serial	Parallel
Multiple bits are sent and received at the same time.		
Bits are sent one at a time in a single direction.		
Bits are sent using a single wire. Data can be sent or received, but not at the same time.		

[3]

(b) Three descriptions and three types of data transmission are given.

Tick (\checkmark) the correct box to show the **Type** of data transmission for each description.

Description		Туре	
	Simplex	Half-duplex	Duplex
Multiple bits are sent and received at the same time.			
Bits are sent one at a time in a single direction.			
Bits are sent using a single wire. Data can be sent or received, but not at the same time.			

[3]

© UCLES 2018 0478/12/F/M/18

9	A 32-second sour	nd clip will be reco	rded. The sound will be sampled 16000 times a second.
	Each sample will	be stored using 8	bits.
	Calculate the file	size in kilobytes. \	ou must show all of your working.
	File Size		kB
			[3]
10	The table shows a	a segment of prim	ary memory from a Von Neumann model computer.
	Address	Contents	
	10001	11001101	
	10010	11110001	
	10011	10101111	
	10100	10000110	
	10101	00011001	
	10110	10101100	
	The program cour	nter contains the c	data 10010.
	(a) (i) State the	e data that will be	placed in the memory address register (MAR).
			[1]
	(ii) State the	e data that will be	placed in the memory data register (MDR).
			[1]

	(b)	Describe the stored program concept when applied to the Von Neumann model.
		[4]
11	Miria	am needs to use a large high-resolution photo as a thumbnail image on a website.
		will use lossy compression to reduce the file size of the photo to create the thumbnail image.
	(a)	State why a smaller file size is appropriate for this situation.
		[1]
	(b)	Explain how lossy compression reduces the file size.
		[4]

© UCLES 2018 0478/12/F/M/18

12		ospital stores the results of medical tests on a computer system. Each patient is given a stband containing a unique barcode. The barcode is used every time the patient has a medical .
	(a)	Explain two benefits of using barcodes in this situation.
		Benefit 1
		Benefit 2
	(b)	Describe how the barcode is read.
		[4]
		[4]

13	State four functions of an operating system.
	Function 1
	o
	Function 2
	Function 3
	Function 4
	[4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2018

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/22
Paper 2 March 2018

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\mathbb{R}}$ IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

0478/22

Generic Marking Principles

specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
 - marks are awarded when candidates clearly demonstrate what they know and can do
 - marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

Page 2 of 9

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Page 3 of 9

© UCLES 2018

Question	Answer	Marks
	Section A	
1(a)(i)	1 mark for name and 1 mark for appropriate data structure from Task 1 e.g. name studentName Data structure Array	2
1(a)(ii)	1 mark for name, 1 mark for appropriate value and 1 mark for appropriate use. From any task e.g.	9
	Constant name classsize Value 30 Use Fixed number of students in a class	
	Variable namecounterData typeintegerUseto count the number of student names entered	
1(b)	1 mark for changing the value of a variable/constant/ counter, 1 mark for change to the program e.g. Value: Value: Oversubscribed test will be changed to test for over 50 // second group starts at 26	2

Question	Answer	Marks
1(c)	Any five from Initialise subject counts Loop through students Loop through student name and input and store two subject choices for that student Update subject counts // update subject lists of student names Error message if subject not found Output total subject counts Prompts for all inputs and messages with all outputs	ro.
	Sample answer for Task 1	
	physics \leftarrow 0; chemistry \leftarrow 0; history \leftarrow 0; geography \leftarrow 0; compSci \leftarrow 0;	
	FOR counter ← 1 TO 60 INPUT name, subject(1), subject(2)	
	studentName (counter) ← name	
	studentCounter1(counter) \leftarrow subject(1)	
	studentCounter2(counter) \leftarrow subject(2)	
	FOR sCount \leftarrow 1 TO 2	
	CASE subject(sCount) OF	
	'Physics': physics ← physics + 1	
	'Chemistry': chemistry ← chemistry + 1	
	'History': history ← history + 1	
	': geography ← geogr	
	dience': compSci ←	
	OTHERWISE: PRINT 'Error subject not found'	
	ENDCASE	
	NEXT.	
	PRINT 'Group Number of Students'	
	Ω Ω	
	'Chemistry	
	Geography	
	PRINT 'Computer Science ', compSci	

© UCLES 2018 Page 5 of 9

Question	Answer	Marks
1(d)	Any five from Explanation for calculation of total number of spare places Check the number of students who have chosen each subject If less than 10 no places available (Otherwise)If less than 20Calculate number of spare places (20 – number) If more than 20 and less than 40Calculate number of spare places (40 – number) Keep a running total of the total number of spare places	်

Question	Answer	Marks
	Section B	
2(a)	1 mark for each error identified + suggested correction NUMBERS should be Number IF Number > 100 should be IF Number >= 100 INPUT Number is missing from inside the loop insert INPUT Number after the IF statement The final PRINT Number is not needed remove it	4
2(b)	One mark for both ends of the range and correct inequality symbols and one mark for the AND. The test should be IF Number $>=100$ AND Number $<=200$	2

Question			Answer	er	Marks
8	Weight	totalWeight	totalNumber	OUTPUT	4
		0	0		
	20	50	_		
	20	120	2		
	65	185	3		
	100	285	4		
	95	380	5		
	20	430	9		
	25	485	7		
	85	920	8		
	02	640	6	Lift overload, step out	
	One mark for each correct column.	t column.			

Question	Answer	Marks
4	1 mark for value and 1 mark for appropriate reason e.g. Value 1 $_2$ (1) boundary should be accepted as weight OK (1) Value 2 two (1) erroneous/abnormal should be rejected (1)	4

Question	Answer	Marks
5	2 marks for appropriate explanation, 1 mark example programming statements showing sequence, 1 mark example programming statement(s) showing selection e.g.	4
	Sequence is the concept of one statement being executed after another(1) whereas selection decides which statement(s) are to be executed depending upon the result of a question (1) PRINT X PRINT Y Selection example (1) IF X > Y THEN PRINT X ELSE PRINT Y	

Question	Answer	Marks
6(a)	1 mark for appropriate field name and appropriate data type, then 1 mark for appropriate explanation. e.g.	∞
	Metal, type text(1) a single character/word that can be input accurately/quickly(1) Item, type text (1) a single character/word that can be input accurately/quickly(1) Number in Stock, type number (1) can be used for calculations (1) Price, type currency (1) properly formatted and can be used for calculations (1)	
(q)9	All fields could contain duplicate values	1

© UCLES 2018

Cambridge IGCSE – Mark Scheme **PUBLISHED**

0478/22

Question			Answer	3r		Marks
(c)	Field: Metal	Metal	Item	Number in Stock	Price	က
	Table:	Table: JEWEL	JEWEL	JEWEL	JEWEL	
	Sort:					
	Show:			₽	Ъ	
	Criteria:	="silver"	="bracelet"			
	or:					
	One mark for columns 1 + 2, one mark for columns 3 + 4 One mark for accuracy of syntax and spelling	2, one mark for α syntax and spellin	olumns 3 + 4 g			

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/22

Paper 2 Problem-solving and Programming

February/March 2018

PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by writing and testing a program or programs.

Students in a school are allowed to choose extra subjects each year. Students provide the school administrator with their names and their subject choices. Places in subject groups are allocated on a 'first come, first served' basis. There are two classes of 30 students and they can each choose **two** extra subjects from:

- Physics
- Chemistry
- History
- Geography
- Computer Science

The maximum group size for each subject choice is 20 students and the minimum group size is 10 students. If more than 20 students choose a subject then that subject can be split into two groups. Each subject can have no more than two groups. If less than 10 students choose a subject then it is not available that year. A program is required to show a summary of the number of students who have chosen each subject, identify subject group sizes, produce subject group lists and identify problems.

Write and test a program or programs for the school administrator.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these **three** tasks. Each task must be fully tested.

TASK 1 – Data entry and number of students who have chosen each subject.

The school administrator enters the data for each student. Write a program for TASK 1 to store this data then calculate and output the number of students who have chosen each subject.

TASK 2 – Output subject group lists and identify problems.

Using your results from TASK 1, allocate students to subject groups. Print out list(s) of student names for each viable subject group. Identify any subjects that are over or undersubscribed, identify the students who have been allocated to one subject group only and those who have not been allocated to any group. Print out this information.

TASK 3 – Identify spare places in subject groups.

Using your results from TASK 2, print out the number of spare places for each subject. Any group that has fewer than 20 students has spare places. Calculate the total number of spare places and the total number of unallocated student choices. Show whether the number of spare places available is enough to cover the unallocated choices.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SO	CIENCE		0478/	22
CENTRE NUMBER		CANDIDATE NUMBER		
CANDIDATE NAME				

Paper 2 Problem-solving and Programming

February/March 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

Students in a school are allowed to choose extra subjects each year. Students provide the school administrator with their names and their subject choices. Places in subject groups are allocated on a 'first come, first served' basis. There are two classes of 30 students and they can each choose **two** extra subjects from:

- Physics
- Chemistry
- History
- Geography
- Computer Science

The maximum group size for each subject choice is 20 students and the minimum group size is 10 students. If more than 20 students choose a subject then that subject can be split into two groups. Each subject can have no more than two groups. If less than 10 students choose a subject then it is not available that year. A program is required to show a summary of the number of students who have chosen each subject, identify subject group sizes, produce subject group lists and identify problems.

Write and test a program or programs for the school administrator.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these **three** tasks. Each task must be fully tested.

TASK 1 – Data entry and number of students who have chosen each subject.

The school administrator enters the data for each student. Write a program for TASK 1 to store this data then calculate and output the number of students who have chosen each subject.

TASK 2 – Output subject group lists and identify problems.

Using your results from TASK 1, allocate students to subject groups. Print out list(s) of student names for each viable subject group. Identify any subjects that are over or undersubscribed, identify the students who have been allocated to one subject group only and those who have not been allocated to any group. Print out this information.

TASK 3 – Identify spare places in subject groups.

Using your results from TASK 2, print out the number of spare places for each subject. Any group that has fewer than 20 students has spare places. Calculate the total number of spare places and the total number of unallocated student choices. Show whether the number of spare places available is enough to cover the unallocated choices.

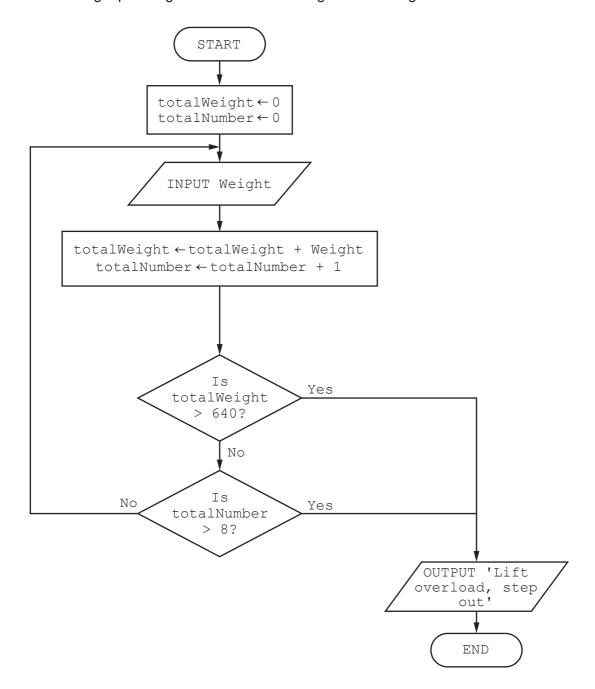
© UCLES 2018 0478/22/F/M/18

(a)	All i	dentifiers should have meaningful names.
	(i)	State the name and data structure that you have used to record student names in Task 1 .
		Name
		Data structure[2]
	(ii)	State the name of one constant and the name of one variable that you could have used in your programmed solution. State the value that would be assigned to the constant. State the data type for the variable. Explain what each one would be used for in your programmed solution.
		Constant name
		Value
		Use
		Variable name
		Data type
		Use
		[6]
(b)		plain how you would change your program for Task 2 if the maximum group size for each ject is increased to 25.
		[2]

•••••	 	 	
			[5]

programming statements shown in your answer must be fully explained.

Section B


2 An algorithm has been written in pseudocode to input some numbers and print out any numbers that are greater than or equal to 100. The number 999 stops the algorithm.

INPUT Number
WHILE NUMBERS <> 999 DO
 IF Number > 100 THEN PRINT Number ENDIF
ENDWHILE
PRINT Number

	PRINT Number
(a)	Find the four errors in the pseudocode and suggest corrections.
	Error 1
	Correction
	Error 2
	Correction
	Error 3
	Correction
	Error 4
	Correction
	[4]
(b)	Show, using pseudocode, how you would change the corrected algorithm to print out any numbers between 100 and 200 inclusive.

.....[2]

3 This flowchart inputs the weight in kilograms of a passenger stepping into a lift. The lift can take a maximum of eight passengers or a maximum weight of 640 kilograms.

© UCLES 2018 0478/22/F/M/18

Complete the trace table for the passenger input data:

50, 70, 65, 100, 95, 50, 55, 85, 70, 75

Weight	totalWeight	totalNumber	OUTPUT

[4]

A program checks if the weight of a baby is at least 2 kilograms.

	Give, with reasons, two different values of test data that could be used for the baby's weight. Each reason must be different.
	Value 1
	Reason
	Value 2
	Reason
	[4]
	[דו
5	Explain the difference between the programming concepts of sequence and selection . Include an example of a programming statement for each concept in your explanation.
	[4]

© UCLES 2018 0478/22/F/M/18

necklaces. The number in stock and the price is also stored.

6

A database table, JEWEL, is used to keep a record of jewellery for sale in a shop. Each item of

jewellery can be made of silver, platinum or gold metal. The shop stocks rings, bracelets and

(a)	Identify the four fields required for the database. Give each field a suitable name and data type. Explain why you chose the data type for each field.								
	Field	1 Name		Data type					
	Expla	Explanation							
	Field			Data type					
	Expla	anation							
	Field			Data type					
	Expla	anation							
	Field	4 Name		Data type					
	Expla	anation							
(1-)	5		<i>6</i> -1414		[8]				
(D)	Expia	ain wny none of tr	nese fields could be us	sed as a primary key.					
					[1]				
(c)			cample grid below, wi stock and the price.	ite a query to identify	the silver bracelets. Only				
F	ield:								
Ta	able:								
;	Sort:								
SI	how:								
Crit	eria:								
	or:				[3]				

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2018 0478/22/F/M/18

Grade thresholds – June 2018

Cambridge IGCSE[™] Computer Science (0478)

Grade thresholds taken for Syllabus 0478 (Computer Science) in the June 2018 examination.

		minimum raw mark required for grade:						
	maximum raw mark available	Α	В	С	D	E	F	Ð
Component 11	75	47	36	26	21	15	10	5
Component 12	75	45	35	26	21	15	10	5
Component 13	75	45	35	26	20	15	10	5
Component 21	50	31	23	15	12	10	7	4
Component 22	50	29	21	14	11	9	6	3
Component 23	50	32	25	18	15	12	9	6

Grade A* does not exist at the level of an individual component.

The maximum total mark for this syllabus, after weighting has been applied, is 125.

The overall thresholds for the different grades were set as follows.

Option	Combination of Components	A*	Α	В	С	D	Е	F	G
AX	11, 21	95	77	59	41	33	25	17	9
AY	12, 22	90	73	56	40	32	24	16	8
AZ	13, 23	92	76	60	44	35	27	19	11

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/11
Paper 1 May/June 2018

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\mathsf{IGCSE}^{\intercal \mathsf{M}} \text{ is a registered trademark}.$

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

0478/11

Generic Marking Principles

specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
 - marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Page 3 of 12

Question	Answer	Marks
-	1 mark for each correct answer, in the given order:	9
	- analogue	
	- digital	
	- denary	
	- 10	
	– binary	
	- 2	

Question	Answer	Marks
7	1 mark for each correct conversion:	က
	- 42 - 257 - 542	

Question	Answer	Marks
ဧ	1 mark for correct register, 3 marks for reason:	4
	- Register C	
	Any three from:	
	 Count the number of 1/0 bits (in each byte/register) 	
	 Two bytes/registers have an odd number of 1/0 bits // Two use odd parity 	
	 Odd parity must be the parity used 	
	 One byte/register has an even number of 1/0 bits // One uses even parity 	
	 One with an even number of one bits/even parity is incorrect // Register C should have odd parity 	

Question	Answer	Marks
4(a)	1 mark for each correct answer:	2
	Lossy (compression) Lossless (compression)	
4(b)	1 mark for correct compression, 3 marks for description:	4
	- Lossless (compression)	
	Any three from:	
	 The file can be restored/decompressed to the exact same state it was before compression/ to original (It is a computer program so) no data can be lost // Lossy would remove data 	
	- Will not run correctly (with any other compression)	
	- (Lossless) will give repeating words/sections of word a value// RLE is used // Other valid examples of methods of	
	lossless compression	
	 Value is recorded in an index 	

Marks	2						
Answer	1 mark for each correct line, up to a maximum of 5 marks:	Description Holds data and instructions when they are loaded from main memory and are waiting to be processed.	Holds data temporarily that is currently being used in a calculation.	Holds data or instructions temporarily when they are being processed.	Manages the flow of data and interaction between the components of the processor.	Carries out the calculations on data.	Pathway for transmitting data and instructions.
	1 mark for each correct line	Component Immediate access store (IAS)	Register	Control unit (CU)	Accumulator (ACC)	Arithmetic logic unit (ALU)	Bus
Question	22						

Marks	v
Answer	ut(s))
Question	6(a)

Marks	4									
Answer		g space X	_	7	_	7	0	7	_	1
	4 marks for 8 correct outputs 3 marks for 6 or 7 correct outputs 2 marks for 4 or 5 correct outputs 1 mark for 2 or 3 correct outputs	Workin								
	r 8 co r 6 or r 4 or 2 or 3	ပ	0	-	0	1	0	-	0	7
	ks for ks for ks for ks for ks for k	Δ	0	0	~	1	0	0	~	_
	4 mai 3 mai 2 mai 1 mar	∢	0	0	0	0	_	_	~	~
Question	6(b)									

Question	Answer	Marks
7	Compiler Any three from:	9
	Translates high-level language into machine code/low level language — Translates (the source code) all in one go/all at once — Produces an executable file — Produces an error report	
	Interpreter Any three from: — Translates high-level language into machine code/low level language — Translates (the source code) line by line/statement by statement — Stops if it finds an error — Will only continue when error is fixed	

Question	Answer	Marks
8(a)	Any four from: - Shines light / (red) laser at barcode - Light is called an illuminator - Light is reflected back // White lines reflect light // Black lines reflect less light/absorbs light - Sensors / photoelectric cells detect the light - Different reflections / bars will give different binary values // pattern converted to digital values - A microprocessor interprets the data	4
8(b)	Any three from: - barcode identifies a (unique) product (in a database) - barcode can be used to look up product (in a database) - data about stock levels can be stored on a system - stock can be automatically deducted from the system - can check stock is below a certain level // check stock level - automatic re-order // Alerts when stock is low - automatically update new stock level - to locate if an item of stock is available in another location	က

Question	Answer	Marks
8(c)	Any four from: - (Infrared) rays are sent across screen (from the edges) - Has sensors around edge // Sensors capture beams - (Infrared) rays form a grid across the screen - (Infrared) ray is broken (by a finger blocking a beam) - Calculation is made (on where beam is broken) to locate the 'touch' // Co-ordinates are used to locate the touch	4
8(d)	Secondary Storage – any two from: - Not directly accessed by the CPU - Non-volatile storage - Secondary is internal to the computer/device - An example of secondary storage would be HDD/SSD	4
	Off-line storage – any two from: Non-volatile storage Off-line storage is storage that is removable from a computer/device // not internal // portable An example of off-line storage would be CD/DVD/USB stick/SD card/magnetic tape/ external HDD/SSD	

Question	Answer	Marks
<u></u> თ	Any six from: - Suitable biometric device, such as fingerprint scanner/retina/eye/iris scanner/face recognition/voice recognition/palm scanner // description of use e.g. use fingerprint on device - Sensor (in biometric device) captures/takes data/readings (of user) - Data/readings are converted from analogue to digital (using ADC) - Data/reading sent to the microprocessor - Data/readings compared to stored values/data if data/readings match user can enter if data/readings do not match user is declined entry // user asked to try again alert may be sent to security // alarm may sound	ဖ

Question	Answer	Marks
10(a)	Any four from: - Structure and presentation are defined using (mark-up) tags - Structure and presentation dictate the appearance of the website - Structure is used for layout - Example of structure - Presentation is used for formatting / style - Example of formatting - Example of formatting - Separate file / CSS can be used for presentation content	4
10(b)(i)	1 mark for each correct part - domain (name) - file name/webpage name	2
10(b)(ii)	Any two from: - Hypertext Transfer Protocol Secure // it is the access protocol // It is a protocol - It means the website uses SSL/TLS - It means data sent (to and from the webserver) is encrypted	2
10(c)	Any two from e.g.: - To store items that a customer has added to an online shopping basket - To store a customer's credit card details - To store log-in details - To track what product a customer browses // Track music preferences - Targeted advertising // making recommendations - Personalises/customises the experience - Shows who are new and returning customers - To speed up log-in times - To speed up/allow single click purchases - Improves the experience	2

_	Answer	Marks	
An	Any four from:	4	
	 Prevents direct access to the webserver // Sits between user and webserver 		
	 If an attack is launched it hits the proxy server instead // can be used to help prevent DDOS // help prevent 		
	hacking of webserver		
	 Used to direct invalid traffic away from the webserver 		
	 Traffic is examined by the proxy server // Filters traffic 		
	 If traffic is valid the data from the webserver will be obtained by the user 		
	 If traffic is invalid the request to obtain data is declined 		
	 Can block requests from certain IP addresses 		

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

Paper 1

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\mathsf{IGCSE}^{\intercal \mathsf{M}} \text{ is a registered trademark}.$

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Generic Marking Principles

specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
 - marks are awarded when candidates clearly demonstrate what they know and can do
 - marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

Page 2 of 10

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Page 3 of 10

Question	Answer	Marks
~	1 mark for each unit, in the given order:	4
	nibblebyte	
	megabyte (MB)gigabyte (GB)	

Question	Answer	Marks
2(a)	Any four from: - Image is converted from <u>analogue</u> to digital (using ADC) - Image is turned into pixels - Each pixel is given a binary value - Pixels form a grid (to create the image) - Each pixel has a colour - Pixels are stored in sequence (in a file) - Meta data is stored (to describe the dimensions/resolution of the image) // It stores the dimensions/colour depth .etc. - An example of a suitable photo file format e.g. JPEG	4
2(b)	1 mark for correct compression, 3 marks for explanation: - Lossy Any three from: - Lossy would reduce the file size more (than lossless) - The redundant data can be removed from the files // by example (must be about redundant data) - Images can still be a similar quality - Images can still be a similar quality - There is no requirement for the files to be exactly the same as original file - Photos can be sent quick er // fast er to upload // fast er to download	4

Question						An	Answer			Marks
3(a)	1 mark for each correct register	rrect rec	jister							က
	Hours	0	0	0	0	0	0	~	0	
	Minutes	0	0	0	-	F	_	-	_	
	Seconds	0	0	-	_	-	0	_	0	
3(b)	1 mark for each correct section:	rrect se	ction:							က
			,	0 ⁹	5 Hours	2 ≥ ∑	Minutes	·•	Seconds	

0 0 0 0 0 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	oark for	ď) doe	s toarr	ection.				Answer	wer			
\ \ \ \ \ \ \	1 0 1	0 0 0	0 0 1	<u> </u>	<u>:</u>	0	0	0	0	0	0	-	~
		1 mark — >		Λ		\neg	 	 ا ا	1	\bigcap			_

Question	Answer	Marks
5	1 mark for correct register, 3 marks for reason:	4
	- Register Y	
	Any three from: — Count the number of 1/0 bits (in each byte/register)	
	 Two bytes/registers have an odd number of 1/0 bits // Two have odd parity Even parity must be the parity used 	
	One byte/register has an even number of 1/0 bits // One uses even parity	
	The two with an odd number of one bits/odd parity are incorrect // Register X and Z should have even parity	

Marks	8								
n Answer	1 mark for each correct missing word, in the given order:	- fetches	- immediate access store // IAS	 program counter // PC 	 memory address register // MAR 	 memory data register // MDR 	- executed	arithmetic logic unit // ALU	- accumulator // ACC
Question	9								

Marks	9	4
Answer	A A B B B B B B B B B B B B B B B B B B	4 marks for 8 correct outputs 3 marks for 6 or 7 correct outputs 2 marks for 6 or 7 correct outputs 2 marks for 4 or 5 correct outputs 1 mark for 2 or 3 correct outputs 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 1 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 1 1 1 0
	ach corr	3 correction of the correction
	for each	\$ for 8 (\$ for 6 (\$ f
	1 mark	12 mark ark mark ark ark ark ark ark ark ark ark ark
Question	7(a)	7(b)

Question	Answer	Marks
8	1 mark for correct translator, 3 marks for explanation:	4
	- Compiler	
	Any three from: - Does not require recompilation // compiled program can be executed without a compiler therefore, allows faster execution - Provides an executable file therefore, allows him to just send machine code	
	 Dimitri's friend does not need translation/compilation software to execute the program 	

Question	Answer	Marks
9(a)	QR/Quick response	_
(q) ₆	Any four from: - Read/scanned using app (on mobile device) - It is the camera that is used to scan/capture the image - The three large squares are used to define the alignment // uses alignment targets/modules - Black squares reflect less light // white squares reflect more light - The app/device processes the image - Each small square/pixel is converted to a binary value	4

	Marks
r from: Conductive layer An electrostatic/electric field is created Sensor(s) (around the screen) monitor the electrostatic field When touched (electrostatic) charge is transferred to finger Location of touch is calculated // Co-ordinates used to calculate touch	4
& `	er cated care screated care screen) monitor the electrostatic field (electrostatic) charge is transferred to finger ch is calculated // Co-ordinates used to calculate touch

Question	Answer	Marks
10(b)(i)	Any two from: - Gloves are not conductive // Gloves are an insulator - Glove current/charge from finger / body / person - Stop the electrostatic field being disturbed/changed	2
10(b)(ii)	Any two from e.g. (1 mark for method, 1 for expansion): — She could use a (conductive) stylus — this will allow the charge to be charged/disturbed — She could use capacitive gloves — this will allow the charge to be charged/disturbed — She could use a natural language interface/voice operated interface — she could give vocal commands to the device	8

Question	Answer	Marks
1-	Any six from: - Suitable sensor (motion/infra-red) - Data converted (from analogue) to digital (using ADC) - Data sent to microprocessor - Data is compared to stored value/range if data matches/out of range data security light turned on waits for suitable period/until no motion detected light turned off - Continuous loop/process	ဖ

Question	Answer	Marks
12(a)(i)	Encryption	1

Question	Answer	Marks
12(a)(ii)	Any five from: — Her personal details before encryption is the <u>plain text</u> — Her personal details is encrypted using an encryption <u>algorithm</u> — The plain text/her personal details is encrypted using a <u>key</u> — The plain text/her personal details is encrypted using a <u>key</u> — The encrypted text is <u>cypher/cipher text</u> — The key is transmitted separately (from the text) — The <u>key</u> is used to decrypt the cypher text (after transmission)	ro
12(b)	Any three from a single error method: Checksum Calculation carried out on data (checksum/calculated) value sent with data recalculated after transmission and compared to original If they do not match an error is present ARQ Value sent with data to acknowledge all data is received Acknowledgement sent back to say all data is received	n
	 If no acknowledgement is received in a time frame an error in transmission detected / data automatically resent. 	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/13
Paper 1 May/June 2018

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\mathsf{IGCSE}^{\intercal \mathsf{M}} \text{ is a registered trademark}.$

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

0478/13

Generic Marking Principles

specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
 - marks are awarded when candidates clearly demonstrate what they know and can do
 - marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Page 3 of 12

Question	Ar	Answer	Marks
~	One mark per each sensor (sensors must be different):		2
	Application	Sensor	
	Weighing a baby in a hospital	Pressure	
	Turning off a kettle when it boils	Temperature	
	Controlling an automatic door	Infrared / Light / Pressure	
	Monitoring the air quality in an aeroplane	Oxygen / Gas / Humidity	
	Counting cars crossing a bridge	Pressure / Infrared / Magnetic	

Marks	2				
Answer	Application	A telephone that can receive and transmit audio signals simultaneously.	A two-way radio (walkie talkie) that can receive and transmit messages, but not at the same time.	A microphone that transmits data to a MIDI system.	
	Term	Simplex	Duplex	Half-duplex	Three correct lines = 2 marks
Question	2				

Question	Answer	Marks
ო	2 marks per issue from:	9
	Phishing — Legitimate looking emails sent to use — When user clicks on attachment / link sent to fraudulent website — Whed to reveal/designed to steal sensitive information	
	Pharming - Malicious code loaded on user hard drive - Will redirect URL requests to fraudulent website - Asked to reveal/designed to steal sensitive information	
	Spam — Junk / unwanted email — Sent to large numbers of people — Used for advertising / spreading malware — Fills up mail boxes	

Question			Answer	Marks
4(a)(i)	Received Byte	Transmitted correctly (<)	Transmitted incorrectly (<)	4
	10001011		`	
	10101110	`		
	01011101	`		
	00100101	>		
4(a)(ii)	One from: - ARQ - Check Sum			_

Question	Answer	Marks
4(b)(i)	Multiple bits / byte(s) sent at the same timeUsing multiple wires	7
4(b)(ii)	Any one from e.g.: - Integrated Circuits - Any appropriate CPU buses - Any suitable device connection that uses parallel	-
4(b)(iii)	Two from: — Bits remain synchronised — reducing data errors — Only single wire is required — more cost effective to install/manufacture	7
4(c)(i)	 Encrypted text is meaningless Need the key to decrypt the text 	7
4(c)(ii)	 Increase length / more bits used for key will generate more possibilities for key / less chance of decryption by brute force method 	7

Question	Answer	Marks
5(a)	(0)1101011	_
5(b)	000 100101100 1 mark for three leading zeros, 1 mark for correct binary number	2
5(c)	B3 1 mark for each correct character	2
6(a)	Any two from: — A signal sent from a device / software — Requests processor time // Processor stops to service interrupt — Interrupts have different priorities	2

Question	Answer	Marks
(p)	Any three from e.g.: - Keyboard - Printer - Mouse	ო
	Any three from e.g.: - Keyboard - Printer - Mouse	က

Question	Answer	Marks
7(a)	Any three from: - Does not require peripherals (mouse or keyboard) - Number of possible inputs limited / menu driven interface - Less chance of input error - Resistant to weather	ო
7(b)	 Uses two/multiple layers When top layer touched / pushed two layers make contact Circuit is completed when layers touch Point of contact is determined/calculated 	4

Question					Answer	Marks
	⋖	В	S	×		4
	0	0	0	1		
	0	0	_	7		
	0	-	0	0		
	0	-	_	-		
	-	0	0	0		
	-	0	_	-		
	_	_	0	-		
	1	1	1	1		
`	All 8 for 4	marks				
	6 or 7 for 3 marks	3 marks				
	4 or 5 for .	2 marks				
	2 or 3 for	1 mark				

Question	Answer	Marks
8(b)	_	ဖ
	×	
	0	
	1 mark per gate with correct inputs	

Question				Answer	Marks
6	Statement	Assembler (<)	Compiler (<)	Interpreter (<)	က
	Translates high- level language into machine code		>	>	
	Provides error diagnostics	>	>	>	
	Translates whole program to object code in one operation	`	>		
	Translates and executes one line of code at a time			>	
	1 mark for each correct column	ct column			

	Marks
from: Program counter (PC) holds address / location of the instruction The address held in PC is sent to MAR Address is sent using address bus PC is incremented The instruction is sent from address in memory to MDR Instruction is transferred using the data bus	ဖ
PC is incremented The instruction is sent I Instruction is transferre Instruction sent to CIR	from address in memory to MDR ed using the data bus

Question	Answer	Marks
11	Any three from:	3
	 Optical media 	
	- Non-volatile	
	- Offline	
	 Single (continuous spiral) track 	
	 Data stored using lands / pits 	
	- Read using (red) lasers	
	 Can be read only (R) or read write (RW) 	

Question	Answer	Marks
12	$256 \times 200 = 51200$	က
	$\frac{51200 \times 16}{8} = 102400$	
	$\frac{102400}{1024} = 100$	
	Answer 100 kB	
	One mark for correct answer and two marks for correct calculations.	

Question	Answer	Marks
13	Any six from e.g.: - Provide access to the internet / dial up / broadband - Usually charge a monthly fee - Monitor usage - Give users an IP address - Determine bandwidth - Supports domain names - Provide security services - Provide web hosting facilities - Provide access to Email / Mailbox - Provides online data storage	ဖ

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

Paper 2

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\mathsf{IGCSE}^{\intercal \mathsf{M}} \text{ is a registered trademark}.$

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

PUBLISHED Generic Marking Principles

specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
 - marks are awarded when candidates clearly demonstrate what they know and can do
 - marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

Page 2 of 11

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Page 3 of 11

Question	Answer	Marks
	Section A	
1(a)(i)	Many correct answers, they must be meaningful. The following is an example only:	4
	One mark per bullet point	
	ı structure ıe ı type	
	Use to store processors currently available	
1(a)(ii)	One mark per bullet point	4
	 Data structure given (1) Data type (1) Sample data (1) More than one data structure described (1) 	
	Many correct answers, they must be meaningful. The following is an example only:	
	e.g. Three arrays containing string data with name, address and phone number – John Smith, Cambridge, 01223 123456	
1(b)	One mark for method, one mark for an extension or reason.	7
	Many correct answers, an example is given.	
	Use a previously stored number//generates/uses an initial value (1) Update it (by 1) every time an estimate is made (1)	

Question	Answer	Marks
1(c)	Any five from:	2
	1 Initialise (stock level) flag	
	2 Check stock level for the chosen processor type	
	3 Only check RAM if processor available // Only check processor if RAM available	
	4 Check stock level for the chosen type of RAM	
	5 Finish process if problem with (RAM/Processor) stock levels	
	6 Identify out of stock (processor/RAM)//Set flag to appropriate value	
	7 Identify stock level OK//Set flag to appropriate value	

Question	Answer	Marks
1(c)	Sample answer:	
	foundProc ← FALSE	
	foundProc AND count <=3 DO	
	IF processor(estNo) = proc(count) AND stProc(count) > 0 THEN	
	foundProc ← TRUE	
	F.V.D.Y. + 4.:->>	
	+ couiic +	
	IF foundProc	
	THEN FOLLOW TAILSE	
	IF RAM(estNO) = RAM1 AND stRAM1 >0	
	THEN	
	← TRUE	
	$\mathtt{stRAM1} \; \leftarrow \; \mathtt{stRAM1} \; - \; 1$	
	IF RAM(estno) = RAM2 AND stRAM2 >0	
	NEHL	
	$\mathtt{stRAM2} \; \leftarrow \; \mathtt{stRAM2} \; - \; 1$	
	ENDIF	
	IF NOT foundProc	
	CIMPIIT "Processor oilt of stock"	
	l)	
	$stProc(count) \leftarrow stProc(count) - 1$	
	ENDIF	
	IF NOT foundRAM	
	THEN	
	OUTPUT "RAM out of stock"	
	FINDLE	

Page 6 of 11

© UCLES 2018

Question	Answer	Marks
1(d)	One mark for each correct point (max 5):	2
	Explanation	
	1 How the number of <u>orders</u> was calculated	
	2 Deal with the case where the estimate has not been turned into an order	
	3 Calculating the total number of each component sold	
	4 Details of method actually used to calculate numbers of components	
	5 How the total value of all the <u>orders</u> was calculated	
	6 Display summary	
	7 Display complete summary of number of orders, total number of components and total value of orders	
	Programming statements can be used but must be explained to gain credit.	

Question	Answer	Marks
	Section B	
2(a)	Any six from: 1 Initialisation of counters for positive numbers and zeros 2 Appropriate loop for 1000 iterations 3 Input number inside loop 4 Test for positive numbers 5 Update positive number counter 6 Test for zeros 7 Update zero counter 8 Output counters with appropriate messages outside loop zero + 0 posCount + 0 posCount + 1 INPUT number > 0 THEN posCount + 1 ENDIF IF number > 0 THEN posCount + 1 ENDIF IF number > 0 THEN zero + zero + 1 ENDIF IF number > 0 THEN zero + zero + 1 ENDIF IF number = 0 THEN zero + zero + 1 ENDIF OUTPUT zero, " zeros"	ဖ
2(b)	Reduce the number of iterations to a manageable amount // Simulate the input (e.g. random generation)	_

Question							Answer					Marks	(0
3(a)	Dić	Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT		2
		2	7	0	_	2	3	4	9	44	GTIN-8		
											57012346		
	Δį	Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	ООТРОТ		
		4	3	7	0	2	8	1	0	30	GTIN-8		
											43102310		
	One ma	ark for d ark for b ark for e ark for b	One mark for data entry – boone mark for both Digit(8) One mark for each Sum (maone mark for both OUTPUT	One mark for data entry – both sets of digits One mark for both Digit(8) One mark for each Sum (max Two) One mark for both OUTPUT		1–7							
3(b)	Any three from 1 Change firs 2 Check that 3 if equal	ee from ange fir: eck that f equal otherwis	st loop to the input output ch	three from Change first loop to 8 iterations Check that the input Digit (8) is equal if equal output check digit correct otherwise output check digit incorrect	is equal rrect incorrect	to the calc	to the calculated Digit (8)	git (8)					ო
	ŏ												
	2 Che 2 2 2 4 3 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ange fir: : all 8 di; f MOD (8	st loop to gits throu sum, 10)	Change first loop to 8 iterations Put all 8 digits through the algorithm to c if MOD (Sum, 10) is equal to zero, che otherwise output check digit incorrect	Change first loop to 8 iterations Put all 8 digits through the algorithm to calculate Sum if MOD (Sum, 10) is equal to zero, check digit correct otherwise output check digit incorrect	alculate S∟ ck digit cor	ım rrect						

Question	Answer	Marks
4	One mark for each (max three) 10.00 boundary/erroneous data // the price should be rejected // value is out of range 9.99 boundary/extreme/normal data // the prices should be accepted // value is within normal range ten erroneous/abnormal data // input should be rejected // value is wrong type	က

Question	Answer	Marks
5	There are many possible answers. e.g.:	4
	Totalling is used to sum a list of numbers (1) Counting is used to find how many numbers/items there are in a list. (1) Totalling example (1) e.g. Total = Total + Number Counting example (1) e.g. Counter = Counter + 1	

Question	Answer	Marks
	Fields 5 Records 8	2
	Any two from: Length check Type check Presence check Format check	2

Question			Answer			Marks
(c)	Field: Type	Туре	Sold Out	Date	Title	4
	Table:	Table: PERFORMANCE	PERFORMANCE	PERFORMANCE	PERFORMANCE	
	Sort:					
	Show:			Σ	>	
	Criteria:	Criteria: Like "Jazz"	False			
	:JO					
	One mark pe	One mark per correct column.				

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/22
Paper 2 May/June 2018

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\mathsf{IGCSE}^{\intercal} \mathsf{m} \text{ is a registered trademark}.$

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Cambridge IGCSE – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

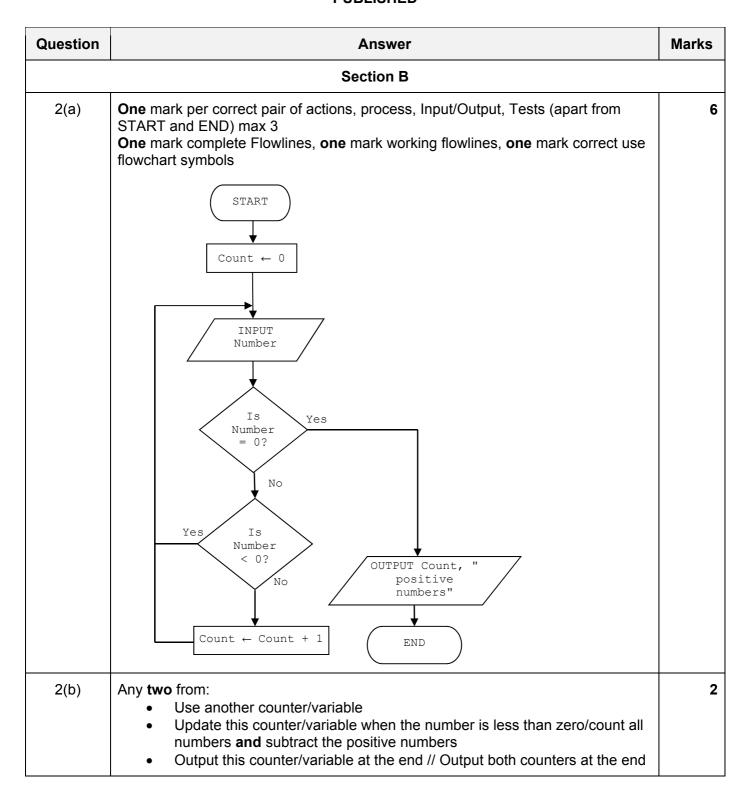
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.


© UCLES 2018 Page 2 of 7

Question	Answer	Marks
	Section A	
1(a)(i)	Variable name, data type and use one mark, max two Several correct answers, the names chosen must be meaningful. Variables must relate to task 2	2
	Example Name totalMilk Data type integer/real Use to store the total volume of the milk for the week (to the nearest whole litre) (1) Name weeklyAverage Data type integer/real Use to store the average yield per week (1)	
1(a)(ii)	One mark per bullet point. Data structure(s) given (1) Data type (1) Sample data (1) More than one data structure described (1) Example A real array for each milking and an array of strings for the identity codes. There would be 14 arrays for the milking e.g. mondayMorning, mondayEvening Sample data for a cow could be 123, 23.5, 22.7	4
1(b)	Entering/selecting the identity code (1) method to ensure it is not a duplicate (1) Example Enter new identity code number Check if already in the list of code numbers	2

© UCLES 2018 Page 3 of 7

Question	Answer	Marks
1(c)	Any five from: 1 Initialisation for total weekly volume 2 loop control 3 calculation of running total for yield 4 calculation of average yield 5 output total and average yield per week with message outside loop 6 value(s) rounded	5
	Sample answer total ← 0 FOR counter ← 1 TO numCows total ← total + mondayMorning(counter) total ← total + tuesdayMorning(counter) total ← total + tuesdayEvening (counter) total ← total + tuesdayEvening (counter) total ← total + wednesdayMorning(counter) total ← total + wednesdayEvening (counter) total ← total + thursdayMorning(counter) total ← total + thursdayEvening (counter) total ← total + fridayMorning(counter) total ← total + fridayEvening (counter) total ← total + saturdayMorning(counter) total ← total + saturdayMorning(counter) total ← total + saturdayEvening (counter) total ← total + sundayMorning(counter) total ← total + sundayMorning(counter) NEXT counter Average ← ROUND(total/numCows) OUTPUT "Total volume of milk for week ", ROUND(total) OUTPUT "Average weekly yield ", average	
1(d)(i)	Explanation Any five from: 1 Check each cow 2 Initialise day counter to zero 3 Check every day of the week 4 If daily yield is less than 12 5 add one to day counter 6 If day counter >= 4 7 identify/output identity code number(s)	5
1(d)(ii)	 Add new storage space to store code numbers for example new array/table/list Add extra code to store these values if the condition was met 	2

© UCLES 2018 Page 4 of 7

© UCLES 2018 Page 5 of 7

Question			A	nswer		Marks
3(a)	Number	1 Number2	Sign	Answer	OUTPUT	3
	5	7	+	12	12	
	6	2	-	4	4	
	4	3	*	12	12	
	7	8	?	0		
	0	0	1	(0)		
		1 mark	\rightarrow	← 1 mark →	← 1 mark →	
3(b)	'-': Answe' '*': Answe' '/': Answe	correct assignr	nents (1 + N	umber2 umber2 umber2		3

Question	Answer	Marks
4(a)	Max 4 in total Any 3 from: To ensure no changes are made on input / accuracy of transcription Because the details do not have fixed, values or lengths to validate Because there is no clear set of rules that can be used for validation Any 3 from: The programmer could ask the contributor to type in each detail twice and then check that both values are equal If they are not equal then the input should be rejected The programmer could ask the contributor to check the details on the screen and confirm that they are correct / same as the original or change them	4
4(b)	One mark for email and one mark for password Email – check for @ / format check / no spaces /valid characters // presence check // length check (not more than 254 characters) // uniqueness check Password – length check / numbers and letters etc. // uniqueness check not been used before // presence check	2

© UCLES 2018 Page 6 of 7

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks
5	One mark per value and reason, max 3 Example 1.00 – boundary rejected//rejected (underweight) // out of range(1) 1.02 – normal // valid // accepted weight in range (1) 1.10 – abnormal // erroneous // invalid // rejected (overweight) (1)	3

Question		Answer				Marks
6(a)	Fields	5				1
6(b)	One mark description of new code that will allow more than 1000 values One mark for example matching candidate's description Example Use a new character instead of N TT345				2	
6(c)	Field: Table: Sort: Show: Criteria:	At Risk TREES	Age in Years TREES □ >100	Type TREES	Map Position TREES	4
	or:	er correct column				

© UCLES 2018 Page 7 of 7

Maximum Mark: 50

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE0478/23Paper 2May/June 2018MARK SCHEME400/2018

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\mathsf{IGCSE}^{\intercal} \mathsf{m} \text{ is a registered trademark}.$

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Cambridge IGCSE – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 8

Question	Answer					
	Section A					
1(a)(i)	One mark for any meaningful array name related to Task 1 \times 2 e.g.	4				
	Tickets EntryTime					
	One mark for correct data type AND use related to Task 1×2 e.g.					
	integer to store the ticket numbers real to store the entry times					
1(a)(ii)	One mark for any meaningful name for a constant AND value related to Task 3 × 2 e.g.	4				
	MaxTime 8 MaxFine 100					
	One mark for correct use related to Task 3×2 e.g.					
	to store the maximum number of hours allowed in the car parkto store the current value of the fine for staying too long (in \$)					

© UCLES 2018 Page 3 of 8

Question	Answer	Marks
1(b)	Any six from: • Initialisation of ticket numbers and arrays • Loop for day's transactions • Check for entry • Output of free spaces before entry • Suitable input prompts to select on entry • Relevant Inputs (to get ticket and to input time) • Recording of entry time and ticket number in arrays • Generate next ticket number • Update and display number of car park spaces available after entry Ticket_Number ← 1 //This number would not reset each day Ticket_Array[1:100] Entry_Time[1:100] Spaces ← 100 Count ← 1 //This number would reset each day WHILE Count > 1 DO OUTPUT "Available Spaces" Spaces INPUT "Press enter to get ticket", Entry OUTPUT "Next Ticket Number", Ticket_Number INPUT "Current time", Current_Time Ticket_Array[Count] ← Ticket_Number Entry_Time[Count] ← Current_Time Ticket_Number ← Ticket_Number + 1 Spaces ← Spaces - 1 Count ← Count + 1 ENDWHILE	6
1(c)	 Any four from: Explanation of how the checking of the length of stay was done Correct comparison to check length of stay against maximum Explanation of how the extra charge is calculated Correct calculation to work out the regular parking charge Explanation of suitable output to show parking charge and extra charge if appropriate 	4
1(d)	One mark for each correct test data item and related reason for Task 1 (Answers MUST relate to pre-release task) e.g. Test data: -102 Reason: To check that negative values for ticket numbers are rejected Test data: 85 Reason: To check that normal ticket number data is accepted	2

© UCLES 2018 Page 4 of 8

Question	Answer					
	Section B					
2(a)	One mark for description one mark for example e.g.	2				
	To test if the data entered is possible / reasonable A range check tests that data entered fits within specified values.					
	Allow any correct validation check as an example					
2(b)	One mark for description one mark for example e.g.	2				
	To test if the data input is the same as the data that was intended to be input					
	A double entry check expects each item of data to be entered twice and compares both entries to check they are the same.					
	Allow any correct verification check as an example					

Question	Answer	Marks
3	One mark for each correct answer	4
	<pre>Counter = 0 FOR Count = 1 TO 30 Total = Total + Number NEXT Count</pre>	

© UCLES 2018 Page 5 of 8

Question	Answer	Marks
4(a)	Any two from: Expects a number to be input Checks if the number is greater than 100 Outputs the result of the test Specific output example	2
4(b)(i)	One mark for correct answer e.g. Use a (condition controlled) loop	1
4(b)(ii)	One mark for each point Initialisation of Number variable Correct loop statements Correct INPUT and OUTPUT e.g. INPUT Number WHILE Number > 100 DO OUTPUT "The number is too large" INPUT Number ENDWHILE OUTPUT "The number is acceptable" or INPUT Number REPEAT IF Number > 100 THEN OUTPUT "The number is too large" ENDIF INPUT Number UNTIL Number UNTIL Number <= 100 OUTPUT "The number is acceptable"	3

© UCLES 2018 Page 6 of 8

Question	Answer				Marks
5(a)	Max	Counter	Num	OUTPUT	3
	-1000.00	0	6.30		
	6.30	1	18.62		
	18.62	2	50.01		
	50.01	3	3.13		
	50.01	4	2.05		
	50.01	5	50.10		
	50.10	6	40.35		
	50.10	7	30.69		
	50.10	8	0.85		
	50.10	9	17.30		
	50.10	10		50.10	
	← 1 mark -	→ ← 1 m	ark -	→ 1 mark →	
5(b)	One mark for each	correct change (ma	ax two)		2
		ange the initializati very high number	on value of the c	current 'Max' variable to	
	Box 4 Ch	ange the inequality	from > to <		
	Boxes 2, 4, 5, 8 Ch	ange the Max varia	able to something	g more suitable e.g. Mi	n

Question	Answer			
6(a)	One mark for correct answer	1		
	20			
6(b)(i)	One mark for correct answer			
	CatNo			
6(b)(ii)	One mark for correct answer	1		
	It is a unique identifier			

© UCLES 2018 Page 7 of 8

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer				Marks			
6(c)	One mark for every two correct data types						2	
	Field	d	Data Type					
	Cath	No	Text					
	Title		Text					
	Gen	ire 1	Text					
	Stre	am	Boolean / Tex	t				
6(d)	One mark f	or each cor	rect row					2
			watch Yes		Yes No			
	Accept if dr	awn in a tal	ole, but don't a	llow any pund	ctuation			
6(e)	Field:	CatNo	Title	Genre 1	Genre 2	Stream		4
	Table:	2018MOV	2018MOV	2018MOV	2018MOV	2018MO	V	
	Sort:		Ascending					
	Show:	V	Ø					
	Criteria:			="Sci-Fi"		Yes		
	or:				="Sci-Fi"	Yes		
		← 1	mark →	← 1 mark →	• ← 1 mark →	← 1 mark	< →	
	One mark p	per complet	ely correct colu	ımn / group c	of columns as	shown.		

© UCLES 2018 Page 8 of 8

Cambridge International Examinations

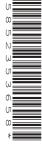
Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/21

Paper 2 Problem-solving and Programming

May/June 2018


PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by **writing** and testing a program or programs.

A computer shop will build a computer from components to meet a customer's requirements. For each request for a computer to be built, an estimate of the cost is produced. The component stock level is checked; if all the components are in stock, a firm order to build the computer can be placed. A program is required to work out the cost of the computer, update the stock levels and provide a daily summary of orders for the shop owner.

Write and test a program or programs for the computer shop owner.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Produce an estimate.

Write a program for TASK 1 to calculate the cost of building a computer using these components:

Component	Choices	Prices in \$
Processor	p3 / p5 / p7	100 / 120 / 200
RAM	16 GB / 32 GB	75 / 150
Storage	1TB/2TB	50 / 100
Screen	19" / 23"	65 / 120
Case	Mini Tower / Midi Tower	40 / 70
USB ports	2 ports / 4 ports	10 / 20

The customer makes a choice for each component and an estimate is produced. The estimate must show a unique estimate number, the components chosen and the price of each component. The estimate must also show the total cost of the computer, which is calculated as the sum of the cost of the components chosen plus 20%.

TASK 2 - Place an order.

Using your estimate from TASK 1, check if the components required are in stock. If all the components are in stock then update the stock levels. Add the unique estimate number to the list of order numbers. Add the customer's details and today's date to the estimate details to finalise the order. Print two copies of the order, one for the customer and one for the shop.

TASK 3 –Summarise the day's orders.

Extend TASK 2 to provide an end of day summary showing the number of orders made, the total number of each component sold and the value of the orders.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/22

Paper 2 Problem-solving and Programming

May/June 2018

PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by **writing** and testing a program or programs.

A farmer records the milk production of a herd of cows. Every cow has a unique 3-digit identity code. Each cow can be milked twice a day, seven days a week. The volume of milk from each cow is recorded in litres correct to one decimal place (yield) every time the cow is milked. The size of the herd is fixed. At the end of the week the total and the average yield for each cow for that week is calculated.

The farmer identifies the cow that has produced the most milk that week. The farmer also identifies any cows that have produced less than 12 litres of milk on four or more days that week.

A program is required to record the yield for each cow every time it is milked, calculate the total weekly volume of milk for the herd and the average yield per cow in a week. The program must also identify the cow with the best yield that week and identify any cows with a yield of less than 12 litres of milk for four or more days that week.

Write and test a program or programs for the farmer.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Record the yield.

Write a program for TASK 1 to record the milk yields for a week. The program records and stores the identity code number and the yield every time a cow is milked.

TASK 2 – Calculate the statistics.

Using your recorded data from TASK 1, calculate and display the total weekly volume of milk for the herd to the nearest whole litre. Calculate and display the average yield per cow in a week to the nearest whole litre.

TASK 3 – Identify the most productive cow and cows that are producing a low volume of milk.

Extend TASK 2 to identify and display the identity code number and weekly yield of the cow that has produced the most milk. Also identify and display the identity code numbers of any cows with a yield of less than 12 litres of milk for four days or more in the week.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

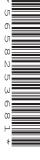
Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE

0478/23

Paper 2 Problem-solving and Programming

May/June 2018


PRE-RELEASE MATERIAL

No Additional Materials are required.

This material should be given to the relevant teachers and candidates as soon as it has been received at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the practical programming tasks using their chosen high-level, procedural programming language.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 2 printed pages.

In preparation for the examination candidates should attempt the following practical tasks by **writing** and testing a program or programs.

A car park has space for 100 cars and a barrier entrance and exit system. There is a display at the entrance to show how many spaces are empty. Cars are issued a ticket with a unique number on entry and the time of issue is stored. The car park charges \$1.50 per hour and the fee is paid at a machine before leaving the car park. At the machine, the ticket number and departure time are entered; the fee is calculated by the machine and the amount due is paid by the ticket holder. Cars cannot stay overnight; the system is reset at midnight.

Write and test a program or programs for the car park manager.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these **three** tasks. Each task must be fully tested.

TASK 1 – Operating the car park.

The system is reset at midnight every day.

Set up a system using arrays and with suitable prompts that will carry out the following as cars enter or leave the car park:

On Entry:

- · display the number of empty car park spaces
- issue the next available ticket number
- store the current time and the ticket number
- display the updated number of empty car park spaces.

On Exit:

- input a ticket number and departure time
- output the amount of time the car stayed at the car park
- delete the ticket number from the array
- display the updated number of empty car park spaces.

TASK 2 – Working out the cost and daily takings.

Amend the program so that it will calculate the amount to be paid using a charge of \$1.50 per hour, or part of an hour (i.e. any amount of time into the next hour is charged for a whole hour). The amount to be paid is displayed and is added to a running total for the day, before the ticket number is deleted from the array. At the end of the day, the following information is displayed:

- total daily takings
- number of cars that have used the car park
- average charge per car
- average length of stay per car.

TASK 3 – Introducing parking restrictions.

The car park manager decides to restrict the length of stay to a maximum of eight hours, and will charge an extra \$100 if a car overstays. Modify your program to implement this change and ensure the driver is aware of this extra charge. Output the number of cars that have overstayed in a day.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE				04	78/11
CENTRE NUMBER			CANDIDATE NUMBER		
CANDIDATE NAME					

Paper 1 Theory

May/June 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

Any businesses described in this paper are entirely fictitious.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Jane answers an examination question about computers and data correctly. **Six** different words or numbers have been removed from her answer.

2 10 16

analogue

Complete the sentences in Jane's answer, using the list given. Not all items in the list need to be used.

	binarydenarydigitalhexadecimal	
	As humans, we process data, but a computer cannot	
	process this type of data. For a computer to be able to process data it needs to be	
	converted to data.	
	As humans, we mostly use a number system;	
	this is a base number system.	
	Computers use a number system;	
	this is a base number system.	[6]
2	Dheeraj identifies three hexadecimal numbers.	
	Write the denary number for each of the three hexadecimal numbers:	
	2A	
	101	
	21E	
		[3]
	Working Space	

© UCLES 2018 0478/11/M/J/18

3 The three binary numbers in the registers A, B and C have been transmitted from one computer to another.

	Parity bit							
Register A	1	0	0	1	1	0	0	0
Register B	0	1	1	0	0	1	1	1
Register C	1	0	0	1	1	0	0	1

One binary number has been transmitted incorrectly. This is identified through the use of a parity bit.

Identify which register contains the binary number that has been transmitted **incorrectly**. Explain the reason for your choice.

The binary number that has been transmitted incorrectly is in Register
Explanation
[4]

Mic	hele wants to email a file to Elsa. The file is too large so it must be compressed.	
(a)	Name two types of compression that Michele could use.	
	Compression type 1	
	Compression type 2	
		[2]
(b)	The file Michele is sending contains the source code for a large computer program.	
	Identify which type of compression would be most suitable for Michele to use.	
	Explain your choice.	
	Compression type	
	Explanation	
		 [4]

© UCLES 2018 0478/11/M/J/18

5 Six components of the Von Neumann model for a computer system and six descriptions are given.

Draw a line to match each component to the most suitable description.

Component

Immediate access store (IAS)

Register

Control unit (CU)

Accumulator (ACC)

Arithmetic logic unit (ALU)

Bus

Description

Holds data and instructions when they are loaded from main memory and are waiting to be processed.

Holds data temporarily that is currently being used in a calculation.

Holds data or instructions temporarily when they are being processed.

Manages the flow of data and interaction between the components of the processor.

Carries out the calculations on data.

Pathway for transmitting data and instructions.

[5]

6 Consider the logic statement:

X = 1 if ((A is NOT 1 OR B is 1) NOR C is 1) NAND ((A is 1 AND C is 1) NOR B is 1)

(a) Draw a logic circuit to represent the given logic statement.

(b) Complete the truth table for the given logic statement.

			Working space	V
Α	В	С		Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

© UCLES 2018 0478/11/M/J/18

programs.
Describe how a compiler and an interpreter translates a computer program.
Compiler
Interpreter
[6]

8

(a)	Describe how the barcode scanner reads the barcode.	
		[4
b)	Explain how the barcode system could help the supermarket manage its stock.	
		o
c)	An infrared touch screen is used to view and navigate the supermarket stock system.	[3]
-,	Explain how the infrared touch screen detects a user's touch.	

© UCLES 2018 0478/11/M/J/18

(d)	The supermarket uses secondary storage and off-line storage to store data about its s	
	Explain what is meant by secondary storage and off-line storage.	
	Secondary storage	
	Off-line storage	
		[4]
A b	business wants to use a biometric security system to control entry to the office.	
	a quaterr will use a hierartic device and a microprocessor	
	e system will use a biometric device and a microprocessor.	
The	plain how the biometric security system will make use of the biometric device a	.nd the
The		nd the
The	plain how the biometric security system will make use of the biometric device a	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The Exp	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The Exp	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The Exp	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The Exp	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	
The	plain how the biometric security system will make use of the biometric device a croprocessor to control entry to the office.	

10 RockICT is a music business that has a website to allow customers to view and buy the products

it sells.

The	e web	osite consists of web pages.	
(a)	Des	scribe what is meant by HTML structure and presentation for a web page.	
(b)		LIDI for the music company's website is:	[4]
(D)	HIE	URL for the music company's website is:	
		https://www.rockict.net/index.htm	
		Part 1 Part 2	
	(i)	Identify what Part 1 and Part 2 represent in this URL.	
		Part 1	
		Part 2	
			[2]
	(ii)	Describe what is meant by https .	[2]
	(ii)		[2]
	(ii)		
	(ii)		
	(ii)		

(c)	When a customer enters the website, a message is displayed:
	"RockICT makes use of cookies. By continuing to browse you are agreeing to our use of cookies."
	Explain why the music company uses cookies.
	[2]
(d)	The music company is concerned about the security of its website.
	The company uses a proxy server as part of its security system.
	Describe the role of a proxy server in the security system.
	[4]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SO	CIENCE		0478/12
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 1 Theory

May/June 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

Any businesses described in this paper are entirely fictitious.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

			2							
1	Diffe	Different units of data can be used to represent the size of a file, as it changes in size.								
	Fill	n the missing units of data,	using the list given:							
	•	byte gigabyte (GB) megabyte (MB) nibble								
	The	units of data increase in siz	e from smallest to largest.							
		Smallest	bit							
			kilobyte (kB)							
		↓ Largest	terabyte (TB)							
			[4]							
2	(a)	as digital photo files on her	es of her holiday with her camera. The captured images are stored camera. mages are converted to digital photo files.							

(b)	Nancy want	s to email t	he pho	tos to	Na	adia										
	Many of the possible.	photos are	e very l	arge	file	s, s	o Na	ancy	nee	eds to	redu	uce th	neir f	ile siz	e as r	nuch as
	Identify which	ch type of	compre	ession	ı w	oulo	d be	mo	st s	uitab	le for	Nan	icy to	use.	Expla	ain your
	Compressio	n type														
	Explanation															
																[4]
A st	opwatch use	s six digits	to disp	lay ho	our	s, m	inute	es a	and s	secon	ds.					
	stopwatch is	_	-	Í		,										
	,										1					
			0	2	•	3	1	•	5	8						
			Но	urs		Min	utes	3	Seco	onds						
An 8	8-bit register	is used to	store ea	ach p	air	of d	igits									
(a)	Write the 8-I	bit binary n	umbers	that	are	cur	rentl	ly st	orec	d for tl	ne H o	ours,	Min	utes a	and S e	econds.
	Hours															
	riours															
	Minutes															
	Seconds															
																[3]

3

(b) The stopwatch is started again and then stopped.

When the watch is stopped, the 8-bit binary registers show:

Hours	0	0	0	0	0	1	0	1
Minutes	0	0	0	1	1	0	1	0
Seconds	0	0	1	1	0	1	1	1

Write the denary values that will now be shown on the stopwatch.

[3]

4 Jafar is using the Internet when he gets the message:

"D03, page is not available"

Jafar remembers that hexadecimal is often used to represent binary values in error codes.

Convert the hexadecimal number in the error message into 12-bit binary.

[3]

5 The three binary numbers in the registers X, Y and Z have been transmitted from one computer to another.

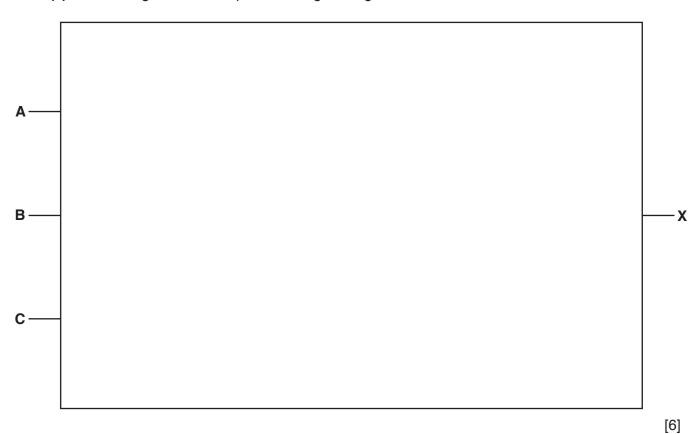
								Parity bit
Register X	1	0	0	1	0	0	1	0
Register Y	1	1	1	0	0	1	1	1
Register Z	1	1	1	0	1	0	0	1

Only **one** binary number has been transmitted correctly. This is identified through the use of a parity bit.

Identify which register contains the binary number that has been transmitted **correctly**. Explain the reason for your choice.

The binary number that has been transmitted correctly is in Register
Explanation
[4]

	6
K	celvin correctly answers an examination question about the Von Neumann model.
E	ight different terms have been removed from his answer.
C	Complete the sentences in Kelvin's answer, using the list given.
Ν	lot all items in the list need to be used.
•	accumulator (ACC)
•	address bus
•	arithmetic logic unit (ALU)
•	control unit (CU)
•	data bus
•	executed
•	fetches
•	immediate access store (IAS)
•	memory address register (MAR)
•	memory data register (MDR)
•	program counter (PC)
•	saved
•	transmits
Т	he central processing unit (CPU)
tr	ne data and instructions needed and stores them in the
	to wait to be processed.
Т	he
ir	nstruction. This address is sent to the
Τ	he data from this address is sent to the
T	he instruction can then be decoded and
Α	any calculations that are carried out on the data are done by the


[8]

held in a register called the

7 Consider the logic statement:

X = 1 if ((A is 1 AND B is NOT 1) NAND C is 1) XOR ((A is 1 AND C is 1) OR B is 1)

(a) Draw a logic circuit to represent the given logic statement.

(b) Complete the truth table for the given logic statement.

A	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

8	Dim	nitri is writing a computer program in a high-level language.	
	He	needs to send just the machine code for the program to his friend, electronically.	
	It is	important that the program is executed as quickly as possible.	
	lder	ntify which translator will be most suitable for Dimitri to use. Explain your choice.	
	Тур	e of translator	
	Ехр	lanation	
			[4]
9	An a	advertisement in a magazine displays this barcode:	
	(a)	Identify this type of barcode.	[4]
	(b)	Explain how the data stared in this bareads is read	[1]
	(D)	Explain how the data stored in this barcode is read.	
			[4]

10 Alexandra has a new mobile device.

It ha	as a t	ouch screen that uses capacitive technology.
(a)	Des	cribe how a capacitive touch screen registers Alexandra's touch.
		[4]
(b)	Alex	candra is wearing gloves because it is cold.
	She	presses an icon on her touch screen but her action is not registered.
	(i)	Explain why the touch screen will not register her touch.
		[2]
	(ii)	Alexandra does not want to remove her gloves.
		Explain how Alexandra could use her mobile device whilst still wearing gloves.
		[2]

11	A factory uses a security system to control a security light. The system uses a sensor and a microprocessor.
	Explain how the security system makes use of the sensor and the microprocessor to control the security light.
	[6]

12	(a)	Selr	na has some important personal information that she needs to email to her employer.
		She	wants to make sure that if the personal information is intercepted, it cannot be understood.
		(i)	State how Selma could email her personal data more securely.
			[1]
		(ii)	Describe how your chosen solution works.
			[5]
	(b)	Selr	na wants to make sure that the information received is correct.
	` ,		arity check can be used to detect errors.
		Des	cribe another error detection method that can be used to check the information received brrect.
		Erro	r detection method
		Des	cription
			[3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMPUTER S	SCIENCE		0478/13
Paper 1 Theor	ry		May/June 2018
			1 hour 45 minutes
Candidates an	swer on the Question Paper.		
No Additional N	Materials are required.		
No calculators	allowed.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

Any businesses described in this paper are entirely fictitious.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 State **five** sensors that could be used in the following applications.

Give a **different** type of sensor for each application.

Application	Sensor
Weighing a baby in a hospital	
Turning off a kettle when the water boils	
Controlling an automatic door	
Monitoring the air quality in an aeroplane	
Counting cars crossing a bridge	

[5]

2 Draw a line to connect each term to the correct application.

Term	Application
Simplex	A telephone that can receive and transmit audio signals simultaneously.
Duplex	A two-way radio (walkie-talkie) that can receive and transmit messages, but not at the same time.
Half-duplex	A microphone that transmits data to a MIDI system.

[2]

3	Three security issues that could affect users online are phishing , pharming and spam .
	Explain what is meant by each security issue.
	Phishing
	Pharming
	Spam
	[6

4	A company	transmits	data to	external	storage	at the	end of	each da	٩V.

(a)	Parity checks	can be u	sed to check	for errors	durina da	ata transmission.
(a)	I allly cliected	can be u	SEG TO CHECK		auiliu a	ala iranonnosion.

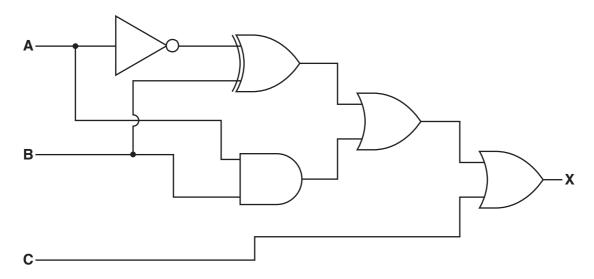
The system uses odd parity.

(i) Tick (✓) to show for each of the received bytes whether they have been **transmitted correctly** or **transmitted incorrectly**.

[4]

Received byte	Transmitted correctly (✓)	Transmitted incorrectly (√)
10001011		
10101110		
01011101		
00100101		

	(ii)	State one other method that could be used to check for transmission errors.
		[1]
(b)	Data	a can be transferred using parallel or serial data transmission.
	(i)	Describe what is meant by parallel data transmission.
		[2]
	(ii)	Give one application of parallel data transmission.
		[41]

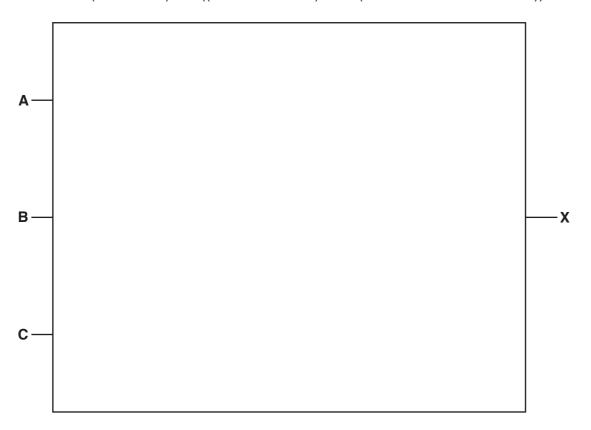

	(iii)	Explain why serial data transmission is normally used for transferring data over a long distance.
		[2]
(c)	Data	a transferred over a network is encrypted to improve data security.
	The	system uses 64-bit symmetric encryption.
	(i)	Explain how encryption improves data security.
		[2]
	(ii)	Explain one method that could be used to increase the level of security provided by the encryption.
		[2]

5	(a)	Convert the denary number 107 to binary.	
	(b)	Represent the denary number 300 as it would be stored in a 12-bit binary register.	[1]
	(0)	Convert the denary number 179 to hexadecimal.	[2]
	(0)	Convert the denary humber 175 to hexadecimal.	[2]
6	One	e of the roles of an operating system is to deal with interrupts.	
	(a)	Explain the term interrupt.	
	(b)	Identify three devices that make use of interrupts.	[2]
		Device 1 Device 2	
		Device 3	[3]

7

A train station uses large touch screens to allow passengers to search for train information and buy tickets.		
(a)	State three benefits of using a touch screen in the train station.	
	Benefit 1	
	Benefit 2	
	Benefit 3	
		 [3]
(b)	The touch screens at the station use resistive touch technology.	
	Describe how resistive touch technology works.	
	Docaribo now region to dan teermology works.	
	December new redictive teach teach molegy works.	
	Decembe new redicave teach tea	
	Decembe new redictive teach te	

8 A logic circuit is shown below.


(a) Complete the truth table for the given logic circuit.

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

(b) Draw a logic circuit corresponding to this logic statement:

X = 1 if (A is NOT 1) OR ((B is 1 OR C is 1) AND (B is NOT 1 OR A is NOT 1))

[6]

9 Three types of translators are **assemblers**, **compilers** and **interpreters**.

Tick (✓) the appropriate boxes to show which statements apply to each type of translator.

Statement	Assembler (√)	Compiler (√)	Interpreter (√)
Translates high- level language into machine code			
Provides error diagnostics			
Translates whole program to object code in one operation			
Translates and executes one line of code at a time			

[3]

Explain how an instruction is fetched in a computer based on the Von Neumann model.
[6
Identify three similarities between CDs and DVDs.
1
2
3
[3

12	An image is to be stored electronically.
	The image is 256 pixels high by 200 pixels wide with a 16-bit colour depth.
	Calculate the file size of the image. You must show all of your working.
	File sizekB
13	Describe the role of an Internet Service Provider (ISP).
	[6

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMPUTER SCIENCE

0478/21

Paper 2 Problem-solving and Programming

May/June 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

A computer shop will build a computer from components to meet a customer's requirements. For each request for a computer to be built, an estimate of the cost is produced. The component stock level is checked; if all the components are in stock, a firm order to build the computer can be placed. A program is required to work out the cost of the computer, update the stock levels and provide a daily summary of orders for the shop owner.

Write and test a program or programs for the computer shop owner.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Produce an estimate.

Write a program for TASK 1 to calculate the cost of building a computer using these components.

Component	Choices	Prices in \$	
Processor	p3 / p5 / p7	100 / 120 / 200	
RAM	16 GB / 32 GB	75 / 150	
Storage	1TB/2TB	50 / 100	
Screen	19" / 23"	65 / 120	
Case	Mini Tower / Midi Tower	40 / 70	
USB ports	2 ports / 4 ports	10 / 20	

The customer makes a choice for each component and an estimate is produced. The estimate must show a unique estimate number, the components chosen and the price of each component. The estimate must also show the total cost of the computer, which is calculated as the sum of the cost of the components chosen plus 20%.

TASK 2 – Place an order.

Using your estimate from TASK 1, check if the components required are in stock. If all the components are in stock then update the stock levels. Add the unique estimate number to the list of order numbers. Add the customer's details and today's date to the estimate details to finalise the order. Print two copies of the order, one for the customer and one for the shop.

TASK 3 – Summarise the day's orders.

Extend TASK 2 to provide an end of day summary showing the number of orders made, the total number of each component sold and the value of the orders.

1

(a)	All ۷	variables, constants and other identifiers should have meaningful names.
	(i)	You recorded information for the estimate of the cost of building a computer in Task 1 . Give a data structure that you created for Task 1 , its name, data type and use.
		Data structure
		Name
		Data type
		Use
		[4]
	(ii)	Describe the data structures that you have used in Task 2 to record the customer details. Include sample data in the description.
		[4]
(b)	Exp	olain how your program for Task 1 produces a unique estimate number.
		[2]

(c)	Write an algorithm for part of Task 2 to check that the chosen processor and chosen RAM are in stock, using either pseudocode, programming statements or a flowchart. Assume that Task 1 has been completed. Do not check the other components or produce the order.

(d)	Explain how your program completes Task 3 . Any programming statements used in y answer must be fully explained.	oui/
		[5]

Section B

2	(a)	Write an algorithm to input 1000 numbers. Count how many numbers are positive and how many numbers are zero. Then output the results. Use either pseudocode or a flowchart.

 Give mana	_	you	could	make	to	your	algorithm	to	ensure	initial	testing	is	more
	 												[1]

Question 3 starts on page 8.

3 The global trade item number (GTIN-8) barcode has seven digits and a check digit. This pseudocode algorithm inputs seven digits and calculates the eighth digit, then outputs the GTIN-8.

DIV(X,Y), finds the number of divides in division for example DIV(23,10) is 2. MOD(X,Y), finds the remainder in division for example MOD(23,10) is 3.

```
FOR Count ← 1 TO 7
    INPUT Number
    Digit(Count) ← Number

NEXT

Sum ← (Digit(1)+Digit(3)+Digit(5)+Digit(7))*3+Digit(2)+Digit(4)+Digit(6)

IF MOD(Sum,10) <> 0
    THEN Digit(8) ← DIV(Sum,10)*10 + 10 - Sum
    ELSE Digit(8) ← 0

ENDIF

OUTPUT "GTIN-8"

FOR Count ← 1 TO 8
    OUTPUT Digit(Count)

NEXT
```

(a) Complete the trace table for the input data: 5, 7, 0, 1, 2, 3, 4

Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT

Complete the trace table for the input data: 4, 3, 1, 0, 2, 3, 1

Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT

[5]

(b)	Explain how you would change the algorithm to input eight digits (seven digits and the check digit) and output if the check digit entered is correct or not.
	[3]

Question 4 starts on page 10.

as test data.			
10.00	9.99	ten	
Explain why ead	ch value was c	nosen.	
10.00			
9.99			
ten			
			nd totalling .
		the programming concepts of counting a	nd totalling .
		the programming concepts of counting a	nd totalling .
		the programming concepts of counting a	nd totalling .
		the programming concepts of counting a	nd totalling .
		the programming concepts of counting a	nd totalling .
		the programming concepts of counting a	nd totalling .
		the programming concepts of counting a	nd totalling .

6 A database table, PERFORMANCE, is used to keep a record of the performances at a local theatre.

Show Number	Туре	Title	Date	Sold Out
SN091	Comedy	An Evening at Home	01 Sept	Yes
SN102	Drama	Old Places	02 Oct	No
SN113	Jazz	Acoustic Evening	03 Nov	No
SN124	Classical	Mozart Evening	04 Dec	Yes
SN021	Classical	Bach Favourites	01 Feb	Yes
SN032	Jazz	30 Years of Jazz	02 Mar	Yes
SN043	Comedy	Street Night	03 Apr	No
SN054	Comedy	Hoot	04 May	No

(a)	State the number of	of fields and record	s in the table.		
	Fields				
	Records				[2
(b)	Give two validation	n checks that could	be performed on	the Show Number	field.
	Validation check 1				
	Validation check 2				
					[2
(0)	Llaina tha ayana by	, avananla arid viril	lo o guan, to idantii	h. iozz novformono	
(c)	Using the query-by out. Only display the	he date and the title		ry jazz performance	es that are not sold
Field:					
Table:					
Sort:					
Show:					
Criteria:					
or:					

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIC NUMBE		

COMPUTER SCIENCE

0478/22

Paper 2 Problem-solving and Programming

May/June 2018
1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

A farmer records the milk production of a herd of cows. Every cow has a unique 3-digit identity code. Each cow can be milked twice a day, seven days a week. The volume of milk from each cow is recorded in litres correct to one decimal place (yield) every time the cow is milked. The size of the herd is fixed. At the end of the week the total and the average yield for each cow for that week is calculated.

The farmer identifies the cow that has produced the most milk that week. The farmer also identifies any cows that have produced less than 12 litres of milk on four or more days that week.

A program is required to record the yield for each cow every time it is milked, calculate the total weekly volume of milk for the herd and the average yield per cow in a week. The program must also identify the cow with the best yield that week and identify any cows with a yield of less than 12 litres of milk for four or more days that week.

Write and test a program or programs for the farmer.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Record the yield.

Write a program for TASK 1 to record the milk yields for a week. The program records and stores the identity code number and the yield every time a cow is milked.

TASK 2 - Calculate the statistics.

Using your recorded data from TASK 1, calculate and display the total weekly volume of milk for the herd to the nearest whole litre. Calculate and display the average yield per cow in a week to the nearest whole litre.

TASK 3 – Identify the most productive cow and cows that are producing a low volume of milk.

Extend TASK 2 to identify and display the identity code number and weekly yield of the cow that has produced the most milk. Also identify and display the identity code numbers of any cows with a yield of less than 12 litres of milk for four days or more in the week.

(a)	All ۱	variables, constants and other identifiers should have meaningful names.	
	(i)	State the name, the data type and the use of two variables that you have used in Tas	k 2
		Variable 1 name	
		Data type	
		Use	
		Variable 2 name	
		Data type	
		Use	
	(ii)	Describe, with the aid of some sample data, the data structures that you have used record the data for the cows in Task 1 .	[2] d to
(b)	Exp	plain how your program for Task 1 ensures that each 3-digit identity code is unique.	
			[2]

f	Write an algorithm for Task 2 , using either pseudocood lowchart. Assume that Task 1 has been completed.	de, programming	statements o
٠			
٠			
٠			
•			
•			
•			
•			
•			
•			
•			

(d)	(i)	Explain how your program for Task 3 finds the cows with a daily yield of less than 12 litres of milk for four days or more in the week. Any programming statements used in your answer must be fully explained.
		[5]
	(ii)	Explain how you would extend your program for Task 3 to store the identity code number(s) of those cows with a yield of less than 12 litres of milk for four days or more in the week.
		[2]

Section B

2 (a) Draw a flowchart for an algorithm to input numbers. Reject any numbers that are negative and count how many numbers are positive. When the number zero is input, the process ends and the count of positive numbers is output.

(b)	Explain the changes you will make to your algorithm to also count the negative numbers.	
		•••
	17	21

Question 3 starts on Page 8.

3 This pseudocode algorithm inputs two non-zero numbers and a sign, and then performs the calculation shown by the sign. An input of zero for the first number terminates the process.

```
INPUT Number1, Number2, Sign
WHILE Number1 <> 0
    IF Sign = '+' THEN Answer ← Number1 + Number2 ENDIF
    IF Sign = '-' THEN Answer ← Number1 - Number2 ENDIF
    IF Sign = '*' THEN Answer ← Number1 * Number2 ENDIF
    IF Sign = '/' THEN Answer ← Number1 / Number2 ENDIF
    IF Sign <> '/' AND Sign <> '*' AND Sign <> '-' AND Sign <> '+'
        THEN Answer ← 0
    ENDIF
    IF Answer <> 0 THEN OUTPUT Answer ENDIF
    INPUT Number1, Number2, Sign
ENDWHILE
```

(a) Complete the trace table for the input data:

Number1	Number2	Sign	Answer	OUTPUT

(b)	Show how you could improve the algorithm written in pseudocode by writing an alternative type of conditional statement in pseudocode.

[3]

	rogrammer has written a routine to store the name, email address and password of a contributor website's discussion group.
(a)	The programmer has chosen to verify the name, email address and password.
	Explain why verification was chosen and describe how the programmer would verify this data.
	[4]
(b)	The programmer has also decided to validate the email address and the password.
	Describe validation checks that could be used.
	Email address
	Password
	[2]

5

this form has already been rejected.

A program checks that the weight of a basket of fruit is over 1.00 kilograms and under

1.10 kilograms. Weights are recorded to an accuracy of two decimal places and any weight not in

Give three weights as test data and for each weight state a reason for choosing it. All your reasons must be different.
Weight 1
Reason
Weight 2
Reason
Weight 3
Reason
[3]

6 A database table, TREES, is used to keep a record of the trees in a park. Each tree is given a unique number and is examined to see if it is at risk of dying. There are over 900 trees; part of the database table is shown.

Tree Number	Туре	Map Position	Age in Years	At Risk
TN091	Acacia	A7	250	Υ
TN172	Olive	C5	110	N
TN913	Cedar	B9	8	N
TN824	Banyan	A3	50	Υ
TN021	Pine	D5	560	Υ
TN532	Teak	C8	76	Υ
TN043	Yew	B1	340	N
TN354	Spruce	D4	65	N
TN731	Elm	B10	22	Υ
TN869	Oak	C9	13	N
TN954	Pine	E11	3	N

(a)	State the number o	of fields in the table							
					[1]				
,	The tree numbering system uses TN followed by three digits. The numbering system will not work if there are over 1000 trees. Describe, with the aid of an example, how you could change the tree numbering system to allow for over 1000 trees. Existing tree numbers must not be changed.								
					[2]				
	Using the query-by Display only the typ		ite a query to ider						
Field:									
Table:									
Sort:									
Show:									
Criteria:									
or:									

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

COMPUTER SCIENCE

0478/23

Paper 2 Problem-solving and Programming

May/June 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

DO NOT ATTEMPT TASKS 1, 2 AND 3 in the pre-release material; these are for information only.

You are advised to spend no more than 40 minutes on Section A (Question 1).

No marks will be awarded for using brand names of software packages or hardware.

Any businesses described in this paper are entirely fictitious.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 50.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Section A

You are advised to spend no longer than 40 minutes answering this section.

Here is a copy of the pre-release material.

DO NOT attempt Tasks 1, 2 and 3 now.

Use the pre-release material and your experience from attempting the tasks before the examination to answer Question 1.

Pre-release material

A car park has space for 100 cars and a barrier entrance and exit system. There is a display at the entrance to show how many spaces are empty. Cars are issued a ticket with a unique number on entry and the time of issue is stored. The car park charges \$1.50 per hour and the fee is paid at a machine before leaving the car park. At the machine, the ticket number and departure time are entered; the fee is calculated by the machine and the amount due is paid by the ticket holder. Cars cannot stay overnight; the system is reset at midnight.

Write and test a program or programs for the car park manager.

- Your program or programs must include appropriate prompts for the entry of data.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

TASK 1 – Operating the car park.

The system is reset at midnight every day.

Set up a system using arrays and with suitable prompts that will carry out the following as cars enter or leave the car park:

On Entry:

- display the number of empty car park spaces
- issue the next available ticket number
- store the current time and the ticket number
- display the updated number of empty car park spaces.

On Exit:

- input a ticket number and departure time
- output the amount of time the car stayed at the car park
- delete the ticket number from the array
- display the updated number of empty car park spaces.

TASK 2 – Working out the cost and daily takings.

Amend the program so that it will calculate the amount to be paid using a charge of \$1.50 per hour, or part of an hour (i.e. any amount of time into the next hour is charged for a whole hour). The amount to be paid is displayed and is added to a running total for the day, before the ticket number is deleted from the array. At the end of the day, the following information is displayed:

- total daily takings
- number of cars that have used the car park
- average charge per car
- average length of stay per car.

TASK 3 – Introducing parking restrictions.

The car park manager decides to restrict the length of stay to a maximum of eight hours, and will charge an extra \$100 if a car overstays. Modify your program to implement this change and ensure the driver is aware of this extra charge. Output the number of cars that have overstayed in a day.

(a)	All ۱	variables, constants and other identifiers should have meaningful names.
	(i)	State the name, data type and use of two arrays you created for Task 1 .
		Array 1 name
		Data type
		Use
		Array 2 name
		Data type
		Use
		[4]
	(ii)	State the name, value and use of two constants you could have created for Task 3 .
		Constant 1 name
		Value
		Use
		Constant 2 name
		Value
		Use
		[4]

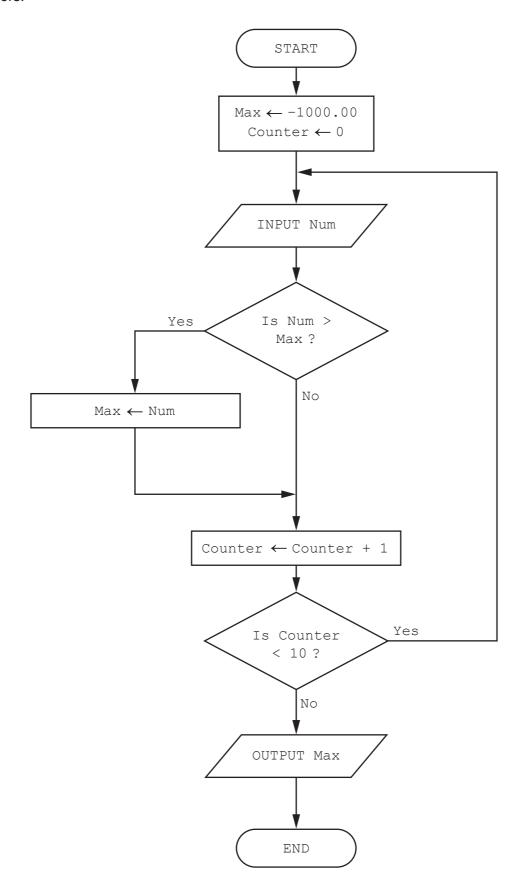
(b)	Write an algorithm to perform the set up and 'On Entry' part of Task 1 , using either pseudocode programming statements or a flowchart.
	Test test test test test test test test

(c)	Explain how your program calculates if a car has overstayed the permitted parking time and how the charge is calculated and output (part of Task 3). Any programming statements you use in your answer must be fully explained.
	[4]
(d)	One of the inputs required 'On Exit' in Task 1 is ticket number. State two items of suitable tes data you could use to test your input validation and state why you chose them.
	Test data 1
	Reason
	Test data 2
	Reason

Section B

2

3


(a)	Validation check
	[2]
(b)	Verification check
	[2]
Thic	
	section of program code reads the contents of the array, totals the numbers and prints out the and average of the numbers. Assume the array is full.
Con	plete the four missing items by writing them in the spaces provided in this code.
1	Numbers[1:30]
2	Total = 0
3	= 0
4	FOR Count = 1 TO
5	<pre>Number = Numbers[Count]</pre>
6	Total = + Number
7	Counter = Counter + 1
8	Count
9	PRINT 'The sum of the numbers you entered is ', Number
10	PRINT 'The average of the numbers you entered is ', Number / Counter

4 An algorithm is written in pseudocode:

INPUT Number
IF Number > 100
 THEN OUTPUT "The number is too large"
 ELSE OUTPUT "The number is acceptable"
ENDIF

(a)	Des	cribe the purpose of the algorithm.
		[2]
(b)	(i)	The algorithm only allows one attempt at inputting an acceptable value.
		State how you would change the algorithm so that it continues until a suitable input is supplied.
		[1]
	(ii)	Re-write the algorithm in full, using pseudocode, to implement your answer to part (b)(i).
		[3]

5 The flowchart allows a set of 10 numbers to be entered; it finds and outputs the largest of these numbers.

(a) Complete the trace table for the input data:

 $6.30,\,18.62,\,50.01,\,3.13,\,2.05,\,50.10,\,40.35,\,30.69,\,0.85,\,17.30$

Max	Counter	Num	OUTPUT

	[3]
b)	Describe two different changes you should make to the flowchart to find the smallest number instead of the largest number.
	Change 1
	Change 2
	ro
	[2]

A shop that sells copies of movies to the public has set up a new database table called 2018MOV to store some new releases. Part of this table is given, showing the catalogue number, title, genres and available formats (Blu-ray, DVD or streaming) of each movie.

CatNo	Title	Genre 1	Genre 2	Blu-ray	DVD	Stream
18m01	Battery Rangers	Adventure	Fantasy	Yes	No	Yes
18m02	Golfwatch	Comedy	Drama	Yes	No	Yes
18m03	Chair 27	Comedy	Drama	Yes	Yes	No
18m04	Wander Woman	Action	Fantasy	Yes	No	Yes
18m05	Justine League	Action	Fantasy	Yes	Yes	Yes
18m06	That	Horror	Thriller	Yes	Yes	No
18m07	Insect Dude	Action	Fantasy	No	Yes	No
18m08	Dover Beach	Action	History	No	Yes	No
18m12	Slow 25	Action	Thriller	No	Yes	No
18m15	Kongkers	Adventure	Fantasy	No	Yes	No
18m16	Transducers: The Last Night	Action	Sci-Fi	Yes	Yes	Yes
18m17	The Pale Tower	Fantasy	Sci-Fi	Yes	Yes	No
18m19	Bea and the Bute	Fantasy	Romance	Yes	Yes	Yes
18m21	The Daddy	Action	Fantasy	No	No	Yes
18m22	Planet Wars: Episode X	Sci-Fi	Action	Yes	No	Yes
18m23	Guardians of the Milky Way	Action	Sci-Fi	Yes	Yes	Yes
18m26	Odin	Horror	Sci-Fi	No	Yes	Yes
18m27	That	Fantasy	Sci-Fi	No	No	Yes
18m30	Underneath	Action	Horror	Yes	No	No
18m31	Debatable Me	Animation	Action	Yes	Yes	No

			[1]
(b)	(i)	Give the name of the field that should be used for the primary key.	[.]
			[1]
	(ii)	State the reason for choosing this field for the primary key.	
			[1]

© UCLES 2018 0478/23/M/J/18

(a) State the number of records in this part of the table.

(c) Complete the table to show the most appropriate data type for each field based on the data shown in the table at the start of question 6.

Field	Data type
CatNo	
Title	
Genre 1	
Stream	

г	n	٦
ı	_	1

(d) List the output that would be given by this query-by-example.

Field:	CatNo	Title	Genre 1	Blu-ray	DVD	Stream	
Table:	2018MOV	2018MOV	2018MOV	2018MOV	2018MOV	2018MOV	
Sort:							
Show:	✓	✓		✓	✓	✓	
Criteria:			="Comedy"				
or:							
					•		
							[2

(e) Using the query-by-example grid, write a query to identify all the movies that are categorised as Sci-Fi and available to stream. Only display the catalogue number and title of the film, with the titles listed in alphabetical order.

Field:				
Table:				
Sort:				
Show:				
Criteria:				
or:	_	_		

[4]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.